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Abstract
Benthic foraminiferal analysis (315 samples, 16,271 specimens) of the shallow water (< 100 m) Maastrichtian–Thanetian 
rocks from the Dakhla Oasis (Western Desert, Egypt) was studied to infer the inter–relationships between species diversity, 
palaeooxygenation, palaeoproductivity, and palaeodepth and changes at the Cretaceous–Paleogene (K/Pg) boundary. Posi-
tive and significant correlations are noted between these proxies, suggesting a well-oxygenated oligotrophic environment. 
However, a brief interval (mid–lower Maastrichtian) of increased palaeoproductivity with reduced diversity and oxygenation 
(ventilation) is noted (a characteristic of mesotrophic–eutrophic settings) that coincides with very shallow waters during a 
highstand system tract (HST) and dominated by the dysoxic agglutinated species Ammobaculites khargaensis. The diversity 
index, Fisher’s α (< 5), and paleodepth proxy (foraminiferal wall structure types) also suggest a shallow neritic (largely lit-
toral) depth for the entire study interval. At the bottom of the study section (Planktic Foraminiferal Zones CF8b-CF7), spe-
cies diversity, palaeooxygenation, and palaeoproductivity are high. From the K/Pg boundary to the post-K/Pg period, these 
variables are low and fluctuate with moderate species dominance. Data suggests an overall 40% benthic foraminiferal species 
(38% of agglutinated and 40% of calcareous extinct species) extinction rate after the K/Pg hiatus. The period immediately 
following the K/Pg boundary is characterized by increased basinal ventilation and decreased palaeoproductivity, which 
are attributed to changes in sea level and concurrent regional subsidence. However, as stable as the community structure 
was at or just after the K/Pg boundary, the changes in species composition (assemblage) were dramatic and marked by a 
change from a pre–K/Pg agglutinated–dominated fauna (Haplophragmoides–Ammobaculites) to a post–K/Pg calcareous 
one (Cibicodoides–Cibicides–Anomalinoides).

Introduction

The benthic foraminiferal species assemblage, distribution, 
and community structure are a result of the interactions 
between productivity and oxygenation of the bottom (Van 
der Zwaan et al., 1999; Jorissen et al., 2007). However, in 
the deep-sea environment, oxygen availability is frequently 
not a limiting factor, and the characteristics of individual 
species or assemblages (or the composition of an assem-
blage) are often good flux-indicators. In shallower waters, 
the individual effects of oxygen and organic flux are diffi-
cult to delineate (Van der Zwaan et al., 1999; Jorissen et al., 
2007). In modern oceans, the quantity, quality, and perio-
dicity of organic–flux to the sea floor (productivity) define 
the distribution patterns of benthic foraminifera, although, 
large uncertainties still remain of the relationships between 
the downward flux of organic carbon to the sea floor and 
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the estimates of export production (see review by Murray, 
2001).

