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A variety of approaches have been pro-
posed for polygon mesh reconstruction from
a set of unstructured sample points. Suffer-
ing from severe aliases at sharp features and
having a large number of unnecessary faces,
most resulting meshes need to be optimized
using input sample points in a postprocess. In
this paper, we propose a fast algorithm to re-
construct high-quality meshes from sample
data. The core of our proposed algorithm is
a new mesh evaluation criterion which takes
full advantage of the relation between the
sample points and the reconstructed mesh.
Based on our proposed evaluation criterion,
we develop necessary operations to effi-
ciently incorporate the functions of data pre-
processing, isosurface polygonization, mesh
optimization and mesh simplification into
one simple algorithm, which can generate
high-quality meshes from unstructured point
clouds with time and space efficiency.
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State-of-the-art visualization techniques help to in-
terpret experimental data and construct relations be-
tween data elements. In diverse application domains,
including reverse engineering, scientific visualiza-
tion, telemetry and geography, visualization of sam-
ple points plays an important role in data analysis
and model construction. Concerning data organiza-
tion, the point sets can be classified as either un-
structured or structured. In this work, to deal with
a general surface reconstruction problem, we con-
sider unstructured point data.
Unstructured point-data modeling techniques have
been widely discussed in related literature (Hoppe et
al. 1992; Amenta et al. 1998; Bardinet et al. 1998;
Schroeder et al. 1998; Gopi et al. 2000). Most pro-
posed approaches construct polygon meshes that
well approximate or interpolate the input point data.
Due to the difficulties stemming from the lack of
topology information within the data, however, three
typical problems still exist:

• Strict sampling criteria are required in most pro-
posed algorithms.

• A large amount of unnecessary faces are observed
in the reconstructed meshes, especially if the in-
put data is over-abundant.

• Severe aliases at sharp edges and corners fre-
quently appear in the reconstructed meshes.

As a result, most reconstructed meshes need to be
optimized using input point data in a postprocess.
Note that although mesh simplification methods can
clean up the mesh as well as mesh optimization, they
cannot accurately reconstruct sharp features on the
sampled physical surfaces.
One of the cardinal issues in mesh optimization us-
ing point data is the evaluation how well a mesh fits
a given point set. In previous work, the criterion of
the sum of squared distances from data points to the
mesh is widely used (Hoppe et al. 1993; Kobbelt
et al. 1998). However, for an iteratively renewed
mesh, it is computationally expensive to calculate
such squared distances sums in each step; thus, the
mesh fitness evaluation becomes the bottleneck in
the mesh optimization process.
We can achieve high-quality meshes from point
clouds by applying a mesh reconstruction algorithm
and a mesh optimization algorithm in turn, such as in
the excellent work done in (Hoppe et al. 1992; Hoppe
et al. 1993). However, since the mesh reconstruction
algorithms and the mesh optimization and simplifi-
cation algorithms are usually developed separately,
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the whole process is not as efficient as it could be.
Addressing these problems in this work, we offer
a solution.

1.1 Contributions

In this paper, we propose a fast algorithm to re-
construct optimized meshes of arbitrary topological
type from unstructured point clouds. Specifically, we
make the following contributions:
• We propose a new mesh evaluation criterion with

which the mesh optimization process is speeded
up. The quadric error metric has been demon-
strated to be a powerful tool in mesh simplifica-
tion (Garland and Heckbert 1997). In this work,
we introduce the quadric error metric into our
evaluation criterion to evaluate quickly and accu-
rately how well an iteratively renewed mesh fits
a set of given points.

• Based on the proposed evaluation criterion, we
develop necessary operations to concisely inte-
grate the functions of point data preprocessing
(Hoppe et al. 1992), the marching cubes (MC)
algorithm (Lorenzen and Cline 1987), mesh op-
timization, and mesh simplification (Garland and
Heckbert 1997) into one simple algorithm.

1.2 Related work

Our proposed algorithm relates to three types of al-
gorithms in mesh modeling: mesh reconstruction al-
gorithms, mesh simplification algorithms and mesh
optimization algorithms.
Mesh reconstruction algorithms can be classified ac-
cording to whether the reconstructed mesh interpo-
lates the input point data or not. The interpolating
algorithms, such as the Delaunay triangulation al-
gorithms (Amenta et al. 1998; Gopi et al. 2000),
require strict sampling criteria (cf. Table 2) and do
not work well at sharp edges and corners, either
in theory or in practice. The approximating algo-
rithms, such as the implicit methods (Hoppe et al.
1992; Curless and Levoy 1996) and the parametric
methods (Qin and Terzopoulos 1996; Bardinet et al.
1998), can work with loose sampling criteria, but
they are still problematic at sharp edges and cor-
ners. Moreover, the parametric methods are primar-
ily developed to reconstruct surfaces of a prescribed
topological type, such as disk-like, sphere-like or
torus-like, and user intervention is needed to set up
a patch network for surfaces of an arbitrary topo-

