
Visual Comput (2009) 25: 197–208
DOI 10.1007/s00371-008-0214-3 O R I G I N A L A R T I C L E

Yotam Livny
Zvi Kogan
Jihad El-Sana

Seamless patches for GPU-based
terrain rendering

Published online: 11 March 2008
© Springer-Verlag 2008

Y. Livny (�) · Z. Kogan · J. El-Sana
Ben-Gurion University of the Negev,
Beer-Sheva, Israel
{livnyy, koganz, el-sana}@cs.bgu.ac.il

Abstract In this paper we present
a novel approach for interactive
rendering of large terrain datasets.
Our approach is based on subdividing
a terrain into rectangular patches
at different resolutions. Each patch
is represented by four triangular
tiles that are selected form different
resolutions, and four strips which
are used to stitch the four tiles in
a seamless manner. Such a scheme
maintains resolution changes within
patches through the stitching strips,
and not across patches. At runtime,
these patches are used to construct
a level-of-detail representation of
the input terrain based on view-par-
ameters. A selected level of detail
only includes the layout of the
patches and their boundary edges
resolutions. The layout includes the
location and dimension of each patch.
Within the graphics hardware, the

GPU generates the meshes of the
patches by using scaled instances of
cached tiles and assigns elevation for
each vertex from cached textures.
Since adjacent rectangular patches
agree on the resolution of the com-
mon edges, the resulted mesh does
not include cracks or degenerate
triangles. Our algorithm manages to
achieve quality images at high frame
rates while providing seamless transi-
tion between different levels of detail.

Keywords Terrain visualization ·
View-dependent rendering ·
Level-of-detail rendering · Hardware
acceleration

1 Introduction

Interactive visualization of landscapes and outdoor envir-
onments is important for various graphics applications,
such as computer games, flight simulators, and virtual
exploration of remote planets. Terrain and height field
datasets are vital components of these virtual environ-
ments.

The advances in satellite imaging and cartography
technologies have led to the generation of large terrain
datasets that contain billions of samples. Such terrains
usually exceed the rendering capability of currently avail-
able graphics hardware, and thus reducing their complex-

ity is mandatory for interactivity. Adjusting the terrain
triangulation in a view-dependent manner is a common
approach for interactive terrain rendering. Adaptive level-
of-detail rendering not only simplifies the geometry, but
also manages to reduce aliasing artifacts that may result
from rendering uniform dense triangulation.

The challenges of interactive terrain rendering have at-
tracted the interest of researchers for several decades and
interesting approaches have been developed (see Sect. 2).
Classic level-of-detail rendering schemes generate, usu-
ally off-line, multiresolution hierarchies. These hierarch-
ies are used at runtime to guide the selection of appro-
priate levels of detail based on view-parameters. Some of

198 Y. Livny et al.

Fig. 1a–d. Terrain rendering using seamless patches. a A selected view. b The wire-frame of a, where the green region marks one patch.
c Top view of a. d The wire-frame of c with the same marked patch

these approaches utilize temporal coherence among con-
secutive frames while others generate the geometry for
each frame, independent of its previous frames. These ap-
proaches were able to accelerate the rendering of large
terrains, but they were not able to maintain the improve-
ment rate as the speed of the graphics hardware grow
faster. The generation of a frame’s geometry is performed
by executing refine and simplify operations on the CPU,
which often fails to complete these computations within
the duration of one frame. In addition, the geometry of
a frame, which is transferred to the graphics hardware in
each frame, often exceeds the bandwidth of the commu-
nication channel and results in unacceptably low frame
rates.

To reduce the computation load on the busy CPU, sev-
eral approaches partition the terrain into patches at dif-
ferent resolutions. At runtime, these patches are stitched
together to generate a level-of-detail representation, which
is then transmitted to the graphics hardware. Stitching
these patches in a seamless manner is the main challenge
for these approaches. Introducing degenerate triangles and
dependencies among patches are used to handle these
problems. However, these solutions may introduce visual
artifacts, or require additional random-access memory ref-
erences.

In this paper, we present a novel approach for inter-
active rendering of large terrain datasets, which is de-

Fig. 2. a An image of one patch. b The wire-frame of the same
patch which shows the stitching of different resolution tiles

signed to prevent the mentioned limitations of previous
algorithms. Our approach subdivides the terrain into rect-
angular patches at different resolutions, as shown in Fig. 1.
Each patch is represented by four triangular tiles that are
selected from a small set of predetermined discrete reso-
lutions. The triangular tiles are stitched together by four
strips, as shown in Fig. 2. Since the number of different
resolutions is very small, the number of required patterns
of stitching strips is also very small.

At runtime, the generated patches are used to construct
a view-dependent level-of-detail representation. The se-
lected levels of detail do not include any geometry; instead
they only include the layout of the patches and the reso-
lutions along their boundary edges. The layout includes
the location and dimension of each patch. The resolutions
along boundary edges are used to guide the selection of the
adequate tiles and strips, for each patch, without the need
to query its adjacent patches. Since the resolution is com-
puted per edge, adjacent patches have the same resolution
along their shared edge and, as a result, the generated
mesh does not include any cracks or degenerate triangles.
For each patch p the graphics hardware selects the appro-
priate templates of cached tiles and stitching strips based
on the resolution assigned for the boundary edges of p.
These tiles and strips are then transformed (scaled, trans-
lated, and/or rotated) to match the location and dimension
of the patch p. Finally, the vertex and fragment proces-
sors assign elevation and color components for each vertex
using the cached textures. To handle large terrains, we
provide external texture memory support that caches the
necessary displacement and color maps in video memory.

