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Abstract Computer-aided geometric
design is an area where the improve-
ment of surface generation techniques
is an everlasting demand, since faster
and more accurate geometric models
are required. Traditional methods
for generating surfaces were initially
mainly based upon interpolation
algorithms. Recently, partial differen-
tial equations (PDE) were introduced
as a valuable tool for geometric
modelling, since they offer a number
of features from which these areas
can benefit. This work summarizes

the uses given to PDE surfaces
as a surface generation technique
together with some other applications
to computer graphics.
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1 Introduction

The systematization and characterization of certain sur-
faces dates as far back as the times of the Roman Empire.
They were interested in creating a mould for ship hulls
since their conquering aspirations demanded mass pro-
duction of war vessels [23]. However, the introduction of
drawings defining the shape of a hull became popular in
England in the 17th century when a wooden beam, known
as a spline, was used to draw smooth curves. Nowadays,
geometric design is aided by computational tools where
a large number of surface generation techniques are read-
ily available.

The majority of methods used in computer-aided geo-
metric design for generating surfaces are commonly based
on a specific type of implicit surface, namely polynomial
surfaces. This kind of surface is characterized by a num-
ber of control points and weights. However, the manipu-
lation of such surfaces is not as straightforward as one
would desire since the relationship between the changes in
geometry and the manipulation of the control points is not
intuitive.

Parametric surfaces are, in general, easier to manipu-
late than implicit ones, since it is only necessary to mod-
ify some of the parameters to obtain a different surface.
Parametric surfaces are commonly represented by splines,
which are a popular representation of curves in computer-
aided geometric design due to the advantages they offer,
namely: the simplicity of their construction and the accur-
acy with which they can be evaluated.

1.1 Common surface generation techniques
for geometric design

Today, in the geometric design literature there exist numer-
ous methods for surface generations. In particular, spline-
based techniques have become increasingly popular over
the years. A brief description of the most frequently occur-
ring surface generation techniques is given below.

B-splines are curves that can be described by a given
set of points. This technique was originally based on poly-
nomial interpolation through the complete set of points.
However, as high order polynomials are obtained from
such a procedure, the resulting surfaces lacked smooth-
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ness. Afterwards, in the interest of providing smoothness
to such surfaces, piecewise interpolation was carried out.
De Casteljau and Bézier, both involved in automotive de-
sign, are the pioneers in the area [23]. The most com-
mon functions used to achieve piecewise interpolation are
third-order polynomials and conics.

The following are the most common types of spline
used in computer design:

Bézier surfaces. These surfaces are a special case of Her-
mite interpolation. They are constructed as a sequence of
cubic segments rather than linear ones [32]. They are de-
termined by

S(u, v) =
m∑

j=0

n∑

k=0

Pj,kBezj,m(v)Bezk,n(u), (1)

where Pj,k denote the control points and

Bezk,n = n!
k!(n − k)!uk(1−u)n−k.

B-splines. These are a generalization of Bézier curves
where each of the control points is multiplied by its re-
spective basis function. The basis functions are deter-
mined by a well established rule and depend on the num-
ber of knots (joining points) required. Thus, a B-spline
surface is defined by

S(u, v) =
m∑

j=0

n∑

k=0

Ni,p(u)Nj,q(v)Pj,k, (2)

where Pj,k denote the control points, Ni,p and Ni,q are the
B-spline basis functions of degree p and q respectively.
A B-spline basis function of degree r is given by

Ni,r (u) = u −ui

ui+r−1 − ti
Ni,r−1 + ui+k −u

ui+r −ui+1
Ni+1,r−1,

where ui denotes a component of a pre-defined knot
vector.

NURBS. Non-uniform rational B-splines differ from B-
splines and Bézier curves. The difference is that NURBS
include the weighting of the non-equidistant control
points, which is also the reason for which they are re-
garded as rational. These surfaces are mathematically
described by

S(u, v) =
∑m

j=0
∑n

k=0 Ni,p(u)Nj,q(v)wj,k Pj,k∑m
j=0

∑n
k=0 Ni,p(u)Nj,q(v)wj,k

, (3)

where wj,k represents the weight associated with the con-
trol point Pj,k.

The most common types of parametric surfaces used
in computer-aided geometric design vary from rectangular
surfaces to Coons patches. A brief description of each of
these types is given below. However, if the reader is inter-
ested in further details, the work outlined in [23] would be
an excellent further reading since it is a self-contained ref-
erence with a thorough description of each of the surface
types mentioned in this work.

Rectangular surfaces, commonly known as tensor
product surfaces, were based on bicubic spline interpol-
ation in their early developments [23]. This type of sur-
faces, as its name points out, maps a rectangular domain
into a three-dimensional region.

Coons patches are regarded as surfaces fitted through
a given set of four boundary curves. The only condition
imposed on the boundary curves associated with a Coons
patch surface is that these curves have to meet at the patch
corners.

Triangular surfaces take their name from the geometric
arrangement from where each of their points is computed.
The domain is divided into triangular elements, and then
each point of the surface is evaluated at the barycentric
coordinates of its respective triangular element in the do-
main. This type of surface was first used in finite element
theory, where their formulation was complicated and ex-
hausting. However, the formulation of triangular patches
in Bernstein form was more elegant [23].