logical type; one exception is presented in (Eck and
Hoppe 1996).
Mesh simplification is a well-studied problem. The
promising algorithms are those that iteratively make
local changes to the geometry. In particular, some
publicly available algorithms in this class are the
progressive meshes (Hoppe 1996), simplification
envelopes (Cohen et al. 1996), JADE (Ciampalini
et al. 1997) and Qslim (Garland and Heckbert
1997). Comparisons among different mesh simplifi-
cation algorithms are sometimes difficult, since they
strongly depend on the representation of the original
mesh model. Besides the geometric simplification al-
gorithms, the topological simplification algorithms
are also considered (He et al. 1996; Guskov and
Wood 2001). For a detailed survey on this topic, the
reader is referred to (Garland 1999) and the refer-
ences therein.
A typical work for mesh optimization using a set
of given points is the energy minimization method
proposed in (Hoppe et al. 1993). Their energy func-
tion consists of three terms. The distance energy Edist
is the sum of squared distances from data points S
to the mesh, and the representation energy Erep pe-
nalizes meshes with a large number of vertices. To
calculate Edist, ∀si ∈ S, face f j in the mesh clos-
est to si needs to be found and the barycentric co-
ordinate vector bi of projection of si onto f j is
calculated. To make a numerical solution possible,
it is assumed that the set of bi associated with si
is not changed in the process of mesh optimiza-
tion with fixed topology. Since the minimization of
Edist + Erep may not converge to a stable solution,
the spring energy Espring is added for stability. In the
energy minimization process, two nested loops are
performed: an inner loop for minimization over ver-
tex positions with fixed topology and an outer loop
for minimization over topology. Although the results
are satisfactory, the complete algorithm is difficult
to implement and the computational complexity is
expensive.

2 Overview of our approach

In this paper, we present a new algorithm to quickly
generate optimized meshes from discrete data sets.
In Sects. 3 and 4, we outline Hoppe et al.’s implicit
method (1992) to build a signed distance field from
input point data and then polygonize the isosurface
using an MC algorithm (Schroeder et al. 1998) to
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generate an initial mesh. The core of our approach is
based on the observation that during the process of
data implicitization and polygonization, besides the
initial mesh, we can access other useful information
with which the subsequent mesh optimization pro-
cess can be simplified and accelerated. To achieve
these benefits, the crucial point is that, as presented
in Sect. 5, we show how to use the isosurface and
the initial mesh to establish a new mesh evaluation
criterion. Then based on our proposed criterion, in
Sects. 6 and 7, we develop the necessary operations
to fuse the MC algorithm and the mesh simplifi-
cation algorithm (Garland and Heckbert 1997) into
a simple, efficient optimization algorithm. Finally,
comparisons with other related algorithms and our
concluding remarks are presented in Sects. 8 and 9
respectively.

3 Point data preprocessing

Given a set of unstructured sample points S =
{s1, s2, · · · }, we use the implicit method from (Hop-
pe et al. 1992) to build a signed distance field
function f , such that within a local region around
S, f(si) = 0,∀si ∈ S; thus, the underlying surface
represented by S can be determined by the iso-
surface f = 0. Our variation of Hoppe et al.’s im-
plicit approach is summarized in the rest of this
section.

3.1 Distance field representation

For each sample point si ∈ S, k neighboring points
nearest to si , denoted by Nbhd(si), are identified.
Usually k is set to be 4∼8. From Nbhd(si) a tangent
plane Tp(si) is indicated by solving a least squares
fitting problem. Tp(si) is represented by the sample
point si together with a unit normal vector n(si); that
is, Tp(si) = (si, n(si)). It is necessary to orient the
tangent plane at each sample point. To achieve con-
sistent orientation, ∀si ∈ S, every neighboring point
s j ∈ Nbhd(si) is connected to si; this leads to a di-
rected graph G = (V, E). Each edge (si, s j) ∈ E in
the graph G is weighted by assigning a cost 1 −∣∣n(si)

T ·n(s j)
∣∣. Starting with an arbitrary vertex, the

minimum-spanning tree (MST) is extracted from the
weighted graph G. Subsequently, the MST is tra-
versed in a depth-first search to propagate the pre-
scribed tangent plane orientation. Then the follow-
ing steps are taken to determine a signed distance

field function f which assigns to any point p ∈ R3

a value f(p):

1. Find the sample point sk ∈ S nearest to point p.
2. If point p lies in a local region around sk, i.e.

‖p− sk‖ ≤ r , where r is an influence radius, then
f(p) = (p− sk)

T ·n(sk).
3. Else f(p) = ∞.

The prime advantage of this distance field represen-
tation is that it puts no restrictions on the object’s
topological type (cf. Fig. 1).

