
Visual Comput (2006) 22: 506–516
DOI 10.1007/s00371-006-0025-3 O R I G I N A L A R T I C L E

Dmitry Sokolov
Dimitri Plemenos
Karim Tamine

Methods and data structures for virtual world
exploration

Published online: 5 July 2006
© Springer-Verlag 2006

D. Sokolov (�) · D. Plemenos · K. Tamine
XLIM Laboratory UMR CNRS 6172,
University of Limoges
83, rue d’Isle, 87000 Limoges, France
s@skisa.org, {dimitrios.plemenos,
karim.tamine}@unilim.fr

Abstract This paper is dedicated to
virtual world exploration techniques
that help humans to understand a 3D
scene. The paper presents a technique
to calculate the quality of a viewpoint
for a scene, and describes how this
information can be used. A two-step
method for an automatic real-time
scene exploration is introduced. In
the first step, a minimal set of “good”
points of view is determined; in
the second step, these viewpoints

are used to compute a camera path
around the scene. The proposed
method enables one to get a good
comprehension of a single virtual
artifact or of the scene structure.

Keywords Scene understanding ·
Automatic virtual camera · Good
point of view · Visibility

1 Introduction

Virtual world exploration techniques have nowadays be-
come more and more important. When, more than ten
years ago, we proposed the very first methods to im-
prove the knowledge of a virtual world [6, 17], many
people thought that it was not an important problem.
Only during these last years have people begun to un-
derstand its importance and the necessity to have fast
and accurate techniques for good exploration and clear
understanding of various virtual worlds. However, there
are very few papers that face this problem from the
computer graphics point of view, although several pa-
pers have been published on the robotics artificial vision
problem.

The purpose of a virtual world exploration in com-
puter graphics is completely different from the objectives
of techniques used in robotics. In computer graphics, the
purpose of a program guiding a virtual camera is to al-
low a human being, the user, to understand a new world
by using an automatically computed path, depending on
the nature of the world. The main interaction is between
the camera and the user, a virtual and a human agent, and

not between two virtual agents or a virtual agent and his
environment.

There are two classes of methods for a virtual world
exploration. The first one is the global exploration class,
where the camera remains outside the world to be ex-
plored. The second one is the class of local exploration. In
this class, the camera moves inside a scene and becomes
a part of the scene. Local exploration may be useful, and
even necessary in some cases, but only global exploration
can give the user a general knowledge of a scene.

On the other hand, two different virtual world explo-
ration modes can be considered:

1. Real-time on-line exploration, where the virtual world
is visited for the first time and the path of the camera
is determined in real-time, in an incremental manner.
In this mode it is important to apply fast exploration
techniques in order to allow the user to understand the
explored world in real-time.

2. Off-line exploration, where the camera path is com-
puted off-line and an exploration can be undertaken
later. In a preliminary step, the virtual world is found
and analyzed by the program guiding the camera
movement, in order to determine interesting points of
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view and paths linking these points. The camera will
explore the virtual world later, when necessary, fol-
lowing the determined path. In this mode, it is less
important to use fast techniques.

In the present paper, we are mainly concerned with
global virtual world exploration, where the camera re-
mains outside the scene. Several papers have already been
published on on-line global virtual world exploration. The
objective of this paper is the off-line visual exploration of
a fixed unchanging virtual world.

The paper is organized in the following manner. In
Sect. 2, a study of existing techniques of virtual world ex-
ploration is presented. In Sect. 3, a new data structure, the
so-called visibility graph, is introduced. This structure al-
lows fast determination of interesting areas for the camera.
A method to compute camera paths, based on the visibility
graph, is described in Sect. 4. In Sect. 5 examples of cam-
era paths, obtained with the proposed method, are given,
and a first evaluation of the visibility graph-based method
is presented. Finally, in Sect. 6, a conclusion and a brief
description of future work are presented.

2 Background

2.1 Static explorations

Initial works on visual scene understanding were pub-
lished at the end of the 80s. Kamada et al. [13] proposed
a fast method to compute a viewpoint that minimizes the
degenerated edges of a scene.

