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Abstract The complexity of 3D
shapes that are represented in
digital form and processed in
CAD/CAM/CAE, entertainment,
biomedical, and other applications
has increased considerably. Much
research was focused on coping with
or on reducing shape complexity.
However, what exactly is shape
complexity? We discuss several
complexity measures and the cor-
responding complexity reduction
techniques. Algebraic complexity
measures the degree of polynomials
needed to represent the shape exactly
in its implicit or parametric form.
Topological complexity measures the

number of handles and components
or the existence of non-manifold
singularities, non-regularized com-
ponents, holes or self-intersections.
Morphological complexity measures
smoothness and feature size. Com-
binatorial complexity measures the
vertex count in polygonal meshes.
Representational complexity mea-
sures the footprint and ease-of-use of
a data structure, or the storage size of
a compressed model. The latter three
vary as a function of accuracy.

Keywords Compression ·
Simplification · Morphology ·
Geometry

1 Introduction

Digital models of 3D shapes are common in numerous
applications. They are used to represents solids, which
correspond to physical objects, surfaces, which may—but
need not—bound a solid, or more general geometric com-
plexes, which may capture the interplay between solids
and lower dimensional elements. So far, the accuracy of
models that could be represented in 3D modeling systems
has been limited by design or acquisition costs, by stor-
age and transmission costs, by computational and visual-
ization costs, and also by theoretical and implementation
challenges. These costs are directly related to the com-
plexity of a shape or of the representation used to store
it in digital form. A large body of research has been fo-
cused on reducing these costs. Computational g,Geometry
techniques [15] play an important role in reducing the
asymptotic time or space cost of algorithms that construct

or process polygonal representations of 3D shapes. They
will not be discussed explicitly here. Instead, we investi-
gate the following complementary aspects. In Sect. 2, we
briefly discuss the complexity stemming from the use of
higher order polynomials to represent the surfaces that
bound a shape. In Sect. 3, we review the broad topological
domain of shapes and structures that can be represented
as a selective geometric complex and discuss how to map
this domain to solids or even manifolds, and how to re-
duce their genus. Complexity may be measured in terms
of sharp or narrow features, hence, in Sect. 4, we discuss
the smoothness and regularity of shapes, and techniques
for increasing them. In Sect. 5, we discuss lossy simpli-
fication and retiling techniques for shapes represented as
triangle meshes. In Sect. 6, we discuss simple and compact
data structures for CSG and BRep and provide examples
of redundancy reduction and compression schemes. Due
to space limitations, we do not discuss design complexity,
or visual complexity.
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2 Algebraic complexity

Digital representations of solid objects [29, 32] are often
defined by arranging simpler shapes and by combining
them through Boolean operations. In particular, a solid
may be specified in constructive solid geometry (CSG) as
a Boolean combination [28] of primitive solids whose di-
mensions, position, and orientation may be conveniently
controlled by the user [11]. A primitive solid may be eas-
ily defined in its nominal position and orientation as the
set of points, whose coordinates satisfy one or several
polynomial inequalities. For example, a ball of radius r
is the set of points (x, y, z) satisfying x2 + y2 + z2 ≤ r2.
The complexity of such a semi-algebraic representation of
a solid may be measured by the number of primitives (dis-
cussed in Sect. 6) or by the degree of the polynomials used
to represent them. Early CSG modelers were limited to
linear polynomials [6], approximating curved primitives
by facetted models that could be represented as intersec-
tions of linear inequalities or as extrusions of polygonal
contours. In the 70s and 80s, commercial products pro-
vided support for a subset of quadric primitives [7]. More
recently, techniques for rendering Boolean combinations
of more general surfaces have been demonstrated [5] and
more complex analytic formulations were proposed to ex-
tend the Boolean operations [33].

Semi-algebraic formulations are implicit and make
it difficult to answer simple geometric or topological
queries. For example, a solid represented by a CSG model
with an arbitrarily large number of primitives could ac-
tually be empty. Furthermore, popular rendering and an-
alysis systems are geared towards boundary representa-
tions (BReps), where each face of the solid is represented
as a node in a global incidence graph. A face is a two-
dimensional portion of a surface and hence is also called
a trimmed surface [57]. Surfaces of CSG primitives are
defined in terms of polynomials. For example, the sur-
face may be defined by an implicit polynomial equation,
such as the equation x2 + y2 + z2 = r2 of a sphere. The
face may be specified as the intersection of the surface
with a trimming volume. Such a trimming volume may
be represented in semi-algebraic (CSG) form, which may
be readily extracted from the original CSG formulation
of the solid [47]. However, such an implicit representa-
tion of the trimming volume still suffers from the same
limitations as the CSG representation: It does not tell us
explicitly whether the face exists, whether it is connected,
or whether it has holes.

To capture this topological information, an explicit
boundary representation of a trimmed surface is usually
computed through boundary evaluation [36]. The explicit
representation of a face consists of the implicit (poly-
nomial) equation of the supporting surface and of a rep-
resentation of the bounding edges that delimit the face.
These edges are usually portions of curves, where two im-

plicit surfaces intersect. A parametric representation C(s)
of each intersection curve is preferred. It may be derived
in closed form for various combinations of simple quadric
surfaces [30]. The vertices, where bounding edges meet
may be computed by substituting the coordinate functions
of C(s) in the implicit equation of a third surface and
solving for s. This approach has been principally limited
to quadric surfaces for which intersection vertices may
be computed by finding the roots of low degree polyno-
mials. More complex (i.e. higher order) primitives yield
systems of simultaneous polynomial equations of higher
order, raising the complexity of a robust root-finder and
the computational cost of the boundary evaluation [26].
Hence, the term CSG usually refers to systems that sup-
port Boolean combinations of primitive solids bounded by
linear or specific quadric polynomials.