The Upper Cretaceous-Lower Paleogene interval has 
been well-studied for inferring benthic foraminiferal 
species response (their vertical and spatial distribution, 
changes in community structure, and assemblages) vis-à-
vis to the end Cretaceous bolide impact. Interestingly, at 
the end of the Cretaceous and among one of the few groups, 
the benthic foraminifera, experienced no major extinction 
above background levels (Culver, 2003), thus making 
them robust proxies for biota-based paleoenvironmental 
reconstructions. Hence, they have been used as proxies 
to better understand the variability in export productivity 
(the flux of organic matter from the surface to the seafloor), 
paleooxygenation (prevailing oxic and dysoxic conditions), 
community structure (species diversity), assemblages 
(species composition), and changes in their isotope signals 
across the K/Pg boundary (Hsü and McKenzie, 1985; 
Culver, 2003; d'Hondt, 2005; Alegret and Thomas, 2005; 
Coxall et  al., 2006; Alegret, 2007; Alegret and Ortiz, 
2007; Alegret and Thomas, 2009; Alegret et al., 2012). A 
dramatic collapse of the δ13C gradient between the surface 
and deep-sea carbonates across the K/Pg boundary has 
been documented (d'Hondt, 2005; Alegret et al., 2012) and 
has largely been attributed to a long-term interruption of 
primary productivity (the Strangelove Ocean and Living 
Ocean models of Hsü and McKenzie, 1985). However, this 
dramatic breakdown in productivity contradicts the fact 
that the benthic foraminifera did not experience any major 
extinction during this interval (Culver, 2003; Alegret et al., 
2012). Hence, an alternate explanation was put forward to 
explain this paradox that the extinction of the carriers of this 
isotope signal (the Maastrichtian calcareous nannoplanktons 
and planktic foraminifera) was replaced in the early Danian 
by taxa that had a much lighter carbon isotopic signature 
(Alegret et al., 2012; Birch et al., 2012, 2016). Assessing this 
is beyond the resolution of the present study, which restricts 
itself in documenting changes in benthic foraminiferal 
inferred palaeoproductivity, palaeooxygenation, species 
diversity, and assemblage composition and their changes 
at the K/Pg boundary from the Maastrichtian–Thanetian 
succession exposed at the Dakhla Oasis (at Gharb 
El–Mawohb; 26°01′02″ N, 28°13′18″E; Western Desert, 
Egypt) (Fig. 1a–c). This Maastrichtian–Thanetian succession 
provides an excellent exposure (Figs. 1d–e) and represents a 
transitional area between the middle to outer neritic Farafra 
facies and the inner neritic Garra Al-Arbain facies (Fig. 2).

The originality of this study lies in the scarcity of com-
parative Upper Cretaceous-Lower Paleogene neritic benthic 
foraminiferal records that document changes in palaeooxy-
genation, palaeoproductivity, and species diversity over a 
longer time period, not well-documented not just from the 
southern Tethys margin, but also globally (Culver, 2003). 

Those records that deal with such changes tend to do so only 
for the K/Pg boundary event or are from the Tunisian regions 
of El Kef, Elles, and Ain Settara (Speijer and van der Zwaan, 
1996; Widmark and Speijer, 1997; Li et al., 1999; Peryt 
et al., 2002, 2004; Coccioni and Marsili, 2007). Although 
these records provide a high-resolution window into changes 
in the benthic-pelagic coupling, they only do so across a 
very short K/Pg boundary interval. Rare records from Egypt 
are documented, but then, these only provide general trends 
in palaeoproductivity, palaeooxygenation, and species diver-
sity (Farouk and Jain, 2016; Jain and Farouk, 2017), and 
infaunal/epifaunal changes at the K/Pg boundary interval 
(Orabi and Khalil, 2014). Thus, the present contribution is 
an attempt to bridge this gap and thereby provide a more 
comprehensive analysis of changes in the benthic ecosystem 
vis–à–vis the interplay of global eustasy and regional tecton-
ics during the Upper Cretaceous–Lower Paleogene interval 
(planktic foraminifera zones CF8b–P4) in Egypt.

Geological setting

The Western Desert, part of the northeastern continental 
margin of Africa (Fig. 1a–c), due to the breakup of the 
Pangea, initiated two NW–SE trending intrashelf basins in 
central Egypt, namely Dakhla and Assiut; the southern and 
central Western Desert constitutes the Dakhla Basin (Hen-
driks et al., 1984). Dakhla Oasis is located in the central 
Western Desert of the major sedimentary basin, the Dakhla 
basin (Fig. 1a), and is made up of an extremely thick and 
well-exposed Upper Cretaceous-Lower Paleogene sequence 
(Fig. 2). It is distinguished by two facies types, the Nile 
Valley and Garra El-Arbain, and reflects lateral and vertical 
facies variations (Issawi, 1972; Fig. 2a–b). The Dakhla basin 
is located between longitudes 28°15′–29°40′ E and latitudes 
25°00′–26°00′ N, 120 km west of the Kharga Oasis, about 
300 km west of the Nile Valley, and roughly 300 km south-
east of the Farafra Oasis (Fig. 1).

