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Surface developability is required in a vari-
ety of applications in product design, such
as clothing, ship hulls, automobile parts,
etc. However, most current geometric mod-
eling systems using polygonal surfaces ig-
nore this important intrinsic geometric prop-
erty. This paper investigates the problem of
how to minimally deform a polygonal sur-
face to attain developability, or the so-called
developability-by-deformation problem. In
our study, this problem is first formulated
as a global constrained optimization prob-
lem and a penalty-function-based numerical
solution is proposed for solving this global
optimization problem. Next, as an alternative
to the global optimization approach, which
usually requires lengthy computing time, we
present an iterative solution based on a lo-
cal optimization criterion that achieves near
real-time computing speed.
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Developability is an important intrinsic property of
a surface. Informally, a surface is developable if it
can be flattened onto a plane without any distor-
tion [1]. This is a highly desired property in sheet
manufacturing industry, where the stretch or com-
pression in the sheet material should be avoided, as
they make the product more prone to damage since
internal strains and stresses are generated. As an ex-
ample (Fig. 1a), the original design of the shell has
a developable shape that can be bent or rolled by
a metal sheet. After being deformed by “Wires” [2],
its shape becomes the one shown in Fig. 1b, which
is non-developable. The elastic energy maps of the
shell surface before and after the deformation are
given in Fig. 1c and 1d, respectively. As clearly
shown, a great amount of elastic energy is generated
if the newly designed shell is to be manufactured by
the metal sheet. This requirement exists in many ap-
plications (e.g., clothing, ship hulls, ducts, shoes, air-
craft and automobile parts). In this paper, we inves-
tigate and propose algorithms for solving the prob-
lem of how to deform a non-developable surface, in
the form of assembled polygonal mesh patches, into
a developable one while at the same time minimizing
the difference between the two surfaces.
Our algorithms work on polygonal mesh patches,
which have become a widely accepted standard in
most computer graphics applications. Triangular
meshes are especially preferred due to their algorith-
mic simplicity, numerical robustness, and efficient
display. The advantage of switching from spline-
based surface representation to mesh representation
is mainly due to the fact that algorithms for polygo-
nal meshes usually can work on shapes with arbitrary
topology and do not suffer from the severe restric-
tions that stem from the rigid algebraic structure
of polynomial surfaces. More and more commer-
cial modeling systems have included the polygonal
mesh-based module, and more and more applica-
tions are developed based on mesh representation.
The proposed technique is new; no prior research
on developability optimization of polygonal surfaces
has been found in the literature. In our approach,
the surface developability problem is formulated as
a constrained optimization problem. The problem
is first solved numerically by a penalty function-
based optimization scheme, which is a global ap-
proach. The continuity is preserved between the as-
sembled patches. The global optimization is very
time-consuming even after the gradients of the ob-
jective function have already been calculated locally.
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Fig. 1a–d. Example I. A deformed shell leads to stretch in manufacturing: a Original shape b Deformed shape c Elastic
energy map of the original duct d Elastic energy map of the newly shaped duct

Therefore, as an alternative, we further present a lo-
cal optimization solution in which the vertices on
the surface are moved along their normal directions
iteratively. The magnitude of each movement is ac-
tually derived from a locally defined objective func-
tion. This local approach enjoys a great advantage
of faster computing speed as compared to its global
counterpart and can be integrated into modeling sys-
tems to preserve the developability of assembled sur-
face patches in real-time during the entire design
process. Different from most existing surface model-
ing solutions concerned with developability, our so-
lutions, both global and local approaches, are more
of a bottom-up nature – we take as input an arbi-
trary (non-developable) surface in the form of a set of
assembled polygonal mesh patches and output a de-

velopable polygonal mesh that deviates minimally
from the original surface.
The paper is organized as follows. After reviewing
the related work, the necessary mathematical for-
mulations about the developability of a polygonal
mesh are given in Sect. 3, where the developability-
by-deformation problem is formulated as a con-
strained optimization problem. In Sect. 4, the details
of a penalty-function-based solution are presented
that numerically solves this constrained optimization
problem. To overcome the usually lengthy comput-
ing time required by the proposed numerical solu-
tion, as an alternative, in Sect. 5 we reformulate the
problem as a local optimization problem and propose
a much quicker numerical algorithm to solve the lo-
cal optimization problem. In Sect. 6 we then provide
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some experimental examples to illustrate the func-
tionality of the proposed solutions as well as their
comparison. Finally, the paper is concluded in Sect. 7
and we offer some pointers to potential future re-
search in this area.

