
Visual Comput (2007) 23: 535–543
DOI 10.1007/s00371-007-0097-8 O R I G I N A L A R T I C L E

C.J. Ogáyar
A.J. Rueda
R.J. Segura
F.R. Feito

Fast and simple hardware accelerated
voxelizations using simplicial coverings∗

Published online: 19 April 2007
© Springer-Verlag 2007

C.J. Ogáyar (�) · A.J. Rueda ·
R.J. Segura · F.R. Feito
Departamento de Informática
Escuela Politécnica Superior
Universidad de Jaén
Campus Las Lagunillas, Edif. A3
23071 Jaén, Spain
{cogayar, ajrueda, rsegura,
ffeito}@ujaen.es

Abstract Voxelization of solids,
that is the representation of a solid
by a set of voxels that approximates
it, is an operation with important
applications in fields like solid
modeling, physical simulation or
volume graphics. Moreover, the new
generation of affordable 3D raster
displays has renewed the interest on
fast voxelization algorithms, as the
scan-conversion of a solid is a basic
operation on these devices.
In this paper a hardware accelerated
method for computing a voxelization
of a polyhedron is presented. The
algorithm is simple, efficient, robust
and handles any kind of polyhedron
(self-intersecting, with or without
holes, manifold or non-manifold).

Three different implementations
are described in detail. The first is
a conventional implementation in
the CPU, the second is a hardware
accelerated implementation that uses
standard OpenGL primitives, and
the third exploits the capabilities
of modern GPUs by using vertex
programs.

Keywords Voxelization algorithms ·
Graphics hardware · Volume graphics

1 Introduction

Voxelization of solids is concerned with converting geo-
metric objects from their continuous geometric represen-
tation into a set of voxels that approximates it [21]. Voxel
representation of solids has applications in solid model-
ing, volume graphics and physical simulation. It has been
extensively used for rendering objects which are diffi-
cult to represent by traditional surface representations, like
clouds, fire, smoke or terrain models [21]. A new applica-
tion of voxelization techniques is the 3D scan-conversion
of models for the emerging 3D raster displays [2, 6, 24].

∗This work has been partially granted by the Ministerio de Ciencia y Tec-
nología of Spain and the European Union by means of the ERDF funds,
under the research project TIN2004-06326-C03-03 and by the Conserjería
de Innovación, Ciencia y Empresa of the Junta de Andalucía, under the
research project P06-TIC-01403.

This new technology represents the evolution from tra-
ditional 2D displays to a new generation of devices that
can generate real 3D images, not depending on the pos-
ition of the observer. Although they are still expensive
and quite uncommon, the use of 3D displays will become
widespread in the future. These devices work in a simi-
lar way to 2D displays: an object has to be previously 3D
scan-converted to a voxel framebuffer in order to be visu-
alized.

The voxelization method described in this paper was
already presented in [27] as an extension of a 2D rasteri-
zation algorithm proposed by the same authors in previous
works [28]. This is a fast CPU-based algorithm that han-
dles a wide variety of polyhedral solids: with or without
holes, self-intersecting, manifold or non-manifold, and in
contrast to most previous approaches, computes the vox-
elization of the interior of the solid. In this paper, we



536 C.J. Ogáyar et al.

describe how this method can be adapted to exploit graph-
ics hardware in two different implementations: the first
only uses standard OpenGL primitives whereas the sec-
ond takes advantage of the programmable capabilities of
current GPUs.

The remainder of this paper is structured as follows.
Section 2 reviews the existing literature on voxelization
techniques, focusing on hardware accelerated methods. In
Sect. 3, we describe the basic voxelization algorithm and
its theoretical background. Section 4 is focused on the ex-
planation of the tetrahedra scan-conversion. In Sect. 5, we
describe the CPU-based and hardware accelerated imple-
mentations of the algorithm. Section 6 shows some experi-
mental results. Finally, in Sect. 7 we summarize the main
contributions of our work.

2 Previous works

The first generation of voxelization algorithms were ex-
tensions of different 2D scan-conversion techniques to
3D [19, 20]. In general these solutions are designated as
binary voxelization algorithms, because the result is a sim-
ple classification of the voxels from voxel space as se-
lected/unselected. Although several of these algorithms
guarantee the properties of separability and minimality
of the final voxelization [1, 15], they suffer from aliasing
problems. This motivated a new generation of algorithms
focusing on the quality and accuracy of the final vox-
elization. In order to do it, several filtering [29, 31] or dis-
tance field techniques [13, 16] were used. In contrast to
binary approaches, these algorithms assign a density value
to each voxel that reflects its degree of occupancy by the
object.

