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Abstract Shape-based retrieval of
3D models has become an important
challenge in computer graphics.
Object similarity, however, is a sub-
jective matter, dependent on the
human viewer, since objects have
semantics and are not mere geo-
metric entities. Relevance feedback
aims at addressing the subjectivity
of similarity. This paper presents
a novel relevance feedback algorithm
that is based on supervised as well
as unsupervised feature extraction
techniques. It also proposes a novel
signature for 3D models, the sphere

projection. A Web search engine
that realizes the signature and the
relevance feedback algorithm is
presented. We show that the proposed
approach produces good results and
outperforms previous techniques.

Keywords 3D retrieval · Search
engine · Relevance feedback

1 Introduction

Given a database of 3D models and a query model, the ob-
jective of 3D retrieval is to obtain the most similar objects
from the database. Usually, the problem is divided into
two sub-problems. First, each model should be compactly
represented by a signature. Second, a distance measure on
these signatures should be defined.

Static signatures and distances are often not sufficient.
After all, similarity is a subjective issue, dependent on
the human viewer. Different users might have conflict-
ing interpretations regarding the similarity of models. For
instance, what is more similar to a centaur – a man or
a horse?

Relevance feedback (RF) lets the user incorporate his
or her perceptual feedback in the search, by iterating the
following three stages. First, the system retrieves similar
models and presents them to the user in descending order
of similarity. Next, the user provides feedback regarding
the relevance of some of the current retrieval results. Fi-

nally, the system uses these examples to learn and improve
the performance in the next iteration, as demonstrated
in Fig. 1.

While relevance feedback has been used in the retrieval
of text and images [12, 23, 25, 26, 30], it is a relatively new
area of research for 3D shapes. A learning technique based
on Support Vector Machine (SVM) is studied in [8]. A fea-
ture space warping approach is presented in [3]. A method
that ranks relevant (irrelevant) objects on top (bottom) is
presented in [1]. This paper proposes a new approach that
is based both on supervised and unsupervised feature ex-
traction [23, 26]. We show that our technique outperforms
previous schemes.

This paper also proposes a novel signature, the sphere
projection, which attempts to capture the global character-
istics of a 3D model by computing the amount of “energy”
required to deform it into a sphere. This signature is en-
riched by topological properties.

Various signatures for 3D shapes have been pro-
posed [10, 29, 31]. They include Reeb graphs and other
graph representations [4, 11, 35], shape distributions [21],
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Fig. 1. Filtering out geometrically similar, but semantically dissim-
ilar, models (query model at the top-left)

moments [8], cords, moments and wavelets [22], reflec-
tive symmetry [16], Fourier coefficients for spherical har-
monics [17, 32, 33], lightfield descriptors [5], multi-scale
hierarchical representations [13] and more. The signature
proposed in this paper captures the global geometry and
topology of the objects. It tolerates degenerated meshes
and disconnected components.

The paper makes the following contributions:
1. A Web search engine for 3D models has been built.

The system lets the user provide perceptual feedback
and updates the search using a relevance feedback al-
gorithm.

2. A new algorithm for relevance feedback is proposed.
This algorithm is general and can be applied to any
signature represented as a vector. It combines several
known techniques from information retrieval in a new
way.

3. A novel signature that takes into account both geomet-
ric and topological properties of models is presented.

4. Criteria for measuring the quality of signatures and rel-
evance feedback algorithms are discussed.
This paper is organized as follows. Section 2 intro-

duces the signature. Section 3 presents the relevance feed-
back algorithm. Section 4 describes the experiments per-
formed and presents some results. Section 5 concludes the
paper.

2 Signature

This section describes a new signature for representing 3D
models. It consists of a geometric signature, the sphere
projection, as well as a topological signature.

Geometric signature. The sphere projection signature at-
tempts to capture the global characteristics of the model
by computing the amount of “energy” required to deform
it into a predefined three-dimensional shape, in our case
a sphere. Let �F be the applied force and dist be the dis-
tance between the enclosing sphere and the model surface.
The energy required to deform a model into a sphere is
given by E = ∫

dist
�F·d�r. We assume that the force is con-

stant along this distance and is also constant for all the
points on the model’s surface. Therefore, the energy is
proportional to the average distance between the sphere
and the model.