Colin [6] proposed a method initially developed for
scenes modelled by octrees. The aim of the method was to
compute a good point of view for an octree. The method
uses the principle of “direct approximate computation” to
compute a good view direction. This principle can be de-
scribed as follows:

1. Choose the three best view directions d1, d2 and d3,
among the six corresponding to the three coordinate
axes passing through the center of the scene.

2. Compute a good direction in the pyramid defined by
the three chosen directions, taking into account the im-
portance of each direction (see Fig. 1).

A view direction is considered to be better than another
one if it allows one to see more details.

Plemenos [17, 19] proposed an iterative method of au-
tomatic viewpoint calculation. The scene is placed at the
center of a sphere, whose surface represents all the pos-
sible points of view. The sphere is divided into eight spher-
ical triangles (see Fig. 2) and the best one is chosen ac-
cording to the view qualities of triangle vertices. Then, the
selected spherical triangle is recursively subdivided. The
best vertex is taken as the best point of view at the end of
the process (Fig. 3).

Fig. 1. Direct approximate
computation of a good
view direction

Fig. 2. The sphere of viewpoints di-
vided into eight spherical triangles

Fig. 3. Recursive subdivision of
the “best” spherical triangle

The proposed heuristic considers a viewpoint to be
good if it gives a high amount of details in addition to
the minimization of the deviation. Plemenos shows that if
only the minimization is considered, then resulting views
may hide important information of a scene. Therefore, an-
other parameter to the maximizing function is added that
counts the observed details. The added parameter is the
number of faces that are visible from a viewpoint. Accord-
ing to [19], the viewpoint quality can be computed by the
following formula:

C(p) =

n∑

i=1
[ Pi(p)

Pi(p)+1 ]
n

+

n∑

i=1
Pi(p)

r
, (1)

where
1. C(p) is the viewpoint quality for the given viewpoint

p,
2. Pi(p) is the number of pixels corresponding to the

polygon number i in the image obtained from the view-
point p,

3. r is the total number of pixels in the image (resolution
of the image),

4. n is the total number of polygons in the scene.
5. [a] is the ceiling function of a, i.e., the smallest integer

number ac ∈ N : ac ≥ a.
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Sbert et al. [9, 10, 22, 24, 25] introduced an information
theory-based approach to estimate the quality of a view-
point. This quality is computed as a viewpoint entropy
function:

I(S, p) =
Nf∑

i=0

Ai

At
· ln

At

Ai
, (2)

where Nf is the number of faces in the scene, Ai is the
projected area of the face number i , A0 represents the pro-
jected area of the background in open scenes and At is the
total area of the projection.

Recently, Chang Ha Lee et al. [14] introduced the
idea of mesh saliency as a measure of regional impor-
tance for graphics meshes. They define mesh saliency in
a scale-dependent manner using a center-surround opera-
tor on Gaussian-weighted mean curvatures. The human-
perception-inspired importance measure computed by the
mesh saliency operator gives more pleasing results in
comparison with purely geometric measures of shape,
such as curvature.

2.2 Dynamic explorations

A single good point of view is generally not enough for
complex scenes, and even a list of good viewpoints does
not allow the user to understand a scene, as frequent
changes of viewpoint may confuse him (her). To avoid
this problem, virtual world exploration methods were pro-
posed.

Plemenos et al. and Dorme [1–3, 7] have proposed
a method, where a virtual camera moves in real-time on
the surface of a sphere surrounding the virtual world. The
exploration is on-line, the scene is being examined in an
incremental manner during the observation. All the poly-
gons of the virtual world are taken into account at each
step of the exploration. The method is based on the heuris-
tics wc = vc

2 · (1+ dc
pc

), where

1. wc is the weight of the current camera position,
2. vc is the viewpoint complexity of the scene from the

camera’s current position,
3. pc is the path traced by the camera from the starting

point to the current position,
4. dc is the distance from the starting point to the current

position.
In order to avoid fast camera returns to the starting pos-

ition, the importance of a viewpoint is made inversely pro-
portional to the camera path from the starting to the cur-
rent position. In addition, for a smooth movement of the
camera, only three new viewpoints are considered while
computing the next position (see Fig. 4). A result of the
application of this technique is shown in Fig. 5.