3.2 Hole filling

Usually the sample points do not completely cover
the object, e.g. some portions of the physical sur-
face are inaccessible to the sensor; thus, holes or gaps
may appear in the reconstructed mesh. Any promis-
ing algorithm should possess the property of hole
filling.
Note that in signed distance field generation, the in-
fluence radius r controls the extent of the tangent
plane at each sample point. Hoppe et al. (1992) use
a fixed influence radius r; therefore, to truly recon-
struct the surface, their sampling criterion requires
the data to be uniformly sampled (cf. Table 2). To
cope with non-uniform and incompleted data, we use
an adaptive influence radius r . On the hole bound-
ary, we can choose one sample point whose tangent
plane covers the hole correctly; then appropriately
setting the value of the chosen point’s r will make
the isosurface f = 0 pass the hole continuously. In
our implementation, the influence radius r can be set
either automatically or interactively:
Automatic setting. When we search Nbhd(si) for
each si ∈ S, we set r at si being the minimum value
of radius with which a sphere centered at si contains
Nbhd(si).
Interactive setting. Users can interactively control
the output mesh shape (with the aid of polygoniza-
tion) by assigning different values of influence radii
to different regions. Note that user intervention is in-
evitable in the ambiguous situation that either there is
indeed a hole or that this hole should be closed.
Provided with the adaptive influence radius, our sam-
pling criterion needs and only needs, on the physi-
cal surface, the tangent plane at each sample point
si ∈ S to be indicated correctly by Nbhd(si), and the
two-sided Hausdorff distance between the physical
surface and the combination (controlled by influence
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radii) of all the tangent planes to be under a prede-
fined tolerance.
Examples of mesh shape control (hole filling) using
adaptive influence radius r are illustrated in Fig. 1
(automatic), Fig. 3 (interactive) and Fig. 4 (interac-
tive for the underneath section of the bunny data).

3.3 Acceleration

There are two expensive operations in this data pre-
processing procedure: (1) ∀si ∈ S, find Nbhd(si)
in S; (2) extract the MST from a weighted graph G.
In our implementation, to speed up the spatial
k-nearest-neighbour searching process, we use a hi-
erarchical spatial partitioning scheme, a range tree
(Berg et al. 1997): a layered 3D range tree with n el-
ements uses O(n log2 n) storage, and combined with
a fractional cascading technique, it can report k near-
est neighbors for an arbitrary inquiry point p ∈ R3

in O(log2 n + k) time. Note that the O(k) empiri-
cal time complexity of the searching algorithm of
Hoppe et al. (1992), based on the assumption that the
data is uniformly sampled, is no longer true for non-
uniform data. For MST extraction from a weighted
graph G = (V, E), we apply the Prim’s algorithm
with a Fibonacci heap as its priority queue (Cormen
et al. 1997) to improve the running time to O(e +
n lg n). Noting that the edge number e in G is at most
nk, the time complexity is actually O(n lg n).

4 Initial mesh generation

Notice that given a signed distance field function
f , the underlying surface represented by S is de-
termined by the isosurface f = 0. We use an MC
algorithm (Schroeder et al. 1998) to polygonize the
isosurface f = 0 to obtain an initial mesh that well
approximates S.
The MC algorithm can be performed either with
a fixed cube size or, more complicatedly, with an
adaptive cube size that is locally proportional to
surface detail (Bloomenthal et al. 1997). Adap-
tive methods depend upon a recursive subdivision
scheme like octree, which leads to the potential dis-
continuity (crack) problem in the vicinity of bound-
aries across different levels of resolution. In our
implementation, we use a fixed-resolution scheme
for its simplicity and robustness (Montani et al.
1994). To capture the full details of the isosur-
face f = 0, the prescribed cube size should be less

than or equal to the finest detail size in the point
data S, i.e., min{‖si − s j‖|∀si, s j ∈ S, i �= j}. Due
to the potential discontinuity of the signed dis-
tance field function itself, the initial mesh genera-
tion is somewhat sensitive to the prescribed cube
size; holes or gaps may appear in the mesh. In this
case, the topological simplification methods (He
et al. 1996; Guskov and Wood 2001) have to be
applied.
Note that, as illustrated in Figs. 1, 3 and 4, there are
two principal defects in the resulting initial meshes:
(1) These meshes are not optimal in areas of low

curvature variation.
(2) Severe aliases are observed at sharp edges and

corners.
The first defect is due to the algorithmic structure of
the MC algorithm: each active cube that intersects
the isosurface is processed separately, and a corre-
sponding polygonal patch is generated locally. The
second defect results from the fact that in each ac-
tive cube a (trilinear) interpolation function is used to
find a piecewise linear approximation to the original
surface. It is worth noting that decreasing the cube
size can only reduce the size of aliases but cannot
remove them; meanwhile, the face number will in-
crease dramatically.

5 A new mesh evaluation criterion

Aimed at obtaining a precise and compact represen-
tation, the initial mesh must be optimized based on
the original sample points S. In previous work, the
criterion of the sum of squared distances from S to
the mesh is widely used, e.g. the distance energy Edist
in Hoppe et al. (1993). Although the calculation of
Edist for an iteratively renewed mesh can be localized
using spatial partition methods (Hoppe et al. 1993;
Kobbelt et al. 1998), some assumptions have to be
made, and thus inaccuracy is introduced into their
methods.
In this work, we propose a new evaluation crite-
rion that is accurate and is easy to calculate. Noting
that polygonization is a sampling process, we treat
the set of vertices in the initial mesh as a set of re-
sampling points S′ over the true physical surface.
Since the initial mesh is generated in full detail us-
ing the MC algorithm with a fixed cube size, the
resample S′ is somewhat uniform and a little denser
than the original sample S. Furthermore, since all
the vertices in the initial mesh lie on the edges
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of active cubes, the resample S′ is not accurate
and is just another approximate sample of the true
surface.
It is important to note that the underlying true surface
is represented by the set of sample points S equipped
with associated tangent planes and influence radii.
Given this interpretation, we now have two sets of
sample points: one is S that represents the true sur-
face; the other is S′ that is organized into a structured
form, the initial mesh.
For mesh optimization, we take full advantage of the
true surface information related to S and the structure
information related to S′. We find that calculating the
sum of squared distances from S to the initial mesh
is one of possible ways to evaluate how well S and S′
fit with each other; great efficiency can be achieved if
we evaluate the fitness in a reverse way, calculating
the sum of squared distances from S′ to the tangent
planes that are associated with S.
To offer an accurate evaluation, the tangent planes
associated with S must be bounded in a local re-
gion D ⊂ R3 around S. This localization property is
explicitly guaranteed by the adaptive influence ra-
dius of each sample point si ∈ S, and the following
steps offer an efficient computational method to use
our proposed evaluation criterion, provided that S′ is
a good and dense approximation of S.
First, we relate points in S to points in S′ in the fol-
lowing way:

1. ∀s′
i ∈ S′,attach an empty point set Attach(s′

i)
to s′

i .
2. ∀si ∈ S,find the point s′

j ∈ S′ nearest to si and add
si into Attach(s′

j).

The above operation partitions the set S into sub-
sets Attach(s′

i), ∀s′
i ∈ S′, which satisfy the following

properties:

1. Exhaustiveness, i.e.
⋃

i Attach(s′
i) = S.

2. Mutual exclusion, i.e. Attach(s′
i) ∩ Attach(s′

j)= ∅, for any i �= j.

Based on these two properties, the first note is that
if Attach(s′

i) = ∅, s′
i ∈ S′, then s′

i is an auxiliary ver-
tex in the initial mesh, and we can remove it from
the mesh without any influence on the mesh qual-
ity. This is derived from the fact that the true surface
is the local combination of tangent planes associ-
ated with S, but not the initial mesh. The second
point to note is that the sum Sum(S′) of squared dis-
tances from S′ to the tangent planes

⋃
i Tp(si) can

be decomposed and thus achieved by atomic calcula-
tions, i.e.

Sum(S′) =
∑

i

Sum(s′
i), s′

i ∈ S′.

The atomic calculation Sum(s′
i) is the sum of squared

distances from point s′
i to its attached tangent planes

in Attach(s′
i), i.e.

Sum(s′
i) =

∑
s j∈Attach(s′

i )

SD j(s′
i),

where SD j(s′
i) is the squared distance from s′

i to the
tangent plane Tp(s j) = (s j, n(s j)). SD j(s′

i) is cal-
culated by

SD j(s′
i) = (

n(s j)
T · (s′

i − s j)
)2

= s′
i ⊗ Q(A j, b j, c j) , (1)

where A j is a 3 × 3 matrix determined by vector
direct product n(s j) · n(s j)

T , b j is a 3-vector de-
termined by A j · s j , and c j is a scalar determined
by (n(s j)

T · s j)
2. We define the operator ⊗ as s′

i ⊗
Q(A j , b j, c j) = s′T

i · A j · s′
i − 2 · (b j)

T · s′
i + c j . The

triple Q(Ai, bi, ci) is in fact the quadric error met-
ric defined by Garland and Heckbert (1997). Thus,
Sum(s′

i) can be calculated as

Sum(s′
i) =

∑
s j∈Attach(s′

i )

SD j(s′
i)

=
∑

s j∈Attach(s′
i)

(
s′

i ⊗ Q(A j, b j , c j)
)

= s′
i ⊗ Q

( ∑
s j∈Attach(s′

i)

A j,
∑

s j∈Attach(s′
i )

b j,
∑

s j∈Attach(s′
i)

c j

)

= s′
i ⊗ Q(A′

i, b′
i, c′

i). (2)

The value Sum(S′) = ∑
i

Sum(s′
i) offers us a quanti-

tative attribute to evaluate the mesh quality. Since
(1) the calculation of the Sum(S′) can be exactly

decomposed into a set of atomic calculations as-
sociated with each mesh vertex s′, and

(2) most mesh optimization and simplification oper-
ators, e.g. the vertex removal and edge collapse
operators used in our approach, have an effect
only on the local area incident to the related ver-
tex or edge,
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the fitness between point clouds and a locally changed
mesh can be evaluated accurately by few atomic cal-
culations restricted to the local affected area. Since
the atomic calculation is based on quadric Q, the
evaluation is also fast.

6 Mesh optimization

Based on our proposed evaluation criterion, we de-
velop necessary operations to concisely integrate dif-
ferent functional modules into a simple algorithm.
To optimize the initial mesh, ∀s′

i ∈ S′, we fill in
Attach(s′

i) and transform the set Attach(s′
i) to a triple

Q(A′
i, b′

i, c′
i) using Eqs. (1,2). Based on the simple

calculation with Q, we optimize the initial mesh us-
ing vertex removal and edge collapse operators (cf.
Fig. 1). The mesh quality is further improved by
taking the triangle aspect ratio into account, as pre-
sented in Sect. 6.5.