Our approach provides several advantages over previ-
ous terrain rendering schemes:

– Stitching the boundary of adjacent terrain patches is
the main challenge for the patch-based approaches.
Previous stitching techniques include monitoring the
boundary when the parent patch splits into its children
patches, forcing a patch to simplify or refine to com-
ply with the resolution of its adjacent patch, or adding
degenerate or sliver triangles to fill the crack between
adjacent patches. These approaches maintain random-
access memory references between adjacent patches.

Seamless patches for GPU-based terrain rendering 199

In contrast, our algorithm determines the level of detail
of each patch without querying its adjacent patches.

– The rendered mesh does not include any degenerate or
sliver triangles, since our approach ensures the same
triangulation on the two sides of each boundary edge.

– Typical view-dependent rendering schemes require
large memory to store the patch hierarchies and their
geometry. In our algorithm the hierarchy stores only
the patch layout, which includes the location and di-
mension of each patch, and their geometry as displace-
ment maps. For terrain datasets the layout structure is
inferred from the quadtree (the patch hierarchy). As
a result, our approach extracts the layout of patches
using an implicit representation.

– The communication overhead is reduced as a result of
transmitting only the layout of the patches, while using
cached tiles and displacement maps to generate level-
of-detail representations.

In the rest of this paper we briefly overview related
work in terrain rendering. Then we discuss our approach,
followed by implementation details and experimental re-
sults. Finally, we draw some conclusions and suggest dir-
ections for future work.

2 Related work

In this section we briefly overview related work in level-
of-detail terrain rendering. We shall focus on approaches
that utilize the special properties of terrain datasets.

In general level-of-detail rendering algorithms, ter-
rains are represented as triangulated meshes. Algorithms
of this type usually utilize temporal coherence and
achieve the best approximation of the terrain for the
given view-parameters and triangle budget. However,
these algorithms are required to maintain mesh adja-
cency and validate refinement dependencies at each frame.
Several approaches use Delaunay triangulation to con-
strain the mesh [7, 8, 35], while others use less con-
strained multiresolution hierarchies with arbitrary con-
nectivity [11, 15, 19, 30].

Level-of-detail algorithms for height-field datasets are,
usually, based on regular grid representation. They utilize
the longest edge bisection scheme to simplify the mem-
ory management by using a restricted quadtree triangu-
lation [2, 33], triangle bintrees [14, 25], or hierarchies of
right triangles [16, 26]. However, updating the mesh at
each frame prevents the use of geometry caching and the
utilization of efficient rendering schemes.

To reduce CPU load and utilize efficient render-
ing, several approaches subdivide the terrain into square
patches at different resolutions. At runtime, the appropri-
ate patches are selected, stitched together, and transmitted
to the graphics hardware [18, 33, 34]. Cignoni et al. [6]
and Yoon et al. [40] have developed similar approaches

for general 3D models. The main challenge, for these ap-
proaches, is to stitch the boundaries of the appropriate
patches seamlessly. In each frame, the generated represen-
tation is transmitted, and rendered. These approaches try
to maximize the utilization of the graphics hardware ren-
dering capabilities. However, such utilization is limited by
the bandwidth of the communication channel.

To overcome the communication bottleneck, several
algorithms have utilized cached geometry. Some ap-
proaches [4, 5, 22, 24] cache triangulated regions in tex-
ture memory, while others exploit the geometric locality to
improve the cache efficiency [20].

Terrains usually compensate small geometric details
by textures, and as a result are often accompanied by
huge texture maps. Tanner et al. [38] introduced the tex-
ture clipmaps hierarchy, and Döllner et al. [13] developed
a more general texture hierarchy to handle texture maps.
For the graphics hardware, these caching techniques en-
able fast transition of geometry and texture. Since the
cache memory is limited, large datasets may still involve
communication overhead.

Cook [9] introduced the displacement maps to repre-
sent elevation maps as vertex textures. Several approaches
used programmable graphics hardware and displace-
ment maps for efficient adaptive rendering of graphics
models [12, 17, 28, 31].

The advances in graphics hardware programmability
and processing power have driven the development of
a new generation of level-of-detail rendering algorithms.
Losasso et al. [29] and Bolz and Schröder [3] used the
fragment processor to perform mesh subdivision. South-
ern and Gain [37], and Larsen and Christensen [23] used
the vertex processor to interpolate different resolution
meshes in a view-dependent manner. Wagner [39] and
Hwa et al. [21] used GPU-based geomorphs to render ter-
rain patches of different resolutions. Dachsbacher and
Stamminger [10] used GPU programmability to gener-
ate and render procedural details for terrains at runtime.
Schneider and Westermann [36] suggested progressive
transmission to reduce the data transfer between the CPU
and the GPU. Livny et al. [27] cached a persistent grid
in the video memory, and projected it on the height-field
to generate a view-dependent terrain surface reconstruc-
tion.

The clipmaps algorithm [1] uses a set of nested rect-
angular grids centered around the viewpoint. These grids,
which are stored within the video memory, represent dif-
ferent levels of details for the terrain at power-of-two reso-
lutions. In each frame, the visible part of the triangulation
is sent to the GPU and modified according to elevation
and color maps. However, this algorithm does not perform
local adaptivity, and the transition between different lev-
els of detail may result in cracks. The cracks problem is
resolved by inserting degenerate triangles, but these tri-
angles may generate visual artifacts such as dark pixels, or
Z-buffer fights.