Although any solid may be approximated by a CSG
model, a close approximation of a sculptured (free-form)
shape [24] may require a large number of quadric primi-
tives. The alternative is to use a parametric formulation,
where each face is still represented as a trimmed sur-
face, but the supporting surface is a mapping, M, of a unit
square (u, v) ∈ [0, 1]2 in parameter space onto a set of
3D points M(u, v) and where the bounding edges are
represented as parametric trimming curves (u(s), v(s))
in the two-dimensional parameter space. A parametric
curve is the set of points (u(s), v(s)), where u and v
are piecewise polynomial or rational polynomial func-
tions in s [12]. Typically, these are polynomials of de-
gree 3 or less, although aesthetic or functional constraints
may require higher order polynomials. In this paramet-
ric trimmed surface representation, each trimming edge is
represented twice (once for each incident face). When the
edge is computed as the intersection between two faces
during a Boolean operation, the two representations may
not match, creating a gap or self-intersection in the bound-
ary. Such inconsistencies may undermine the integrity of
subsequent algorithmic computations. This inconsistency
problem, as well as the problem of detecting and tracing
intersections of parametric surfaces [20], is exacerbated if
higher order parametric surfaces or trimming curves are
used. The immense software complexity of several com-
mercial CAD systems [19] is in a large part due to the
difficulty of performing and processing reliably the inter-
sections of parametric surfaces. Hence some 3D modelers
require that the user designs the boundary of a solid as
a patchwork of abutting untrimmed parametric patches,
thus significantly increasing the complexity of the design
process.

To avoid dealing with higher-order parametric formu-
lations, one may choose to use only first degree polyno-
mials, for which the CSG-to-boundary conversion may be
performed reliably [4]. With such a choice, all surfaces
are planes and all edges are line segments. Such polyg-
onal models are popular in graphics and animation, be-
cause the software for computing and representing them
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Fig. 1. The interior, exterior, and the four
boundary types are shown (left). The effects
of the interior, boundary, and closure op-
erators are shown on a non-regularized set
(right)

is less complex and because hardware accelerators have
been optimized for rendering them. However, a close ap-
proximation of a curved shape may require a large number
of planar facets, increasing its combinatorial complexity,
storage size, transmission time, processing costs, and ren-
dering delays.

Finally, note that BRep modelers are not restricted to
solids and can also be used to model surfaces that do not
bound a solid and more general geometric complexes, as
discussed in the next section.

In summary, the designer of a 3D modeler that sup-
ports Boolean operations must chose between a CSG (im-
plicit) or a BRep (parametric) scheme and decide on the
degree of polynomial surfaces supported. The choice will
impact the complexity of the software and also the growth
of the combinatorial complexity as a function of the accu-
racy with which a particular shape is approximated.

3 Topological complexity

Although the representation of solids [35] has always been
a major focus of CAD and animation systems, it is of-
ten desired or even necessary to represent 3D geometries
that are not solids, or even boundaries of solids. Such
geometries may arise in reverse engineering, where sur-
face samples are erroneously interpolated by a surface that
does not constitute the boundary of a solid; in analysis,
where it may be important to represent the contacts be-
tween solids; or during the design of mixed-dimensional
structures combining inhomogeneous solids with lower-
dimensional elements.

The concept of a selective geometric complex [40] was
developed to provide a common theoretical framework for
representing solids, lower-dimensional elements (points,
curves, surfaces) and their interactions. To discuss its
topological complexity and the corresponding simplifica-
tion operations, we consider that a pointset S decomposes
space into 6 subsets [44]: iS, eS, sS, wS, cS, and hS. To
define them, let ∼ S denote the complement of S. Let
Br(p) be an open ball of radius r around a point p. Let
b(s), denoted bS for simplicity, be the boundary of S.
It is defined as the set of points p for which Br(p) in-
tersects both S and ∼ S for all strictly positive r. The

interior iS is S −bS. The exterior eS is (∼ S)−bS. The
skin sS is the portion (biS)∩ S of bS that is included in
S and is separating iS from eS. The wound wS is the
portion (beS)∩ (∼ S) of bS that is not included in S and
separates iS from eS. The hair hS is the set (beS)∩ S
of dangling faces, edges, and isolated vertices of bS in-
cluded in S that are not bounding iS. The cut cS is the
union of the cracks (biS)∩ (∼ S) that are not part of S,
but are not bounding eS. A set S is open if S = iS, i.e. it
has no skin or hair. A set is closed if it has no wound or
cut. The closure, kS, of a set S is (iS)∪ (bS). A set S is
regularized, when it has no wound, no hair, and no cut.
To convert an arbitrary set S into a regularized (“clean”)
set, we need to “cut its hair, mend its cut, and grow back
the skin over its wound”. The regularized version rS of
S may be formally defined by (iS)∪ (cS)∪ (sS)∪ (wS) or
more compactly as kiS. Hence, S is regularized if S = kiS.
The effect of these various topological operators is shown
in Fig. 1.