6.1 Optimization prerequisite

Our proposed evaluation criterion is based on the cal-
culation of Sum(S′). One potential problem is that
before starting evaluation, ∀s′

i ∈ S′, we must find
Attach(s′

i) in S. This search operation may be com-
putationally expensive. Fortunately, we find that this
operation can be efficiently accomplished in linear
time during the initial mesh generation process, as
presented below.
We use an MC algorithm to polygonalize the isosur-
face f = 0 to obtain the initial mesh. In this process,
all the active cubes that intersect the isosurface are
traced out and the values of the eight vertices of each
active cube are calculated for cell polygonization. In
our case, to calculate the signed distance value at
the position of any cube vertex v, the sample point
si ∈ S closest to v is found and is associated with v
by searching a range tree in O(log2 n + k) time. Pro-
vided that every initial mesh vertex s′ ∈ S′ lies on an
edge of the active cubes and the cube size is set to
be a little smaller than the size of finest detail in S,
the vertex s′

j ∈ S′ closest to the point si ∈ S must be
among the local set of initial mesh vertices that lie on
the edges of the active cubes incident to v associated
with si .
To this end, the vertex set S′ is partitioned into two
subsets: the set of auxiliary vertices

Aux(S′) = {
s′

i

∣∣ Attach(s′
i) = ∅, s′

i ∈ S′} ,

and the set of active vertices

Act(S′) = S′\Aux(S′).

6.2 Position optimization of active mesh
vertices

As pointed out in Sect. 5, the resample S′ is not ac-
curate. Therefore, in our mesh optimization process,
we first find optimized positions for Act(S′); this
operation minimizes the Sum(S′) with fixed mesh
topology. Since

Sum(S′) =
∑

i

Sum(s′
i),

this is equivalent to calculating an optimized position
for each s′

i ∈ Act(S′) by minimizing

Sum(s′
i) = s′

i ⊗ Q(A′
i, b′

i, c′
i).

Since the error metric Q is quadric, finding its mini-
mum is a linear problem: by equating its derivative to
zero,

∂Sum(s′
i)

∂ s′
i

= A′
i · s′

i −b′
i = 0,

the optimized position for s′
i is simply (A′

i)
−1 ·

b′
i . However, in our case, the rank of matrix A′

i
is usually deficient and thus A′

i is not invertible.
This problem can be solved by adding geometric
constraints that force the problem to be overcon-
strained and lead to a real symmetric positive definite
matrix A′

i (Lindstrom and Turk 1999); one con-
straint from the requirement that the triangles in
the mesh are well shaped is presented in Sect. 6.5.
Lindstrom (2000) proposes a slightly different ap-
proach that performs a singular value decompo-
sition (SVD) of A′

i , which leads to the pseudoin-
verse when A′

i is not invertible. Provided that S′ is
a good approximation of S, in our method, we use
the following heuristic to find the optimized posi-
tion for s′

i: we calculate Sum(s′
i) at each position of

s j ∈ Attach(s′
i), and take the optimized position as

s′
i = sk, where

k = arg min
j

{
Sum(s j)

∣∣ ∀s j ∈ Attach(s′
i)
}
.

Compared with analytic minimization using SVD,
this scheme is fast and stable. In addition, this
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Fig. 1. The optimized mesh reconstruction process of a mechanical part. Top left: a non-uniform sample S (6528 points). Top right:
initial mesh generation (55 268 faces). Bottom left: mesh optimization (13 255 faces) by optimizing the positions of Act(S′) and
removing the set of Aux(S′) from the mesh. Bottom right: mesh optimization (1158 faces) using the edge collapse operator
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scheme makes the set Act(S′) be a subset of
sample S.

6.3 Auxiliary mesh vertices removal

Recall that the true surface is represented by the lo-
cal combination of tangent planes associated with
sample S, and the initial mesh only offers structure
information for mesh optimization. Therefore, re-
moving all the auxiliary vertices from the mesh has
no influence on Sum(S′) and optimizes the mesh in
the topological sense. However, removing Aux(S′)
in different ways will result in different triangula-
tions of the point set Act(S′); any careless removal
will lead to serious distortion of the mesh’s geomet-
ric shape.
In our method, we use the retiling method (Turk
1992) to remove Aux(S′) from the mesh. Turk’s
retiling method is originally developed for mesh sim-
plification. First, a set of new vertices is distributed
over the polygonal surface using point repulsion.
Then a mutual tessellation incorporating old and
new vertices is formed. Finally, by carefully taking
topological consistency and triangle shape into con-
sideration, a simplified mesh with good quality is
achieved by removing old vertices from mutual tes-
sellation. In our case, the initial mesh, auxiliary ver-
tices and active vertices exactly correspond to the
mutual tessellation, old vertices and new vertices
respectively.
To remove an old vertex v, the local region formed
by triangles incident to v needs to be retessellated.
Given that the topological consistency is checked,
Turk’s retiling method uses the triangle shape as the
quality measure to optimize the tessellation. That is
why we first optimize the positions for Act(S′) and
subsequently remove Aux(S′) from the mesh.
Recall that after position optimization for Act(S′),
we have Act(S′) ⊂ S. In our implementation of
Turk’s method, if the neighboring vertices of an
auxiliary vertex v contain k ≥ 1 points si ⊂ S, i =
1, . . . , k, prior to the triangle shape, we use the
normal information n(si) as the quality measure to
optimize the retessellation centered at v. This opera-
tion is important, especially at the places where sharp
features are presented.

