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Abstract Current vision-based
human body motion capture methods
always use passive markers that
are attached to key locations on
the human body. However, such
systems may confront subjects with
cumbersome markers, making it dif-
ficult to convert the marker data into
kinematic motion. In this paper, we
propose a new algorithm for mark-
erless computer vision-based human
body motion capture. We compute
volume data (voxels) representation
from the images using the method
of SFS (shape from silhouettes), and
consider the volume data as a MRF

(Markov random field). Then we
match a predefined human body
model with pose parameters to the
volume data, and the calculation
of this matching is transformed
into energy function minimization.
We convert the problem of energy
function construction into a 3D graph
construction, and get the minimal
energy by the max-flow theory.
Finally, we recover the human pose
by Powell algorithm.
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1 Introduction

The purpose of human body motion capture is to detect
and record the motion of a moving human body, which
can be represented as poses of the human body and con-
verted to abstract digital format. Human body motion
capture is invaluable for applications such as computer
animation, activity recognition, new-generation human-
computer natural interaction, game production and mo-
tion analysis, etc. Existing human body motion capture
technologies are centered around three main approaches:
optical, magnetic and electro-mechanical. These three ap-
proaches need specific equipments and are restrictive to
some degree. Markerless human body motion capture is
a method that uses the images obtained from multiple
cameras placed around the human body without mark-
ers to estimate the pose of the human body. Due to the
advantages of vision-based markerless human body mo-
tion capture, such as non-compelling, low cost, high au-
tomaticity, it has been an increasingly hot research direc-

tion in motion capture field. [14] conducted a summary of
markerless-based human motion capture. It considers mo-
tion capture as several stages: initialization, tracking, pose
estimation and recognition. Each stage is divided into dif-
ferent types of concrete. [15] presents a method deducing
the 3D pose or motion of the complete human body from
a single image or a monocular sequence of images. It uses
a learning-based approach to construct a probabilistic pose
estimation model from a set of labeled human silhouettes.
But so far, because of the high-dimension (24 degrees in
our method in this paper) of the kinematic model, oc-
clusion and self-occlusions, how to acquire robust pose
information of human body from image sequences inde-
pendent of special equipments and markers in the presence
of image noise, loose clothing and cluttered background
remains to be a challenging issue in the field of computer
vision.

In recent years, research has shown that multi-camera
approaches are used more and more used human mo-
tion capture. Many multi-view approaches for marker-
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less human body motion capture have been published
lately, such as [4], which tracks full human-body using
markerless multi-view images as input. They use blobs
attached to a kinematic model to recover joint angles
in an expectation-maximization framework. [6] gives
a novel approach for full body pose tracking from mul-
tiple views via stochastic sampling. The objective func-
tion definition is the sum of the distances of model
vertices to the corresponding reconstruction voxels. It
uses SMD (stochastic meta descent) to optimize the
function considering color information. [7] introduces
a shape-from-silhouette method for full body tracking
from both silhouette and color information. It uses col-
ored surface points to segment the hull into rigidly mov-
ing body parts and takes advantage of the constraint
of equal motion of parts at coupling joints to estimate
joint positions. [16] presents an approach for model-free
markerless motion capture of articulated kinematic struc-
tures. It uses isomaps to transform the voxel space to its
pose-invariant intrinsic space representation and obtains
a skeleton representation.

In this paper, we present a new solution for model-
based markerless human body motion capture from multi-
ple calibrated cameras. We compute a volume data (voxel)
representation from the images using the method of SFS,
and consider the volume data as a MRF. Then we fit a pre-
defined human body model with pose parameters to the
volume data, the calculation of this fitting is transformed
into energy function minimization. We convert the prob-
lem of energy function construction to a 3D graph con-
struction, and get the minimal energy by the max-flow
theory. Finally, we recover the human pose by the Powell
algorithm.