So far, the cited methods only perform a boundary vox-
elization of the solid. The voxelization of the interior of
the solid is usually not addressed because it is considered
computationally expensive or unnecessary for certain ap-
plications. However, at least two solutions are available:
the early work of Lee and Requicha [22] and more re-
cently, the algorithm proposed by Rueda et al. [27].

In the last years graphics hardware have been exploited
to compute fast voxelizations of solids. In contrast to the
conventional approaches, most of these hardware accel-
erated algorithms compute the voxelization of the entire
solid. Fang and Chen [7] proposed a method that works
moving a cutting plane, called Z-plane, parallel to the pro-
jection plane, with a constant step size in a front-to-back
order. Initially, the viewport and the step size are set to
the dimensions of the voxel space. The algorithm defines
the current orthogonal viewing volume as the thin space
between two consecutive Z-planes, and renders all the sur-
face primitives using standard OpenGL rendering proced-
ures. The clipping mechanism of the graphics engine en-
sures that only the parts of the surfaces within the viewing
volume are displayed, defining a slice of the voxelization

space. Finally the information of each slice is copied from
the framebuffer to a 3D texture where the voxelization is
stored. However, this method may have problems when
the model to voxelize contains one or more faces perpen-
dicular to the near and far planes of the viewing volume.
The OpenGL driver does not display these faces, leading
to incorrect results with cracks. Fang and Cheng report
other special cases in which their voxelization algorithm
fails. These special cases have a difficult solution that may
depend on the specific polygon rasterization and clipping
procedures of each vendor’s OpenGL implementation.

Another simple and fast hardware accelerated vox-
elization method is that of Karabassi et al. [17]. This
method uses six Z-buffers that are computed by rendering
the solid twice per axis in opposite directions using ortho-
graphic projection. The information in the six Z-buffers
is combined in main memory to construct the voxeliza-
tion: a voxel is inside the solid if it is inside the Z-buffer
values for all three pairs. Unfortunately this method can
only be applied to a restricted subset of closed solids.
Although a later improvement of this algorithm [25] can
handle a higher range of solids, it cannot be considered
a general voxelization method.

Li et al. [23] have recently included a brief descrip-
tion of a new hardware accelerated voxelization approach
in the presentation of their flow simulation method. It is
based on the technique known as “depth peeling,” using
the stencil buffer to compute a list of layers of voxels in
each axis direction. The algorithm requires rendering the
geometry once per layer in each axis direction, and there-
fore is quite efficient, as a typical solid can usually be de-
composed into a few layers. However, in contrast to previ-
ous hardware accelerated approaches, this is a boundary-
only voxelization method.

3 Voxelization algorithm

The theoretical basis of our voxelization algorithm is
the point-in-tetrahedron inclusion test of Feito et al. [9].
Given an arbitrary origin point O and a polyhedron G de-
fined by the triangular faces f0, f1, . . . , fn, then let S =
{T1, T2, . . . , Tn} be a covering of G with 3D-simplexes
(tetrahedra) Ti defined by O and the triangular face fi .
Then an arbitrary point P is inside polyhedron G if:
∑

i

sign(Ti) · incl(Ti, P) > 0, (1)

where incl(Ti, P) = 1 when P ∈ Ti , and 0 otherwise. On
the other hand sign(Ti) = +1 when the vertices of the
triangular faces of the tetrahedron Ti follow a counter-
clockwise ordering, −1 when they follow a clockwise or-
dering, and 0 when the tetrahedron is degenerated. The
following lemma expresses the same idea in a different
and more useful way:



Fast and simple hardware accelerated voxelizations using simplicial coverings 537

Fig. 1. Solid voxelization based on tetrahedra coverings

Lemma 1. Let G be a polyhedron, and O an arbitrary
origin point. Let S = {T1, T2, . . . , Tn} be the covering of
G with tetrahedra defined by O and each triangular face
of G. A point P inside G is covered by an odd number of
tetrahedra from S.