Vázquez et al. [24, 27] proposed an exploration method
that is similar to the previous one. The difference is that

Fig. 4. Only three directions are considered to ensure a smooth
movement of the camera

Fig. 5. The virtual office exploration trajectory taken from [21]

the next viewpoint is chosen according to the entropy
(Eq. 2) and the number of faces not yet visited. To eval-
uate the qualities of the next three possible positions, the
entropy of each viewpoint is multiplied by the number of
new faces that appear with respect to the set of already
visited faces. In the case where none of the three possible
viewpoints show a new face, the one lying furthest from
the initial position is chosen.

In many cases, on-line exploration is not necessary
because there is enough time to precompute interesting
points of view for a virtual world and even interesting
trajectories. Thus, Jaubert [12] proposed an off-line ex-
ploration method based on the precomputation of a mini-
mal set of good viewpoints. The computed viewpoints are
sorted in importance order and stored together with the
virtual world. The stored order is used for each exploration
of the virtual world.

In [15, 20, 26], image-based techniques are used to
control the camera motions in a changing virtual world.
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The problem faced in these papers is the adaptation of the
camera behavior to changes of the world.

For more details, a state-of-the-art paper on virtual
world global exploration techniques is available [18],
whereas viewpoint quality criteria and estimation tech-
niques are presented in [21].

3 Analytic visibility graph

Let us suppose that there is an unknown scene, and the
user would like to get a general comprehension of its
structure. Since the user would like to explore the exte-
rior of the scene, it is reasonable to restrict the space of
possible viewpoints to a surrounding sphere. Moreover,
viewpoint quality is quite a smooth function, so the sphere
can easily be discretized. Thus, the scene is placed at the
center of the sphere, whose discrete surface represents all
possible points of view.

It would be very convenient for many quality esti-
mation routines if the undirected bipartite graph G =
(S

⋃
F, E) could be obtained, where the first part S cor-

responds to the set of viewpoints of the discrete sphere and
F corresponds to the set of faces in the scene. The set of
arcs E represents visibility between objects from S and F,
i.e., G is the analytic visibility graph.

Unfortunately, computing such a graph is quite an ex-
pensive task, because the proposed methods of viewpoint
quality estimation operate with quite expensive point-to-
region visibility and approximate calculation of visible
parts using a Z-Buffer.

The scene is rendered from a viewpoint, coloring each
face with a unique color ID and using flat shading. In the
resulting rendered scene, each pixel represents the color
code of the face, which is visible in this pixel. OpenGL al-
lows one to obtain a histogram that gives information on
the number of displayed colors and the ratio of the image
occupied by each color. See [1] and [16] for more detailed
descriptions.

A quality estimation routine for a single viewpoint,
applying these methods, runs in O(n f · Z) time, where
n f = |F| is the number of faces in the scene and Z is
the resolution of the Z-buffer. For ns = |S| viewpoints, the
computation time is O(n f ·ns · Z). Note that Z should be
significantly greater than n f in order to have at least few

Fig. 6. The curvature in a vertex
is equal to the sum of angles ad-
jacent to the vertex minus 2π

pixels to display each face. The complexity of the algo-
rithm forces the user to use adaptive search algorithms,
which may lead to inexact results, even for a single good
viewpoint selection.

Recently, we proposed an improved method of view-
point quality estimation [23]. The method considers the
total curvature of a visible surface as an amount of infor-
mation appropriate for a viewpoint:

I(p) =
∑

v∈V(p)

∣
∣
∣2π −

∑

αi∈α(v)

αi

∣
∣
∣ ·

∑

f ∈F(p)

P( f), (3)

where
1. F(p) is the set of faces visible from the viewpoint p,
2. P( f) is the projected area of the face f ,
3. V(p) is the set of visible vertices of the scene from p,
4. α(v) is the set of angles adjacent to the vertex v (see

Fig. 6).
The proposed heuristic is invariant to any subdivision

of a scene maintaining the topology. Indeed, if a flat face is
subdivided into several scenes, then all the edges and ver-
tices inside the face are to be discarded due to zero angles.
An important property of such a viewpoint quality defin-
ition is the possibility to extend it, using the total integral
curvature

∫

Ω

|K | dA, into the class of continuous surfaces,

such as NURBS, etc., which nowadays are becoming more
and more usable.