Subdivision is a surface generation technique for find-
ing a smooth surface from a rough one. This technique con-
sists of an iterative process by which new points within
the surface are found according to a given subdivision rule
and, unlike parametric surfaces, they can represent surfaces
with arbitrary topology [15]. However, subdivision surfaces
present some problems concerning the absence of a mech-
anism by which inner collision can be detected. Solution to
some of these problems are presented in De Rose et al. [15].

Nevertheless, traditional surface generation techniques
are not capable of guaranteeing global smoothness. Re-
cently, this problem has been overcome by the introduc-
tion of partial differential equations as a tool for surface
manipulation. Therefore, an overview containing some
mathematical details concerning partial differential equa-
tions, relevant to this work, is given below.

1.2 Partial differential equations

Partial differential equations (PDE) are equations in which
the unknown function depends on a set of partial deriva-
tives of this unknown function with respect to two or more
independent variables. For instance, let U(x, y) be the un-
known function depending on two independent variables
x and y; then, the general form of a second-order partial
differential equation is given by

AUxx + BUxy +CUyy + DUx + EUy + FU = G(x, y),
(4)



A survey of partial differential equations in geometric design 215

where A, B, C, D, E and F are all general functions
of U(x, y), x and y and subscripts denote derivatives.
Note that Eq. 4 contains terms with different orders of
derivatives.

The importance of such a mathematical tool is that al-
most every physical phenomenon is modelled by a PDE.
For instance, the heat equation in either one or two spa-
tial dimensions describes how heat is distributed in a given
length or area, respectively. Other examples of PDEs de-
scribing physical phenomena are the wave equation and
the Laplace equation. Their use has also been extended to
areas such as finance where the Black–Scholes equation
models the variation of stock prices with time.

PDEs can be classified according to different features
such as:

– Order. This is determined by the order of the highest
partial derivative present in the equation.

– Homogeneity. This feature classifies PDEs as homoge-
neous and nonhomogeneous according to G(x, y). If
this term is identically equal to zero the PDE is said to
be homogenous and otherwise is non-homogeneous.

– Linearity. A PDE is said to be linear when the coeffi-
cients do not depend on U(x, y) and no derivative term
is multiplied by any other including itself. It is nonlin-
ear otherwise.

Additionally, linear PDEs can be also classified ac-
cording to the type of coefficients. Such a classification
is divided into three categories: parabolic, hyperbolic and
elliptic. For instance, Eq. 4 can fall into any of these cate-
gories as follows:

– Parabolic. The PDE must satisfy B2 −4AC = 0.
– Hyperbolic. The equation falls into this category if

B2 −4AC > 0.
– Elliptic. The partial differential equation is regarded as

such when B2 −4AC < 0.

This classification extends to PDEs of higher order.
However, the classification criterion varies depending on
the order of the PDE. Additionally this classification has
been useful in characterizing the type of phenomenon de-
scribed by each class of equation.

The task of solving PDEs in general is not easy. How-
ever, several methods have been developed for finding
their solution. These methods vary from purely analytical
schemes to full numerical techniques. The methods avail-
able for solving PDEs are beyond the scope of this work
and therefore, the reader is referred to [24] for further
details.

Now, PDEs have been introduced to areas such as com-
puter graphics and animation where they have been cap-
able of solving a variety of problems [45] very efficiently.
Furthermore, this mathematical tool has met the ever in-
creasing demand of realism in the mentioned areas.

This work summarizes all the aspects concerning the
use of PDEs as a surface generation technique and it is
divided as follows: Sect. 2 provides a brief description
of PDE surfaces. Section 3 includes general information
about implicit PDE surfaces and lists the most common
velocity fields used in computer-aided geometric design.
Section 4 describes parametric PDE surfaces and some
of the methods available for producing them. Section 5
describes some of the applications of PDEs in geometric
design, in particular, in areas associated with computer-
aided geometric design whereas some other applications
given to PDEs in computer graphics are named in Sect. 6.
Finally, Sect. 7 outlines the conclusions of this work.

2 Geometric PDE surfaces

The term PDE surfaces refers to surfaces that have been
generated or modified by the solution of a given partial
differential equation. These surfaces are the graphical rep-
resentation of the solution to a given PDE subject to a set
of boundary conditions. The advantages offered by the use
of PDEs to generate surfaces over other surface gener-
ation techniques such as splines or NURBS are numerous,
namely:

– Surface generation techniques based on PDEs require
a smaller number of parameters than spline-based tech-
niques to represent a given surface since PDE surfaces
are characterized by a set of boundary curves, whereas
spline-based techniques are defined by a set of control
points. Thus, PDE surfaces are more likely to be easier
to manipulate than others.

– PDE surfaces automatically guarantee some degree
of intrinsic smoothness during blending processes,
whereas such smoothness is not necessarily guaran-
teed when blending surfaces obtained when using
spline-based techniques. The smoothness obtained by
blending PDE surfaces increases with the order of the
PDE giving rise to such a surface.

– PDE-based surface generation techniques potentially
unify geometric and physical aspects of surface mod-
elling. This result is particularly useful for engineering
design.