To implement it, the sphere projection signature is de-
fined as a concatenation of three sub-signatures: the dis-
tance from the sphere to the model D1, the distance from
the model to the sphere D2 and the variance of radii D3.
While D1 and D2 describe global properties of the model,
D3 captures the local geometric structure.

D1 is a bi-variate function that represents the minimal
distance from a point on the enclosing sphere to the mod-
el’s surface. Let R be the radius of the enclosing sphere,
P(θ,φ,R) be a point on the enclosing sphere, where (θ, φ)
are spherical coordinates, and O be the set of points on the
model’s surface. Then:

D1(θ, φ) = min
o∈O

(||P(θ,φ,R) −o||). (1)

D1 is not sufficient for describing non star-shaped
models. For instance, D1 for a sphere with a cylindrical
hole from one pole to another is equal to D1 for a sphere
with dents on the poles.

To solve this problem, D2, a bi-variate function that
represents the distance to a sphere, is considered. We de-
note the set of model points having the same spherical
coordinates (θ, φ) by G(θ, φ) and the size of G(θ, φ) by
|G(θ, φ)|.

D2(θ, φ) =
∑

(θ,φ,r)∈G(θ,φ)(R−r)

|G(θ, φ)| , (2)

where r is the radius of a point in G(θ, φ). If the size of
G(θ, φ) is infinite, the sum is replaced by an integral.

In the implementation, in order to calculate the dis-
tances, the sphere’s surface is first sampled, producing
a 2D mesh, M, of m ×n points. The ij th sample point,
1 ≤ i ≤ m, 1 ≤ j ≤ n, is defined as:

Mij =
(

2π(i −0.5)

m
, −0.5π + π( j −0.5)

n
, R

)

. (3)

Next, a set of points, O, distributed uniformly over the
model’s surface, is drawn. The entries of the distance ma-
trix D1 are defined by:

Dij
1 = min

o∈O
(||Mij −o||). (4)
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Similarly, for each sampled point o = (θ, φ, r) ∈ O,
a sample point on the sphere having the most similar an-
gles θ and φ is found. Thus, for each sphere sample point,
a corresponding set of model points, Gij , is produced. The
entries of the distance matrix D2 are defined by:

Dij
2 =

∑
(θ,φ,r)∈Gij

(R−r)

| Gij | . (5)

Finally, D3, the variance of the radii, is calculated. It
represents the deviation from the sphere within a specific
angle. Let mij be the mean of the radii r of the points in
the set Gij . The entries of the matrix D3 are defined by:

Dij
3 =

∑
(θ,φ,r)∈Gij

(r −mij)
2

|Gij | . (6)

Each entry Dij in the signature matrix D is a concate-
nation of Dij

1 , Dij
2 and Dij

3 into a vector. Signatures are
compared using the L2 metric.

Topological signature. The geometric signature is en-
riched with topological properties – the model’s Betti
numbers [6, 18]. Betti zero, β0, is the number of con-
nected components; Betti one, β1, is the number of inde-
pendent tunnels; Betti two, β2, is the number of closed
regions in space. Comparing Betti numbers using the L1
or L2 metric, does not yield the desirable results. This
is due to the substantial difference between the com-

Fig. 2. Queries using geometric signatures, topological signatures and combinations

parison of small and large Betti numbers. For instance,
the difference between 2 and 3 connected components is
more significant than the difference between 3298 and
3299 components. Therefore, a logarithmic function is
applied to the Betti numbers prior to signature compari-
son.

Combining geometry and topology. The topological sig-
nature is concatenated to the geometrical signature, to
form the combined signature. The relative weights of
the signatures are adjusted automatically, using relevance
feedback, described in the next section. Figure 2 com-
pares the results of two queries, using only geometric
signatures, only topological signatures, and combinations
of the two. For a calf, the geometric signature achieves
good results, but the topological signature does not. This
is because all four-legged animals are similar geomet-
rically, but many other models resemble the calf topo-
logically. Trees, however, are not necessarily similar ge-
ometrically. Yet, they are usually modeled similarly by
designing one element (e.g., a leaf, a branch) and copy-
ing it multiple times. As a result, all the trees have many
components. Therefore, in this case, the topological sig-
nature achieves good results. In both examples, the best
results are achieved when the combined signatures are
used.