200 Y. Livny et al.

3 Our approach

In this section, we present a novel algorithm for interactive
terrain rendering. It partitions the terrain into rectangular
patches and utilizes advanced features of graphics hard-
ware, such as programmability, displacement mapping,
and geometry caching. Our algorithm involves a light pre-
processing stage, generating a hierarchy of elevation maps
and color textures, and storing them within the main mem-
ory. The coexistence of different levels of detail within the
same patch enables seamless stitching of adjacent patches.
In each frame, our algorithm uses an implicit patch hier-
archy to generate a set of appropriate patches on the
fly, based on the current view-parameters. The generated
patches are stitched together and sent to the graphics hard-
ware, which adds geometry, per vertex elevation and color.

3.1 Patch scheme

Previous terrain rendering algorithms use either triangular
or rectangular patches for view-dependent level-of-detail
rendering. On the one hand, algorithms that use rect-
angular patches assign constant resolution over the entire
patch and follow the texture rectangular interface. How-
ever, they require fine rectangles to resemble the terrain
surface, and impose severe difficulties when stitching ad-
jacent patches. On the other hand, the algorithms that use
triangular patches enable easier stitching schemes and bet-
ter shape approximation, though they suffer incompatibi-
lity with the texture rectangular interface and complicate
texture management. Our patch scheme combines the ad-
vantages of the two schemes; it subdivides the terrain
into rectangular patches which consist of triangular tiles.
These tiles allow different resolutions to coexist within
one patch. Such a scheme provides limited local adaptivity
and enables the stitching of adjacent patches in a seamless
manner.

In our scheme, a patch is arranged as four tessellated
triangular regions which are determined by the two diag-
onals of the rectangular patch, as shown in Fig. 3. We

Fig. 3a,b. The components of one patch. a The image of four tri-
angular tiles. b The image of four strips

shall refer to these tessellated triangular regions as tri-
angular tiles (or simply tiles). The four tiles can have
different resolutions which are selected from a predefined
set of uniform resolutions. One could treat these tiles as
discrete levels of detail of the same tile. Within a patch,
the triangular tiles are stitched together by using prede-
fined strips (refer to Fig. 4). Since the number of different
resolutions for the tiles is usually small, the number of dif-
ferent stitching strips is also small. Three strip types are
required to stitch four tiles of two different resolutions.

We have chosen to adopt tile resolutions at consecutive
powers of two to comply with the mipmap resolutions and
meet the requirement of Claim 1 (see Sect. 3.4 below).

3.2 Patch hierarchy

The patch hierarchy is constructed top-down by subdiv-
iding each patch into 2 ×2 children patches, similar to
quadtree. The patch hierarchy does not store any geom-
etry; instead it stores the position and dimension of each
patch with respect to the entire terrain. As a result, it eas-
ily fits within local memory, even for very large terrains. In
practice, there is no need to implement the hierarchy ex-
plicitly. The position and dimension of each patch can be
directly retrieved from its parent, using simple shift oper-
ations. Therefore, in our algorithm we use the bounding
rectangle of the terrain and shift operations, as an implicit
hierarchy, to generate the location and dimension of each
patch on the fly.

3.3 Runtime rendering

Normalized meshes that represent the triangular tiles and
their stitching strips (2 tiles and 3 strips for two different
resolutions) are generated only once, and cached in texture
memory.

At runtime, the patch hierarchy is used to guide the
selection of the various levels of detail based on view-

Fig. 4. Triangular tiles at two different resolutions and the required
stitching strips

Seamless patches for GPU-based terrain rendering 201

parameters. In each frame the patch hierarchy is traversed
in a top-down manner to select a set of active patches that
form an appropriate level of detail. The traversal process
starts from the root and for each visited patch τ an error
value is computed. If the error is too large with respect
to the view-parameters, the children of the patch τ are
traversed. Otherwise, the resolutions of boundary edges
are computed and the patch is added to the list of active
patches, which are simultaneously streamed to the graph-
ics hardware for rendering. The resolutions on the bound-
ary edges of the patches are discretized to match that of the
triangular tiles. Within the CPU, a patch, p, is represented
by its enclosing rectangle and the resolution of its bound-
ary edges, which are enough to determine the tiles and

Fig. 5. Stitched tiles and strips of different resolutions. The meshes
of triangular tiles and strips appear in white color and the patches
boundaries appear in red

Fig. 6. Surface triangulation extracted from hierarchy

Fig. 7. A terrain view with a wire-frame on top. The meshes of tri-
angular tiles appear in white color and the strips appear in red

strips required to tile p (see Fig. 5). The resolutions of the
four edges of each patch are used to fix the four triangular
tiles, then each two adjacent tiles determine the strip that
matches their resolution and fills the gap between them.
Instances of the cached tiles and strips are transformed to
match the enclosing rectangles of the selected patches.

Since we use same computation for adjacent patches,
to calculate the resolution on common edges, the stitching
of adjacent patches is smooth and does not include cracks
or degenerate triangles. The light representation of the ac-
tive patches contributes to the dramatic reduction on the
CPU-GPU communication load.

Tessellating a patch by triangular tiles generates a pla-
nar mesh that does not include elevation nor color com-
ponents (see Fig. 6). These components are assigned for
each vertex by the vertex and fragment processors, which
use the 2D position of a vertex to fetch and assign the
appropriate elevation and color from the cached textures
(see Fig. 7).

3.4 Level of detail

The quality of a patch is determined by the resolutions
of its tiles, which are determined by the resolution of its
boundary edges. The resolutions of an edge is computed
based on its length l and its distance d from the viewpoint
by using Eq. 1, where ρ is the error tolerance. If ε is larger
than 1, the patch is split to its children, otherwise the reso-
lution of the edge is determined by εRmax rounded up to
the closest resolution, where Rmax is the highest available
resolution. The scaling factor, which is used to resize a tile
to match the patch’s enclosing rectangle, also determines
the texture level from which the elevation and color values
are fetched.