Contextually, it must be mentioned that based on data 
from planktonic foraminifera, benthic foraminifera, and 
calcareous nannofossils from Egypt, there are two compet-
ing theories—one suggesting a gap (hiatus) across the K/
Pg boundary and the other advocating a continuous sedi-
mentation pattern. Beckmann et al. (1969) noted that most 
sections in Egypt show a clear hiatus at the K/Pg bound-
ary, and this has been corroborated by studies from the 
Western Desert (Abdel–Kireem and Samir, 1995; Tantawy 
et al., 2001; Khalil and Al Sawy, 2014; Orabi and Khalil, 
2014; Farouk and Faris, 2012; Farouk, 2016), Nile Valley 
(Faris et al., 1985), Eastern Desert (Scheibner et al., 2003; 
Galal and Kamel, 2007), and from Sinai (Ayyad et  al., 
2003). However, El–Bassiouni et al. (2003) and Obaidalla 
(2005) have advocated a continuous sedimentation. But 
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studies overwhelmingly suggest that the upper part of the 
calcareous nannofossil Micula murus subzone and the ear-
liest Danian NP1 and NP2 zones are missing (equivalent 
to the interval between CF2–P1c planktonic foraminifera 
zones; see Farouk, 2016; Farouk and Jain, 2016). This gap 
is attributed to tectonic activity and irregular palaeotopogra-
phy associated with low sedimentation rates (see El–Azabi 
and El–Araby, 2000; Jain and Farouk, 2017). Another gap 
is noted at the Danian/Selandian boundary and is marked 
by a sharp lithological break with an extensive reworking of 
the older Danian fauna (Farouk and El–Sorogy, 2015; Jain 
and Farouk, 2017). A change in the pattern of sedimenta-
tion (Velascoensis Event; Strougo, 1986) is also noted at the 
Selandian/Thanetian boundary and attributed to subaerial 
exposure (erosion) initiated by a eustatic fall, resulting in the 
absence of the calcareous nannofossil Zone NP6, near the 
base of the Tarawan Formation in different parts of Egypt 

(Farouk, 2016). Both these boundary events (Danian/Selan-
dian and Selandian/Thanetian) have been dealt with in detail 
by Jain and Farouk (2017) and will not be dealt further.

Barren intervals

A brief mention of barren intervals (yielding no benthic 
and planktic foraminifera) noted in the present study is 
warranted. As regards the occurrence of benthic foraminif-
era, samples 156 to 194 (spanning Assemblages 8–10; 8 
and 10 in part; with few productive samples in between, 
164, 182–184) are barren (Fig.  3). This upper Maas-
trichtian interval is marked by an erosive HST 2 (High-
stand System Tract), the near dominance of agglutinated 
species Trochammina rainwateri and Ammobaculites 

Fig. 1  a Locality map of Egypt. 
The star in the center marks 
the location of the study area; 
b expanded view of the study 
area; c the palaeogeographic 
map during the Cretaceous 
(after Jain and Farouk, 2017); 
d field photograph showing 
the mid–lower Maastrichtian 
to Thanetian exposure at the 
Dakhla Oasis (at Gharb El-
Mawohb at the main escarpment 
(26° 01′ 02″ N, 28° 13′ 18″E; 
Western Desert, Egypt); e the 
close of the K/Pg boundary at 
Gharb El-Mawohb
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subcretaceous, and by the presence of a single calcareous 
species, Insculptarenula texana (see Fig. 3; for a more 
detailed sequence stratigraphic framework see Farouk and 
Jain, 2016; Jain and Farouk, 2017). Similar agglutinated 
taxa-dominated assemblages with an extremely small cal-
careous component have been documented in brackish to 
littoral settings (Nagy et al., 1990, 2010; Farouk and Jain, 
2016; Jain and Farouk, 2017). Such shallow depths would 
also explain the absence of planktic foraminifera as noted 
in Assemblages 2 to 7 (see Fig. 3); these are also marked 
by highly impoverished benthic foraminiferal counts 
(see also Farouk and Jain, 2016; Jain and Farouk, 2017). 
Interestingly, a concomitant regional uplift has also been 
documented for this interval (see El–Azabi and El–Araby, 
2000; Tantawy et al., 2001).