Often, Betti numbers also help in retrieving models in
different poses, such as people in different motions. This
is so because the same prototype is used to model the ob-
jects, which therefore have the same topology.
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3 Relevance feedback algorithm

Though relevance feedback has been a lively topic of
research in text retrieval and in image retrieval, it has
hardly been explored in 3D shape retrieval. We are
aware of only a few algorithms that specifically target 3D
models [1, 3, 8].

In this section we describe our algorithm for 3D rele-
vance feedback. It builds upon state-of-the-art algorithms
in information retrieval and puts them together in a new
way.

The algorithm consists of a pre-processing off-line
stage and an online computation. In pre-processing, which
is applied to the whole database, relevance information
is not used. Conversely, relevance information is used in
each online step, to improve the retrieval results.

Pre-processing. During pre-processing, unsupervised fea-
ture extraction is applied. Given N observations on d
variables, feature extraction refers to the reduction of the
dimensionality of the data by finding r new variables,
r ≤ d, and projecting the data [9]. This projection obtains
an efficient combination of the features in the sense of es-
timation variance. The most widespread linear mapping is
the Principal Component Analysis (PCA) [15]. PCA finds
a projection matrix W : y = W�x, where y ∈ Rr is a trans-
formed data point, W is a d ×r transformation matrix and
x ∈ Rd is an original data point.

Since standard PCA cannot capture nonlinear struc-
tures of the input data, we use a more advanced technique,
the Kernel Principal Component Analysis (KPCA) [28].
KPCA is based on the computation of the standard linear
PCA in a new feature space, into which the input data is
mapped using a nonlinear transformation.

To avoid computationally expensive calculations of
high-dimensional dot products, kernels are used [27].
A kernel is a function K , such that for all x, y ∈ X,
K(x, y) = 〈Φ(x), Φ(y)〉, where Φ is a mapping from X to
a high-dimensional feature space. In our system, good re-
sults are obtained using the Gaussian kernel with σ = 1:
K(x, y) = e−|x−y|2/2σ2

.
Experimentally, decreasing the dimensionality of the

signature from 219 to 100, not only decreases the run-
ning time, but also improves the retrieval results by 5%,
both in the initial search and in the following relevance
feedback iterations. This improvement stems from the fact
that KPCA finds correlations between the original fea-
tures and increases the weight of the more important fea-
tures.

Relevance feedback step. The aim is to separate between
the relevant and the irrelevant results. Thus, the algorithm
should search for the best transformation that preserves
class separability in a low dimension. This can be done
using supervised feature extraction. We show that no sin-

gle method is fully appropriate and offer a combination
that outperforms the known methods.

Given N observations on d variables, divided into two
subsets D1 and D2 with N1 and N2 samples in each
subset, respectively. We aim at finding a projection onto
some r-dimensional subspace, r ≤ d, by y = W�x, where
{yi}N

i=1 are divided into the subsets Y1 and Y2, so as
to achieve the maximal separation between Y1 and Y2.
y ∈ Rr is a transformed data point and W is a d ×r trans-
formation matrix.

There are various ways to address this problem.
A common solution is Linear Discriminant Analysis
(LDA) [7, 9], which is formulated as an optimization prob-
lem. Let m be the mean vector of all observations and mi ,
i = 1, 2, be the sample means (relevant and irrelevant).
Define two scatter matrices: the between-class scatter ma-
trix SB and the within-class scatter matrix SW :

SB =
2∑

i=1

Ni(mi −m)(mi −m)�, (7)

SW =
2∑

i=1

∑

x∈Di

(x−mi)(x−mi)
�. (8)

The optimal transformation matrix W is defined as

Wopt = argmax
W

{
W�SBW

W�SW W

}

. (9)

LDA finds an optimal linear transformation that re-
weights the signature entries, so that the maximal sepa-
ration between the relevant and the irrelevant results is
achieved. However, LDA also aims at clustering the rele-
vant examples and the irrelevant examples in the discrimi-
nating subspace. The set of relevant examples is likely to
represent the true distribution, since the class of interest
has a compact support. However, the irrelevant examples
are often too sparse to represent their true distribution.
Moreover, they can be heterogeneous and reside far from
each other in feature space. Thus, any attempt to cluster
them is not only unnecessary, but also potentially damag-
ing.