ε = ρ
l

d
(1)

202 Y. Livny et al.

The transition of the various levels of detail over the
surface of the generated mesh is dictated by the tiles’ reso-
lutions and patches’ levels. Note that in the selected level
of detail, adjacent patches can be different at most, by one
level in the hierarchy. For that reason, the generated mesh
does not include cracks or degenerated triangles as shown
in Claim 1.

Claim 1. The generated terrain triangulation does not in-
clude cracks, which means that any two adjacent patches
have the same number of triangles on the common edge.

Proof. Without loss of generality, the proof of the claim is
written for two different resolutions and quadtree subdiv-
ision. Our proof distinguishes between two cases:

1. The two selected adjacent patches have the same
dimension, and thus they share a common edge e
along the entire side. By selecting the same tile
on the two sides of e, the two patches are stitched
seamlessly.

2. The two selected adjacent patches are in different di-
mensions which means that the edge belongs to one
patch on one side and two patches on the other side
(see the edge AB in Fig. 8). We first show that the tile
ABJ gets the highest resolution R2. The patch ABCD
has split to four children, which means that one of
its edges required a resolution higher than R2 (beyond
the available resolutions). Let this edge be CD and l
be the length of the edge AB , and let the distances of
the edges AB and CD from the current viewpoint be
dfar and dnear, respectively. Based on Eq. 1, ρ l

dnear
> 1

holds, since the patch ABCD has split into its four chil-
dren, then:

ρ
l

dnear
> 1 ⇒ ρ

l

l +dnear
>

1

2
⇒ ρ

l

dfar
>

1

2
;

using dfar ≤ dnear + l.
Therefore, the edge AB is assigned the resolution R2,
and the edges AE and EB are assigned the reso-

Fig. 8. Stitching tiles at two different levels of detail

lution R1. Our algorithm assigns resolution R1 to
edges with error tolerance ε in the range [0, 0.5] and
R2 to those with error tolerance in the range (0.5, 1.0].

3.5 Texture pyramid

Terrain datasets are usually represented by elevation maps
and color textures, which store the properties of vertices
in the original terrain. We use multiple-level texture pyra-
mids at successive powers of two (similar to mipmaps) to
support level-of-detail rendering. These texture pyramids
are used at runtime to achieve faithful sampling of the
textures for the vertices of each tile. Since these multiple-
level pyramids are similar to mipmaps, we could let the
hardware construct them. Then at runtime, the vertex pro-
cessor determines from which level to select the values.
However, such an approach does not work when the ter-
rain size exceeds the capacity of the base level of the
mipmaps [28].

For large terrains, the multiple-level texture pyramids
are constructed once by the CPU before being transferred
for caching in the texture memory. We start with the ori-
ginal texture, which represents the most detailed level,
and each new level is generated from the previous one
by reducing the resolution by half at each dimension. The
pixels in the generated level are computed by interpolating
the four corresponding pixels of the previous level.

At runtime, an external texture memory manager is
used to maintain, within the texture memory, the portions
of data necessary for rendering the next frame. The upload
from main memory into texture memory is performed by
fetching nested clipmaps centered at the viewpoint [1, 38],
as shown in Fig. 9. Even though these clipmap levels oc-
cupy the same memory size, they cover increasing re-
gions of the terrain (see Fig. 9a, b). Each extracted level is
an independent texture that may require separate binding
(performed by the CPU) when it is used by a transmit-
ted patch. However, the CPU cannot predict the level of
detail of the transmitted patches since they are streamed
in an arbitrary order. To overcome this limitation, we ap-
ply a technique that uses multiple texture maps within one
bounded texture-buffer. It is done by laying all the differ-
ent texture levels into one large texture-buffer similar to

Fig. 9a–c. The layout of nested clipmaps. a The texture pyra-
mid stores the entire terrain in decreasing resolutions. b Nested
clipmaps cover increasing regions of the terrain. c Clipmaps are
laid on the texture atlas

Seamless patches for GPU-based terrain rendering 203

Fig. 10a,b. The modification (blue color) in the clipmaps resulting
from camera movement. a Clipmap layout. b F-shape texture atlas

the idea of texture atlases [32]. The uploaded textures tes-
sellate the texture-buffer uniformly because of their equal
sizes, as shown in Fig. 9c. In such a scheme, all the levels
of detail are accessible from the GPU simultaneously, and
there is no need for the CPU to switch textures.

The changes in view-parameters modify the viewed re-
gion, usually in a continuous manner. To avoid expensive
modification of the entire texture memory and to utilize
temporal coherence, each tile undergoes an L-shape modi-
fication similar to [1]. A new position for the viewpoint
requires the update of the nested clipmaps (in order to
keep them centered at the viewpoint). Note that most of
the cached data is still relevant and only small portions
need to be updated. The update of the texture tiles is sim-
ply performed by replacing the irrelevant pixels from the
texture with new pixels, and using repeat textures for the
tiles. Since the resolution of clipmap levels decreases ex-
ponentially, the area that needs to be updated becomes
smaller (coarse levels are seldom updated). In general, the
updated areas of all the tiles that lay in one texture, form
an F-shape (see Fig. 10).

4 Implementation details

We have implemented our algorithm in C++ and Cg for
Microsoft Windows. Our implementation uses OpenGL as
the graphics API, and requires graphics hardware that sup-
ports nVidia Shader Model 3.0.