6.4 Mesh optimization using edge collapse

After the removal of auxiliary mesh vertices, we fur-
ther optimize the mesh using the edge collapse op-

erator. For each edge (s′
i, s′

j) in the mesh, we calcu-

late an optimal position s̄′ for the potential collapse
(s′

i, s′
j) → s̄′ by minimizing the edge cost function

∆Sum(S′) = s̄′ ⊗ Q(A′
i + A′

j, b′
i +b′

j, c′
i + c′

j)

− s′
i ⊗ Q(A′

i, b′
i, c′

i)− s′
j ⊗ Q(A′

j , b′
j, c′

j).

We then put all the edges into a priority queue keyed
on edge cost with the minimum cost edge at the top.
For mesh optimization, we iteratively extract the
edge (s′

i, s′
j) from the top of the queue, perform

(s′
i, s′

j) → s̄′, and locally update the collapse infor-
mation for all the edges involving s′

i and s′
j . For each

collapse (s′
i, s′

j) → s̄′, we set the triple Q(Ā′, b̄′, c̄′)
associated with s̄′ to be Q(A′

i + A′
j, b′

i +b′
j, c′

i + c′
j).

Given the properties of exhaustiveness and mutual
exclusion of the set Attach(s′

i), s′
i ∈ S′, the sum of

Q is accurate for evaluation using ∆Sum(S′). Note
that we do not need to explicitly calculate Sum(S′);
instead, we only need the change ∆Sum(S′).
The iteration process is terminated when the top
edge in the queue has a cost ∆Sum(S′) > ε. Ide-
ally, the threshold ε should be set to zero. In our
implementation, due to the precision of computer’s
floating-point operation and the precision of calcu-
lating normal vectors in point data preprocessing,
we normalize all the models in a unit cube and set
ε = 1.0×10−6.
The performance of our optimization algorithm de-
pends upon how we implement the priority queue.
In our implementation, we use the Fibonacci heap
again as the priority queue. The running times for
operations that use a Fibonacci heap consist of the
following: creating a new Fibonacci heap with n el-
ements takes Θ(n) amortized time; extracting an el-
ement with minimum cost takes Θ(1) time; and re-
newing an element in the heap with a changed cost
takes Θ(1) time.
Compared with the mesh optimization approach in
Hoppe et al. (1993), our approach has the following
advantages:

(1) We use a much faster fitting evaluation criterion
based on quadric Q.

(2) In Hoppe et al. (1993), the mesh topology op-
timization and the mesh vertex position opti-
mization are performed separately in two nested
loops; in our approach, we use a single edge-
collapse operation to simultaneously optimize
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the mesh topology and the mesh vertex posi-
tions.

6.5 Triangle shape optimization

In some applications, long, thin “sliver” triangles are
undesirable. To optimize the triangle shape, ∀s′

i ∈ S′,
we consider the following shape cost function:

Sp(s′
i) =

∑
j∈N1(i)

∥∥s′
i − s′

j

∥∥2
,

where N1(i) are 1-ring neighbors of s′
i . Minimiz-

ing this shape cost function is related to maximizing
the area to perimeter ratios of the resulting triangles
(Lindstrom and Turk 1999). This shape cost function
can be reformulated in the quadric form:

Sp(s′
i) =

∑
j∈N1(i)

∥∥s′
i − s′

j

∥∥2

=
∑

j∈N1(i)

(s′
i − s′

j)
T · (s′

i − s′
j)

=
∑

j∈N1(i)

(s′T
i · s′

i −2s′T
j · s′

i + s′T
j · s′

j)

=
∑

j∈N1(i)

(s′T
i · I · s′

i −2s′T
j · s′

i + s′T
j · s′

j)

=
∑

j∈N1(i)

s′
i ⊗ Q(I, s′

j , s′T
j · s′

j)

= s′
i ⊗ Q

( ∑
j∈N1(i)

I,
∑

j∈N1(i)

s′
j,

∑
j∈N1(i)

s′T
j · s′

j

)
.

One interesting note is that minimizing the shape
function Sp(s′

i) leads to

s̄′
i =


 ∑

j∈N1(i)

I




−1

·
∑

j∈N1(i)

s′
j

= 1

n

∑
j∈N1(i)

s′
j = s′

i +U(s′
i),

where n = #N1(i) and U(s′
i) = 1

n

∑
j∈N1(i)

s′
j − s′

i . The

U(s′
i) turns out to be the umbrella operator defined

by Kobbelt et al. (1998): the umbrella operator is the
discrete Laplacian of the 1-ring surrounding surface

that is parameterized over a symmetrical configu-
ration. Applying this operator minimizes the mem-
brane energy and makes the mesh edge length uni-
form, so it is widely used as a mesh relaxation oper-
ator (Kobbelt et al. 1999; Kobbelt et al. 2000).
In our implementation, we use a weighted shape-cost
function

WSp(s′
i) =

√
3

4Area(s′
i)

∑
j∈N1(i)