The selective geometric complex (SGC) representa-
tion [40, 48] was designed as an extension of the bound-
ary representation (BRep) to the broader domain of non-
regularized pointsets. In an SGC, each cell (volume, face,
edge) knows the extent (the whole space, an implicit al-
gebraic surface, a parametric or implicit curve) in which
it is embedded, the list of its bounding elements, and its
membership (a bit indicating whether it is part of S or
of ∼ S). Hence, marking a face as part of ∼ S may cre-
ate a wound (if it is adjacent to both iS and eS) or a cut
(if it is surrounded by iS). Furthermore, with the refer-
ence to each (k −1)-dimensional bounding element e of
a k-dimensional set, f is associated a two-bit neighbor-
hood indicating whether e is bounding f on its left, on its
right, or on both sides. The terms left and right are defined
with respect to an agreed-upon orientation of e and f .
This neighborhood information permits us, for example,
to specify a particular half-sphere as a subset of a spheri-
cal extent bounded by a single circle. Given the orientation
of the sphere and of the circle, the neighborhood indicates
which half of the sphere is of interest.

The broad topological domain of SGCs may be appro-
priate for annotating models with internal structures, for
representing shapes with cracks, for modeling boundary
conditions, or for representing a regularized model during
intermediate stages of its construction.
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Unfortunately, the support of non-regularized shapes
adds complexity to a modeling software. For instance, to
decide whether a point p not on bS lies inside a solid S,
one would usually cast an arbitrary ray from p, making
sure that the ray does not hit any edge or vertex of bS and
does not have a tangential intersection with bS. Then, one
would compute the parity of the number of times the ray
crosses bS [64]. An even number of intersections indicates
that p is out of S, because a point infinitely far along the
ray is out of S (assuming that S has finite size). If S is
not regularized, the test must be modified to discard inter-
sections with hair and cut faces. Hence, a BRep of S must
explicitly distinguish between the skin, wound, hair, and
cut portions of bS. Although such a distinction is provided
by the SGC representation scheme [40], early solid mod-
elers were limited to solids (regularized sets). Because
Boolean intersection and difference operations between
two regularized sets with partly overlapping boundaries
may produce non-regularized sets [41], these modelers au-
tomatically performed a regularization of the resulting sets
(eliminating cut, hair, and wounds), ensuring that all nodes
in the CSG tree represent solids.

This regularization, i.e. the extraction of the regular-
ized version kiS of a non-regularized model S, may be
viewed as a reduction in topological complexity. In an
SGC representation, this regularization operation amounts
to setting the membership bit to IN for all cut and wound
cells and to OUT for all hair cells. The removal of the re-
dundancy in the resulting SGC representation is discussed
in Sect. 6.

Assume that we are given a set B, that approximates
the valid boundary bS of a solid S, but contains inconsis-
tencies (gaps between adjacent faces, self intersections),
which may have resulted from an inaccurate reverse en-
gineering process or from inconsistencies between the
two representations of each trimming edge in a parametric
model, as discussed in the previous section. The extrac-
tion of bS from B is sometimes called healing or repairing.
It is a difficult process, since B does not unambiguously
define S. When B is a set of faces defined as trimmed por-
tion of oriented implicit surfaces, their extents partition the
space into an arrangement of three-dimensional cells. S
may be estimated [31] by a voting scheme, in which the
larger cells of the arrangement that are bounded by large
portions of faces of B are given a higher probability of be-
ing in S (if they lie on the interior side of the oriented face)
or in ∼ S (otherwise).

Some scanned models are incomplete. The missing
parts of their boundary are called holes. The process of
filling the holes in such models [23] is different from the
healing discussed above, because the holes are typically
larger than the gaps in an inconsistent BRep. These in-
complete models may be produced by the early stages of
a reverse engineering process, which starts with a set P
of discrete points sampled on bS. The process of recov-
ering bS from P is sometimes called point cloud inter-

polation. Several approaches have recently been proposed
for this difficult task [60]. Healing, hole filling, and point
cloud interpolation may be viewed as a reduction of the
topological complexity of the representation of a regular-
ized shape S, because they simplify further processing,
although one could argue that P is topologically simpler
than S or bS. In fact, several researchers are exploring
the use of point clouds for modeling and rendering 3D
shapes [34].

Through the remainder of this paper, we will assume
that S is a solid (finite regularized set). Note that a solid
may be manifold or not. A point p of bS is said to be
manifold (with respect to bS) [1] if there exists a positive r
such that the intersection of bS with the open ball Br(p) is
homeomorphic to an open disk. Otherwise, p is said to be
non-manifold. S is manifold if all points of bS are mani-
fold. Consider a non-manifold solid S. Let N denote the
set of its non-manifold points. In turn, N may be decom-
posed [40] into a set of relatively open curves, which we
call the non-manifold edges (NME), and a set of isolated
points, which we call non-manifold vertices (NMV). Sup-
port of non-manifold situations complicates algorithms
for processing S or for performing Boolean operations
between sets. Yet, non-manifold singularities cannot be
easily avoided, since they are produced by Boolean oper-
ations on solids in tangential contact. When a NME has k
pairs of incident faces, it may be replaced by k coincident
manifold edge-instances, each having one pair of inci-
dent faces. Several choices of pairing the incident faces
are possible. Amongst those, one should match faces that
have a compatible orientation so that there exists a way of
bending each one of the k manifold edge-instances into
a different curved edge so that the resulting BRep is free
from self-intersection [39]. At the end of this process all
edges are manifold, although clusters of edge-instances
may be geometrically coincident. The model may still be
non-manifold, because it may have non-manifold vertices.
These are vertices with two or more cycles (fans) of inci-
dent faces. A NMV with k cycles is replaced by k coinci-
dent vertex-instances. The resulting model has a manifold
topology that is inconsistent with its imbedding in space.
Hence, it can be represented by a data structure designed
for manifold solids, although the algorithms that process
it may no longer assume that all pairs of edges and of
vertices are mutually disjoint. Techniques for converting
non-manifold models to such pseudo-manifolds in a man-
ner that minimizes the number of vertex-instances have
been proposed [39]. We assume hereafter on that the solids
are either manifold or pseudo-manifolds.