In our current implementation, we do not construct the
patch hierarchy explicitly; instead, an implicit represen-
tation is used. The root of the hierarchy is the coarsest
level of detail that fits in texture memory and matches the
interactive rendering capability of the graphics hardware.
Hence, the height of the hierarchy can be easily deter-
mined based on the hardware capabilities. Note that the
2D bounding rectangle of the root is the same as that of
the original terrain. Recall that patch hierarchy does not
store any mesh geometry or pixel information. Therefore,
the subdivision of a patch into its children is performed by
several shift instructions within the CPU. The traversal of

the implicit patch hierarchy is performed similar to the ex-
plicit one, and often more efficient as a result of avoiding
memory access to fetch children patches. According to our
experimental results, traversing the patch hierarchy is neg-
ligible compared to the total rendering time of a frame (see
Sect. 5). View-frustum culling is performed by the CPU
during hierarchy traversal that determines the set of ac-
tive patches. For each patch τ that requires subdivision to
reach the appropriate level of detail, the children patches
of τ are tested against the view-frustum only if τ inter-
sects the boundary of the view-frustum. If the patch τ is
entirely included within the view-frustum, then all its chil-
dren patches are also within the view-frustum. If τ inter-
sects the view-frustum’s boundary, its children patches are
tested whether they are inside, outside, or intersect the cur-
rent view-frustum. The outside-marked patches are culled
and not processed further (see Fig. 11).

Fig. 11. View-frustum culling. A shaded view (top) and its wire-
frame representation (bottom)

204 Y. Livny et al.

The meshes that represent the tiles and strips of dif-
ferent resolutions are cached in texture memory, as men-
tioned in Sect. 3.3. The meshes are stored in an indexed
triangle strip format, and cached using the Vertex Buffer
Object (VBO) extension. At runtime, these meshes are
used to tile the selected patches. Since the number and
the size of these meshes are small (2 tiles and 3 strips
are required to support two different resolutions within
a patch), we store four orientations of each tile and each
strip to avoid rotating and mirroring these meshes at run-
time.

To handle large terrain datasets, our algorithm uses an
external texture memory support (refer to Sect. 3.5). The
implementation of the suggested memory manager uses
the Fragment Buffer Object (FBO) extension to support
dynamic updates of the textures.

In earlier algorithms, the CPU sends three coordinates
for each uncached vertex in the dataset. Our algorithm,
utilizes the hardware supported displacement map to pass
vertex coordinates to the graphics hardware by sending
only elevation value for each vertex. The other two coord-
inates are generated using the terrain grid structure. This
technique reduces the data transfer at runtime from three
coordinates to one coordinate for each vertex.

5 Results
Our implementation was tested on an AMD Athlon 3500
with 1 GB memory, and nVidia GeForce 7800 GTX graph-
ics card with 256 M texture memory using Puget Sound
and Grand Canyon terrain datasets. The terrain datasets we
used are of sizes 1.5 GB, 112 MB and 24 MB for 16 K2,
4 K2 and 1 K2 samples, respectively. This section reports
and analyzes selected entries of these results.

The performances of our algorithm are summarized
in Table 1. For each dataset, we visualize different regions
of the terrain to capture the various processing patterns.
Each row reports the terrain size, the viewed region, the
error tolerance, and the performance with and without
view-frustum culling. Two options were recorded for the
viewed region: boundary and internal, which refer to fly-

Table 1. Runtime performance

Dataset View Error With frustum culling Without frustum culling
size region value ρ Triangles Traversed Rendered Culled FPS Triangles Traversed Rendered FPS

4K×4K Boundary 2 172 696 109 46 36 283 331 428 121 91 156
4K×4K Internal 2 138 668 109 33 49 380 403 896 141 106 138
16K×16K Boundary 2 180 731 100 50 27 271 338 240 123 93 153
16K×16K Internal 2 148 200 126 39 58 354 389 197 151 107 135
4K×4K Boundary 1 354 248 137 66 37 138 763 864 189 142 69
4K×4K Internal 1 330 480 133 56 44 156 1 133 796 265 199 52
16K×16K Boundary 1 422 358 179 82 74 112 915 190 213 160 56
16K×16K Internal 1 414 966 152 70 63 112 1 359 642 340 231 43

ing near the boundary and inside the terrain, respectively.
When the error tolerance equals 1 pixel, we select more
detailed levels than when the error tolerance equals 2
pixels. In the performance columns we report the num-
ber of rendered triangles (Triangle column), the number of
traversed patches (Traversed column), the number of ren-
dered patches (Rendered Column), the number of culled
patches (Culled column), and the frame rates. The view-
frustum culling increases the performances by a factor of 2
when flying on the boundary of the terrain, and by a factor
of 3 in general. Our algorithm manages to achieve quality
images at high frame rates, as can be seen in Table 1. The
frame rates depend mainly on the number of triangles. The
first row shows 156 FPS without view-frustum culling for
about 330 K triangles and 91 rendering patches, and the
sixth row reports the same FPS with view-frustum culling
and 56 patches. Therefore, we can conclude that patch
selection is negligible with respect to the total rendering
time. Note that patch selection also includes view-frustum
culling and transmitting the active patches to the graphics
hardware.

The intersection of the terrain basis (the XY-plane)
with the view-frustum forms a triangular area of visible
geometry. Rendering rectangular patches usually results in
transmitting many triangles that are invisible (out of view-
frustum). Our patch scheme enables rendering only the
visible part of a patch, meaning only visible tiles within
a single path. Supporting partial rendering for patches im-
proves the rendering speed by about 15% without harming
the rendering quality.