The type and order of the PDE to use is generally not
restricted. For instance, parabolic nonlinear PDEs of sec-
ond, fourth and higher order have been used [45] with the
aim of describing the evolution of an initial surface subject
to the chosen PDE. Notice that the degree of smoothness
is determined by the order of the equation. PDE surfaces
comprise both implicit and parametric surfaces. Moreover,
given the diversity of areas where PDE surfaces have been
used, PDE surfaces can also be classified according to
the problem they are aiming to solve within the scope of
computer-aided geometric design. However, a simple and
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well defined classification taking into account both criteria
simultaneously is very difficult to portray. Thus, a brief de-
scription of both implicit and parametric PDE surfaces is
outlined in the next two sections, followed by a section en-
tirely dedicated to describe the uses given to PDE surfaces
in computer design.

3 Implicit PDE surfaces

Implicit PDE surfaces are those that result from an evo-
lution equation for which its original domain is a pre-
established surface; that is, these surfaces are generally
calculated as the collection of points p satisfying a given
geometric flow [45]. The general representation of the
geometric flow is determined by

∂p

∂t
= V(p, t), (5)

where V(p, t) denotes an arbitrary velocity field. It is im-
portant to stress that the initial surface for which the geo-
metric flow is applied must be a closed and orientable one.
Thus, Eq. 5 gives rise to a family of closed and orientable
surfaces S(t) determined by

∂p

∂t
= N(p(t))Vn(k1, k2, p), (6)

where p(t) is a point in S(t), Vn(k1, k2, p) and N(p) rep-
resent the normal velocity and vector of the surface at p
respectively, whilst k1 and k2 denote the principal curva-
tures of S(t).

Several velocity fields have been implemented for
studying different problems present in computer-aided
geometric design, such as surface blending, N-sided hole
filling, free-form surface construction, noise reduction and
image inpainting [3, 4, 45]. Examples of the most common
velocity fields are listed below and, for the sake of brevity,
only the PDE associated with them is given. The uses of
these velocity fields will be discussed in a further section.

– Mean curvature flow. This velocity flow is described by

Vn = −1

2
(k1 + k2).

– Averaged mean curvature flow. This flow is given by

Vn = 1

2
(k1 + k2)+h(t),

where

h(t) =
∫

S(t)
1
2(k1 + k2)dσ
∫

S(t) dσ
.

– Surface diffusion flow. A fourth-order velocity field is
determined by

Vn = ∇2 1

2
(k1 + k2),

where ∇2 represents the Laplacian.
– Higher-order geometric flows. The general PDE deter-

mining such flows is,

Vn = (−1)k+1∇2k 1

2
(k1 + k2),

where k ≥ 2.
– Heat flow. This flow is described by

Vn = (−1)k+1∇2k p(t),

where k > 0 and p(t) represents a point in S(t).
– Willmore flow. This is a fourth-order flow given by

Vn = ∇2(k1 + k2)+2(k1 + k2)
(
(k1 + k2)

2 − K
)
,

where K represents the Gaussian curvature.

The usual approach for solving PDEs related to prob-
lems in computer-aided geometric design consists of using
finite differences. Details concerning the spatial and tem-
poral discretizations together with the criteria applied to
some other aspects such as the evaluation of boundary
conditions, mesh regularization, stopping criteria and the
generation of the initial mesh are exhaustively explained
in [45].

Generally, the velocity fields are geometry intrinsic;
i.e., they are applicable to surfaces with arbitrary topology.
Additionally, these velocity fields are volume preserving
and in the vast majority of cases, they are area reducing.
However, they are volume preserving if and only if the
surface to which they are applied is closed. Therefore, in
the event of applying them to an open surface with a fixed
boundary the area and volume preserving assertions stated
before are not necessarily valid.

So far, implicit PDE surfaces result from the evolution
of PDEs through time; that is, parabolic PDEs have been
discussed. However, implicit PDE surfaces can also be ob-
tained from elliptic PDEs [20]. A brief description on how
elliptic PDEs give rise to implicit PDE surfaces is given
below, where the most relevant mathematical details are
outlined.

3.1 Accounting for the use of elliptic PDEs to obtain
implicit PDE surfaces

The use of elliptic PDEs for generating implicit sur-
faces was introduced with the aim of taking advantage of
the powerful parametric PDE formulation avoiding topo-
logical restrictions [19]. This type of implicit surface is
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regarded as the solution to

(
a2 ∂2

∂x2 +b2 ∂2

∂y2 + c2 ∂2

∂z2

)2

X(x, y, z) = 0, (7)

where x, y and z denote the coordinate system and vary
from 0 to 1 whereas a, b and c represent shape control
parameters inherent to the PDE.

In principle, four boundary conditions are required to
solve Eq. 7; however, analytic solutions, in general, does
not exist for solving it and numerical methods are used
to obtain an approximation of the surface. For example,
standard finite differences schemes are implemented to
find the surface satisfying Eq. 7. Therefore, the incorpora-
tion of additional constraints, either hard or flexible ones,
is very straightforward since such constraints can be repre-
sented by additional algebraic equations that can be added
to the original system inherent to the finite difference rep-
resentation of Eq. 7.

The work presented in [19] provides further mathemat-
ical details of such a formulation together with some of
its uses in computer-aided design, such as shape design,
blending, reconstruction of surfaces from either curves
or scattered points, sculpting, and the implementation of
interactive tools.