A solid may have more than one connected compon-
ent. Furthermore, each component may be bounded by
one or more shells (connected portions of the boundary).
Finally, each shell may have one or more handles. The
number of handles is called the genus of the shell. The
genus affects the programming complexity of various al-
gorithms and the efficiency (representational complexity)
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of some encodings [49]. Hence, it may be desired to com-
pute approximations of a solid S that have lower genus, or
that are simply connected (bounded by a single, genus-one
shell). Genus reduction may be achieved [59] by starting
with a simply connected boundary of a solid that contains
S and shrinking the boundary while preventing changes of
genus and intersections with S. A distance field may be
used to control the shrinking speed. By identifying and al-
lowing a few initial changes of topology, a desired number
of the larger handles may be created, removing the smaller
ones. Similarly, one may wish to remove small shells.
These are easy to identify, since one may quickly compute
an axis aligned minimum bounding box containing each
component. Hence, one may construct decreasingly com-
plex approximations of S, where the number of handles
and/or components is decreasing. Such an approach may
be viewed as a filter that eliminates topological noise, pos-
sibly produced through a point-cloud interpolation of an
insufficiently dense set of points produced by a 3D scan of
a real shape.

Consider now that B is an isosurface separating all
points on a regular 3D grid where some measure (say
pressure) is higher than a threshold from those where the
measure is lower. The topology of B is not fully defined.
Local topology choices and simple optimizations [2] may
be used to reduce the number of handles or shells, while
reducing the representational complexity (vertex count) of
the isosurface.

In summary, although it is possible and sometimes
essential to support non-regularized shapes, many appli-
cations are not designed to cope with such topological
complexity. Hence, such representations must often be
converted to solids through regularization. Furthermore,
non-manifold edges and vertices may be replaced by mul-
tiple instances of their manifold counterparts. Finally, the
boundary of a solid may be replaced by an approximat-
ing surface that exhibits fewer handles and shells. The
designer of a modeling system must decide which level
of topological complexity will be supported and may pro-
vide simplification techniques that reduce the complexity
of a particular model.

4 Morphological complexity

Shape having more numerous or smaller features may be
viewed as more complex. To evaluate and reduce this mor-
phological complexity, one needs to define what a feature
is, measure its size, and provide algorithms for computing
an approximation of a shape, where the identified features
are larger or fewer.

We may distinguish [70] two measures of morpholog-
ical complexity: smoothness and regularity. If a point p
of bS is non-manifold or if the maximum curvature of bS
at p is not well-defined, we say that the smoothness of p

(with respect to S) is zero, or equivalently that p is zero-
smooth. Otherwise, we define the smoothness of p as the
inverse, 1/c(p), of the maximum curvature [62] of bS at p.
The smoothness of S is the minimum of the smoothness
of points on bS. For instance, if S has a sharp edge, its
smoothness is 0. We say that solid S is r-smooth if its
smoothness is equal to or larger than r.

At each point p of bS, one may also compute the max-
imum radius r(p) of an open ball that can touch p from
both sides of bS without intersecting bS. The regularity of
S is the minimum of r(p) over all points p of bS. A shape
is r-regular if its regularity is equal to or larger than r.
Note that if S is r-regular, then it is r-smooth. However,
a shape may be r-smooth, but may contain small constric-
tions or cracks that are not r-regular. The regularity of
a point of bS is its local feature size, which is its distance
to the medial axis of bS. The medial axis is the set of
points having more than one closest point on bS. Hence,
the regularity of bS is its least feature size. The definition
proposed in [70] extends the notion of regularity to the
whole space: the regularity of a point p in iS or eS is the
radius of the maximum open ball Br(p) that contains p
and is disjoint from bS.

To reduce the morphological complexity of a shape,
one may increase its smoothness or its regularity. When
bS is a triangle mesh, its smoothness may be increased
through subdivision [10, 25, 68] or through smoothing [63].
Subdivision replaces a triangle mesh with a finer mesh.
Iterating the process converges to a smooth surface [71].
Subdivision splits each triangle into smaller triangles
by introducing new vertices and possibly adjusting the
old ones. The limit surface tends to be smoother every-
where, unless it contains non-manifold singularities or
self-intersections produced during subdivision. Smooth-
ing alternates moving each vertex towards the average of
its neighbors and moving it away from this average. Mov-
ing towards the neighbors smoothens the shape. Moving
away prevents shrinkage [63]. Since smoothing does not
increase the number of vertices, the resulting mesh has
zero smoothness at all non-flat edges and vertices and
hence is zero-smooth and zero-regular. However, smooth-
ing reduces discrete measures of curvature estimated at the
vertices [62], at least away from thin tubes (see Fig. 2).
Shapes may also be smoothened through curvature flow,
which may be implemented using level sets [55].