Proof. The Jordan curve theorem ensures that a ray start-
ing at O and touching point P intersects an odd number of
triangular faces of G after P. These faces generate an odd
number of tetrahedra in S covering the point P. ��

The voxelization algorithm for polyhedra consisting of
triangular faces is outlined below. This approach is also
valid for polyhedra with polygonal faces if these are pre-
viously tessellated or covered with a fan of triangles with
a common origin point [27].
1. Compute the centroid of the polyhedron. Set this point

as origin O.
2. Take a triangular face �ABC of the polyhedron and

construct the tetrahedron �ABCO.
3. Scan-convert the tetrahedron �ABCO in the 3D pres-

ence buffer.
4. Return to Step 2 until all the faces of the polyhedron

have been processed.
5. The final state of the 3D presence buffer represents the

voxelization of the polyhedron.
The presence buffer is a 3D array of presence values,

with the same dimension as the voxel space. Each voxel
has an associated presence value, which can be repre-
sented with a single bit. A value 1 in its presence value
indicates that the voxel belongs to the solid whereas
a 0 value indicates the opposite. The scan-conversion of
a tetrahedron in the presence buffer is done by flipping
all the presence values covered by it. Once every tetrahe-

dron has been scan-converted, Lemma 1 ensures a pres-
ence value 1 only in those voxels that approximate the
polyhedron. Then the voxelization stored in the presence
buffer can be directly used for any purpose, encoded by an
efficient spatial data structure like an octree, or transferred
to a 3D display framebuffer in order to visualize it. Addi-
tionally, some color information can be applied [5], which
can be generated by a volumetric function or interpolated
from a 3D map or sampled data (see Fig. 1).

The center of mass of the polyhedron is the best choice
for the origin of the tetrahedra because the average size
of the tetrahedra is smaller, which implies a lower total
amount of voxels to be touched. This has been confirmed
by our experiments with different origin positions. Trans-
lating the center of mass to the origin of coordinates also
simplifies many computations during the tetrahedra scan-
conversion.

The described algorithm is simple, robust and flexi-
ble: it can handle any kind of polyhedron, including non-
convex, self-intersecting or holed, as its underlying princi-
ple is the Jordan curve theorem.

4 3D scan-conversion of tetrahedra

As it has just been shown, the most important step in the
voxelization algorithm is the scan-conversion of a tetrahe-
dron in the presence buffer. For this purpose, we propose
an approach based on the scan-conversion of successive
slices of the tetrahedron, similar to the scanline algorithm
for polygons [12]. Let �ABCD be an arbitrary tetrahe-
dron, as depicted in Fig. 2. The method is given by four
steps.



538 C.J. Ogáyar et al.

Fig. 2. Slicing a tetrahedron

Table 1. Edges required for point interpolation depending on the
sweep plane relative position

Point Ay > ys ≥ By By > ys ≥ Cy Cy > ys ≥ Dy

P0 AD AD AD
P1 AB BD BD
P2 AC CD CD
P3 – BC –

1. Choose a slicing direction. We will assume that slic-
ing is done moving a plane along the y axis. Sort the
vertices of the tetrahedron by their y coordinate. Let A
be the vertex with higher y coordinate, B the next, and
so on with C and D (see Fig. 2a). Sweeping starts at
ys = Ay and finishes at ys = Dy.

2. Compute the intersections of the edges of the tetrahe-
dron with the current sweep plane. We denote these
points P0, P1, P2, P3, as shown in Fig. 2b. These inter-
sections can be computed by a simple linear interpola-
tion or applying a faster incremental approach. Table 1
shows the edges that must be used to compute these
points, depending on the value of ys. Notice that point
P3 only appears in the interval By > ys ≥ Cy, as can be
seen in Fig. 2c.

3. Voxelize the slice ys of the tetrahedron. This can be
done by simply scan-converting the triangle �P0 P1 P2,
shown in Fig. 2b. In the interval By > ys ≥ Cy, a sec-
ond triangle �P3 P2 P1 must also be scan-converted
(see Fig. 2c). During this operation, the presence
values of all the voxels x, ys, z covered by the triangles
must be flipped.

4. Decrement ys and repeat steps 2 and 3 until ys = Dy.

5 Algorithm implementations

The algorithm described in Sect. 3 can be easily imple-
mented using simple data structures [27]. The presence
buffer can be represented in main memory by a 3D array

of bits, and each tetrahedron can be scan-converted to this
array by using the method described in the previous sec-
tion.