A very important advantage of the method is that it re-
places the point-to-region by point-to-point visibility com-
putations. Since the visibility of faces no longer plays
a main role, the visibility graph is transformed to G =
(S

⋃
V, E), where V corresponds to the set of vertices

of the scene. The set of arcs E represents visibility be-
tween objects from S and V . The graph is computed
in O

(
n f ·√ns ·nv

)
operations in the worst case, where

nv = |V | is the number of vertices in the scene.
Let us suppose that the surrounding sphere is pix-

elized; each element represents a viewpoint. To evaluate
viewpoint qualities, it is necessary to find all the ver-
tices of the scene that are visible from each element of
the sphere. In order to do this rapidly, a reverse prob-
lem is considered: all the visible viewpoints have to be
found for each vertex of the scene. This allows one to
use the structure of the rasterized sphere for fast elimi-
nation of hidden areas. Without loss of generality, a ras-
terized plane can be considered instead of the sphere
and a triangulated scene (a polygonal mesh could be tri-
angulated in linear time using the algorithm presented
in [5]).

The algorithm iterates through each vertex of the scene
and finds all pixels of the plane that are visible from the
given vertex (see Fig. 7).

The main step of the algorithm is the determination of
a set of viewpoints that are visible from a given vertex.
The naive way is to project all the triangles on the plane,
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Fig. 7. Scene consisting of two cubes and a cone; the rasterized
plane represents a set of viewpoints. The given vertex of the scene
is not visible from viewpoints colored in black

Fig. 8. The triangle is drawn on the rasterized plane, the boundary
is shown by the dark gray color, the inner part by the light gray
color. The symbols “+” indicate the left part of the boundary, “−”
shows the right part

to fill up the projections and then to eliminate colored
areas. This way is the simplest, but it is expensive. In such
a case, the main step of the algorithm runs in O(n f ·ns)
time in the worst case, because it could color pixels several
times.

We propose to keep in memory a matrix of numbers,
where each element of the matrix corresponds to a pixel
of the plane. The matrix is initially filled up with zeroes.
At the main step of the algorithm a projection bound-
ary is to be found for each triangle of the scene. The
boundary could be obtained using the Bresenham’s algo-
rithm [4] of digital line drawing. Then the boundary could
be divided into two parts: a left part and a right part (see
Fig. 8). The matrix elements corresponding to the elem-
ents of the left part of the boundary are to be increased,
the right ones are to be decreased. Fig. 9 gives a detailed
illustration.

Fig. 9. Three faces are drawn on the plane. The symbol “+” means
an increase of the corresponding element of the matrix, the symbol
“−” means a decrease

Algorithm 1. The fast visibility computation method

Input: The set of faces F, the rasterized sphere S
Output: The analytic visibility graph G = (S

⋃
V, E)

qs ← 0 ∀s ∈ S
for each vertex v of the scene do

for each triangle f ∈ F do
Find the projection Pf of the triangle f
onto the plane
Increase matrix elements corresponding
to the left part of the projection
Decrease matrix elements corresponding
to the right part of the projection

end for
Determine the set A of the inner parts according
to the calculated matrix (perform the brackets
sequence task for each row of the matrix)
E ← E

⋃
(s, v) ∀s ∈ S \ A

end for

When all the projections are drawn, the inner parts of
the projections are to be eliminated for each row of the
matrix. This task is similar to the brackets sequence task,
where each row represents a string, each increase of a ma-
trix element means insertion of an opening bracket into
the string and each decrease means insertion of a closed
bracket. Algorithm 1 shows the scheme.

If the plane consists of ns pixels, then the maximal
boundary drawing time is O(

√
ns) for a triangle. Having

n f triangles and nv vertices in a scene, the total running
time of the algorithm is O(n f ·√ns ·nv) operations. Thus,
the running time is reduced from O(n f · Z ·ns) to O(n f ·
nv ·√ns) operations, Z � n f .
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4 Scene visualizations

There are many ways to visualize a scene in order to
understand it. They can be separated into two classes
of methods: static and dynamic. Static methods give the
user a set of photos of a scene and dynamic ones show
a “movie”.