4 Parametric PDE surfaces

Parametric PDE surfaces are regarded as the solution to
an elliptic partial differential equation in the parametric
domain. This is an excellent surface generation technique
since the discretization of the operator associated with
elliptic PDE is an averaging process of the solution neigh-
bourhood of the PDE guaranteeing that the surface ob-
tained will possess a certain degree of smoothness depend-
ing upon the order of the PDE.

Parametric PDEs have proved to be extremely use-
ful for the implementation of surface generation methods
and to address problems, such as shape blending [5],
optimization [38], interactive design [41] and interactive
sculpting [16]. Furthermore, the work presented in [6]
shows that parametric PDE surfaces obtained from closed
analytic solutions to the generating PDE can be repre-
sented in terms of B-splines [6].

For the purposes of illustrating the most relevant math-
ematical details concerning the formulation of a paramet-
ric PDE surface, the Bloor–Wilson PDE method, which
is a standard method for surface generation, is discussed
below.

4.1 The Bloor–Wilson PDE method

The Bloor–Wilson PDE method has been developed
in [10] and was originally introduced as a blending tool [5]
from where its use has been extended to several other

areas. This method is a surface generation technique over-
coming a number of problems inherent to polynomial sur-
faces. Additionally, it is an excellent choice for free-form
surface generation, since it only requires boundary curves
as input, which can be determined in a very intuitive man-
ner [7]. A summarized description of the mathematical
foundations of the Bloor–Wilson PDE method is outlined
below.

In principle, there is no restriction upon the type and
order of the PDE to be solved. However, elliptic PDEs
have been chosen to develop this technique since this kind
of PDE is regarded as an averaging process throughout
the entire surface. The order of the PDE determines the
smoothness of the surface since the boundary conditions
required to solve the PDE are usually given in terms of
positional and derivative requirements.

The original formulation of Bloor–Wilson PDE method
consists of producing a parametric surface X(u, v) by
finding the solution to a PDE of the form

(
∂2

∂u2 +a2 ∂2

∂v2

)r

X(u, v) = 0, (8)

where u and v represent the parametric surface coordin-
ates, which are then mapped into the physical space; i.e.,
(x(u, v), y(u, v), z(u, v)), a is a parameter inherent to the
PDE mostly restricted to a ≥ 1 and r determines the order
of the PDE.

Equation 8 is a PDE of order 2r. However, most of
the work related to this method is based on fourth-order
PDEs; i.e., r = 2; therefore four boundary conditions are
required. These are generally given by a set of two po-
sitional boundary conditions and the value of the first
derivative at the same positions. Notice that when a = 1
and r = 2, Eq. 8 is known as the biharmonic equation,
which models some phenomena occurring within areas
such as fluid and solid mechanics and therefore, many al-
ternatives for solving it have been developed.

The solution to Eq. 8 can be found using different ap-
proaches, varying from analytical to fully numerical ones.
However, the selection of full analytical methods gives
rise to some topological restrictions on the objects rep-
resented by this type of solution. A typical example of
a PDE surface obtained by using the Bloor–Wilson PDE
method is presented in Fig. 1. The generating boundary
curves are shown in Fig. 1a, the top and bottom circles
represent the positional boundary conditions whereas the
inner ones are used to calculate the value of the derivative
boundary conditions. The resulting PDE surface is out-
lined in Fig. 1b.

The former example shows, in a schematic manner, the
foundations of this method, enhancing the fact that only
some boundary curves are required to obtain a smooth
surface. However, the simplicity of the surface in this ex-
ample does not give an idea of the surface that can be
generated using this method. For this purpose, additional
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Fig. 1a,b. Example of a PDE surface generated using the Bloor–
Wilson PDE method. The boundary curves are shown in a and the
corresponding PDE surface is shown in b

Fig. 2a,b. Examples of a PDE surfaces of geometries possessing
mathematical expressions. A PDE surface corresponding to a sea
shell is shown in a and a Klein bottle is represented in b

examples of complex geometries are presented in Figs. 2
and 3. The PDE representation of two objects that can be
mathematically characterized are shown in Fig. 2, where
a PDE surface corresponding to a sea shell is schematized
in Fig. 2a and a surface representation of a Klein bottle is
outlined in Fig. 2b.

PDE surface representations of complex geometries
are shown in Fig. 3. A PDE surface representation of
a dolphin is shown in Fig. 3a, and a PDE surface associ-
ated with a human face is shown in Fig. 3b. These PDE
surfaces have been obtained by blending several surface
patches.

It is noteworthy to mention that when the domain is
restricted to 0 ≥ u ≥ 1 and 0 ≥ v ≥ 2π, the solution is
also restricted to the use of periodic boundary conditions.
The solution to Eq. 8 can then be expressed in terms of
a Fourier series. The full details of such a solution are pre-
sented in [10]. The Fourier series associated with the solu-
tion of Eq. 8 is in general an infinite series and therefore,

Fig. 3a,b. Examples of a PDE surfaces of complex geometries.
These surfaces were obtained by using the Bloor–Wilson PDE
method. A representation of a dolphin is shown in a and a PDE
surface representation of a face is shown in b

the solution is approximate with the property of exactly
satisfying the boundary conditions through the addition of
a remainder term. However, the solution is exact if all the
boundary conditions can be expressed in terms of a finite
Fourier series.