During the execution of a CPU-based implementation
of the algorithm, most time is spent in the scan-conversion
of 2D triangles. We can take advantage of graphics hard-
ware to perform this task more efficiently. In the rest of
this section two hardware accelerated implementations of
this algorithm are described in detail.

5.1 Hardware accelerated implementation

A hardware accelerated implementation using OpenGL
primitives is outlined below. Instead of computing a vox-
elization by iterating over the tetrahedra set, the scan-
conversion of the tetrahedra is done in parallel for each 2D
slice of the presence buffer:
1. Create a presence buffer with the dimensions of the

voxel space.
2. Initialize ys to the dimension of the voxel space.
3. Clear the presence buffer and set the logical pixel oper-

ation to GL_XOR. Initialize the drawing color to (1, 1,
1).

4. Compute the list of tetrahedra that intersect slice ys,
that is, those that verify Ay > ys ≥ Dy.

5. Compute the intersection points P0, P1, P2, P3 of each
tetrahedron in the list with the current slice. Draw the
triangles �P0 P1 P2 and �P3 P2 P1.

6. Transfer the current slice to a 3D texture or a data
structure in CPU main memory.

7. Decrement ys and return to Step 3 until ys = 0.
Transferring each slice to a 3D texture is interesting

for two reasons: it is more efficient than copying the vox-
els back to the CPU and also allows a direct application of
volume rendering methods [3]. As soon as required, it can
be partially or fully retrieved to main memory in order to
perform any additional processing. The current generation
of GPUs with PCI-express technology has dramatically
improved the efficiency of this operation. The first alter-
native can be implemented by rendering to a P-buffer and
copying to 3D texture slice or using the framebuffer object
extension to render to a texture object in an efficient and
straightforward way.

The main drawback of the previous approach is that
a large set of triangles must be computed in main memory
and sent to the graphics hardware in each slice, causing
a significant traffic overhead. These triangles change from
one slice to the next, preventing the use of vertex arrays or
display lists.

5.2 GPU-based implementation

The programming capabilities of modern GPUs have been
extensively exploited in the last years to develop new ef-
ficient solutions to well-known problems [11, 26]. GPU



Fast and simple hardware accelerated voxelizations using simplicial coverings 539

programming can reduce CPU-GPU traffic because the
basic geometry can be sent only once and then arbitrarily
transformed in each frame by a vertex program. Therefore,
the problems of the hardware accelerated implementation
described in the previous section can be overcome if the
set of triangles is updated from one slice to the next in the
GPU.

The vertex program computes the position of the points
P0, P1, P2, P3 for a given tetrahedron and the current
slice, applying linear interpolation on the corresponding
edges, as described in Table 1. The coordinates of the
tetrahedron vertices A, B, C, D are passed to the program
as varying parameters, as well as the point index (0-3),
and an identifier of the triangle the point belongs to (0 for
�P0 P1 P2 and 1 for �P3 P2 P1). On the other hand the cur-
rent slice and the model-view projection matrix are passed
as uniform parameters. The full Cg code [10] of the vertex
program is shown in Listing 1.

Listing 1. Cg source of the vertex program for tetrahedra
voxelization
#define IS_MAIN_TRIANGLE (vertexData.x == 0)
#define VERTEX_INDEX (vertexData.y)
#define IN_INTERVAL(v, a, b) (a > v && v >= b)
#define INTERP(A, B, slice) (lerp (A, B, (slice - A[1])

/ (B[1] - A[1])))

void tetraVoxelization(
// x->triangle type (0-1) y->vertex index (0-4)
in int2 vertexData: POSITION,
in float3 tVertexA, // Vertex A
in float3 tVertexB, // Vertex B
in float3 tVertexC, // Vertex C
in float3 tVertexD, // Vertex D
out float4 resultVertex: POSITION, // Computed vertex
out float4 resultColor: COLOR, // Vertex color
uniform float slice, // Current slice
uniform float4x4 modelViewProjectionMatrix)
{

// Initialize vertex position outside view volume
float4 pos = float4(10000, 10000, 0, 1);

// Process only if the slice intersects the tetrahedron
if (IN_INTERVAL(slice, tVertexA[1], tVertexD[1]))

{
// Process only if:
// -The triangle is P0P1P2 or
// -The triangle is P2P1P3 and the slice intersects
// its active interval (B.y, C.y)
if (IS_MAIN_TRIANGLE ||