Because the subdivision and smoothing techniques dis-
cussed above do not provide a direct control over the de-
sired degree of smoothness or regularity, morphological
filters may be preferred when more control on smooth-
ness and regularization is desired. The r-rounding Rr(S)
of S is the union of all balls of radius r contained in S.
The r-filleting Fr(S) is the pointset that cannot be reached
by a ball of radius r disjoint from S. Note that Fr(Rr(S))
and Rr (Fr(S)) [45] leave the r-regular portions of bS un-
changed and tend to produce shapes that are almost ev-
erywhere r-smooth and r-regular. More precisely, they
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Fig. 2. The original solid bounded by a triangle mesh (left) has been smoothened (right). Note that the resulting shapes need no longer be
regularized, because smoothing has squeezed thin parts into lower-dimensional dangling edges or produce self-intersections

Fig. 3. The morphological complexity of the original solid (left) has been reduced (right) by using the Mason filter

modify bS only in the r-mortar Mr(S), defined as Fr(S)−
Rr (S) [70]. However, Fr(Rr(S)) tends to shrink the solid
and Rr(Fr(S)) tends to grow it. To alleviate this bias, the
Mason filter [70] identifies the connected components of
Mr(S) and includes in the result only the components that
have more than 50% of their volume in S (Fig. 3). Instead
of this binary decision, the tightening [69] filter tightens
bS inside the r-mortar. The tightening process may change
the topology of bS and guarantees that the boundary of the
r-tightening Tr(S) of S is r-smooth everywhere. Although
there is no guarantee that Tr(S) is r-regular, the irregular
singularities are rare and tend to be isolated. Finally, the
boundary of Tr(S) is obtained by minimizing surface area.

The geometric error (discrepancy) between S and its
morphological simplification S′, which may be Fr(Rr(S)),
Rr (Fr(S)), r-Mason(S), or Tr(S), is bounded in the fol-
lowing way. Every point of bS′ lies within a tolerance zone
Zr(bS) of all points within distance r from bS. However,
the reverse is not true and there usually are points of bS
that lie further than r from bS′. For instance, whole shells

of bS may be removed through morphological simplifica-
tion. Nevertheless, note that these simplifications confine
their effect to the r-mortar Mr(S), which is usually a very
small subset of Zr(bS).

In summary, one may measure the morphological com-
plexity of a solid S as the largest value of r for which S
is r-regular or simply r-smooth. Complexity measured in
terms of smoothness may be reduced indirectly through
subdivision or smoothing. When a more precise control is
needed, morphological filters may be used. In particular,
the r-tightening guarantees to produce a shape that is r-
smooth and has minimal area boundary. In general, the
resulting shape is also r-regular almost everywhere.

5 Combinatorial complexity

In many applications, piecewise planar boundaries are pre-
ferred to higher degree polynomial surfaces. The bound-
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ary bS of a solid S is usually represented by a set of sur-
face samples (called vertices) and by a connectivity graph
defining a triangle mesh that interpolates the vertices and
approximates the desired surface. (Although many mod-
elers support more general polygonal faces, these may
always be each represented as a set of contiguous trian-
gles. If desired, one bit per edge may be stored to dis-
tinguish between the original edges and those introduced
through this artificial triangulation. This conversion to tri-
angle meshes leads to significantly simpler algorithms and
to more compact and more regular data structures.)

The complexity of a triangle mesh may be simply
formulated as its vertex-count. Because vertex-count im-
pacts storage size, algorithmic complexity, and rendering
performance, various simplification techniques have been
proposed for reducing the vertex-count.

When an edge of the triangle mesh is collapsed, its
two bounding vertices are clustered into one and its two
incident triangles may be removed. Hence, each edge-
collapse operation [17] reduces the vertex count by 1 and
the triangle count by 2. Most triangle mesh simplifications
operate by performing a series of edge-collapses. For each
edge collapse, two vertex-clusters are merged, the cluster-
representative vertex position is computed (maybe as the
one that minimizes some error estimate), and the result-
ing error is recorded. A priority queue may be maintained
to accelerate the selection of the edge-collapse that will
result in the lowest error. At each stage, the edge with
the smallest error is collapsed and the vertex representa-
tives and cost of collapsing neighboring edges updated.
The process stops when the desired reduction of vertex-
count has been achieved or when the error estimate ex-
ceeds a prescribed tolerance. The various approaches dif-
fer in their strategy for selecting which edge to collapse
next and where to position the new cluster-representative
vertex. The error between the original surface S and the
surface S′ produced by one or more edge-collapses may
be measured in different ways. Computing the Hausdorff
error H(S, S′), which is defined as the minimum r such

Fig. 4. The combinatorial complexity of an assembly with its drawing (left) has been reduced (right) through vertex clustering

that bS′ ⊂ Zr(bS) and bS ⊂ Zr(bS′) is difficult and ex-
pensive [9, 44]. Hence, simpler bounds or estimates of
H(S, S′) are usually used. Ronfard and Rossignac [42]
have used, as the vertex-representative of a cluster, the
point that minimizes the sum of the squares of the dis-
tances to the extents (supporting planes) of each triangle
incident upon a vertex of the cluster. To estimate the error,
they used the maximum of the squares of the distances to
the extents. This solution required merging lists of extents
as the clusters were merged, but provided a conservative
bound on the Hausdorff error. Garland and Heckbert [13]
have replaced the maximum by the sum of the squares of
the distances to the extents. This is called the quadratic
error. As a result, they needed only to keep track of the
10 coefficients of a quadratic polynomial in the coordi-
nates of the vertex representative. When two clusters are
merged, the coefficients of the quadratic error of the new
cluster may be obtained by simply adding their coun-
terparts in the quadric error formulation of each cluster.
This simplification of the simplification process has led
to a very efficient and effective combinatorial complexity
reduction technique [14], at the cost of replacing the max-
imum error by the L2 error measure.