As for the case when the domain consists of the rect-
angular region restricted by 0 ≥ u ≥ 1 and 0 ≥ v ≥ 1, an
eigenvalue solution has been developed. The mathemat-
ical details of this solution are presented in [11].

Notice that the method itself is not restricted to these
cases since full numerical techniques such as finite differ-
ences or finite element can be employed for finding the
solution to Eq. 8.

Furthermore, the compatibility between surfaces gen-
erated by the PDE method and the ones generated by more
traditional techniques such as B-splines and Bézier sur-
faces has been thoroughly studied. Works such as [32]
and [33] present Bézier solutions to elliptic PDEs. PDE
surfaces have also been shown to be compatible with B-
spline representations [6].

4.2 Alternatives to the Bloor–Wilson PDE method

Variations of the PDE method formulated by Bloor and
Wilson have been accomplished. For instance, the work
presented in [47] uses the following elliptic PDE,:
(

a
∂6

∂u6 +b
∂6

∂u4∂v2 + c
∂6

∂u2∂v4 +d
∂6

∂v6

)
X(u, v) = 0, (9)

where a, b, c and d are shape control parameters.
The solution to Eq. 9 is similar to that presented in [10]

with the difference that the series is given in terms of a set
of basis functions (this set is found according to the set of
boundary conditions for each problem in particular). This
formulation offers three additional shape control param-
eters, represented by a, b and c, which may be thought
an improvement; however, the added advantage of hav-
ing such parameters is difficult to assess since no physical
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meaning can be associated with them. Eq. 9 has also been
used for blending surfaces where curvature continuity is
guaranteed [46].

4.3 Parametric PDE surfaces obtained
from physics-based models

The imposition of energy constraints to parametric sur-
faces has proved useful in application where local and
global deformations are required. Such constraints have
been applied under a number of different circumstances.
Some examples of this are,

– B-spline surfaces have been sculpted interactively by
applying linear constraints such as local pressures and
sectional forces [12, 13].

– Elasticity theory has been employed to manipulate
surfaces representing flexible materials, providing
the model with more realism especially when such
a model is used for animation purposes. The work
presented in [37] shows different examples, whereby
different energy constraints have been imposed ac-
cording to the elastic properties required by each
example.

– Geometric constraints have also been employed. Such
constraints are expressed as energy functions which are
then responsible for parametrically deforming a given
geometric model. Such a deformation may take place
either locally or globally, depending on the type of
constraint employed [2, 44].

Elliptic PDEs have also been used for generating
parametric PDE surfaces satisfying physics-based models
where the acceleration and velocity of the surface can
be included so that the surface is allowed to deform ac-
cording to external forces [17]. This approach introduces
new general and flexible constraints; and, the system can
be solved using finite differences. This technique has
successfully achieved local and global deformations of
PDE-based surface models such as sculpting and blend-
ing [21]. This approach expands the topological limita-
tions of the original formulation of the Bloor–Wilson PDE
method.

A nonlinear second-order system of differential equa-
tions describes the behaviour of a physics-based model,
which in general form is given by

M
∂2 X
∂t2 + D

∂X
∂t

+ K X = f , (10)

where M, D and K account for the mass, damping and
stiffness matrices associated with the object respectively
and f represent the total external force acting on the sur-
face.

Equation 8 can be rewritten as

AX = g, (11)

where A is the matrix associated with the finite difference
expansion and g is vector. Thus, the dynamic version of
the surface is given by

M
∂2 X
∂t2 + D

∂X
∂t

+ (K + A)X = f + g. (12)

Again, semi-implicit finite difference methods can
be employed to find the solution to Eq. 12. Further de-
tails concerning the physics-based formulation are given
in [18].

Another type of physics-based parametric PDE surface
is dynamic NURBS, also known as D-NURBS. They are
a generalization of NURBS in which physical properties
such as mass distribution, internal deformation energies
and external forces are incorporated to the model. This
incorporation leads to solving a set of nonlinear differen-
tial equations by integrating them numerically [35]. This
type of PDE surfaces avoids the complications inherent
in the manipulation of standard NURBS, since the de-
signer is no longer required to manipulate control points
directly.

Variational geometry formulations have also been used
to produce parametric PDE surfaces [43] where differ-
ent geometric constraints on the resulting surface can be
imposed. These constraints are generally related to the
smoothness of the surface and are particularly useful in
surface fairing [29].

5 Applications of PDE surfaces

PDE surfaces have been successfully employed for de-
veloping techniques relevant to computer-aided geometric
design. Given the versatility with which PDE surfaces can
be formulated to address such techniques, there are oc-
casions where more than one formulation is available for
solving a specific problem and in some cases, both implicit
and parametric PDE surfaces can be employed in the same
given problem. Thus, the classification of PDE surfaces
according to their use in computer-aided geometric design
is given by providing a brief description of the problem
followed by the different PDE formulations developed so
far addressing such a problem.