IN_INTERVAL(slice, tVertexB[1], tVertexC[1]))
{

if (VERTEX_INDEX == 0) // p0
pos.xy = INTERP(tVertexA,tVertexD,slice).xz;
else
if (VERTEX_INDEX == 1) // p1

pos.xy = (slice >= tVertexB[1] ?
INTERP(tVertexA, tVertexB, slice).xz:
INTERP(tVertexB, tVertexD, slice).xz);

else
if (VERTEX_INDEX == 2) // p2

pos.xy = (slice >= tVertexC[1] ?
INTERP(tVertexA, tVertexC, slice).xz:
INTERP(tVertexC, tVertexD, slice).xz);

else
if (VERTEX_INDEX == 3) // p3

pos.xy = INTERP(tVertexB,tVertexC,slice).xz;
}

}

resultVertex = mul(modelViewProjectionMatrix, pos);
resultColor = float4(1, 1, 1, 1);

}

If the full tetrahedra set is sent to the graphics pipeline
in each slice, the vertex program must check that the cur-
rent slice intersects the tetrahedron. If the result is nega-
tive, all its vertices must be culled. The three vertices of
the triangle �P3 P2 P1 are also culled when the slice is out-
side the interval By > ys ≥ Cy. The third version of the
voxelization algorithm, using GPUs, works as follows:
1. Create a presence buffer with the dimensions of the

voxel space.
2. Initialize ys to the dimension of the voxel space. Setup

the modelViewProjectMatrix.
3. Compile a display list with two triangles, �P0 P1 P2

and �P3 P2 P1 per tetrahedron, setting the tetrahedron
vertices A, B, C, D as the varying parameters of the
vertex program (see Listing 2). Alternatively, an array
of vertices and four parameter arrays can be used in-
stead.

4. Clear the presence buffer and set the logical pixel oper-
ation to GL_XOR.

5. Set the uniform parameter slice to ys and call the dis-
play list. In the vertex array implementation, the set of
tetrahedra that verify Ay > ys ≥ Dy is sent to the GPU.

6. Copy the current slice from the framebuffer to a 3D
texture or CPU main memory.

7. Decrement ys and return to Step 4 until ys = 0.

Listing 2. Vertex program setup for tetrahedron t
// The tetrahedron vertices have been previously sorted
// by y-coordinate

// Send tetrahedron vertices A, B, C, D to the
// vertex program
cgGLSetParameter3fv(tVertexA, t[0]);
cgGLSetParameter3fv(tVertexB, t[1]);
cgGLSetParameter3fv(tVertexC, t[2]);
cgGLSetParameter3fv(tVertexD, t[3]);

// Send triangle vertices

// Main triangle
glVertex2i(0, 0); // P0
glVertex2i(0, 1); // P1
glVertex2i(0, 2); // P2

// Secondary triangle
glVertex2i(1, 3); // P3
glVertex2i(1, 2); // P2
glVertex2i(1, 1); // P1

In this implementation, the solid voxelization is almost
entirely solved by the GPU, saving a very considerable
amount of time and space in the CPU. Another advan-



540 C.J. Ogáyar et al.

tage of this approach is that once the display list has been
compiled or the vertex arrays have been set up, several
voxelizations of the entire solid or different parts of it, at
different resolutions can be efficiently computed. An in-
teresting advantage of an implementation based on vertex
arrays is that the minimal set of tetrahedra that intersects
each slice can be computed and sent to the GPU. In con-
trast, the implementation based on display lists requires
the full set of tetrahedra to be compiled in a previous stage,
and sent to the GPU in each slice scan-conversion. In this
case the vertex program must be responsible for culling
the tetrahedra that do not intersect the current slice as we
explained before. Figure 3 shows two voxelizations com-
puted by this approach, using different voxel resolutions.

Both hardware accelerated methods described in this
section allow the use of a fragment program to compute
arbitrary properties per voxel in a very simple and efficient
way. Example shown in Fig. 4 illustrates the results of ex-
tending our voxelization algorithm with a 3D Perlin noise
generator implemented as a fragment program.