2 Related work

Over the past decade, mesh-processing techniques,
such as mesh simplification [3–5] and mesh fair-
ing [6–10], have been improved significantly. Apart
from fundamental mesh processing algorithms, many
new freeform modeling approaches have also been
developed. The SKETCH system [11] rapidly con-
structs an approximate shape via direct mark-based
interaction. The Teddy system [12] constructs
a rounded freeform mesh model by finding the
chordal-axis of the user input 2D closed stroke to
build a smooth surface around the axis. Other ap-
proaches construct mesh surfaces by use of implicit
surfaces [13, 14]. Suzuki et al. [15] presented a 3D
mesh-dragging method for intuitive, efficient geo-
metric modeling of free-form polygonal models; this
method is based on an adaptive remeshing proce-
dure. With their method, the user can drag a part
of a triangular mesh and change its position and
orientation. Other interactive modeling research re-
sults were reported for the multi-resolution presen-
tation of models. For example, Zorin et al. [16] built
a scalable interactive multi-resolution editing system
based on mesh refinement and coarsification algo-
rithms, and based on Zorin’s approach Khodakovsky
and Schroder [17] developed an algorithm that can
modify the fine level shape of a surface. However,
in all the above approaches, the developability of the
processed polygonal mesh surface is not considered.
Our paper considers the developability property of
the given polygonal surface and converts the original
non-developable surface into a developable one.
Developable surfaces have been studied for a long
time. The definition of a developable surface ([1])
is derived from a ruled surface. For a ruled surface,
X(t, v) = α(t)+vβ(t), it is developable if β, dβ

dt and
dα
dt are coplanar for all points on X (where α(t) is the
base curve and β(t) is the director curve of X(t, v)).
The simplest examples of developable surfaces are
cylinders and cones, and a simple and representa-
tive example of non-developable surfaces is a sphere.
Every surface enveloped by a one-parameter family
of planes is a developable surface. The key concept

in characterizing the developability is Gaussian cur-
vature, which is the product of the maximum and
minimum normal curvatures at a given point [1]. In
general, a surface is developable if and only if the
Gaussian curvature of every point on it is zero. This
is the constraint that we want to preserve during the
surface optimization. Research related to computer-
aided geometric design, in particular those concern-
ing the design and approximation of developable sur-
faces, can be found in [18–27]. Most of them are
in terms of NURBS or its special case B-spline or
Bézier surfaces [18–24]. Aumann [18] proposed the
condition under which a developable Bézier surface
can be constructed with two boundary curves. The
boundary curves in his approach are restricted to lie
in parallel planes; the projection of the boundary
curves on the xy plane must be a rectangle. Chalfant
and Maekawa [19] presented a method to design de-
velopable B-spline surfaces where boundary curves
do not necessarily lie in parallel planes. In the work
of Frey and Bindschadler [20], the results of Au-
mann are extended by generalizing the degree of the
directions. Their system requires solving a nonlin-
ear system of equations to find the Bézier control
points. Chu and Séquin [21] recently proposed a new
method to design a developable Bézier patch. In their
method, after one boundary curve is freely specified,
five more degrees of freedom are available for a sec-
ond boundary curve of the same degree. In the work
of [22–24], approximation methods are used to de-
sign developable B-spline surfaces based on projec-
tive geometry. Other approaches are based on alter-
native perspectives. Redont [25] constructed devel-
opable surfaces by specifying tangent planes along
a geodesic of a surface, Randrup [26] approximated
a given surface by cylinders in its Gaussian image,
and Park et al. [27] designed developable surfaces by
the methods from optimal control theory.
All the work in the above references tried to use
developable surfaces to (approximately) construct
the shape of a product. There are also some surface
flattening approaches [28–37] in literature. They
usually adopt nonlinear programming techniques to
find an optimized flattened result with respect to
the given 3D surface. Shimada and Tada [28] pre-
sented a generic surface development algorithm.
This algorithm is based on a meshed surface. In
their algorithm, a dynamic programming method
is used to develop a curved surface. An objective
curved surface is decomposed into regions of adja-
cent strips. Then each region is developed, in turn,
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into a flattened shape. The whole shape is derived
by solving a multi-stage decision process. Parida and
Mudur [29] gave an algorithm to develop complex
surfaces. Their algorithm first obtains an approxi-
mate planar surface, and then reorients cracks and
overlapping parts in the developed plane to satisfy
orientation constraints. The algorithm of Parida and
Mudur might generate many cracks and calculation
errors. McCartney et al. [30] flatten a triangulated
surface by minimizing the strain energy in the 2D
pattern. The surface is first triangulated using Delau-
nay triangulation. Then the triangles are transformed
onto a 2D plane. However, there are some flattened
triangles that cannot preserve their length relation-
ship with respect to the triangles on the surface.
These length differences are measured as strain en-
ergy. If the strain energy is zero, that means the
flattened triangles preserve their length relationships
with the original triangles on the surface, i.e., no
deformation occurs. Thus, an iterative method is ap-
plied to minimize this strain energy in the 2D pattern.
The endpoints of the triangles are moved in orthog-
onal directions by trial to obtain smaller energy in
each iteration. Wang et al. [31] improve McCart-
ney’s algorithm by using a spring-mass system. This
guides the endpoints to approach better positions
by the force of springs and the computational speed
of the minimization is improved. The accuracy of
the flattening can also be controlled by using the
spring constant. Sheffer and de Sturler [33, 34] pre-
sented a texture mapping algorithm that causes small
mapping distortion. Their algorithm consists of two
steps: (1) Using the angle based flattening (ABF) pa-
rameterization method to provide a continuous (no
foldovers) mapping, which concentrates on minimiz-
ing the angular distortion of the mapping so leads to
relatively large linear distortion; and (2) To reduce
the linear distortion, an inverse mapping from the
plane to the result of ABF is computed to improve
the parameterization – the improved result has low
length distortion. The methods presented in [38, 39]
handle the problem in a reverse way by fitting a
2D patch onto a 3D surface. However, even if an
optimized flattened 2D shape is obtained, warping
a sheet of such a 2D shape into the given 3D shape
usually leads to stretching if the given surface itself
is non-developable. Therefore, the essential solution
is to let the surface itself be developable.
As alluded to earlier, we propose to convert the
Gaussian curvature of every point on the assembled
mesh patches to zero during an optimization pro-