Triangle mesh simplifications based on edge-collapses
do not alter the topology of the shape, unless they unin-
tentionally produce self-intersecting boundaries. Although
topology preservation may be required in some applica-
tions, it considerably limits the level of reduction in the
vertex-count that may be achieved for a given tolerance
(error). Furthermore, edge-collapsing is usually imple-
mented for manifold boundaries of regularized solids. In
contrast, the vertex-clustering method [37] works well
on non-regularized shapes, which may combine non-
manifold solids with lower dimensional construction lines,
2D drawings, and even annotations. It tends to merge
small components, remove small holes, and reduce thin
sheets or tubes to their lower-dimensional approximations
of the medial axes or skeletons (Fig. 4). Vertex-clustering
makes clusters of vertices that fall within the same cell



992 J. Rossignac

of a three-dimensional regular grid. Consequently, it is
extremely fast and simple to implement. The Hausdorff
error H(S, S′) and the length of collapsed edges are
bounded by the length of the diagonal of a cell. Hence,
vertex-clustering is less effective at reducing the vertex
count than edge-collapsing in over-tessellated flat regions.
Therefore, several authors have proposed to combine both
approaches [27].

In summary, the reduction of combinatorial complex-
ity is a lossy process, trading accuracy for simplicity. Most
of the research in this area has been focused on reducing
the vertex-count of triangle meshes [27]. Several efficient
simplification techniques exist and may be combined to
simplify smooth manifold surfaces effectively, to allow
topological changes that further reduce vertex-count, and
to operate on non-regularized models.

6 Representational complexity

The reduction of combinatorial complexity, as discussed
above, is accompanied by a loss of accuracy. In contrast,
the techniques for reducing the representational complex-
ity discussed in this section are loss-less. We discuss tech-
niques for removing the redundancy in SGC representa-
tions, in CSG representations, and in triangle mesh rep-
resentations. We also discuss compact loss-less encodings
(compression) of the connectivity of triangle meshes and
how they are affected by a lossy re-sampling preprocess-
ing step.

As mentioned in Sect. 3, the topological complexity of
the SGC representation of a non-regularized model may
have been reduced by changing the membership bits of
specific cells, for instance to eliminate the wound, the
cut, or the hair of a model during a closure, interior, or
regularization operation. As a result, some of the lower-
dimensional cells may be eliminated or merged with inci-
dent higher-dimensional cells in order to reduce the repre-
sentational complexity of the model stored in SGC form.
For example, a dangling edge or face of the hair marked
OUT may be dropped, a face marked IN and its two in-
cident three-dimensional cells of iS may be joined, or an
edge originally part of cS, but marked IN, may be merged
with its only incident face of iS. The preconditions and al-
gorithms for these drop, join, and merge operations that
ensure the validity of the resulting SGC are discussed
in [40].

The representational complexity of a solid stored in
CSG form may sometimes be reduced by discovering
that the same solid may be represented with fewer CSG
primitives. A primitive may be eliminated if it is redun-
dant [65]. Consider a primitive A in the CSG representa-
tion of a solid S. We can write S as a set-valued function
S(A) of A. The active zone [51] Z of A in the CSG ex-
pression of S is defined as S(W)− S(E), where W is the

universe and E the empty set. If A is disjoint from Z,
then A is E-redundant and can be replaced by the empty
set. If A contains Z, then it is W-redundant and may be
replaced by W . Replacing A by E or W yields a simpli-
fication of the CSG expression, by the successive appli-
cation of simple re-write rules, such as W ∪ B = W , W ∩
B = B, E ∪ B = B, and E ∩ B = E, using the fact that B −
C = B ∩ (∼ C) and that ∼ (B ∪C) = (∼ B)∩ (∼ C) and
∼ (B ∩C) = (∼ B)∪(∼ C). Redundancy detection, which
requires testing whether A∩ Z or A− Z are empty may be
accelerated by using s-bounds [38].

The representational complexity of a solid whose
boundary is stored as a triangle mesh may be measured by
storage size or by the complexity of the underlying data
structure and of the associated algorithms.

Consider a triangle mesh defined by its geometry and
by its triangle-vertex incidence graph. The geometry is
stored as an array of vertex-entries (three coordinates per
vertex). Incidence (sometimes called “topology”, refer-
encing the connectivity graph) defines each triangle by
listing the three integer indices that identify its vertices.

Consider a triangle mesh with v vertices, e edges, and
f triangular faces. To simplify some of the definitions, we
assume that the faces and edges are relatively open cells,
i.e. they do not contain their boundary in the supporting
manifold [40]. We say that the mesh is edge-connected if
all pairs of triangles form the two ends of some strip of tri-
angles in the mesh. A strip is an ordered list of triangles
such that two consecutive elements of the strip are incident
upon a common edge.