Fig. 3. Examples of voxelizations at different resolutions

Fig. 4. Use of a 3D Perlin noise generator to set a color per voxel

6 Experimental results

We have compared the three implementations of our algo-
rithm (CPU-based, hardware accelerated, and GPU-based)
against the hardware accelerated approaches of Passalis
et al. [25] and Fang and Chen [7]. The timings of the
hardware accelerated, GPU-based and Fang and Chen ap-
proaches include the transfer to texture 3D in GPU mem-
ory. The extra time required to transfer the voxelization
to the CPU is shown in the last row. All the algorithms
have been implemented in C++, using the same compiler
and optimizations. The tests were run on a Pentium IV
3.3Ghz. with a GeForce 7800GTX on Windows XP, using
the models shown in Fig. 5.

Table 2 shows how the GPU-based implementation of
our algorithm outperforms the approaches of Passalis et al.
and Fang and Chen, running between 2 and 10 times
faster, depending on the resolutions and complexity of the
model. Surprisingly, the hardware accelerated implemen-
tation of the algorithm does not show better results than
the CPU-based implementation. As we pointed out in the
previous section, the weakest aspect of this implementa-
tion is the need to compute and send a different set of
triangles from the CPU to the GPU for each slice. This
causes an important penalty that is not compensated for
the fast hardware accelerated triangle rasterization.

Although the method of Passalis et al. is hardware ac-
celerated, the voxelization is really computed in the CPU,
which makes it less competitive than full hardware accel-
erated methods like our GPU-based implementation or the
approach of Fang and Chen. However, it has a nice feature:
its processing time is almost independent on the complex-
ity of the model. The performance of the method of Fang
and Chen scales reasonably well with the complexity of
the model and the resolution of the voxel space but in gen-
eral runs slower than our GPU-based approach.

7 Conclusions

In this work we have presented a simple, robust and ef-
ficient method for the voxelization of polyhedra which
can be easily implemented using common graphics hard-
ware or GPUs with vertex program support. It is based
on a decomposition of the polyhedron into a set of tetra-
hedra with a common origin (usually its centroid) and its
scan-conversion into a special 3D presence buffer. The
hardware accelerated approach uses graphics hardware
to efficiently scan-convert the intersections of the set of
tetrahedra with a given slice of the presence buffer. The
GPU-based approach goes beyond, computing these in-
tersections with a simple vertex program, and therefore
minimizing the intervention of the CPU in the voxelization
process. This GPU-based implementation shows a better
performance than other commonly used hardware acceler-
ated approaches.



Fast and simple hardware accelerated voxelizations using simplicial coverings 541

Fig. 5. Models used during the experiments. Results after voxelization at 64 and 512 resolutions are also shown



542 C.J. Ogáyar et al.

Table 2. Voxelization times (in secs.) of the three implementations of our algorithm: CPU-based (New), hardware accelerated (NewH) and
GPU-based (NewG) against the algorithms of Passalis et al., and Fang & Chen, at 643, 1283, 2563, 5123 voxel resolutions. The last rows
show the extra time required to transfer the voxelization back to CPU

643 1283

Model Triang. New NewH NewG Passalis Fang New NewH NewG Passalis Fang

Simple 42 0.0021 0.0202 0.0038 0.0283 0.0040 0.0012 0.0233 0.0074 0.2097 0.0080
Cross 2366 0.0136 0.0184 0.0133 0.0282 0.0038 0.0344 0.0542 0.0224 0.2174 0.0083
Depot 10591 0.0659 0.0498 0.0143 0.0514 0.0889 0.0694 0.0942 0.0228 0.2830 0.1659
Mobile 25946 0.0401 0.0605 0.0141 0.0398 0.0170 0.0741 0.1274 0.0256 0.2256 0.0344
Buddha 100000 0.4150 0.2636 0.0621 0.0659 0.0452 0.8224 0.5622 0.1097 0.2617 0.1167

T. CPU – 0.0055 0.0055 – 0.0055 – 0.0239 0.0293 – 0.0293

2563 5123

Model Triang. New NewH NewG Passalis Fang New NewH NewG Passalis Fang

Simple 42 0.0778 0.1468 0.0153 1.6980 0.0271 0.0521 1.0103 0.0357 14.0875 0.1461
Cross 2366 0.1394 0.1915 0.0408 1.6711 0.0286 0.4800 1.1633 0.0876 14.0419 0.1498
Depot 10591 0.3500 0.2809 0.0414 1.8743 0.3428 1.6407 1.3164 0.0946 14.1317 0.6959
Mobile 25946 0.1805 0.3450 0.0522 1.7322 0.1074 0.6434 1.4803 0.0917 14.3993 0.3071
Buddha 100000 1.6979 1.3069 0.1296 1.8952 0.2322 4.1155 1.9352 0.2361 14.2695 0.6104

T. CPU – 0.1406 0.1406 – 0.1406 – 0.9363 0.9363 – 0.9363

We believe that geometry instancing [4] would im-
prove our GPU-based implementation. Using this feature,
only one triangle and a texture with the instancing in-
formation have to be sent to the GPU in each frame.
The geometry processor uses the instancing information
to generate as many copies of the triangle as necessary.