cess. However, since differential geometry analyzes
surfaces in the continuum domain, the traditional
equations for calculating the Gaussian curvature can-
not be applied to a mesh surface directly. A discrete
Gaussian curvature computing method is needed.
After Calladine (1984) firstly formulated the discrete
Gaussian curvature in [40], Kobbelt et al. [41] gave
the formulas of discrete Gaussian curvature based on
the fact that a mesh can be interpreted as an approx-
imation of a smooth surface. The idea in [41] is to
discretize the formulation for defining the Gaussian
curvature on a smooth surface based on a theorem
by Rodrigues [1]. In a similar way, Sheffer [42] gave
another discrete Gaussian curvature approximation,
which is scale independent. In our approach, we uti-
lize the formula of Kobbelt et al. [41] to derive the
developability of a polygonal mesh surface.

3 Mathematical formulation

This section gives the necessary mathematical for-
mulation based on which our optimization algo-
rithms will be developed.

3.1 Representation of assembled polygonal
patches

A polygonal patch M is defined as a pair (K, V),
where K is a simplicial complex specifying the
connectivity of the vertices, edges, and faces (in
other words, the topological graph of M), and V =
{v1, · · · , vm} is the set of vertices defining the shape
of the polyhedral patch in �3. The above definition
follows the notation in [43]. In this paper, to sim-
plify the algorithm, every polygonal face in M is
subdivided into triangles by the constrained Delau-
nay triangulation (CDT) [44] of a planar contour.
If the contour of a polygonal face is not coplanar,
we project the vertices of this face onto its least-
square plane to apply the CDT. No new vertex is
inserted and the triangulation on the vertices be-
fore projection can be obtained by maintaining the
same connectivity of CDT result on the least-square
plane. From K , it is straightforward for our algo-
rithm to fetch the adjacent nodes, edges, and faces
of a triangular node in constant time. The object
considered in our approach is denoted by O which
is a collection of assembled polygonal patches Mi ,
i.e., O = M1 ∪ M2 ∪ · · · ∪ Mm . Each surface patch
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a b

Fig. 2a,b. Assembled polygonal surface patches.: a Assembled surface patches b Mesh representation of each patch

Mi is a two-manifold in the form of a piecewise lin-
ear triangular mesh. The given polygonal patches are
usually assembled together by sharing some com-
mon triangular edges (as illustrated in Fig. 2). In the
following, the developability of a polygonal patch is
first studied locally, and then its global developabil-
ity function is defined.

3.2 Developability of a polygonal mesh
patch

By theorems from differential geometry, one can eas-
ily detect whether a surface is developable according
to its overall Gaussian curvature [1]: “The Gaussian
curvature of a developable surface is identically zero
at every regular point.” However, Gaussian curvature
is not well defined mathematically on a piecewise
linear polygonal mesh surface. Thus, the following
proposition is needed for this purpose.

Proposition 3.1 At any internal point of a devel-
opable piecewise linear surface, the summed inner
angle is identically 2π.

Proof For a point qi on a developable piecewise lin-
ear surface patch M, if θ j is an inner angle adjacent
to qi before flattening and θF

j is the corresponding
inner angle flattened on the 2D plane, as illustrated

in Fig. 3, the inner angles satisfy θ j = θF
j since the

surface at this point can be flattened without stretch-
ing or overlapping. In the 2D plane,

∑
j θ

F
j equals

2π for an internal vertex. When M is developable,
which demands θ j = θF

j at every point on M, we
have

∑
j θ j = 2π.

The approximation Gaussian curvature formula
in [41] on an internal triangular node qi is

κqi = 2π −∑
j θ j

1
3

∑
j A j

, (1)

where θ j are the inner angles incidental at qi , and A j
are the corresponding triangle areas. When utilizing
the above approximation of Gaussian curvature to
detect the developability of the given patch M, by the
theorem of differential geometry, we have κqi = 0,
which also leads to

∑
j θ j = 2π. �

For an internal vertex, we call it a developable point
when

∑
j θ j = 2π is satisfied at this point. Other-

wise, it is called a non-developable point. Using
Proposition 3-1, we can detect whether a given mesh
patch M is developable by checking every internal
vertex. However, simply stating whether a surface is
developable or not is insufficient for identifying the
degree of developability of the surface. Thus, we de-
fine the developability function on a tessellated sur-
face as follows.
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Fig. 3. The inner angles before and after flattening the
triangles around a vertex

Definition 3.2 The developability function of a tes-
sellated surface M is defined as

D[M] = 1

A

∑
i
δ(2π − θsum(qi))Aqi (2)

where δ(t) is the impulse function, Aqi = 1
3

∑
j A j is

the sum of the areas of the incidental triangles at
a vertex qi on M, and A is the area of M. θsum(qi) is
either the sum of inner angles incidental at qi when
qi is an internal vertex, or set to 2π if qi is on the
boundary of M.