4.1 Set of images

Let us suppose that we want to find a set of images, by
which all the vertices of the scene will be seen. A more
strict formulation is as follows: an undirected bipartite
graph G = (S

⋃
V, E) is given, the task is to find a set

M ⊆ S : V = {v|(u, v) ∈ E, u ∈ M}.
Unfortunately, the minimal set cannot be found in real-

time, the minimization of |M| being NP-complete (refer
to [11] for a more detailed explanation). Moreover, Feige
in [8] proved that for every ε > 0 there is no polynomial-
time algorithm able to approximate the task within
(1− ε) ln |V | unless NP ⊆ DTIME

[
nO(ln ln |V |)], which is

very strong result. However, even such a simple heuristic
as a greedy algorithm (Algorithm 2) has a good bound.

Algorithm 2. The greedy algorithm approximating the
set cover problem

G = (S
⋃

V, E); M = ∅
while E 	= ∅ do

Select s ∈ S with the maximum number of adjacent
edges
M = M

⋃{s}
Remove from G s with all adjacent vertices and
edges

end while

Lemma 1. The greedy algorithm finds a solution with at
most copt ·

(
ln |V |

copt
+1

)
vertices, where copt is the number

of vertices in optimal solution. So, it is an O(ln |V |) ap-
proximation – or better if copt is large.

Proof. Let us denote the initial number of vertices |V |
as n. Since the optimal solution uses copt vertices, there
must be some set that covers at least a 1

copt
fraction of

the vertices. Therefore, after the first iteration of the al-
gorithm, there are at most n · (1 − 1

copt

)
vertices left. The

optimal solution for the task at the second step can not
be greater than copt, since the initial optimal solution sat-
isfies the new task. After the second step, there are at
most n · (1− 1

copt

)2 vertices left, etc. After copt rounds,
there are at most n · (1− 1

copt

)copt < n · 1
e vertex nodes left.

After copt ln n
copt

rounds there are at most copt points left.
Thus, the number of iterations the algorithm needs is
It(n) = copt + It

( n
e

) = O(copt · ln n).

4.2 Dynamic understanding – making a movie

Image sets may be sufficient to represent quite simple
scenes. However, an image set does not tell us how the
camera can pass from one viewpoint (image) to another.
Sometimes this is not sufficient to understand a scene well,
as the user may lose orientation in the space. In order to
improve his (her) knowledge of a scene, a good solution
is to give the user the ability to view a film made by the
virtual camera.

The goal of this section is to develop a technique for
real-time global exploration. Moreover, we would like to
develop a method to create films in real-time with the cam-
era remaining outside the virtual world.

First of all, aesthetic criteria of the film quality must be
defined.

1. The movie should not be very long, but it must show as
much information as possible.

2. The operator (or an algorithm, if the movie is to be cre-
ated automatically) should avoid fast returns to already
visited points.

3. The camera path must be as smooth as possible, in
order to avoid transients in direction changes leading
to a loss of orientation in the user perception of the ex-
plored space.

4. The operator should try to guide the camera via view-
points as well as possible.

Here we propose an incremental construction method.
The main idea is to determine where unexplored areas
of a scene lie, then to create “magnets” in these areas.
The camera is to be considered as a “magnet” of oppo-
site polarity. Magnetic forces of large unexplored areas
will attract the camera. In order to simplify the compu-
tations we use gravitational forces instead of magnetic
ones.

The method is incremental, thus having a trajectory
line from the starting point to the current position of
a camera, the camera is to be pushed towards unexplored
areas. The aesthetic criteria can be satisfied with the fol-
lowing schema of exploration: at each step a mass is as-
signed to each point of the discrete sphere and to the
current position of the camera. Then the camera point is
put under Newton’s law of gravity. The superposition of
the gravitational forces for the camera point is considered
as the vector of movement.

Let us introduce a notation for the set of visible ver-
tices with respect to the viewpoint p: V(p) = {v ∈ V |v is
visible from p}. Pk

0 = {p0, p1, . . . , pk} is the set of view-
points (the camera trajectory), the set of explored vertices

is V(Pk
0 ) =

k⋃

i=0
V(pi). Exploration is started from the best

viewpoint p0, where the measure of viewpoint quality is
expressed by Eq. 3.