∥∥s′
i − s′

j

∥∥2

=
√

3

4Area(s′
i)

s′
i

⊗ Q
( ∑

j∈N1(i)

I,
∑

j∈N1(i)

s′
j,

∑
j∈N1(i)

s′T
j · s′

j

)

= s′
i ⊗ Q(D′

i, e′
i, f ′

i ) ,

where Area(s′
i) is the surrounding area incident to

the vertex s′
i . We use the term Area(s′

i) to nondi-
mensionalize the cost function and to normalize the
shape cost in the area sense, such that the resulting
shape cost is scale-invariant; the coefficient

√
3/4

is chosen to assign a cost 1 to a surrounding area
formed by equilateral triangles.
Then in the position optimization of Act(S′), we find
the optimized position s̄′

i for s′
i by minimizing the

objective function

F(s′
i) = λSum(s′

i)+ (1−λ)WSp(s′
i)

= s′
i ⊗ Q(λA′

i + (1−λ)D′
i, λb′

i

+ (1−λ)e′
i, λc′

i + (1−λ) f ′
i )

= s′
i ⊗ Q(L′

i, m′
i, n′

i) ,

i.e. s̄′
i = (L′

i)
−1 ·m′

i . The weight coefficient λ offers
the users an intuitive parameter to balance the opti-
mization of geometric fitting and the optimization of
triangle shape.
Similarly, in the subsequent optimization using edge
collapse, we calculate the optimal position s̄′

i for any
potential edge collapse (s′

i, s′
j) → s̄′ by minimizing

the objective function

F(s′
i) = λ∆Sum(S′)+ (1−λ)WSp(s′

i).

Then we assign to the edge (s′
i, s′

j) → s̄′ a cost

∆Sum(S′) = s̄′ ⊗ Q(A′
i + A′

j, b′
i +b′

j, c′
i + c′

j)

− s′
i ⊗ Q(A′

i, b′
i, c′

i)

− s′
j ⊗ Q(A′

j, b′
j , c′

j).
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a λ = 0.4 b λ = 0.5

Fig. 2. Mesh optimization with triangle shape control using parameter λ

We illustrate one example of triangle shape opti-
mization in Fig. 2.

7 Mesh simplification

Recently, with the complexity of object models in-
creasing, large data sets and large face counts for
the resulting optimized meshes become common-
place. For example, the point data in Fig. 3 consists
of 151 321 sample points. The recovered optimized
mesh consists of 252 042 triangles. To manipulate
these highly detailed objects in real time, mesh sim-
plification becomes important.
In our case, after mesh optimization (the collapsed
edges have the cost ∆Sum(S′) ≤ ε), we can simply
keep extracting edges from the queue top and col-
lapsing them to achieve mesh simplification.
Our mesh simplification is similar to the one in Gar-
land and Heckbert (1997): we use the same quadric
error metric and the same edge collapse operator.
However, three major differences between our sim-
plification and the Garland’s simplification are as
follows:

(1) Garland’s method uses the initial mesh informa-
tion to simplify the models, but our method uses
the original point data information.

(2) Our method uses a different edge cost function
to reflect the geometric error introduced into the
approximation models.

(3) Although using the same quadric error metric,
the summation of quadric matrices introduces
inaccuracy into the Garland’s method, since
each face in the initial mesh contributes to all the
quadric matrices of its three vertices; but in our
method, equipped with the properties of exhaus-
tiveness and mutual exclusion, the summation of
Q is accurate.

Fig. 3 offers a visual interpretation of these differ-
ences.

8 Discussion and comparison
with other methods

The complete algorithm including all the functions
mentioned above has been fully implemented in C++
code on a PC platform with 256 Mb of memory
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Fig. 3. A human body model. Far left: a set of unstructured sample points S (151 321 points). Center left: the Gouraud shading of the
initial mesh (360 547 faces). Center: the Gouraud shading of the optimized mesh (252 042 faces). Center right: Garland’s simplifica-
tion using initial mesh information (4000 faces). Far right: our simplification using input point data information (4000 faces). Note
that the wedge gaps in the circled regions in the data image are filled by an elongated influence radius of the sample point located at
each wedge vertex

and a Pentium III processor running at 500 MHz. To
make an easy comparison with other methods, we
test our algorithm on some widely used point data
obtained from the Internet, and the results are shown
in Fig. 4. Table 1 summarizes the running time of
all the models presented in this paper, using our pro-
posed algorithm.
Our approach generates optimized meshes from un-
structured sample points in a single algorithm, which
relates to three types of algorithms: the mesh recon-
struction algorithms, the mesh simplification algo-
rithms and the mesh optimization algorithms.
We first compare the performance of our mesh re-
construction function with three typical mesh recon-
struction algorithms: an approximating algorithm in
Hoppe et al. (1992) and two interpolating algorithms
in Amenta et al. (1998) and Gopi et al. (2000). Our
reconstruction function is nearly the same as the al-
gorithm in Hoppe et al. (1992), except that a 3D
range tree and adaptive influence radii are used in