The developability function is actually a weighted
sum of the discrete Gaussian curvature given in
Eq. 1. The value of the developability function gives
a progressive estimate of the developability of a sur-
face. When D[M] = 1, all internal vertices on this
surface are developable points; in other words, M is
developable. When D[M] = 0, it means that we can-
not find any developable point on the surface; M is
absolutely non-developable. For any D[M] ∈ (0, 1),
there are some developable points on M. The larger
the value of D[M], the more developable the surface
M is.

3.3 Constrained optimization

For a given polygonal patch M with n vertices and
D[M] < 1, the problem we have to solve here is to
find an optimized M∗ with the same topology as M
but with different vertex positions. The M∗ should

be developable (i.e., D[M∗] = 1), and the difference
between M∗ and M should be minimized since the
shape of M is what the designer desires. Therefore,
we formulate the problem as a constrained optimiza-
tion problem

min(M − M∗) subject to D[M∗] = 1. (3)

In the definition of the developability function, there
is an impulse function that may lead to irregular-
ity during the optimization. Here, we define a new
developability detect function to take place of the de-
velopability function D[· · · ] as

G[M∗] =
∑

i
(g(qi(M∗)))2 (4)

where qi(M∗) is the position of a triangular vertex
qi ∈ M∗, and the function is the vertex developability
detect function given as

g(qi) =
{

2π −∑
k θk (qi /∈ B)

0 (qi ∈ B)
(5)

where B is the set of triangular vertices on the bound-
ary of the given mesh patch M∗. It is not hard to ver-
ify that when G[M∗] = 0, the sum of the inner angles
at every internal vertex equals 2π, hence D[M∗] = 1
is satisfied. Thus, we replace the developability con-
straint by this new one and the constrained optimiza-
tion problem is redefined as

min(M − M∗) subject to G[M∗] = 0. (6)

It is important to state that the optimization formula-
tion of Eq. 6 pertains to a single patch Mi on the em-
bedded object O. Since O is usually made of several
surface patches assembled together, the continuity
constraint should also be added when these patches
are optimized individually. This will be discussed
when the details of the algorithm are presented.

4 Global optimization

A penalty-function-based scheme is presented in
this section that solves the constrained optimization
problem of Eq. 6. This is a global optimization (i.e.,
all vertices move at the same time at an iteration
step). Two essential tasks need to be embarked upon:
the numerical solution of the optimization itself and
the continuity preservation among the patches during
the optimization process, as entailed separately next.
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4.1 Penalty-function-based scheme

By definition of the constrained optimization prob-
lem (Eq. 6), we attempt to minimize the surface
discrepancy between M and M∗. An elastic energy
E(M∗) is defined below to quantify the difference,

E(M∗) =
∑

j
(‖q j,sq j,e‖− l0

j )
2 (7)

where j is the index of a triangular edge, q j,s ∈ M∗
and q j,e ∈ M∗ are the vertices of the edge, and l0

j is
the length of the triangular edge j on M. This en-
ergy function simulates a spring network in which
every spring follows along a triangular edge on M∗.
The energy measures the change of length on every
triangular edge between M∗ and M. Thus, the con-
strained optimization problem is redefined as

min E(M∗) subject to G[M∗] = 0. (8)

Equation 8 can be converted into an unconstrained
optimization problem by adding the constraint as
a penalty term to the objective function [45]. As
a result, the objective function to be optimized be-
comes

J(M∗) = E(M∗)+ ρ

2
(G(M∗))2 (9)

where ρ is the coefficient to balance the weight be-
tween E(M∗) and G(M∗). The choice of ρ is by
no means trivial. For a smaller ρ, the computing
procedure converges slowly to G[M∗] = 0. When
ρ is large, on the other hand, the shape of the sur-
face after optimization usually deviates too much
from the one before the optimization. For any start-
ing optimization point M0, the procedure begins to
minimize J(M0) with ρ = 1

ne(G[M0])2

∑
j (l

0
j )

2, where
ne is the number of triangular edges. After apply-
ing the conjugate gradient method to minimize the
value of J(M) with a fixed number of iteration steps
(which is empirical and is five in our implementa-
tion), we obtain a new point M1. Then, we use M1

as a starting guess for the minimum of J(M) with
ρ = 1

ne(G[M1])2

∑
j (l

0
j )

2 and obtain M2, and so on.
In actual computation, we stop the process either
when the constraint violation is less than a given
threshold or when changes in J(M)become insignif-
icant.
This optimization procedure guarantees the conver-
gence. Since our objective function (Eq. 9) is in
a quadratic form, with a fixed ρ, the conjugate gra-
dient procedure will converge to a minimum near

the initial value. This follows what we expected to
minimize the difference of M and M∗. With the
value of G[Mi] becomes smaller and smaller, ρ in-
creases accordingly, so the surface evolves to be
more and more developable during the computing
(i.e., G[M] → 0). Theoretically, we arrive at the de-
velopable patch M∗ in the limit as ρ tends to infin-
ity.
When using the gradient-based method to minimize
J(M), we need to compute the gradients of J with
respect to qi . First of all, we have

∂J

∂qi
= ∂E

∂qi
+ρG

∂G

∂qi
. (10)