2 Preliminaries

In this section we provide a general overview of the
Markov random field (MRF). The MRF is a kind of con-
ditional probability model that can be used to describe
the correlation between adjacent areas in image process-
ing. This method has been successfully used to resolve
the problems such as image segmentation [8, 17, 20, 21]
in recent years. In this paper, we consider the volume of
interest as a 3D-MRF, and consider the human body re-
construction as a 3D segmentation in this 3D-MRF. For
a MRF is corresponding to an energy function, we can
convert the problem of human body reconstruction to an
energy minimum problem.

A MRF comprises of an undirected graph G = 〈V, E〉
where V is a finite set of vertices and E ⊂ V × V is a set
of edges. The vertices consist of a set of discrete random
variables S = {s1, s2, ..., sn} defined on the index set V and
a label set L = {l1, l2, ..., ln} of all possible labels. Each
variable sv takes a value lv from the label set. C is the
clique set of the MRF. Clique is the special set, in which

each vertex is the neighbor of others or just one vertex.
Then, y = {sv = lv|v ∈ V, lv ∈ L} will represent the config-
uration to the MRF. [18] gives the probability density of
the MRF, which can be written in terms of a Gibbs distri-
bution as:

p(y) = 1

Z
exp

(
− 1

T
E(y)

)
(1)

E(y) =
∑
c∈C

Ec(y), (2)

where E(y) is the energy function, Ec(y) is the potential
energy function of the clique c. T is a constant, and Z is
a normalized constant, where E(y) can be written in terms
of unary and pair-wise energy terms in the simplest inter-
esting case as:

E(y) =
∑
v∈V

h(sv)+
∑

(u,v)∈E

g(su, sv). (3)

In the context of the 3D human body reconstruction, the
set S corresponds to the set of all voxels in the vol-
ume of interest, the variable sv denotes the labeling of
the voxel v ∈ V . The label set L comprises of two labels
(‘obj’, ‘bkg’) representing whether the voxel belongs to
the human body or not. Therefore each configuration y
will represent a result of 3D reconstruction of the human
body. Supposing z denote the set of observed data in cur-
rent frame and taking a Bayesian perspective, we wish to
find the best configuration y (i.e., the optimal labels for
the voxel in current frame) which maximize the posterior
probability p(y|z), or in other words, to solve MAP-MRF
problem. This can be done by finding the configuration
with the minimum energy:

yopt = arg min
y

E(y). (4)

Then inference on the optimal labels corresponding to the
MRF is seen as an energy minimization problem.

3 Algorithm details

3.1 System overview

In [14], Moelund and Granum describe the problem of
motion capture into four stages: initialization, tracking,
pose estimation and recognition. But different researchers
have different opinions on whether the human body mo-
tion capture should include the person’s behavior and
identity recognition. Owing to recognition is a very big
research direction, we think that the human body motion
capture can halt at “pose estimation” and may not include
the stage of recognition.

Figure 1 shows the flowchart of our algorithm. The in-
put of our algorithm consists of successive frames from
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Fig. 1. Illustrated flowchart of our approach

multiple cameras which are static and synchronized by
a control system. The output consists of the pose parame-
ters of human body in the image sequence.

We use five conventional fixed USB cameras to in-
put the images without any other special hardware. We
put the cameras all around the subject, pointing towards
the centre of the capture space. These cameras are syn-
chronized by our program and the images are recorded at
a frame rate of 20 fps. As for other computer vision sys-
tems, the parameters of the cameras need to be known in
the initialization. So the first step of our algorithm is cam-
era calibration. We use the algorithm proposed by [2]. In
this step, we can get the intrinsic and extrinsic calibration
parameters of cameras under the same world coordinate
reference frame.

We use the visual hull of the human body as a ba-
sis of our algorithm. The visual-hull of a human is the
maximal portion of the space which, projected into the
camera image planes, lies totally inside all the silhou-
ettes of the human. So, after acquisition, all images un-
dergo a foreground/background segmentation as a prelim-
inary step before constructing the human body visual hull.
We have proposed a new foreground segmentation method
for applications using static cameras. It formulates back-
ground segmentation as an energy minimization problem.