It is thus preferred to treat the relevant and the irrel-
evant examples differently. Biased Discriminant Analysis
(BDA) addresses this asymmetry [34]. In BDA, the scatter
matrices SB and SW , are replaced by Sz and Sx:

Sz =
Nz∑

i=1

(zi −mx)(zi −mx)
�, (10)

Sx =
Nx∑

i=1

(xi −mx)(xi −mx)
�, (11)

where {xi}Nx
i=1 are the relevant examples, {zi}Nz

i=1 are the
irrelevant examples and mx is the mean vector of the rel-
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evant examples. The mean vector mx is subtracted from
the observations, in order to cluster the relevant examples
together, while keeping them away from the irrelevant ex-
amples.

Our experiments show that BDA fails for a small num-
ber of training examples. Fortunately, in this case, LDA
achieves good results. On the other hand, LDA fails for
a large number of training examples, since in this case it is
difficult to cluster the irrelevant example.

In relevance feedback retrieval systems, the number of
training examples provided by the user cannot be con-
trolled. The system should yield the best performance for
any sample size. A valid solution is to use LDA for a small
set of training examples and BDA otherwise. But how
should the system automatically determine which is the
case?

In our algorithm, Fisher’s Linear Discriminant (FLD)
criterion [7], a one-dimensional LDA, is used to determine
which method to utilize. The higher its value, the more
likely it is that LDA successfully discriminates between
the relevant and the irrelevant classes. Given a query, the
FLD is first calculated. According to its value, it is deter-
mined when to switch from LDA to BDA. Figure 3 shows
the average performance of LDA, BDA and our algorithm,
evaluated using Discounted Cumulated Gain (DCG), de-
scribed in Sect. 4.

Fig. 3. Using FLD to switch between LDA and BDA

4 System and experiments

We have developed a 3D Web search engine, Georgle, that
lets the user provide relevance feedback, in order to re-
fine the search results [20]. The input is a 3D model, which
can be supplied by the user or found in the database using

a text search. Refining the search results is done by mark-
ing some of the results as relevant or irrelevant. Then,
the algorithm described in Sect. 3 is applied and the new
results are displayed to the user. The process can be iter-
ated until the system retrieves the models the user “has in
mind”.

Section 4.1 describes the database organization. Sec-
tion 4.2 describes several methods for evaluating the qual-
ity of retrieval results. In Sect. 4.3, the quality of the
signature is evaluated using these measures. Section 4.4
estimates the performance of the relevance feedback algo-
rithm.

4.1 Database overview

Our experiments were performed on a database contain-
ing 1850 3D models, which were collected from the
Internet. In order to evaluate the methods described in
this paper, out of these models, 725 were semantically
classified into 25 classes and 1125 were free models
(Table 1). Obviously, the models need not be classified in
order for the database to be used. Classification is per-
formed solely to enable the evaluation described here-
after.

Table 1. Database organization

Class Size Class Size

4-legged animals 32 Airplanes 95
Bottles 15 Cars 57
Chairs 50 Chess 12
Couches 18 Doors 11
Faces 6 Glasses 5
Guitars (violins) 17 Helicopters 12
Knifes (swords) 38 Missiles 24
People 78 Plants 47
Race cars 20 Rifles 28
Space ships 55 Submarines 10
Tanks 12 Teapots 11
Trees 53 Vases 9
Zeppelins 10

Non-Classified 1125
TOTAL 1850

In a pre-processing step, all the models in the database
were normalized to achieve invariance to translation, scale
and rotation [8]. Then, a signature was generated for every
model and stored in the database, as described in Sect. 2.
Each signature has 219 entries, choosing m = 12, n = 6
(Eq. 3) and three Betti numbers.