5.1 Surface generation

The increasing demand of realism and real-time appli-
cations in computer-aided geometric design has resulted
in the constant development of efficient surface generation
techniques. PDE surfaces have proven to be powerful in
such tasks and given the versatility of this kind of sur-
face, several techniques have been developed. Two are the
main areas where PDEs have been introduced as a sur-
face generation tool are interactive design (also known as
free-form design) and blending.
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5.1.1 Interactive design

Computer-aided design (CAD) systems can benefit from
interactive design tools based on PDE formulations where
the main control of the surface is gained through the ma-
nipulation of the boundary conditions. An important re-
mark must be made stressing that the user requires no
familiarity with the mathematical details concerning PDEs
since the user is only required to define the boundary con-
ditions in terms of curves. Both implicit and parametric
PDE surfaces have been used as the foundations of tools
promoting interactive design.

Implicit PDE surfaces arising from elliptic PDEs have
been used in [19] where either scattered points, cross-
sectional or sketch curves outlining the rough shape of
the object are chosen as boundary conditions. Addition-
ally, [19] presents graphical examples obtained for these
three types of boundary conditions.

Parametric PDE surfaces have also been used for inter-
active design purposes. The PDE method formulated by
Bloor and Wilson has served as the foundation for the
development of surface generation interactive tools. The
work presented in [28] uses a sixth-order elliptical PDE
for this purpose and gives a detailed explanation regard-
ing the mathematics inherent in the method. For instance,
the procedure by which the required derivative conditions
are obtained is outlined. Given that this interactive tool has
been designed assuming that the user possesses no math-
ematical background, the user is required to generate six
boundary curves from which the interactive tool calculates
the required derivatives. Free-form generation examples
of objects such as a ship hull, a phone handset and a ma-
rine propeller are discussed in [7] where explicit math-
ematical functions determine the boundary conditions.

5.1.2 Shape blending

Shape blending refers to the process by which two or more
surface patches are joined. This process must be carried
out in a way such that a certain degree of smoothness is
achieved at the regions where these patches join. PDEs
offer a natural approach for addressing this problem. The
degree of smoothness is determined by the order of the
PDE in use.

Parabolic PDEs have been used for surface blending,
obtaining excellent results. For instance, the work outlined
in [45] presents the results of blending three cylinders
at different angles. Three different velocity fields have
been used to carry out the blending process namely: mean
curvature flow, fourth- and sixth-order flows. These results
are clearly illustrated by the graphical results. However
a number of parameters are necessary to achieve these
results.

By contrast, the blending properties of the Bloor–
Wilson PDE method are such that the only requirement
to achieve a fast and smooth blend between two surface

patches is either a common boundary condition at the
joining region or a boundary condition lying on one of
the surface patches itself. Works such as [5, 30] describe
the use of this PDE method for achieving smooth blends.
The reader is referred to [5], where several examples of
second-, fourth- and mixed-order blends are detailed that
are easy to reproduce.

The alternative formulation of the Bloor–Wilson PDE
method has also been used for surface blending [46] where
a sixth-order elliptic PDE has been chosen for accomplish-
ing such a purpose. Comparisons between closed-form
solutions and the one proposed in this work are shown
together with some interesting examples, one of which in-
volves the blending of a wrinkled surface with a conic
section.

5.2 Surface processing

Another major category in which the use of PDE surfaces
in computer-aided geometric design is surface process-
ing. The phenomena falling into this category are those
concerning the total or partial enhancing of an already
existing surface. Image inpainting, noise reduction, N-
sided hole filling and surface fairing are some of the most
relevant processes.

5.2.1 Image inpainting

Image inpainting is defined as the technique of modifying
an image in an unnoticeable manner. Implicit PDE-based
methods have been adopted for such purpose. In particu-
lar, Willmore-type flows have been used in [4]. This work
presents some examples illustrating how this technique
has been successfully employed to remove unwanted ob-
jects from pictures. However, there are some restrictions
on the size of the region where this technique is applied
when the texture of such a region needs to be preserved.

5.2.2 Noise reduction

Noise reduction is another area where PDE surfaces have
been used. In particular, parabolic PDEs giving rise to im-
plicit PDE surfaces have proved to be a useful tool for
reducing noise whilst preserving the image details. Ex-
amples of some noise-reducing surface diffusion flows are
presented in [3] where two approaches for the problem are
outlined. The first of these approaches consists of using
an isotropic diffusion flow; i.e., the flow acts uniformly
along every direction. The graphical example associated
with this flow illustrates how the noise within affected
areas is gradually removed. The second approach exploits
the advantages of anisotropic diffusion flows, which act
differently along different directions. Again, it can be ap-
preciated how the noise is removed leaving the details
of the image unaffected. Diffusion flows are also used
in [31]. However, these flows are used for mapping noisy
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images into three-dimensional implicit surfaces. The work
presented in [1] is another example on how anisotropic
diffusion is used as a noise reduction tool. The latter is
capable of smoothing surface successfully, whilst noise
is also reduced, which is particularly useful in cases
where the surface is generated from unfiltered or corrupted
data.