Previous studies

Three previous studies have been conducted on the same 
section, Farouk and Jain (2016, 2017) and Jain and Farouk 
(2017). Farouk and Jain (2016, 2017) have used the ben-
thic foraminiferal abundance patterns to build 19 assem-
blages (13 and 6, respectively; this is also the framework 
for the present study) to construct a Maastrichtian–Thane-
tian sea-level curve and sequence stratigraphy. Jain and 
Farouk (2017) extended this study and used only the 
distribution (abundance pattern) of agglutinated benthic 
foraminifera species and analyzed diversity fluctuations 
for the prevailing Maastrichtian–Thanetian duration. They 
noted that in shallow waters, the changes in the distri-
bution patterns of agglutinated benthic foraminifera spe-
cies faithfully reflect the prevailing paleoenvironmental 

Fig. 2  a Facies variations and 
rock units in Western Desert, 
Egypt. Three lateral and vertical 
facies changes in the Western 
Desert of Egypt are Farafra, 
Nile Valley and the Garra 
El-Arbian facies (modified 
from Farouk and Jain, 2016); 
b regional lithostratigraphy 
showing the extent of the Maas-
trichtiane–Thanetian sediments 
exposed at the Dakhla Oasis 
(modified from Jain and Farouk, 
2017)
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conditions, inferred from their calcareous counterparts 
(Jain and Farouk, 2017). The present study differs from the 
aforementioned studies and is related to understanding the 
inter–relationships between diversity, palaeooxygenation, 
palaeoproductivity, and palaeodepth (incorporating both 
agglutinated and calcareous benthic foraminiferal species).

Methods

One gram of sediment weight was used to pick benthic 
foraminifers that were soaked in the  Na2CO3 solution 
before sieving them over 630, 125, and 63 μm mesh size, 

Fig. 3  Planktic foraminiferal 
biostratigraphy of the studied 
section and % Planktic. The 
bold numbers (1–19) are ben-
thic foraminiferal assemblages 
of Jain and Farouk (2017). 
Sea level is inferred by using 
the presence of characteristic 
agglutinated and benthic spe-
cies, the abundance values of 
calcareous benthic foraminifers 
and the presence and abundance 
of planktic foraminifers (also 
Farouk and Jain, 2016; Jain and 
Farouk, 2017). The sequence 
stratigraphy (Highstand System 
Tracts, HST and Transgressive 
System Tracts, TST) is after 
Farouk and Jain (2016) and Jain 
and Farouk (2017). Bold lines 
are 5–point running averages
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respectively. The 63–125 μm fraction size was used and 
identified under a binocular zoom stereomicroscope. A 
total of 315 samples (16,271 specimens) were analyzed. 
Of them, 195 were productive from the 315 m thick 
Maastrichtian–Thanetian succession exposed at the main 
escarpment of Gharb El–Mawohb (26° 01′ 02″ N, 28° 13′ 
18″E; Western Desert, Egypt) (see Farouk and Jain, 2016; 
Jain and Farouk, 2017).

Additionally, Fisher’s α is used as a proxy for species 
diversity, BFOI (Benthic Foraminifera Oxygen Index), and 
% oxiphilic taxa for estimating palaeooxygenation (ventila-
tion) of the sea floor, are percentage abundances of High 
organic–flux species (% HOFS), infaunal taxa (see Fig. 4) 
and benthic foraminiferal morphogroups (Table 1) for palae-
oproductivity (the organic–flux to the sea floor) (Figs. 5–6). 
These approaches are then inferred in combination with the 
presence of characteristic benthic foraminiferal species, gen-
era, and paleodepth (Fig. 7).