Analytically, ∂E
∂qi

= ∂
∂qi

∑
j (‖qiq j‖− l0

ij )
2, where q j

are the vertices adjacent to qi , and l0
ij are the original

length between qi and q j . Thus, we obtain

∂E

∂qi
=

∑
j
2(‖qiq j‖− l0

ij )
q j −qi

‖q jqi‖ . (11)

For ∂G
∂qi

, since it is very complex (with more than 40
terms), we compute it numerically using the central
difference equation ∂G

∂qi
= G(qi+h)−G(qi−h)

2h . When the
position of a vertex qi is changed, of all the terms in
G, only the g(· · · )s with respect to qi and its adjacen-
cies will incur changes. Thus, to reduce the comput-
ing time of ∂G

∂qi
, we adopt the following equation to

determine it numerically,

∂G

∂qi
= G P(qi +h)− G P(qi −h)

2h
, (12)

where G P(qi) = (g(qi))
2 +∑

j (g(q j))
2 with q j be-

ing the adjacent vertices to qi , and h is a small con-
stant (the determination method of h according to the
value of G P(qi) is from [46]).
In the above formulas, the gradients of J with re-
spect to the vertex positions of M are computed lo-
cally, so the computing time is reduced. Now, we can
compute the optimized J with respect to M by a con-
jugate gradient method which includes the iterative
process of computing gradients at current state and
searching for an optimum state along the conjugate
direction [45]. The unnecessary details of the conju-
gate gradient method are omitted here. The terminal
condition of the conjugate gradient method is chosen
to be ‖G[Mi ]−G[Mi−1]‖

G[M0] < η where G[Mi] is the value
of the constraint function in the ith iteration (current
value), G[M0] is the value of the constraint function
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before optimization, and η is a small threshold num-
ber (we choose in our testing examples). Similar to
other iterative solutions, a maximum iteration num-
ber is used in our system as another stop criterion
– the numerical iteration stops after it has iterated
steps.

4.2 Continuity preservation

In the object O consisting of assembled mesh
patches Mi (i = 1, · · · , m), a vertex shared by more
than one patches is called an assembling vertex. All
other assembly constraints, e.g., different kinds of
fixed tolerance, need to be converted into the infor-
mation of coincident assembling vertices and their
related linked vertex sets. Associated with an as-
sembling vertex qp, we define a linked vertex set
Lqp that contains all the mesh vertices in O coin-
cidental at qp. Also, for any vertex qq ∈ Lqp , there
is the associated linked vertex set Lqq where we
have qp ∈ Lqq . The cardinality of the linked ver-
tex set of a vertex is exactly the number of patches
sharing the vertex. By means of these linked ver-
tex sets, the connectivity information of assembled
patches is stored. However, this connectivity is ig-
nored when the shape of every Mi ∈ O is being
optimized individually – for two coincidental trian-
gular nodes belonging to two different patches, their
positions are adjusted independently since the gra-
dients of J respect to them might be different; so
cracks will appear at places where two patches origi-
nally met.
The numerical scheme then needs to be enhanced to
take into consideration of preserving the G0 continu-
ity of O. The basic idea is to make the linked vertices
consistent during the optimization. To achieve this
consistency, the formulas of computing gradients at
the assembling vertices are modified. When chang-
ing the position of an assembling vertex qa, the po-
sitions of vertices in Lqa should be maintained the
same as qa. Thus, the gradient of E with respect to
qa relates not only to

∑
(‖qaq j‖− l0

a j)
2 but also all

the other terms
∑

(‖qpqq‖− l0
pq)

2 (qq ∈ Lqa) in E,
where qaq j are the incident edges at qa, and qpqq are
the edges with one endpoint qq ∈ Lqa . Thus, the gra-
dient is modified to become
∂E

∂qa
= ∂

∂qa

∑
j
(‖qaq j‖− l0

a j)
2

=
∑

j
2(‖qaq j‖− l0

a j)
q j −qa

‖q jqa‖ , (13)

where q j are either the vertices adjacent to qa or the
adjacent vertices to a vertex in Lqa . Also, the gradient
of G with respect to qa should be changed to

∂G

∂qa
= G PA(qa +h)− G PA(qa −h)

2h
, (14)

where G PA(qa) = (g(qa))
2 + ∑

q (g(qq))
2

+∑
j (g(q j))

2 with q j being either the adjacent ver-
tices of qa or the adjacent vertices ofqq (qq ∈ Lqa).
When calculated with the above prescribed method,
the gradients of the linked vertices become con-
sistent with each other. Therefore, while search-
ing for the optimum along the conjugate direc-
tion, the updating of their positions is also kept
consistent, which in turn ensures the G0 continu-
ity.

5 Local optimization

Although the penalty-function-based global opti-
mization gives a high quality result, its computing
speed is usually very slow and cannot satisfy the
requirement of real-time design activities. In this
section, the developability-by-deformation problem
is reformulated as a local optimization problem and
an algorithm is given that iteratively updates the po-
sition of vertices to achieve a developable mesh.