4.2 Evaluation methods

Various evaluation methods have been proposed in in-
formation retrieval. In this section we discuss several
methods that are used in the evaluation of our proposed
signature.
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Fig. 4. Retrieval results – the query model is at the left upper corner
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Fig. 5. Average performance using various evaluation criteria. The different colors indicate four different signatures: blue – sphere, red –
distributions, yellow – moments; cyan – lightfield

1. Nearest neighbor [11, 21]. Check whether the most
similar retrieved model belongs to the same class as the
query model.

2. Precision/recall measurements [2, 19]. Let C be the set
of models that belong to the same class as the query, let
S be the set of all retrieved models and I = C ∩ S. Recall
and Precision are defined as R = |I |

|C| and P = |I |
|S| , respec-

tively. A common measure that addresses the difficulty in
evaluating the effectiveness by a pair of numbers that may
co-vary in a loosely specified way is the F-Measure [24].
This measure is high if both recall and precision are high:

F = 2PR

P + R
= 2

1/P +1/R
. (12)

3. First/second tier [11, 34]. The first/second tier measure
the success percentage among the first k retrieved models.
In the first tier, k =(size of the model’s class), while in the
second tier k = 2×(size of the model’s class).

4. Cumulated gain based measurements [14]. Let G be the
gain vector, whose i th entry Gi is 1 if the i th retrieved
model is in the same class as the query and 0 otherwise.
The cumulated gain vector CG is defined recursively by:

CGi =
{

G1 i = 1
CGi−1 + Gi otherwise.

(13)

The cumulated gain vector with a discount factor, DCG,
is defined recursively by:

DCGi =
{

G1 i = 1
DCGi−1 + Gi/ log2 i otherwise.

(14)

Here, less similar models are considered less relevant, to
accommodate for users who might be less likely to exam-
ine results down the list.

Measuring the algorithm’s performance with a single
value, is done by normalizing by the best possible result:

DCG = DCGk

1+∑|C|
j=2

1
log2( j)

, (15)

where k is the number of retrieved models and |C | is the
size of the class the query belongs to.

4.3 Signature results

To evaluate our signature, it is compared to: (1) shape
moments [8], (2) shape distribution [21] and (3) light-
field descriptors [5]. Figure 4 presents some examples and
demonstrates the differences between the results. For in-
stance, ten four-legged animals were retrieved among the
top ten using the sphere projection signature, while six,
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Fig. 6. Average performance using topological, geometric and com-
bined signatures

four and eight were retrieved using shape distributions,
moments and lightfields, respectively.

To thoroughly evaluate the performance, each classi-
fied model in the database is used as a query model and the
results are averaged over all the queries. A retrieved model
is considered relevant if it belongs to the same class of the
query model.

Figure 5 displays the results according to the mea-
sures described in Sect. 4.2, averaged over all queries. In
Fig. 5(a)–(d), the first 9 ×4 bars show the average per-
formance for 9 representative large classes and the last
four bars show the total average over all 25 classes.

These results indicate that the sphere projection signa-
ture performs better than shape distributions and moments
and compares well with lightfields, which is considered
a very good signature [29].

An interesting observation is that the lightfield de-
scriptor performs slightly better than the sphere projection
for the k-nearest neighbors-related measures (i.e., nearest
neighbor and second tier), while the sphere projection sig-
nature performs slightly better than the lightfield descrip-
tor for the precision/recall measure (F-measure) and the
cumulated gain measure. The latter two measures (preci-
sion/recall and DGC) are often considered more indicative
measures.

Though similar in quality, the sphere projection has
several benefits over the lightfield descriptor in terms of
storage and computational costs. Table 2 summarizes our
findings for the average signature size, signature gener-

Table 2. Time and space complexity

Signature Size Generation Time Query Time
(Kb) (sec) (sec)

Spheres 2.3 2.1 0.1
Lightfields 4.7 6.1 0.4
Distributions 2.0 1.9 0.1
Moments 0.4 0.9 0.04

ation time and query time, when executed on a Pentium
4 1.6GHz, 256MB RAM machine. The query time we
achieved for the lightfields is taken from the original pa-
per, since our results were higher. A model in the database
has 13, 000 faces on average.