However, the present study does have a one undeniable 
flaw that the specimen size (16,271 specimens from 315 
samples, 195 being productive) is small. But, considering 
that there is still a large representation of diverse taxa (150 
species), even in only 2 grams of sediment analyzed for 
this study, and the fact that a large number of samples were 
analyzed (315) (see Appendix-Tables 1–2), we believe that 
simple analysis and distribution patterns will reveal trends 
that will not be flawed. Owning to small specimen size, no 
rigorous analysis can be conducted such as cluster analysis, 
factor analysis, and/or principal component analysis as they 
require a minimum of 300 specimens per sample and as is 
the norm in most micropaleontological studies. Hence, here, 
a very basic correlation analysis (see Appendix-Tables 3–6) 
is conducted and along with vertical distribution trends of 
benthic foraminiferal species and genera are considered.

The emphasis of the study, however, remains on ben-
thic foraminiferal assemblage analysis, corroborated by the 
results of correlation analysis. This is also a reason why 
several proxies are considered in addition to filed observa-
tion for paleoenvironmental interpretation. Based on this, 
a tentative model is proposed for their inferred distribution 
(Fig. 8). The benthic foraminiferal changes at the Creta-
ceous/Paleogene (K/Pg) boundary are also analyzed (see 
Figs. 9–11, Tables 2–3; Appendix-Tables 7–8). Important 
benthic foraminiferal species are illustrated in Fig. 12 using 

scanning electron microscopy of the Geological Survey of 
Egypt.

Proxies used

Fisher’s α is used as a proxy for species diversity (Fig. 4). It 
is a within-habitat diversity index and considers both spe-
cies’ evenness and richness, whereas other species abun-
dance models consider only evenness (Buzas and Gibson, 
1969).

To estimate the availability of oxygen within the sedi-
ment column, two proxies are used, benthic foraminiferal 
oxygen index (BFOI) and the percentage of oxyphilic taxa 
(Fig. 4). Kaiho (1991) developed an empirical ratio of oxic 
and dysoxic benthic foraminiferal morphotypes called the 
BFOI. Based on benthic foraminiferal test morphology, 
Kaiho (1991) identified three morphogroups, Oxic (O), sub-
oxic (S), and dysoxic (D) (see Appendix–Table 1). BFOI is 
calculated as [O/(O+D) × 100], where O is the number of 
oxic species and D is the number of dysoxic species. When 
O = 0 and D+S > 0 (S is the number of suboxic indicators), 
then the BFOI is calculated using the following equation: 
[(S/(S+D)–1] × 50 (Fig. 2). Later, Kaiho (1994) calibrated 
values of the BFOI to levels of dissolved oxygen in bottom 
waters of modern oceans (for details also Kaminski et al., 
2002). Jannink et al. (2001) proposed a transfer function 
(oxygen content μMol/lt = 7.9602 + 5.95 × % oxyphilic 
taxa) to estimate the oxygen content within the sediment 
column (Fig. 4). Those taxa that occur in the topmost cm of 
the sediment are considered as oxiphylic, and their relative 
abundance is used as a proxy for estimating bottom water 
oxygenation. The rationale is that with increasing bottom 
water oxygenation, the availability of oxygen within the 
sediment also increases, resulting in an increased volume 
of available niche, which the oxiphylic taxa can potentially 
occupy. In the present study, the epifaunal taxa (see Appen-
dix–Table 2) are considered as oxyphylic. The transitory 
epifaunal to shallow infaunal taxa is not included in the cal-
culations such as species of Lenticulina and Osangularia 
(see Appendix–Table 2 and references therein). In general, 
it must be mentioned that although, both BFOI and % oxyph-
ilic index employ % epifaunal taxa (= the oxic (O) taxa used 
in BFOI; see Appendix–Table 1), however, BFOI also incor-
porates the presence of suboxic (S) and dysoxic (D) taxa not 
used in the % Oxyphilic index. Hence, the BFOI encom-
passes a much broader community approach.