The results of our algorithm were compared to the
results of three known view-dependent terrain rendering
algorithms. We implemented these algorithms based on
published papers, while using the same rendering tech-
niques, such as VBO, triangle strips, CG programming,
and geometry caching. In order to present reliable com-
parisons of the performance of these algorithms, we only
measured the number of triangles that are actually pro-
cessed by the GPU. Using our machine configuration the
BDAM [4], the clipmap [1], and adaptive 4–8 texture hier-
archies [21] render 46 M, 44 M, and 43 M textured tri-
angles per second, respectively. Our algorithm manages

Seamless patches for GPU-based terrain rendering 205

to render 53 M textured triangles per second on aver-
age. These numbers show that the simplicity of our GPU
shader with the use of the displacement maps provide
promising results.

The clipmap algorithm [1] and our approach use the
same rendering technique (cached elevation maps, pla-
nar geometry transmission, triangle strips, and vertex tex-
turing). To improve our comparisons, we also tested the
utilization of the view-frustum culling algorithm. The
differences between the number of triangles sent to the
GPU and the number of triangles that actually fall in the
view-frustum were measured for these two algorithms.
For experimental purposes, the number of triangles sent
to the GPU was fixed to 500 K. We found that for the
clipmap algorithm, the view-frustum includes 380 K tri-
angles, which are only 76% of the transmitted triangles.
The partial patch transmission scheme, which prevents
the transmission of invisible tiles within a selected patch,
improves the culling algorithm utilization. When using
the partial patch rendering scheme, the view-frustum in
our algorithm includes 440 K triangles, which are 88%
of the transmitted triangles. This scheme improves the
FPS of our algorithm by 15% over the clipmap algo-
rithm, by providing the same image quality using less
triangles.

The contribution of the CPU and the GPU to the per-
formance of the algorithm are shown in Table 2. The first
part of each row represents the configuration of the frame,
which includes the number of rendered patches (RP),
culled patches (CP), and rendered triangles (Tris). The

Fig. 12a–c. A terrain view at ρ = ρ0. a A shaded surface. b Tiles in white and strips in red. c The wire-frame representation

Fig. 13a–c. A terrain view at ρ = 2ρ0. a A shaded surface. b Tiles in white and strips in red. c The wire-frame representation

Table 2. Hardware performance analysis

Configuration Time
RP CP Tris CPU (µs) GPU (ms) FPS

18 34 88 986 17.54 1.85 583
22 13 96 246 22.57 1.98 545
27 18 119 054 26.88 2.58 418
39 58 148 200 30.67 3.04 354
50 27 180 731 34.84 3.98 271
47 23 230 372 39.06 5.68 190

forth and fifth columns report the CPU and the GPU pro-
cessing times, respectively. The CPU load is tiny and has
almost no influence on the frame rates for two main rea-
sons – the selection of the active patches (by the CPU) is
very light, and the CPU runs in parallel to the GPU. These
contributions are also supported by the results shown
in Table 2. In addition, the results show that the bottleneck
of our algorithm is the GPU. Therefore, it will benefit from
the current trend of improving GPU rates.

Table 3 shows the performance of our suggested exter-
nal texture memory scheme using various subtexture sizes
and three navigation speeds – fast, medium, and slow mo-
tion. The subtexture (clipmap) sizes in pixels appear in the
first column. The Entire texture column reports the time, in
milliseconds, for binding the entire texture at each frame.
Such a scenario results in unacceptably low frame rates.
The Partial update columns report the time of the different
navigation patterns. The fast navigation implies extensive

206 Y. Livny et al.

Table 3. Out-of-core performances

Clipmap Entire Partial update (ms)
size texture (ms) Fast Medium Slow

1282 38 1.22 0.17 0.01
2562 161 1.57 0.63 0.01
5122 994 3.59 1.39 0.02

updates of the tiles, whereas the slow navigation requires
only tiny updates at each frame.

Figure 11 shows the shaded representation above and
the wire-frame representation below of a terrain view after
applying view-frustum culling, which is performed by the
CPU during the selection of active patches.

Figures 12 and 13 were generated from Puget Sound
terrain datasets using our algorithm at different error
values (ρ). In each figure, the image a shows a shaded
view that depicts image quality. Figures 12b and 13b
show the wire-frame representation that illustrates the tri-
angular tiles in white color and the stitching strips in red.
Figures 12c and 13c show the generated mesh and the
transition of the levels of detail.

6 Conclusion and future work

We have presented a novel approach for interactive terrain
rendering that reduces the load on the CPU, utilizes tex-
ture memory, and leverages advanced features of the GPU.
The terrain is subdivided into rectangular patches on the
fly. Each patch is represented by four triangular tiles at dif-
ferent resolutions which are stitched together using four
triangle strips. At runtime the CPU selects the appropri-
ate patches based on the view-parameters and determines
the resolution on their boundaries. The different tiles and
stitching strips are cached in texture memory and used to

tile each patch according to its boundary resolution. Multi-
resolution levels of color textures and displacement maps
are also cached in texture memory and used by the vertex
and fragment processors to assign the elevation and color
for each vertex.

Our approach balances the load among the CPU and
the GPU and dramatically reduces the communication
traffic between them. Adjacent patches are seamlessly
stitched without cracks or degenerate triangles, since they
have the same resolution on the common edge. Further-
more, each patch determines its own resolution independ-
ent of its adjacent patches; it simply selects the different
tiles that comply with its boundary resolutions. The use of
tiles provides limited local adaptivity which contributes to
the smoothness of the generated mesh.