A vertex-spanning tree (VST) of a triangle mesh is
a subset of the edges of the mesh, selected so that their
union with all the vertices forms a tree (connected cycle-
free graph). Consider that a given VST has been selected.
The edges it contains are called the cut-edges. The union
of the cut-edges with all the vertices is called a cut (not to
be confused with the topological cut defined in Sect. 4).
Because the VST is a tree, there are v−1 cut-edges. The
difference between the surface and its cut is called the
web. Edges that are not cut-edges are called hinge-edges.
The web is the union of the faces and hinge-edges. Re-
moving the cut, which has no loop, from the surface of
a mesh will not disconnect it.

Assume first that the mesh forms a surface that is
homeomorphic to a sphere. The removal of the cut pro-
duces a web that is a (relatively open) triangulated two-
dimensional point-set in three-space. This web is simply
connected and may be represented by an acyclic graph,
whose nodes correspond to faces and whose links corres-
pond to hinge edges. The web forms a planar triangulation
and can be drawn on the plane so that no two faces over-
lap. Thus there are f −1 hinge edges. Note that by picking
a leaf of this graph as root and orienting the links, we can
always turn it into a binary tree, which we call the triangle-
spanning-tree (TST). The TST defines a connected net-
work of corridors (strips) through which one may visit all
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the faces by walking across hinge-edges and never cross-
ing a cut-edge. Because an edge is either hinge or cut, the
total number of edges, e, is v−1+ f −1. Each face uses
three edges and each edge is used by two faces. Thus,
the number e of edges is also equal to 3 f/2. Combin-
ing these two equations yields f = 2v−4, which shows
that there are roughly twice as many triangles as ver-
tices. When the mesh forms a manifold surface of genus h,
this equation becomes f = 2v+4h −4 and the web is no
longer simply connected, but has 2h handles. It can be flat-
tened (i.e. turned into a simply connected open polygon)
by removing 2h additional edges, which we call the jump
edges [61]. More generally, the mesh may also have holes
and non-manifold singularities, which further complicates
the relation between f and v.

Although a large number of representation schemes
have been proposed for triangle meshes [46] and more
generally for polygonal meshes, we advocate the use of
a corner table [52, 53] because of its simplicity. The corner
table stores the geometry in the G table and the connec-
tivity in the V and O tables of integers, each having 3 f
entries. Each entry G[v] contains the triplet of the co-
ordinates of vertex number v, and will be denoted v.g.
Note that the order in which the vertices are listed in G
is arbitrary, although once chosen, it defines the integer
reference number associated with each vertex. Triangle-
vertex incidence defines each triangle by the three integer
references to its vertices. These references are stored as
consecutive integer entries in the V table. Note that each
one of the 3 f entries in V represents a corner (association
of a face with one of its vertices). Let c be such a corner.
Let c. f denote its face and c.v its vertex. Remember that
c.v and c. f are integers in [0, v−1] and [0, f −1], respec-
tively. Let c.p and c.n refer to the previous and next corner
in the cyclic order of vertices around c. f .

Although G and V suffice to completely specify the
faces and thus the surface they represent, they do not offer
direct access to a neighboring face or vertex. We choose
to use the reference to the opposite corner, c.o, which we
cache in the O table to accelerate mesh traversal from one
face to its neighbors. For convenience, we also introduce
the operators c.l and c.r, which return the left and right
neighbors of corner c (Fig. 5). Note that we do not need
to cache c. f , c.n, c.p, c.l, or c.r, because they may be
quickly evaluated as follows: c. f is the integer division
c. f DIV3; c.n is c−2, when cMOD3 is 2, and c+1 other-
wise; and c.p is c.n.n; c.l is c.n.o; and c.r is c.p.o. Thus,
the storage of the connectivity is reduced to the O and V
arrays. We assume that all faces have been consistently
oriented, so that c.n.v = c.o.p.v for all corners c. For ex-
ample, one may adhere to the convention that when a face
c. f is visible by a viewer outside of the solid (i.e. the fi-
nite set that is bounded by the tri mesh), the three vertices,
c.p.v, c.v, and c.n.v, appear in counter-clockwise order.

The simplicity of the corner table data structure and the
notation defined above simplify many of the algorithms

Fig. 5. Corner operators for traversing a corner table representation
of a tri mesh

that traverse, process, or modify the mesh. For example,
the procedure visit(c) {if NOT c. f.m then {c. f.m := true;
visit(c.r); visit(c.l)}} will visit all the faces in a depth-first
order of a TST, assuming that c. f.m is a Boolean set to
true when the face c. f has been visited.

Given the V table, the entries in O may be computed
by: for c := 0 to 3 f −2 do for b := c +1 to 3 f −1 do
if (c.n.v == b.p.v)&&(c.p.v == b.n.v) then {c.o := b;
b.o := c}. A faster approach is described in [43].

Because it can be easily recreated, the O table needs
not be transmitted. Furthermore, the 31 − log2 v leading
zeros of each entry in the V table need not be transmitted.
Thus, assuming that Floats are used for the coordinates,
a compact, but uncompressed representation of a triangle
mesh requires 48 f bits for the coordinates and 3 f log2 v
bits for the V table.

The Edgebreaker compression [49] encodes the full
connectivity information contained in both V and O with
a linear cost of less than 2 f bits, and hence eliminates
the need for the decompression modules on the client to
re-compute O from V . Edgebreaker performs a walk on
a manifold surface which follows a breadth-first TST that
is similar to the visit(c) procedure described above, but
avoids the recursive call in most cases by using a bit-mask
to mark all previously visited faces. Edgebreaker encodes
one symbol out of the set {C, L, E, R, S} per triangle in
the order in which the triangles are visited. Furthermore,
because half of the symbols are a C, the string of sym-
bols (also called the clers string) may be trivially encoded
using 2 f bits plus a small overhead per handle. Further
reductions of this storage cost [8, 18, 50, 56] have been
proposed, achieving a guarantee of 1.80 f bits and often an
entropy of less than 1.0 f bits.