The next viewpoint pk+1 is to be appended to the tra-
jectory Pk

0 . Let us consider the point pk, where the cam-
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era stays. Since the camera cannot leave the surface of
the sphere, the movement factors are represented by vec-
tors lying in the tangent plane to the sphere in the point
pk. If a mass m is assigned to the point p, then in the
tangent plane a force with the norm ‖ �gp‖ = m

|(pk,p)|2 ap-
pears. The direction of �gp is the direction from pk to p.
It can be determined by taking the intersection line of
the tangent plane and the plane, where the arc (pk, p) of
the sphere lies. Fig. 10 shows an example of gravitational
forces.

In order to attract the camera to unexplored areas, the
value of the viewpoint mass will be chosen according to
new information brought by this viewpoint. Let us intro-
duce a function evaluating the mass of the viewpoint p ∈ S
with respect to the camera trajectory Pk

0 (of course, we
suppose that V(p) 	= ∅):

m(p) =
∣
∣N

(
p|Pk

0

)∣
∣

|V(p)| · I(p),

where:

1. I(p) is computed according to Eq. 3
2. N

(
p|Pk

0

) = V(p) \ (
V(p)

⋂
V

(
Pk

0

))
is the set of new

vertices discovered from the viewpoint p.

Thus, |N(p|Pk
0 )| is the amount of new information

brought by the point p with respect to the trajectory Pk
0 .

Multiplier I(p) forces the “operator” to guide the tra-
jectory via good viewpoints. Algorithm 3 expresses the
scheme.

The proposed algorithm exhibits main properties cor-
responding to the cognitive constraints previously defined.

– The camera tries to move as quickly as possible to
large uncovered areas, due to their higher attractive
masses.

Fig. 10. The black points indicate endpoints of the gravitational
forces. They lie on the plane, tangent to the end of the trajectory.
Note that the camera will not return to the visited areas since the
forces in these directions are equal to zero

Algorithm 3. The incremental algorithm computing the
trajectory of the virtual camera.

Input: The set of vertices V , the discrete sphere S,
the camera step size c

Output: The exploration trajectory P
k ← 0; P ← {p0} : I(p0) = max

s∈S
I(s)

while V \ V(Pk
0 ) 	= ∅ do

�d ← ∑

s∈S\{pk}
�gs

�d ← �d · c
‖�d‖

find pk+1 ∈ S closest to �pk +d
Pk+1

0 ← Pk
0

⋃{pk+1}
k ← k +1

end while

– There are no comebacks to visited areas, as the mass
m(p) of a visited point p is zero.

– The camera does not have any brusque trajectory
changes except when it suddenly discovers a new in-
teresting object. An example of such a case is shown in
Fig. 11a. The camera suddenly faces the interior of the
sphere through the hole, thus discovering new areas.
So the previous explored object becomes less attractive
than the new uncovered areas and the camera moves
rapidly to these new ones. Without a smoothing fac-
tor, the trajectory will have high spatial frequencies in
its changes. Introducing an inertia factor filters these
high spatial changes and the trajectories are smoothed
in a very natural way (Fig. 11a). The more influence
the inertia has on the trajectory, the smoother a path is
obtained.

Fig. 11. a The interesting object appeared suddenly and the big
attractor disappeared. Thus, the camera wants to see another in-
teresting object immediately. b By introducing the inertia factor
a smooth trajectory is obtained

Sometimes it is not sufficient to view an object once,
for example, if the user has passed some parts of the scene
quickly, he (she) probably did not understand it properly.
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So, it is better to show the parts of the scene several times.
The method could be easily adapted to this task. If it is
possible to “forget” about parts already seen a long time
ago, there will be always some regions of the object to
explore.

The “forgetting” can be done in different manners,
the simplest one is to determine the “size of memory”,
the time L, during which the algorithm keeps in mem-
ory a visited vertex. Then the amount of new information
brought by the point pk+1 is

N
(

pk+1|Pk
0

) = V(pk+1)\ (
V(pk+1)

⋂
V

(
Pk

max(k−L,0)

))
.

A more sophisticated method keeps in memory not bi-
nary information about whether a vertex was visited or
not, but rather the time of the last visit. More precisely,
having a trajectory P0

k , we define the time T of a vertex
v ∈ V visit as follows:

T
(
v|Pk

0

)
=

{
max

i=0...k
{i|v ∈ V(pi)} if v ∈ V

(
Pk

0

)

−1 if v /∈ V
(
Pk

0

) .