Fig. 2. Sketch map of visual hull [23]

[1] describes the details of the algorithm which eliminates
shadows and produces good quality silhouettes.

Next, we recover the human pose from the visual hull.
Although more and more researchers estimate the human
pose from the 3D visual hull data, most of them take no ac-
count of the impact of the errors in 3D data reconstructed
from the images using SFS. As we know, because of the
occlusion, self-occlusion and image segmentation error,
visual hull generated from SFS often involves some in-
accurate parts, this problem is particularly serious when
the camera number is less. Unfortunately, the 3D matching
process largely depends on the accuracy of the 3D data.
If the 3D data contain serious errors, it will greatly influ-
ence the accuracy of the estimated posture. We take full
account of the impact of the SFS reconstruction error to
the motion capture and propose a new method which is
based on 3D-MRF and 3D dynamic graph cuts [13]. We
regard the volume of interest as a 3D-MRF, and consider
the human body reconstruction as a 3D segmentation in
this 3D-MRF, then using dynamic graph cuts algorithm we
can get a min-cut of this MRF. Considering the cost of this
min-cut as energy, we can get the cost of this reconstruc-
tion. Minimizing this energy, we can recover the human
pose.

3.2 Human body model

Human body models can greatly simplify the pose estima-
tion and also make the pose estimation more accurate and
robust. Although complicated model can improve the cal-
culation accuracy a little bit. We design a new kinematic
human body model to balance complexity and the degree
of reality. In our model, each node represents a stylized
joint position and the lines between nodes represent bones.
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Our model is parameterized with 24 degrees of freedom.
Figure 3 shows the human model used in our algorithm.

We use the size of statistical average as the default
size of each part in the model. In addition to make
the model applicable to various performers, we can use
an interactive graphical user interface to adjust the size
parameters.

In addition to geometry, the more important parameters
of the model are the pose parameter x. In our algorithm,
the pose parameter x is a 24-dimensional vector, it con-
tains the three-dimensional spatial location or towards of
the components of the human body.

3.3 Human body motion capture via MRF

If we use visual hull of a human and a human model as
input I to reconstruct the human body, and consider each
voxel in the volume of interest as a node in the 3D-MRF,
and each vertice corresponds to a discrete random variable
with two labels (‘obj’, ‘bkg’), representing whether the
voxel belongs to the human body or not, then any three-
dimensional reconstruction results generated from the in-
put data I correspond to the incident of the maximum
posteriori probability in a certain MRF. In other words,
it corresponds to the incident of energy function getting
smallest result.

yopt = arg max
y

p(y|I ) = arg min
y

E(y). (5)

We add the hidden pose variable x to the energy func-
tion E(y) of the MRF. For different x, although the forms
of energy function Ex(y) unchanged, coefficient changes
with x.

Fig. 3. A simple stick-model of human body

For a given posture x, we can get the best posture re-
construction y, and it corresponds to the minimum of the
Ex(y). If we keep adjusting the posture human model x
to find the xopt that corresponds to the minimum of the
energy function Ex(y), the posture xopt is the optimal pos-
ture.

yopt = arg min
y

Ex(y) (6)

xopt = arg min
x

Ex(yopt) (7)

xopt = arg min
x

min
y

[Ex(y)]. (8)

3.4 Energy function construction

After the analysis of the MRF model method, we convert
the problem to an energy minimization. So we will con-
struct the energy function Ex(y) of the MRF. In frame k,
the energy function will be decided by the visual hull of
the frame hk, the hidden pose variable xk and the config-
uration y. So the energy can be written as ψ(xk, hk, y).