5.2.3 N-sided hole filling

The problems of N-sided hole filling consists of construct-
ing a surface to fill such a hole with specific continu-
ity requirements at the boundary. Velocity fields, such as
mean curvature flow, fourth- and sixth-order flows, have
been employed to construct implicit PDE surfaces, aiming
to fill such holes successfully. An example to this effect
is presented in [45], where the nose of a human face is
reconstructed. As expected, the results obtained by the
sixt-order flow are the smoothest.

5.2.4 Surface fairing

Surface fairing accounts for the process of generating free-
form surfaces satisfying aesthetics requirements. Implicit
PDE surfaces resulting from second- and fourth-order
flows have been employed in [36] providing an excellent
example of an algorithm for smoothing arbitrary triangu-
lar meshes. This algorithm uses a fourth-order velocity
field. Each of the steps considered in the algorithm is out-
lined and the examples presented show the potential of
the technique. For the interested readers in the pragmatic
mathematical details of the implicit PDE formulation, this
work is highly recommended as a further reading.

5.3 Design analysis and optimization

Geometric PDE surfaces offer a natural environment for
developing tools capable of carrying out design analysis
and optimization based on the physical properties inherent
to a specific problem. The process of optimizing the shape
of an object involves a target function establishing the re-
quirements to be fulfilled. This target function is given
in terms of a set of design parameters that are iteratively
changed until the target function is satisfied.

Furthermore, PDE-based optimization formulations
present a significant time reduction when compared to
other optimization techniques available. Examples of the
progress achieved by using PDE surfaces in these areas are
presented in [9, 14, 27, 42] and [38], all of which are based
on the Bloor–Wilson PDE method.

5.3.1 Design analysis

Such design analysis is carried out in [14, 27] and [9],
where parameters characterizing a given specific object

are found. For instance, [27] and [9] focus on the extrac-
tion of parameters characterizing aircraft geometry. The
former aims to extract the design geometry from a given
geometry, whereas the latter illustrates the changes of
geometry by changing some of the design parameters. The
work presented in [14] portrays the characterization of
a marine propeller using a small set of parameters and
a sixth-order version of the Bloor–Wilson PDE formu-
lation. Emphasis must be made that these works manipu-
late the set of parameters defining each object for purposes
of illustration.

The work presented in [8] portrays another application
related to design analysis. The Bloor–Wilson PDE method
is employed here to visualize the physical properties or
functional performance of a given object. Temperature and
stress distributions are some of these properties. Here,
the target function mathematically describes the physical
property of interest and no change is made to the set of
design parameters.

5.3.2 Optimization

By contrast, optimization processes are required to sat-
isfy a target function; thus, the manipulation of the design
parameters is oriented towards this purpose. Again, the
method formulated by Bloor and Wilson has proved to be
useful for such purposes as shown in [42] and [38]. In
particular, [42] presents an example with biological appli-
cations. This example predicts stable structures of vesicles
by using the surface energy of the membrane as the tar-
get function. Industrial applications have also been found.
For example, the work presented in [38] describes the op-
timal design of yoghurt containers where their thickness is
minimized subject to constraints on the stress distribution
around the walls of the container.

5.4 Other applications

There are a number of applications that uses PDE sur-
faces. However, given the nature of such applications,
their classification is not a trivial exercise. Among such
applications are subdivision, geometric manipulations and
animation.

5.4.1 Subdivision

Alternative surface generation techniques such as subdivi-
sion can also benefit from the versatility offered by PDE
surfaces. Subdivision is a surface generation technique by
which an original set of points defining a rough-shaped
object is modified by adding additional surface points
according to a given subdivision rule. In spite of pre-
senting a certain degree of smoothness, subdivision sur-
faces lack collision detection mechanisms, and in some
cases this leads to unwanted overlapping from which topo-
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logical restrictions are imposed [15]. Implicit PDE sur-
faces have been employed to address this problem; thus,
several velocity flows have been tried. Gaussian curva-
ture, surface diffusion, and Willmore flows have been tried
in [45] for addressing this problem. This work outlines the
necessary mathematical background together with some
graphical examples where the different flows are em-
ployed to evolve the surfaces after subdividing the surface
one.

Parametric surfaces have also been employed in subdi-
vision processes. For instance, the work presented in [15]
presents an alternative for modelling the dynamics of
clothes in animation where an energy functional is pro-
posed and finite element techniques are used to find the
solution.

5.4.2 Animation

Animation is an area where PDE surfaces are potentially
useful. Processes such as morphing, facial expression and
movement are some of the processes that can directly
benefit from their use. One of the reasons why PDE sur-
faces represent a powerful mechanism for overcoming the
limitations inherent to these problems is the number of
parameters describing a given PDE surface is relatively
small. A mathematical characterization of such a process
can be obtained through the manipulation of the PDE or its
boundary conditions.

As mentioned before, cloth dynamics in animation has
been modelled in [15]; however, this approach does not
take full advantage of the PDE formulation.

Morphing refers to the process by which an object
is transformed into another and, in the vast majority of
cases, this process is required to take place as smoothly
and aesthetically as possible. Parametric PDE surfaces
are especially useful for such purposes since objects are
basically determined by a set of boundary conditions.
Thus, a suitable parameterized combination of the bound-
ary conditions of the two objects to be morphed will lead
to a smooth and fast transition between the objects. The
Bloor–Wilson PDE method in particular offers some other
alternatives when restricted to the periodic case.