Then m(p) is transformed to

m̂(p) =
∑

v∈V

(
k − T

(
v|Pk

0

))
· I(p),

Fig. 12. The exploration trajectory for the virtual office model com-
puted with the new method. The images are snapshots taken from
the “movie”; the first one corresponds to the start of the movement
(the best viewpoint)

and a vertex not visited during a long time attracts the
camera with more and more power until the camera sees
it.

5 Results

This section presents several exploration trajectories com-
puted for different 3D scenes.

Fig. 12 shows a trajectory obtained with the “gravita-
tional” method of global scene exploration. The images
are snapshots taken consequently from the “movie”, the
first one corresponds to the start of the movement, i.e., to
the best viewpoint. Let us compare it with the trajectory
shown in Fig. 5. It is presented in [21] and is computed
with the method introduced in [1].

The trajectories are smooth and they have approxi-
mately the same length. However, it is easy to see that
the new method gives a better path. Figure 5 shows that
the camera passes under the floor of the virtual office, and
during this time the user does not see the scene. The new
trajectory is free of this disadvantage.

The next example of the new method application is
shown in Fig. 13. This model is very good for testing
exploration techniques; it represents six objects imposed
into holes on the sphere, and the explorer should not miss
them. None of the previously proposed methods can ob-
serve this model properly. All of them, having found an

Fig. 13. The exploration trajectory for the sphere with six embed-
ded objects. The images are snapshots taken from the “movie”,
the first one corresponds to the start of the movement (the best
viewpoint)
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embedded object, are confused when choosing the next
direction of movement. This is due to the missing in-
formation about unexplored areas. On the contrary, the
new method operates with the analytic visibility graph,

Fig. 14. The exploration trajectory for the Utah teapot model. Im-
ages are taken from the “movie”, the first one is the best viewpoint

Fig. 15. Residential quarter exploration. The reader is referred to
Fig. 16 for a more detailed picture

which allows determination of where some unexplored
areas rest.

Further, we give some more examples of exploration
trajectories for different scenes. The exploration trajectory
for the Utah teapot is shown in Fig. 14.

Figure 16 shows the best viewpoint a virtual residential
quarter scene. The exploration trajectory for the quarter is
given in Fig. 15.

Figures 17 and 18 show protracted trajectories made
for the Stanford bunny and for the ionic temple model.

Fig. 16. The first frame from the exploration movie – the best view-
point

Fig. 17. The protracted exploration trajectory for the ionic temple
model
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Fig. 18. The protracted exploration trajectory for the Stanford
bunny

6 Conclusion and future work

In this paper, several approaches of virtual worlds ex-
ploration are described and discussed. An approximate
method that finds a minimal set of viewpoints sufficient
to see the entire scene is presented. A method for vir-
tual “film making” (automatic scene exploration) is intro-
duced. Finally, a very rapid method of viewpoint quality
estimation is presented. Note that previously we fixed an
offline exploration of a virtual world as our purpose, but in
the majority of cases the proposed techniques may work in
real-time.

This work leaves several interesting problems, such as
the inner exploration of an object, exploration with surface
ripping and so on. Certainly, the considered methods are
far from ideal and can be improved. Different people have
different tastes, and we suppose that artificial intelligence
techniques can help to handle some uncertainties.

The proposed techniques allow one to get a good com-
prehension of a single virtual artifact or a general compre-
hension of a scene. In the future it would be interesting to

Fig. 19. The display is almost completely hidden by the case, but it
can be clearly recognized

extend our definitions. For example, we can consider not
only curvature or the number of faces, but also the num-
ber of visible objects. An example is shown in Fig. 19. The
display is almost completely hidden by the case, but it can
be clearly recognized. If we can properly split (in human
perception) a scene into a set of objects, then the number
of visible objects becomes a very important criterion of
viewpoint quality estimation.

For example, in a virtual museum different objects
should have different importance. Obviously, the artefacts
should have significantly greater importance than walls,
chairs and so on. With a proper division of a virtual mu-
seum model into a set of objects, we obtain good heuristics
for an automatic (or guided manual) exploration.

It would be interesting to develop new automatic
methods of scene exploration allowing interaction with the
user, where the user can point out which parts of a scene he
would like to explore in detail. Probably, machine learn-
ing techniques can be used in order to improve interaction
with the user.
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