According to (3) and in terms of individual and pair-
wise interaction function, the energy function can be writ-
ten as:

ψ(xk, hk, y) =
∑
i∈V

(φ1(si |xk, hk)+φ2(si |xk, hk)

+
∑

j∈V, j �=i

φ3(si, s j |xk, hk)), (9)

where φ1(si |xk, hk) and φ2(si |xk, hk) are the unary terms
specifying the cost for assigning the label si to the corres-
ponding voxel. φ3(si, s j |xk, hk) is the interaction term that
add the smoothness restriction to the space.

Given a visual hull hk which is decided by the observed
data of current frame zk, we can define φ1(si |xk, hk) as:

φ1(si |xk, hk) =
{

C1 ∗ (1−u(i)) if si = ‘obj’
C1 ∗u(i) if si = ‘bkg’

, (10)

where C1 is a constant, and u(i) can be calculated by:

u(i) =
{

1 if si ∈ hk

0 otherwise
. (11)

To the human model with certain pose parameter xk, we
define φ2(si |xk, hk) as:

φ2(si |xk, hk) =
{

max{C2 ∗ (di−C3), 0} if si = ‘obj’
max{C2 ∗ (C3−di), 0} if si = ‘bkg’

,

(12)

where di is the distance from si to the human model with
pose parameter xk. C3 is the average distance from the
human model to the surface of real human body. C2 is
a constant.
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The pair-wise interaction term φ3(si, s j |xk, hk) can be
defined as:

φ3(si, s j |xk, hk) =
{

C4 if si �= s j

0 if si = s j
. (13)

3.5 Solve the inner optimization

In this step, we will solve the inner optimization of (8).
Given a visual hull hk (which is decided by the observa-
tion vector zk) and certain pose xk, we have converted
a 3D human body reconstruction to energy minimization.
This process can be optimized by simulated annealing or
Gibbs sampling algorithm. But they are usually slow con-
vergence. In this work, we minimize the energy using
dynamic graph cuts.

To a certain pose x and visual hull h, (9) is a energy of
general 3D-MRF. It can be solved using graph cuts if they
are sub-modular [9]. The condition for sub-modularity is
given as:

E(0, 0)+ E(1, 1) ≤ E(0, 1)+ E(1, 0). (14)

This implies that the energy for two labels with similar
values should be less than the energy for them with differ-
ent values. In our case, this is indeed the case.

We construct a 3D graph for the energy function. Each
common node corresponds to a voxel in the volume of
interest, and we construct other two special nodes corres-
ponding to the label ‘obj’ and ‘bkg’.

We set the weights of the links of common nodes by
the pair-wise interaction term φ3(si, s j |xk, hk), and set the
weights of the links of common and special nodes accord-
ing to the unary terms φ1(si |xk, hk) and φ2(si |xk, hk).

Minimizing the energy using dynamic graph cuts, we
can get the optimal configuration yopt to a certain pose x
and visual hull h.

Fig. 4. Construction of 3D graph [8]

3.6 Dynamic graph cuts

Graph cuts were developed by [8, 9] in recent years and
several new algorithms based on it have been developed to
solve the problem of energy minimization and image seg-
mentation. The main idea of the graph cuts is to construct
a special graph for the energy function that will be opti-
mized, so the min-cut of the graph can optimize the energy

Fig. 5. a Ex(yopt) when only changing the global translation in x
and y axis, b Ex(yopt) when only changing the joint angles of the
left shoulder in x and y axis
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function. On the other hand, the problem of min-cut can be
solved by max-flow algorithm.

An un-directional weighted graph G = 〈V, E〉 con-
sists of a set of nodes (vertices V ) and a set of undi-

Fig. 6. Visual hull and experiment results

rected edges (E) that connect them. Two terminal s and
t are called source and sink, respectively. The edges con-
necting each node to the source or sink are called t-
links. The edges connecting to two neighboring nodes are
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called n-links. Each edge in the graph is assigned a certain
weight.