The advantages of this approach are evident: it avoids con-
structing and sending large triangle display lists or vertex
arrays to the GPU. However, an OpenGL extension to
handle this feature (GL_EXT_draw_ instanced) has been
unavailable until very recently, and it is currently only sup-
ported by the NVIDIA GeForce 8 series GPUs.

References
1. Andres, E., Nehlig, P., Francon, J.:

Tunnel-free supercover 3D polygons and
polyhedra. Comput. Graph. Forum 16,
C3–C13 (1997)

2. Blundell, B., Schwarz, A.: Volumetric
Three-Dimensional Display Systems.
Wiley, New York (2000)

3. Cabral, B., Cam, N., Foran, J.:
Accelerated volume rendering and
tomographic reconstruction using texture
mapping hardware. In: Proceedings of the
1994 IEEE Symposium on Volume
Visualization, pp. 91–98 (1994)

4. Carucci, F.: Inside Geometry Instancing.
In: GPU Gems 2: Programming
Techniques for High-Performance
Graphics and General Purpose
Computation, pp. 47–68. Addison-Wesley,
Boston (2004)

5. Chen, M., Tucker, J.V.: Constructive
volume geometry. Comput. Graph. Forum
19, 281–293 (2000)

6. Ebert, D., Bedwell, E., Maher, S.,
Smoliar, L., Downing, E.: Realizing 3D
visualization using crossed-beam
volumetric displays. Commun. ACM 42,
101–107 (1999)

7. Fang, S., Chen, H.: Hardware accelerated
voxelization. Comput. Graph. 24, 433–442
(2000)

8. Feito, F., Torres, J.C.: Orientation,
simplicity and inclusion test for planar
polygons. Comput. Graph. 19, 596–600
(1995)

9. Feito, F., Torres, J.C.: Inclusion test in
general polyhedra. Comput. Graph. 21,
23–30 (1997)

10. Fernando, R., Kilgard, M.J.: The Cg
Tutorial: The Definitive Guide to
Programmable Real-time Graphics.
Addison-Wesley, Boston
(2003)

11. Fernando, R.: GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time
Graphics. Addison-Wesley, Boston
(2004)

12. Foley, J.D., van Dam, A., Feiner, S.K.,
Hughes, J.H.: Introduction to Computer
Graphics. Addison-Wesley, Boston
(1994)

13. Frisken, F.S.: Using distance maps for
accurate surface representation in sampled
volumes. In: IEEE Symposium on Volume
Visualization, pp. 23–30 (1998)

14. Haumont, D., Warzie, N.: Complete
polygonal scene voxelization. J. Graph.
Tools 7, 27–41 (2002)

15. Huang, J., Yagel, R., Filippov, V.,
Kurzion, Y.: An accurate method to
voxelize polygonal meshes. In: IEEE

Symposium on Volume Visualization,
pp. 119–126 (1998)

16. Jones, M.W.: The production of volume
data from triangular meshes using
voxelisation. Comput. Graph. Forum 15,
311–318 (1996)

17. Karabassi, E., Papaioannou, G.,
Theoharis, T.: A fast depth-buffer-based
voxelization algorithm. ACM J. Graph.
Tools 4, 114–124 (2002)

18. Kaufman, A., Shimony, E.: 3D
scan-conversion algorithms for voxel-based
graphics. In: Proceedings ACM Workshop
on Interactive Graphics, pp. 45–76 (1986)

19. Kaufman, A.: Efficient algorithms for 3D
scan-conversion of parametric curves,
surfaces and volumes. Comput. Graph. 21,
171–179 (1987)

20. Kaufman, A.: Efficient algorithms for
scan-conversing 3D polygons. Comput.
Graph. 12, 213–219 (1988)

21. Kaufman, A., Cohen, D., Yagel, R.: Volume
graphics. IEEE Comput. 26, 51–64 (1993)

22. Lee, Y. T, Requicha, A.: Algorithms for
computing the volume and other integral
properties of solids. Commun. ACM 25,
635–650 (1982)