Our algorithm performances are strongly influenced by
the number of vertex pipelines. The algorithm relies on
the vertex fetch operation which enables the vertex pro-
cessor to access texture memory. This new feature is not
yet optimized, as in the fragment processor. In addition,
the current GPUs have a small number of vertex pipelines.
We predict that future development on vertex processor
hardware will lead to impressive improvements in our al-
gorithm performance.

We see the scope of future work in extending the
idea of independent patches to support exact local error
schemes. Such development will provide faster view-
dependent rendering for large terrain datasets by provid-
ing similar image quality, while using fewer triangles.
Moreover, our suggested approach generates the patches
geometry within the GPU, and hence, cannot utilize tem-
poral coherence among conservative frames. Developing
and utilizing temporal coherence within the GPU could
contribute to further improvements of the algorithm per-
formance.

Acknowledgement This work is partially supported by the Lynn
and William Frankel Center for Computer Sciences and the Tuman
fund.

References
1. Asirvatham, A., Hoppe, H.: Terrain

rendering using GPU-based geometry
clipmaps. In: Pharr, M., Fernando, R. (eds.)
GPU Gems 2, pp. 27–45. Addison-Wesley
(2005)

2. Bao, X., Pajarola, R., Shafae, M.: Smart:
An efficient technique for massive terrain
visualization from out-of-core. In:
Proceedings of Vision, Modeling and
Visualization ’04, pp. 413–420
(2004)

3. Bolz, J., Schröder, P.: Evaluation of
subdivision surfaces on programmable
graphics hardware. Submitted (2005)

4. Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., Scopigno, R.:
BDAM – batched dynamic adaptive meshes

for high performance terrain visualization.
Comput. Graph. Forum 22(3), 505–514
(2003)

5. Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., Scopigno, R.:
Planet-sized batched dynamic adaptive
meshes (P-BDAM). In: Proceedings of
Visualization ’03, pp. 147–155. IEEE
Computer Society Press, Washington, DC
(2003)

6. Cignoni, P., Ganovelli, F., Gobbetti, E.,
Marton, F., Ponchio, F., Scopigno, R.:
Adaptive tetrapuzzles: efficient out-of-core
construction and visualization of gigantic
multiresolution polygonal models. ACM
Trans. Graph. 23(3), 796–803 (2004).
doi:10.1145/1015706.1015802

7. Cignoni, P., Puppo, E., Scopigno, R.:
Representation and visualization of terrain
surfaces at variable resolution. Visual
Comput. 13(5), 199–217 (1997)

8. Cohen-Or, D., Levanoni, Y.: Temporal
continuity of levels of detail in delaunay
triangulated terrain. In: Proceedings of
Visualization ’96, pp. 37–42. IEEE
Computer Society Press,
Los Alamitos, CA (1996)

9. Cook, R.L.: Shade trees. Comput. Graph.
Forum 18(3), 223–231 (1984)

10. Dachsbacher, C., Stamminger, M.:
Rendering procedural terrain by geometry
image warping. In: Eurographics
Symposium in Geometry Processing,
pp. 138–145 (2004)

Seamless patches for GPU-based terrain rendering 207

11. De Floriani, L., Magillo, P., Puppo, E.:
Building and traversing a surface at
variable resolution. In: Proceedings of
Visualization 97, pp. 103–110. IEEE
Computer Society Press, Los Alamitos,
CA (1997)

12. Doggett, M., Hirche, J.: Adaptive view
dependent tessellation of displacement
maps. In: HWWS ’00: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware,
pp. 59–66. ACM Press, New York, NY
(2000). doi:10.1145/346876.348220

13. Döllner, J., Baumann, K., Hinrichs, K.:
Texturing techniques for terrain
visualization. In: Proceedings of
Visualization ’00, pp. 227–234. IEEE
Computer Society Press, Los Alamitos, CA
(2000)

14. Duchainear, M., Wolinsky, M., Sigeti, D.,
Miller, M., Aldrich, C., Mineev-
Weinstein, M.: ROAMing terrain: Real-time
optimally adapting meshes. In: Proceedings
of Visualization ’97, pp. 81–88. IEEE
Computer Society Press, Los Alamitos, CA
(1997)

15. El-Sana, J., Varshney, A.: Generalized
view-dependent simplification. Comput.
Graph. Forum 18(3), 83–94 (1999)

16. Evans, W.S., Kirkpatrick, D.G.,
Townsend, G.: Right-triangulated irregular
networks. Algorithmica 30(2), 264–286
(2001)

17. Gumhold, S., Hüttner, T.: Multiresolution
rendering with displacement mapping. In:
HWWS ’99: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, pp. 55–66. ACM
Press, New York, NY (1999).
doi:10.1145/311534.311578

18. Hitchner, L., McGreevy, M.: Methods for
user-based reduction of model complexity
for virtual planetary exploration. In: SPIE
1913, pp. 622–636 (1993)

19. Hoppe, H.: Smooth view-dependent
level-of-detail control and its application to
terrain rendering. In: Proceedings of
Visualization ’98, pp. 35–42. IEEE
Computer Society Press, Los Alamitos, CA
(1998)

20. Hoppe, H.: Optimization of mesh locality
for transparent vertex caching. In:
Proceedings of SIGGRAPH ’99,
pp. 269–276. ACM Press, New York, NY
(1999)

21. Hwa, L.M., Duchaineau, M.A., Joy, K.I.:
Adaptive 4–8 texture hierarchies. In:
Proceedings of Visualization ’04,
pp. 219–226. IEEE Computer Society
Press, Los Alamitos, CA (2004)