Graph cuts have been proved to be well suited for
segmentation of images in many articles [8,17]. In our
system, graph cuts can be regarded as 3D volume seg-
mentation. In the context of 3D volume segmentation,
V corresponds to the set of all voxels in current time.
Two additional terminal S and T represent background
terminal and object terminal. Then the edges of E con-
tain all the links between neighboring voxels and the links
between the S or T and other nodes. Each edge in the
graph is assigned a certain weight depending on the vi-
sual hull and human model with pose parameters. The
weight of t-link represents the cost that the voxel is la-
beled as ‘obj’ or ‘bkg’, and the weight of n-link represents
the cost that the neighbor voxels are labeled as contrary
label. We set the n-link and t-link of the graph accord-
ing to the energy function (9) and n-link is decided by the
unary terms, t-link decided by the interaction term. Each
voxel has two t-links and six n-links except the voxel on
the edge.

Once the graph is constructed, dynamic graph cuts
based upon graph flow will find an optimal (minimum
cost) cut. Some voxels are labeled as ‘obj’, and the others
are labeled as ‘bkg’. Then the separation of the object
from background is completed, and the cost of this min-
cut can be calculated. A minimum cost cut generates
a segmentation that is optimal in terms of properties that
are built into the edge weights, so we can consider this
min-cut as a reconstruction of a 3D object based on the vi-
sual hull and the human model. We consider this cost as
the energy of this reconstruction of the pose and the visual
hull. If the pose is more consistent with the visual hull, the
3D reconstructed object will be more accurate with the hu-
man body, and the cost of this min-cut will be lower. In
this way, we can get the effect of the pose parameters to
the visual hull.

3.7 Pose recovery

In this step, we will solve the outer optimization of (8).
That is to get the optimal pose xopt of the human. The min-
imum of the energy function Ex(yopt) reflects the accuracy
of the human pose x. So, the task of the pose recovery is to
find xopt, which makes the Ex(yopt) minimum.

Figure 5 shows how Ex(yopt) changes with the change
of the pose parameters x. It can be clearly seen that the en-
ergy surface is locally uni-modal nearby xopt. Thus we can
optimize it using standard optimization algorithm. As the
calculation of the gradient of energy function is very in-
convenient, we adopt the Powell optimization method [22]
to solve this problem.

In order to solve this problem, we should give an ini-
tial value to the optimization of each frame. In the first
frame, we use an interactive graphical user interface to set
initial pose parameters. In the following frames, we use

the optimal pose parameters of previous frame x∗
opt as the

initial value of this frame directly, and use Powell algo-
rithm to minimize the function, we can get the optimal
pose parameters xopt of current frame. The experiments
demonstrate that this method is feasible when the frame
rate larger than 15 fps (the movement between two frames
is small).

4 Experimental results

We used real video sequences of a human from five syn-
chronized cameras as input, and tested our algorithm on
it. Figure 6 presents a series of results of seven frames that
we obtained from the experiment. Each column in the fig-
ure is the images from five cameras, visual hull and the
pose recognition result. All experimentswere conducted
with 640 ×480 images on a P4 3GHz PC offline, taking
about one minute per frame.

5 Conclusions

In this paper, we present a new solution for model-based
markerless human body motion capture from multiple
calibrated cameras. We compute a volume data (voxel)
representation from the images using SFS. Different
from other methods, we consider the compact of the
error data in the visual hull, combine motion capture
with 3D reconstruction in MRF-MAP framework and
solve the two issues at the same time. We consider
the 3D volume data mentioned above as a MRF, and
fitting human model to the visual hull is transformed
into energy function minimization. We convert the prob-
lem of energy function construction into a 3D graph
construction, and get the minimal energy by the max-
flow theory. Finally, we can recover the human pose by
the Powell algorithm. Since the compact of the error
messages in the visual hull to the motion capture is
considered, our method has higher estimation accuracy
than those of other general methods. Several experimen-
tal results illustrate the promising performance of this
algorithm.
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