When the connectivity of a triangle mesh is com-
pressed as discussed above, the bulk of the storage cost
is used to encode the location of the vertices (geometry).
This cost may be reduced through geometry compres-
sion, which combines: a lossy quantization with loss-less
prediction and statistical coding of the residues. Quantiza-
tion truncates the vertex coordinates to a desired accuracy
and maps them into integers that can be represented with
a limited number of bits. Using 12 bit integers for each
coordinate ensures a sufficient geometric fidelity for most
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applications. Both the encoder and the decoder use the
same predictor to guess the location of the next vertex.
The most popular parallelogram predictor [66] predicting
c.o.v.g as c.n.v.g + c.p.v.g − c.v.g. The residues between
the predicted and the correct coordinates are small inte-
gers, suitable for statistical compression [54]. The combi-
nation of these three steps compresses vertex location data
to about 7 f bits.

When there is no need to preserve the original connec-
tivity or the original vertex locations, superior compres-
sion may be achieved by retiling the surface [67]. Three
different retiling approaches have been designed to in-
crease compression. The piecewise regular mesh (PRM)
retiling approach [58] decomposes the surface into 3 re-
liefs, each one comprising triangles whose normals are
closest to one of the three principal directions. Each re-
lief is resampled along a regular grid and the global con-
nectivity of the new triangle mesh is recomputed. When
the sampling rate is chosen so that the resulting PRM
has roughly the same number of vertices as the ori-
ginal mesh, the mean square error is less than 0.02%
of the diameter of the bounding box. Because of the
regularity of the sampling in each relief, the PRM may
be compressed using a modified Edgebreaker down to
a total about 2t bits, which accounts for both connec-
tivity and geometry. SwingWrapper [3], another retiling
approach, partitions the surface of an original mesh M
into simply connected regions, called triangloids. From
these, it generates a new mesh M′. Each triangle of M′
is a linear approximation of a triangloid of M. By con-
struction, the connectivity of M′ is regular (on average,
96% of the triangles are of type C or R, 82% of the
vertices have valence 6) and can be compressed to less
than a bit per triangloid using Edgebreaker. The loca-
tions of the vertices of M′ are encoded with about six
bits per vertex of M′, thanks to a prediction technique,
which uses a single correction parameter per vertex. In-
stead of using displacements along the normal or heights
on a grid of parallel rays, SwingWrapper requires that
the left and right edges of all C triangles have a pre-
scribed length L, so that the correction to the predicted
location of their tip may be encoded using the angle
of the hinge edge. For a variety of popular models, it
is easy to create an M′ with 10 times fewer triangles
than M. The appropriate choice of L yields a total file
size of 0.4t bits and a mean square error with respect to
the original of about 0.01% of the bounding box diag-
onal. Normal meshes [16], a third retiling approach, com-
putes a simplified model [21, 22] and uses it as the coarse
mesh of a modified a butterfly subdivision [10] scheme,
where each new vertex location is adjusted by a displace-
ment along the estimated surface normal. The correc-
tive displacements are compressed using a wavelet trans-
form [10, 71].

In summary, SGC, CSG, and triangulated boundary
representations may contain redundant information. Re-

dundancy in SGC models may be reduced by dropping,
merging, or joining cells when the result is a valid com-
plex representing the same pointset. Redundancy in CSG
may be reduced by identifying and eliminating redun-
dant primitives. Triangle meshes may be conveniently and
compactly represented using a corner table. To further
reduce storage size, the connectivity of triangle meshes
may be compressed using Edgebreaker to about 1 bit
per triangle. The vertex location may be compressed
using quantization, parallelogram prediction, and entropy
coding of the residues. Considerably more aggressive
compression may be achieved by retiling the original
model into a more regular mesh for which vertex lo-
cations may be each encoded using a single corrective
scalar.

7 Conclusions

We have discussed several measures of complexity of
3D shapes or of their representations and have reviewed
corresponding complexity reduction methods. Represen-
tational complexity may be reduced in SGC, CSG, and
triangulated BRep models without altering the represented
pointset through redundancy elimination, through the
choice of a simpler data structure, and through compres-
sion. By choice, a system developer may limit the alge-
braic complexity supported by a modeling system, hence
forcing designers to use a larger number of lower degree
primitives to approximate the desired shape with sufficient
accuracy. When the resulting combinatorial complexity
exceeds the available computing or transmission capabil-
ities, simplification techniques may be invoked to reduce
the vertex count in triangulated BReps. By choice, a sys-
tem developer may also limit the topological complexity
supported by a modeling system to closed sets, to regu-
larized sets, or even to manifold sets. On the other hand,
a designer may reduce the topological complexity of a par-
ticular model through set-theoretic operations, through
the explicit removal of handles, or by healing models
whose topology was wrongly inferred from imperfect
input. Finally, the morphological complexity of a shape
may be reduced by tightening its boundary in the mor-
tar to remove sharp features and thin parts. Note that
combinatorial and morphological complexity measures, as
well as the bit-count representational complexity meas-
ure, are not scalar values, but rather scalar functions of
the error resulting from a simplification process. Hence,
the answer to the question “Which of these two shapes
is more complex?” may depend on the desired accu-
racy.
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