5.1 Reformulation of the problem

Recall the original definition of the constrained opti-
mization problem (Eq. 6), our objective is to modify
a given mesh M into a developable one M∗, while
minimizing the difference between M and M∗. Let
us consider only one vertex on the given mesh M,
where g(q) �= 0. The basic idea of local optimiza-
tion is moving q along its normal direction nq (which
is the average normal of q’s adjacent faces) to find
a new position q∗ = q + δnq with g(q∗) = 0; at the
same time, the movement scale must be kept as small
as possible in order to minimize the surface change.
Therefore, the global optimization problem is de-
composed into a combination of local optimizations
on triangular vertices. On a vertex q, the problem is
defined as

min δ2 subject to T(δ) = 0, (15)

with T(δ) = (g(q + δnq))
2 +∑

j (g(q j))
2 with q j be-

ing the adjacent vertices to qi . When q moves, it
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Fig. 4. Interior assembling vertices

affects not only the developability at q itself, but also
that of all its adjacent vertices. Thus, the constraint
T(δ) of local optimization on q is set on both the ver-
tex q and its neighbors. When using the Lagrange
multiplier method to solve the above optimization
problem (Eq. 15), the Lagrange function can be writ-
ten as

L = δ2 +λT(δ) , (16)

where λ is the Lagrange multiplier. By setting ∂L
∂δ

= 0
and ∂L

∂λ
= 0, we obtain the following equations:

2δ+λ
dT

dδ
= 0, (17)

T(δ) = 0. (18)

After replacing T(δ) in Eq. 18 with a linear approxi-
mation based on T ’s Taylor series

T(δ) ≈ T(δ0)+ Ṫ (δ0)(δ− δ0),

the following equation of updating is obtained

δ = δ0 − T(δ0)

Ṫ (δ0)
. (19)

From Eq. 17, we have λ = − 2δ

Ṫ (δ)
, so by the prop-

erty of the Lagrange method of constrained op-
timization [45], if δ �= 0 and Ṫ (δ) �= 0, the iter-

ation of Eq. 19 converges to the minimum (if
Ṫ (δ) = 0, we just simply fix the vertex). Now that
the magnitude of the update of an individual ver-
tex at an iteration step is decided by Eq. 19, we
next need a mechanism by which the order of
the local optimization on the vertices can be de-
termined. The square of the vertex developability
detect function as defined in Eq. 5 presents itself
to be a natural choice and is adopted in our sys-
tem.

5.2 Outline of the algorithm

Our local optimization algorithm is built around ver-
tex selection and vertex position updating. As men-
tioned earlier in Sect. 3.1, our system represents
a model by an adjacency graph structure, which in-
cludes vertices, edges, and faces, as well as the con-
nection relationship among them; they are all ex-
plicitly represented and linked together. Each vertex
maintains a list of the edges of which it is a mem-
ber. The overall algorithm is outlined below by Algo-
rithm LocalDevelopabilityOptimize(O).

Algorithm LocalDevelopabilityOptimize(O)
Input: A given object O represented as a set

of polygonal mesh patches
Output: The optimized polygonal mesh patches
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a b c

Fig. 5a–c. Example I. Global vs. local optimization: a Given surface and its Gaussian map b Results of global optimization c
Results of local optimization (δT = 1.0)

1. Compute the vertex developability detect
function g(q) at each vertex qon the given
mesh patches;

2. Compute the unit normal n of each
vertex q on O;

3. Place all vertices in a maximum heap H
keyed on the [g(· · · )]2 measure –
the vertex with the maximum [g(· · · )]2

is placed at the top of H;
4. 4 ← 0;
5. Do {
6. Select the vertex q at the top of H and

update its movement scale along its unit
normal n according to Eq. 17;

7. Update the cost of q and its adjacent
vertices to reflect the movement on q
– this will change the locations of these
vertices in H;

8. j ← j +1;

9. } while ((the of the vertex at top of H is
greater than ε) and ( j < Nmax));

10. Update the positions of all the vertices
by their movement scales;

11. Update the normal vectors of all the vertices
on O;

12. return.

We elaborate the above algorithm by addressing the
following questions.

5.2.1 Surface difference control

In the above algorithm, the difference between the
optimized mesh and the given mesh is not controlled.
Such a control can be added when updating the ver-
tex q at the top of H – in our implementation, we
just simply set δ = δT if δ > δT and truncate δ to −δT
when δ < −δT , where δT is the given difference tol-
erance. It calls to pay special attention to the unit
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a b c

Fig. 6a–c. Example II. The surface of a shoe last: a Given surface and its Gaussian map b Result of global optimization c
Result of local optimization (δT = 0.38)

normal at each vertex – it remains unchanged in the
entire iterative process and is updated only once at
the end of the process – every vertex moves along its
original normal passing through its original position
during the iteration. If all vertices move by δT along
their original normal directions, the result would be
identical to an offset surface of the given surface (δT
is the value of offset). Therefore, the optimized mesh
is controlled between the +δT and −δT offset sur-
faces of the given surface. The smaller the tolerance
δT , the closer the optimized mesh patches are to the
original surface, and the slower the optimization al-

gorithm converges. On the other hand, a larger tol-
erance δT will result in a faster convergence but at
a cost of larger deviation from the original surface.