our function to deal with non-uniform data. The al-
gorithm complexities in Hoppe et al. (1992), Gopi et
al. (2000) and ours are all O(n log n), since the MST
needs to be traversed for tangent plane orientation;
the algorithm complexity in Amenta et al. (1998) is
O(n2), since the asymptotic complexity of 3D crust
algorithm is O(n2). For an intuitive comparison, we
collect the published information (sampling criteria,
implementation platform and execution times) on the
oil pump and bunny models, as presented in Table 2.
We then compare the performance of our mesh op-
timization and simplification functions with various
simplification algorithms. Note that the effectiveness
of different simplification algorithms strongly de-
pends on the representation of the original mesh. We
have presented the advantages of our simplification
function over the simplification algorithm in Garland
and Heckbert (1997) in Sect. 7 (cf. Fig. 3). Since
both Garland’s algorithm and ours use the same
quadric error metric and the same edge collapse op-
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Fig. 4. More results by applying our algorithm on some publicly available data. The first column is the set of sample points. The sec-
ond column is the set of reconstructed initial meshes. The last column is the set of optimized meshes. The Stanford bunny model is
represented in the first two rows; the second row is the bottom view of the first row. The oil pump model is represented in the last two
rows; the last row is the back view of the third row
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Running time (s)
Model Point Point data Initial mesh Optimized mesh

number preprocessing generation generation

Mech. part 6528 6.0 4.0 2.5

Human body 151 321 662.0 145.0 46.0

Stanford bunny 35 947 43.0 19.0 3.2

Oil Pump 30 937 38.0 18.0 4.0

Table 1. Running time of all
the models presented in this
paper

Table 2. Comparisons of performance of various mesh-reconstruction algorithms

Algorithms Scheme Sampling criteria Complexity Implementation Running time (s)
platform Bunny Oil pump

Amenta et
al. (1998) Interpolating

The sampling density is in-
versely proportional to the dis-
tance to the medial axis.

O(n2)
SGI Onyx with 512 Mb
of memory 1380 –

Gopi et al.
(2000) Interpolating

The sampling density at
a point s ∈ S along a partic-
ular direction in the tangent
plane is inversely proportional
to the directional curvature
at s.

O(n log n)†
SGI Onyx with a R1000
processor running at
194 MHz

18.64 20.99

Hoppe et
al. (1994) Approximating

The sample S is uniform
(ρ-dense), i.e. any sphere
with radius ρ and centered on
sampled surface M contains at
least one sample point s in S,
and the value of ρ is the size
of finest surface feature that
can be recovered.

O(n log n)† SGI Indigo workstation – 104

Ours∗ Approximating

The tangent plane at each
point s on the physical surface
M is indicated correctly by
Nbhd(s) ∈ S, and the two-
sided Hausdroff distance
between the physical surface
and the local combination of
all the tangent planes is under
a predefined tolerance.

O(n log n)†
PC with 256 Mb of memory
and a Pentium III processor
running at 500 MHz

62.0 56.0

∗ Including functions of data preprocessing, initial mesh generation and optimization prerequisite.
† Excluding the k-nearest-neighbor searching process; in our case it is O(n log2 n) for non-uniform data.

erator, these two algorithms must run at the same
rate. Given two fixed original meshes – one sim-
ple and the other complex – the performance of six
published simplification algorithms, i.e., mesh op-
timization (Hoppe et al. 1992), progressive meshes
(Hoppe 1996), simplification envelopes (Cohen et al.
1996), JADE (Ciampalini et al. 1997), Qslim (Gar-
land and Heckbert 1997) and memoryless simplifi-
cation (Lindstrom and Turk 1998), are evaluated in
detail in Lindstrom and Turk (1999) using the Metro
tool (Cignoni et al. 1998).

Our proposed algorithm can quickly generate high-
quality meshes of arbitrary topological type from
unstructured point data. Besides the application to
complex geometric model acquisition, our proposed
optimization technique can also find application in
the area of volume graphics (Kaufman et al. 1993).
Volume representation of geometric objects is de-
veloped as a powerful graphics primitive (Frisken et
al. 2000): it is independent of the object topology,
and many operations based on this representation,
e.g. Boolean operations, are easy to implement. To
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convert the volume representation of an object to an
explicit surface representation, in which the intrin-
sic surface properties like curvatures are accessible
and the surface-based operations like smoothing can
be performed, two basic problems have to be solved:
(1) how to find an adequate set of surface samples;
and (2) how to organize them into a structured form
and optimize the results. To develop an efficient con-
version algorithm, the surface normal information
can be incorporated into the distance field represen-
tation; this evolves the traditional signed distance
field into the directed distance field (Kobbelt et al.
2001). Then using a standard marching-cubes algo-
rithm (Lorensen and Cline 1987; Schroeder et al.
1998), followed by our proposed optimization tech-
nique, high-quality meshes can be obtained.

9 Conclusion

In this paper, we propose a fast algorithm to recon-
struct high-quality meshes from unstructured sample
points. The key contribution of our proposed algo-
rithm is that we introduce a new mesh evaluation cri-
terion into unstructured point-data modelling tech-
niques that unifies the functions of data preprocess-
ing, isosurface polygonization, mesh optimization
and mesh simplification into one simple algorithm.
The results show that our proposed algorithm is time
and space efficient and, thus, can process large data
sets on a low-cost PC platform.
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