Figure 6 illustrates the average performance of the
topological, the geometric and the combined signatures
according to the DCG measurement. Seven classes are
presented, where the first five have a similar geometric
structure and the last two (plants and trees) do not. Using
a combined signature achieves a high performance for all
the classes. Averaging over all the queries (right column)
shows that the combined signature is more effective for
a wide range of queries.

Fig. 7. Retrieving cars – narrowing down the results

Fig. 8. Retrieving airplanes using a helicopter as a query – the query
has a remote similarity to the desired models
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Fig. 9. Performance (DCG) vs. # of training examples

Fig. 10. The performance of our algorithm, [8] and [3]

4.4 Relevance feedback results

Figures 1, 7–9 demonstrate different uses of relevance
feedback (RF). Figure 1 shows how it is used to fil-
ter out geometrically-similar, but semantically-dissimilar,
models, i.e., only missiles are retrieved in the nine top-
ranked results. Figure 7 is an example of using RF to
narrow down the retrieval results. Using an open-roof car
as a query model, both regular and race cars are retrieved.
By marking the race cars as irrelevant and some regular
cars as relevant, the next iteration retrieves only regular
cars. Figure 8 is an example of using RF when the query
model has only a remote similarity to the models searched
for. Using a helicopter as a query, airplanes are retrieved
after a single RF iteration.

To comprehensively evaluate the average performance
of our relevance feedback algorithm, the experiments were
performed as follows. Each classified model was used as
a query. For each query, after the initial search, the top re-
sults that belong to the query’s class were automatically
marked as relevant and the rest were marked as irrelevant.
The performance of a query was evaluated using DCG.
DCG was chosen as a measure, not only because it takes
into account the position of the relevant results, but also

because it has the lowest standard deviation among all
the standard measures, making it the most stable meas-
ure. The performance was averaged over all the classified
models.

Figure 9 shows the average performance as a function
of the number of training examples. The most drastic im-
provement is achieved after the first and the second RF
iterations, while the third and the fourth iterations im-
prove the results only slightly. This is an important point
because users are unlikely to perform many iterations.
Moreover, increasing the number of training examples im-
proves the performance, as expected. Finally, relative to
the initial search, the overall performance is almost dou-
bled.

Figure 10 compares the performance of our relevance
feedback algorithm to the SVM-based approach [8] and to
the feature space warping approach [3]. It can be seen that
our algorithm outperforms both algorithms.

5 Conclusions

Signatures for 3D models have improved in the past sev-
eral years and will undoubtedly keep improving. This,
however, will not suffice to retrieve from a database what
the user “has in mind”. Using the same query model,
different users are likely to expect different retrieval re-
sults. Relevance feedback provides the user with the
added ability of influencing the search as it is being con-
ducted. In particular, relevance feedback provides a con-
venient interactive way to retrieve semantically-similar
objects.

This paper has proposed a novel relevance feedback
scheme. The algorithm builds upon some of the best
known techniques in information retrieval and com-
bines them in a new, completely automatic, manner,
so as to outperform the existing techniques. Most of
the improvement is gained in the first couple of itera-
tions, which is an important aspect in interactive tech-
niques.

The paper has also proposed a novel signature for 3D
models that attempts to capture the global characteristics
of the geometry and the topology of the model. It has
been shown that this combination provides a good sig-
nature using various criteria prevalent in information re-
trieval.

Several aspects of this study can be extended. First, ad-
ditional features, such as colors and textures, can be con-
sidered. The relevance feedback scheme provides a con-
venient way to weigh the various features automatically.
Second, the proposed relevance feedback algorithm can be
extended to allow the user to provide the degree of rel-
evance, instead of just marking the result as relevant or
not. Finally, an intriguing future direction is partial match-
ing.
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