5.2.2 Terminal conditions of iterations

During the iteration of algorithm LocalDevelopabil-
ityOptimize(O), the value of the vertex at top of the
heap decreases while the step number of iteration, j,
increases. These two factors are utilized to control
the terminal condition of the iteration. Which of the
two takes effect depends crucially on the given tol-
erance δT . When the value of δT is large enough, the
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a b c

Fig. 7a–c. Example III. A pair of short pants with multiple patches: a The original pants and their Gaussian map b Result of
global optimization c Result of local optimization (δT = 2.4)

given polygonal patches can be fully optimized, we
stop at g(q) ≤ ε for the top element q in heap H. On
the other hand, a δT that is too small will stingingly
limit the movement of each vertex and the optimiza-
tion (Eq. 15) would dwell at certain level and has to
be stopped by the maximum number of iterations cri-
terion.

5.2.3 Continuity preservation

By definition, the value of any point on the bound-
ary of O is zero; as a result, it will not be moved
during the optimization (note that a vertex with zero

[g(· · · )]2 is put at the bottom of heap H). How-
ever, one still faces the continuity problem if an
assembling vertex is interior to some patch (see
Fig. 4). We resolve this problem in the simplest
way – all the assembling vertices remain fixed dur-
ing the optimizing process. For an interior assem-
bling vertex, if its [g(· · · )]2 > 0, its developability
is enhanced via adjusting the positions of its ad-
jacent vertices. The reason why the developability
at an internal assembling vertex can be achieved
by perturbing the neighboring non-assembling ver-
tices, is that by the definition of function T(δ) in
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Table 1. Computational statistics

Example Vertex Optimize Time Result g0
max g∗

max Terminal condition
number approach cost figure

I 517
Global 46s Fig. 5b

0.14
2.1×10−3

∥∥∥G[Mi ]−G[Mi−1]
∥∥∥

G[M0] ≤ 0.01%

Local 1s Fig. 5c 9.9×10−5 g∗
max ≤ 10−4

II 3047
Global 390s Fig. 6b

0.093
1.1×10−3 Nmax = 200

Local 23s Fig. 6c 1.0×10−3

III 3016
global 310s Fig. 7b

0.19
1.3×10−3 Nmax = 200

local 1s Fig. 7c 9.9×10−5

∗ All tested on a P III 900 PC with a program written in C++ with (1) η = 0.01% and Nmax = 200 for the global
optimization approach and (2) ε = 10−4 and Nmax = 500 000 for the local optimization approach.

Eq. 15, T(δ) = (g(q + δnq))
2 +∑

j (g(q j))
2, where

q j are the adjacent vertices to the moved vertex, the
movement of a vertex is not only a measurement
of the developability at this vertex but also of the
vertices around it. Therefore, when perturbing the
non-assembling vertices around an assembling ver-
tex, the developability at the assembling vertex is
also increased.

6 Experimental results

In this section, we give some experimental examples
to demonstrate the functionality of both the global
and local optimization approaches, as well as a com-
parison. In the first example, Example I, which was
originally shown in Fig. 1, we applied both the global
and local optimizations to the original surface. The
surface before optimization and its Gaussian map are
given in Fig. 5a (in a Gaussian map, the color of
a point represents its [g(· · · )]2 value). The resultant
surfaces after both the global and local optimizations
are shown in Fig. 5b and 5c, respectively, where for
the local optimization of Fig. 5c the tolerance δT is
set to 1.0. Both the global and local optimization ap-
proaches achieve fully optimized results within the
required maximum iteration steps. As seen in the
figures, the global optimization gives a smoother re-
sultant surface. This is because in a global optimiza-
tion all the vertices move together, while the local
approach moves vertices one by one. Therefore, the
original smoothness of the given surface is not main-
tained by the local optimization approach. The fol-
lowing examples, Example II and III, also verify this
point.

Example II is the surface of a shoe upper layer. Since
it is usually manufactured from a planar leather
sheet, the surface is desired to be developable. Fig-
ure 6 displays the optimization results. In this partic-
ular case, neither the global nor the local approach
can achieve the full optimum, i.e., both of them were
stopped by the maximum iteration step criterion (for
the local optimization the difference tolerance δT is
set to 0.38).
Example III comes from the application of apparel
industry. The assembled polygonal patches of a pair
of short pants are constructed in three-dimensional
space. Each patch must be developable since it will
come from its corresponding 2D pattern in manu-
facturing. The Gaussian map of the original surface
(Fig. 7a) shows that the original design incurs se-
vere non-developability. The result surfaces after the
optimizations are shown in Fig. 7b and 7c. Unlike
the first two examples, in this case, the local opti-
mization approach, with δT = 2.4, achieves a fully
developable result while the global approach fails to
do so within 200 iteration steps.
The computational statistics of Example I, II, and
III are given in Table 1. Implemented by a pro-
gram written in C++ and running on a standard
PC, the local optimization approach is seen to be
able to generate the desired result in near real-
time. On the other hand, the global optimization
approach usually takes several minutes to reach a re-
sult with a decent level of surface developability.
As expected, the converge speed of the local op-
timization crucially depends on the difference tol-
erance . For a properly chosen δT , the local opti-
mization can converge quickly. Otherwise, the iter-
ative process is stopped by the maximum iteration