The mathematical characterization of the movement of
an object in animation will significantly reduce time and
work involved in such a process. Again, the Bloor–Wilson
PDE method is regarded as an excellent choice to accom-
plish this purpose. Both morphing and characterization of
movement can take advantage of mathematical properties
inherent to the solution of Eq. 8 restricted to the exclusive
use of periodic boundary conditions where the resulting
PDE surfaces are characterized by the spine. Mathematic-
ally speaking, the spine of a surface is a curve described by
a polynomial function, which can be thought as the skele-
ton of the PDE surface [39]. The spine of a PDE surface
has been proved to be a powerful tool for geometric ma-
nipulations of the entire surface [40].

6 Other aspects of computer graphics
related to PDEs

Computer graphics industry has recently been highly
interested in the simulation of natural phenomena since
the increasing demand for special effects concerning the
movement of smoke, water and fire among others have
posed some interesting problems. The physics associated
with these phenomena are described by very compli-
cated PDEs for which only elaborate and time-consuming
numerical solutions are available. Thus, the task of sim-
ulating such phenomena in computer graphics is not
a simple one since the PDE associated with a particu-
lar phenomenon has to be simplified so that a certain
amount of realism is kept, solved in virtually real time
and properly applied to the graphics environment. Level
set methods have proved useful in addressing these prob-
lems [25].

6.1 Water

One of the greatest challenges in computer graphics is the
animation of water or other liquids. The specific scenarios
where such animation may take place vary from cascades
to pouring liquids into transparent containers. The key
feature to achieve this kind of modelling consists of ac-
curately separating the liquid from the air. A solution to
this problem is presented in [22]. An approach called the
particle level set method has been employed where the
front of the water surface is thickened. For the sake of
brevity, the reader is referred to this work if he or she is
interested in details of the mathematical formulation. The
results obtained by this technique are illustrated by ex-
amples in which a glass is filled with water, achieving an
acceptable degree of realism.

6.2 Smoke

Realistic modelling of smoke is still regarded as a complex
and challenging problem due to the complex nature inher-
ent in the motion of gases. Computer-based fluid dynamics
algorithms which enable one to model such a phenomenon
that can be modified and adapted to computer graphics and
animation are already available in the literature. The work
described in [26] outlines an algorithm that uses Euler
equations for inviscid incompressible fluids and solves
them using a technique called vorticity confinement, which
is extensively found in computer fluid dynamics literature.
This technique is capable of retaining the short-scale fea-
tures inherent in smoke, such as rolling features.

6.3 Fire

The intrinsically dangerous nature of fire is one of the
reasons for which its modelling is constantly being im-
proved. Combustion processes are characterized by the
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expansion of fuel, which is responsible for the turbu-
lence associated with this process. The method proposed
in [34] uses a dynamic implicit surface to represent the
reaction zone, where the thin film approximation pro-
duces acceptable visual results. The reader is referred
to [34] for further details where the modelling of this
process involves several stages which require careful
consideration.

7 Conclusions

This work presents a synopsis of the uses given to par-
tial differential equations in areas related to computer-
aided geometric design. PDEs are a very powerful tool
in geometric design since some degree of smoothness is
guaranteed, depending on the order of the PDE gener-
ating or modifying a surface. PDE surfaces are mainly
classified as implicit or parametric PDE surfaces. Implicit
PDE surfaces are generally obtained from parabolic PDEs
whereas parametric PDE surfaces are associated with el-
liptic ones.

A brief description of some of the flows employed
to find implicit PDE surfaces together with the problems
each of these flows address has been given. The latter
vary from surface generation to noise reduction and fair-
ing. As far as parametric PDE surfaces are concerned,
the Bloor–Wilson PDE method, which is based on the so-
lution to an elliptic PDE, has proved to be a powerful
tool for interactive surface generation since a very small
number of parameters is required to characterize the sur-
face. Alternative formulations to the Bloor–Wilson PDE
method have been presented where physics-based models
have been incorporated.

Elliptic PDEs have also been used to generate implicit
PDE surfaces with the aim of taking advantage of the para-
metric PDE formulation without any restrictions on the
topology of the object to be created. However, numerical
techniques are likely to be used to find their solution.

PDEs have also been used for addressing other prob-
lems related to surfaces in computer graphics. The graph-
ical modelling of natural phenomena such as water, smoke
and fire is not a simple task since the PDE equations mod-
elling these phenomena in the real world are very com-
plicated. Thus, the aim is to simplify these equations so
that they can be solved rapidly and accurately enough to
preserve the realism with which these phenomena behave.

PDEs are powerful tools for applications related to
geometric modelling. These limitations are directly as-
sociated with the mathematical challenges related to the
stability and accuracy of numerical PDEs together with
the speed with which such solutions can be obtained. Ad-
ditionally, like polynomial surfaces, most PDE methods
generate parametric surfaces and therefore problems in-
herent to parametric representation of surfaces can be con-
sidered as limitations. For example it is difficult to rep-
resent objects with arbitrary topology using parametric
PDEs.

The introduction of PDEs to computer-aided geomet-
ric design has occurred fairly recently and therefore their
full potential remains to be fully exploited, offering further
lines of investigation where the mathematical properties of
PDEs can be fully used.
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