23. Li, W., Fan, Z., Wei, X., Kaufman, A.: Flow
simulation with complex boundaries. In:
GPU Gems 2: Programming Techniques for



Fast and simple hardware accelerated voxelizations using simplicial coverings 543

High-Performance Graphics and General
Purpose Computation, pp. 747–763.
Addison-Wesley, Boston (2005)

24. Pastoor, S., Kiesewetter, R.: 3-D displays:
A review of current technologies.
DISPLAYS 17, 100–110 (1997)

25. Passalis, G., Kakadiaris, I.A., Theoharis, T.:
Efficient Hardware Voxelization. In:
Proceedings of the Computer Graphics
International, pp. 374–377 (2004)

26. Pharr, M.: GPU Gems 2: Programming
Techniques for High-Performance Graphics
and General-Purpose Computation.
Addison-Wesley, Boston (2005)

27. Rueda, A.J., Segura, R., Feito, F.R.,
Ogayar, C.: Voxelization of solids using
simplicial coverings. In: Proceedings of
WSCG’2004, pp. 227–234 (2005)

28. Rueda, A.J., Segura, R., Ruiz de Miras, J.,
Feito, F.R.: Rasterizing complex polygons
without tesselations. Graph. Models 26,
805–814 (2004)

29. Šrámek, M., Kaufman, A.: A. Alias-free
voxelization of geometric objects. IEEE
Trans. Visual. Comput. Graph. 5, 251–267
(1999)

30. Šrámek, M., Kaufman, A.: VXT: a C++
class library for object voxelization. In:
Proceedings of the International Workshop
on Volume Graphics, pp. 119–134 (1999)

31. Wang, S.W., Kaufman, A.: Volume-sampled
3D modelling. IEEE Comput. Graph. Appl.
14, 26–32 (1994)

32. Woo, M., Nedider, J., Davis, T.,
Shreiner, D.: The OpenGL Programming
Guide, 3rd. edn. Addison-Wesley, Boston
(1999)

C.J. OGAYAR is a researcher in the Department
of Computer Science at the University of Jaén
(Spain). He received his B.Sc. in Computer Sci-
ence and his Ph.D. in Computer Science from
the University of Granada. He has wide software
programming experience in computer science,
including solid modeling, computational geom-
etry, real-time graphics and GPU programming.
He has also been working as a freelancer on web
development, database management and user in-
terfaces. His research interests includes virtual
reality, GIS and game engine design.

A.J. RUEDA is lecturer in the Department of
Computer Science, University of Jaén (Spain).
He received his B.Sc. in Computer Science from
the University of Granada and his Ph.D. in Com-
puter Science from the University of Malaga.
During his Ph.D. studies, he developed the layer-
based decomposition of objects in 2D and 3D

as well as several practical algorithms based
on this representation. His research interests
include topics like geometric algorithms, spa-
tial decompositions, spatial data structures, and
lately, acceleration of geometric algorithms on
programmable GPUs.

R.J. SEGURA is a lecturer in the Department
of Computer Science at the University of Jaén
(Spain). He received a B.Sc. in Computer Sci-
ence at the University of Granada in 1994, where
he received his Ph.D. in Computer Science in
2001. He has been working on several topics
in computer graphics, including solid model-
ing, computational geometry, virtual reality and
GPGPU. He is a scientific advisor of the Com-
puter Graphics Laboratory in the Research Tech-
nical Service of the University of Jaén, special-
ized in 3D scanning and rapid prototyping.

F.R. FEITO is full professor in the Department
of Computer Science at the University of Jaén
(Spain), received his B.Sc. in Mathematics at
the University Complutense of Madrid and his
Ph.D. in Computer Science from the University
of Granada (Spain). He was the head of the
department of Computer Science of the Univer-
sity of Jaén from 1993 to 1997, Vice Chancellor
in charge of Studies and Quality from 1997 to
1999, and Vice Chancellor in charge of Research
and International Affairs from 1999 to 2002 at
the same university. His research interests in-
clude formal methods for computer graphics, ge-
ometric modeling, computational geometry and
geographical information sciences. Currently, he
is teaching at the Escuela Politécnica Superior of
Jaén, and is the head of the department and the
Graphics and Geomatics Research Group.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