534 C.C.L. Wang, K. Tang: Achieving developability of a polygonal surface

a

b

c

Fig. 8a–c. The distance error maps of global and local optimization results: a Example I b Example II c Example III
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a

b

c
Fig. 9a–c. Increasing δT leads to larger distance errors but better developability: a Resultant surfaces b Distance error maps
of the resultant surfaces c Gaussian maps of the resultant surfaces
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a

b

Fig. 10a,b. Increasing δT leads to more wrinkles (larger principal curvature) but better developability: a |κmin| of the resultant
surfaces b |κmax| of the resultant surfaces

criterion Nmax. In the most extreme case of δT = 0,
no improvement can be made as the original sur-
face is fixed. After experimenting with a variety of
test examples, it is observed that a δT = L̄ , in gen-
eral, achieves satisfactory improved developability
while maintaining reasonably well the dimensions of
the original surface, where L̄ is the average length
of the triangular edges on the given polygonal mesh
patches. Thus, in all three examples, δT is set to
be L̄ .
In addition to the Gaussian map, the distance error
map, in which the colors represent the distances of
vertices to the original surface, is utilized in our sys-
tem to compare the results from global and local ap-

proaches. The distance error maps for the given three
examples are shown in Fig. 8. As revealed from the
figure, the maximum distance error from the global
optimization approach is generally smaller than the
one generated from the local approach. This phe-
nomenon can be explained by noting that, by its na-
ture, in the local optimization, only a small subset
of the vertices with high [g(· · · )]2 values will be
moved, whereas in the global optimization all the
vertices are moved in sync at each iteration step. As
a result, to achieve the same level of overall devel-
opability, certain vertices often need to be moved by
larger distances in the local optimization than their
counterparts in the global optimization, due to the
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restraint on the moveable vertices in the local opti-
mization.
The distance error map is also adopted to study the
effect of the difference tolerance δT on the level of
optimization in the local optimization approach. In
Fig. 9, it is evidently seen that enlarging δT increases
the freedom of movement for vertices in the local
optimization which in turn enhances the optimiza-
tion result. Viewed from another perspective, the dis-
tance error map together with the Gaussian map of
the final optimized surface serve to “measure” the
level of non-developability of the original surface.
Smaller errors on the distance error map but larger
values on the Gaussian map indicate an “easy” con-
version from the original non-developable surface to
a highly developable surface with minimum devia-
tion, while the opposite combination implies a “dif-
ficult” task. Large discrepancies result on the final
surface if a high degree of developability is desired.
The maps of principal curvatures |κmin| and |κmax|
of the surfaces in Fig. 9 are also listed in Fig. 10.
It is easy to find that the principal curvatures are
increased with the enlargement of δT , so more wrin-
kles occur. However, for example when δT = 1.0, the
places with large |κmin| have a corresponding small
value of |κmax| (see Fig. 10). That’s why more wrin-
kles can still give a result with better developabil-
ity.

7 Summary and discussion

The focus of this paper is the so called developability-
by-deformation problem: How to deform a given
non-developable polygonal surface into a devel-
opable one with minimum change. Because devel-
opability of a surface is often a strongly required
attribute in a diversity of engineering applications,
a practical solution to this problem is highly needed.
We contribute by proposing two numerical solu-
tions to the developability-by-deformation prob-
lem. Both approaches are based on the principle
of energy minimization, which seeks to minimize
the amount of deformation while at the same time
maximizes the degree of developability of the sur-
face. The two differ with each other in how this
minimization is formulated as well as the way the
vertices on the polygonal mesh are moved dur-
ing the minimization process: while the first ap-
proach formulates the minimization as a global
constrained optimization in which all the vertices

move simultaneously at each iteration step, the
second approach is of local optimization nature
where only one vertex is moved at a time based
on a locally defined optimization criterion. Exper-
imental examples are provided to demonstrate the
functionality of the proposed two approaches as
well as their comparison in terms of computing
cost, effectiveness of attaining developability, di-
mensional difference between the surfaces before
and after the optimization, and other important as-
pects.
Both solutions can be integrated into a geomet-
ric modeling system for product design where sur-
face developability is obliged. Owing to its bet-
ter ability of maintaining the smoothness of the
original surface due to its global nature, the first
solution, the global optimization approach, can
be used for those applications where the smooth-
ness and quality of the product surface are em-
phasized. On the other hand, the local optimiza-
tion based solution may better suit situations where
real-time computation – such as in computer graph-
ics simulation – is demanded. Another potential
application of the local optimization solution is
in wrinkle design, such as in shoe manufactur-
ing, where wrinkles are sometimes deliberately
designed to be formed during the manufacturing
process of the shoe (for fashion and aesthetic pur-
poses).
For possible future work, as mentioned above, since
the smoothness of the original surface is not pre-
served during the local optimization, one potential
topic is how to add smoothing terms into the local
updating operator to enforce the required smooth-
ness on the surface. Also, in our current implementa-
tion of the local optimization, the surface continuity
of multiple patches is preserved by simply fixing all
the assembling vertices during the optimizing itera-
tion – this obviously limits the degree of freedom of
vertex movements. Thus, studying a better and more
flexible continuity preserving method in the local op-
timization approach is another item worthy of further
research. The topology of the original polygonal sur-
face can be preserved by enforcing continuity across
the boundaries of triangular patches. However, self-
intersection might occur after repositioning the ver-
tices, especially in the case of the local optimization
with large δT . Another possibility for further work is
thus to integrate the self-collision detection and re-
sponding algorithm into the strategy of vertex move-
ment.
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