22. Lario, R., Pajarola, R., Tirado, F.: Hyper-
block-quadtin: Hyper-block quadtree based
triangulated irregular networks. In:
Proceedings of IASTED VIIP, pp. 733–738
(2003)

23. Larsen, B.S., Christensen, N.J.: Real-time
terrain rendering using smooth hardware
optimized level of detail. J. WSCG 11(2),
282–289 (2003)

24. Levenberg, J.: Fast view-dependent
level-of-detail rendering using cached
geometry. In: Proceedings of Visualization
’02, pp. 259–266. IEEE Computer Society
Press, Washington, DC (2002)

25. Lindstrom, P., Koller, D., Ribarsky, W.,
Hodges, L.F., Faust, N., Turner, G.A.:
Real-time, continuous level of detail
rendering of height fields. In: Proceedings
of SIGGRAPH ’96, pp. 109–118. ACM
Press, New York, NY (1996)

26. Lindstrom, P., Pascucci, V.: Terrain
simplification simplified: A general
framework for view-dependent out-of-core
visualization. IEEE Trans. Visual. Comput.
Graphics 8(3), 239–254 (2002)

27. Livny, Y., Sokolovsky, N., Grinshpoun, T.,
El-Sana, J.: A GPU persistent grid mapping
for terrain rendering. Visual Comput. 24(2),
139–153 (2008).
doi:10.1007/s00371-007-0180-1

28. Losasso, F., Hoppe, H.: Geometry
clipmaps: terrain rendering using nested
regular grids. ACM Trans. Graph. 23(3),
769–776 (2004)

29. Losasso, F., Hoppe, H., Schaefer, S.,
Warren, J.: Smooth geometry images. In:
Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing,
pp. 138–145. Eurographics Association,
Aire-la-Ville, Switzerland (2003)

30. Luebke, D., Erikson, C.: View-dependent
simplification of arbitrary polygonal
environments. In: Proceedings of
SIGGRAPH ’97, pp. 199–208. ACM Press,
New York, NY (1997)

31. Moule, K., McCool, M.D.: Efficient
bounded adaptive tessellation of
displacement maps. In: Proceedings of
Graphics Interface, pp. 171–180 (2002)

32. NVIDIA: Improve batching using texture
atlases. SDK White Paper (2004)

33. Pajarola, R.: Large scale terrain
visualization using the restricted quadtree
triangulation. In: Proceedings of
Visualization ’98, pp. 19–26. IEEE
Computer Society Press, Los Alamitos, CA
(1998)

34. Pomeranz, A.: ROAM using triangle
clusters (RUSTiC). Master’s thesis, U.C.
Davis CS Dept. (2000)

35. Rabinovich, B., Gotsman, C.: Visualization
of large terrains in resource-limited
computing environments. In: Proceedings
of Visualization ’97, pp. 95–102. IEEE
Computer Society Press, Los Alamitos, CA
(1997)

36. Schneider, J., Westermann, R.:
Gpu-friendly high-quality terrain rendering.
J. WSCG 14(1–3), 49–56 (2006)

37. Southern, R., Gain, J.: Creation and control
of real-time continuous level of detail on
programmable graphics hardware. Comput.
Graph. Forum 22(1), 35–48 (2003)

38. Tanner, C.C., Migdal, C.J., Jones, M.T.:
The clipmap: a virtual mipmap. In:
Proceedings of SIGGRAPH ’98,
pp. 151–158 (1998).
doi:10.1145/280814.280855

39. Wagner, D.: Terrain geomorphing in the
vertex shader. ShaderX2: Shader
Programming Tips & Tricks with DirectX 9
(2004)

40. Yoon, S.E., Salomon, B., Gayle, R.:
Quick-VDR: Out-of-core view-dependent
rendering of gigantic models. IEEE Trans.
Visual. Comput. Graph. 11(4), 369–382
(2005). doi:10.1109/TVCG.2005.64

208 Y. Livny et al.

YOTAM LIVNY is a Ph.D. student of Computer
Science at the Ben-Gurion University of the
Negev, Israel. His research interests include
interactive rendering of large 3D graphic models
using multiresolution hierarchies and the pro-
grammable graphics hardware. Yotam received
a B.Sc. in Mathematics and Computer Science
from the Ben-Gurion University of the Negev,
Israel in 2003. He is a Ph.D. candidate.

ZVI KOGAN received a M.Sc. in Computer
Science from Ben-Gurion University of the
Negev, Israel in 2006, under the advisory of Dr.
Jihad El-Sana. His research interest includes
interactive rendering of large terrain datasets,
and programmable graphics hardware. Zvi
received a B.A. in Computer Science from
Haifa University, Israel in 1997.

JIHAD EL-SANA is a Senior Lecturer of Com-
puter Science at Ben-Gurion University of
the Negev, Israel. El-Sana’s research interests
include 3D interactive graphics, multiresolution
hierarchies, geometric modeling, computational
geometry, virtual environments, and distributed
and scientific visualization. His research focuses
on polygonal simplification, occlusion culling,
accelerating rendering, remote/distributed vi-
sualization, and exploring the applications
of virtual reality in engineering, science, and
medicine. El-Sana received a B.Sc. and M.Sc.
in Computer Science from Ben-Gurion Univer-
sity of the Negev, Israel in 1991 and 1993. He
received a Ph.D. in Computer Science from the
State University of New York at Stony Brook
in 1999. El-Sana has published over 40 papers
in international conferences and journals. He is
a member of Eurographics, and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