Two palaeoproductivity proxies used in this study are the 
relative abundances of high organic–flux species (%HOFS) 
and infaunal taxa (Fig.  4). The following species are 
considered as high–organic–flux species—Anomalinoides 
aegyptiacus, Bolivina cretosa, Bulimina prolixa, Nonionella 
africana, N. insect, Praebulimina kikapoensis, P. russi, 
Pyramidulina affinis, P. distans, P. semispinosa, P. 

Fig. 4  Proxies used in the present study. Diversity indices (Fisher’s 
α), palaeooxygenation proxies (benthic foraminiferal oxygen index 
(BFOI), and % oxyphilic taxa), palaeoproductivity proxies (% high 
organic–flux species (% HOFS) and percent infaunal taxa), and Ben-
thic foraminiferal mode of life preference (infaunal and epifaunal) 
and % planktic. The bold numbers (1–19) are benthic foraminiferal 
assemblages of Jain and Farouk (2017). Sea level and sequence stra-
tigraphy is after Farouk and Jain (2016) and Jain and Farouk (2017). 
Bold lines are 5-point running averages
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Fig. 5  Distribution of morphogroups and sub-morphogroups identified in this study. Categories are based on Fig. 5. Morphogroups CP-A.8 and 
CH-B.1 constitute insignificant proportions (< 1%) and hence, have not been illustrated (see text for details)
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vertebralis, P. zippei, and Reussella aegyptiaca (see also 
Sen Gupta and Machain–Castillo, 1993; Sen Gupta, 1999; 
Fontanier et al., 2002; Gebhardt et al., 2004; Friedrich and 
Erbacher, 2006; Jorissen et al., 2007; Friedrich et al., 2009; 
Alegret and Thomas, 2013; Sprong et al., 2013) (see Fig. 4). 
The species grouped under infaunal taxa include those 
categorized as shallow and deep infaunal; the epifaunal 
to shallow infaunal transitory forms are not included in 
calculations (see Appendix-Table 2) (Fig. 4). Reference 
data from various studies (Sliter, 1968; Sliter and Baker, 
1972; Corliss, 1985; Jones and Charnock, 1985; Corliss and 
Chen, 1988; Bernhard, 1986; Langer, 1993; Rathburn and 
Corliss, 1994; Severin and Erskian, 1981; Jorissen, 1988; 
Corliss and Emerson, 1990; Linke, 1992; Sjoerdsma and 
Van der Zwaan, 1992; Jorissen et al., 1992; Linke and Lutze, 
1993; Jorissen, 1988; Kaminski and Gradstein, 2005) have 
been used to categorize the microhabitat preference of the 
identfied species in the present study (see also Appendix-
Table 2). Regardless of taxonomy, the groupings of similar 
shapes or growth patterns of benthic foraminiferal tests 
reflect a particular type of environment, and hence, are good 
proxies for assessing the prevailing palaeoenvironment, 
particularly for well-oxygenated temperate environments 
(Chamney, 1976; Jones and Charnock, 1985; Nagy, 1992; 
Kaminski et  al., 1995; Nagy et  al., 1995; Jones, 1999; 
Preece et al., 1999; van der Akker et al., 2000; Jones et al., 
2005; Kender et al., 2008a, b; Cetean et al., 2011, Murray 
et al., 2011). In the present study, the benthic foraminiferal 
morphogroup assignment (Figs. 6–7; Table 1) follows the 
characterization done by Koutsoukos and Hart (1990), as 
more recent schemes provide somewhat less differentiation 
(Nagy, 1992; Tyszka, 1994; Nagy et  al., 1995; van der 
Akker et al., 2000; Reolid et al., 2008; Nagy et al., 2009; 
Cetean et al., 2011; Chan et al., 2017). Additionally, most 
of these aforementioned studies are either from the Jurassic 
(Nagy, 1992; Tyszka, 1994; Nagy et al., 1995; Nagy et al., 
2009) or from a different time period (Cetean et al., 2011, 
Santonian–Campanian; Chan et al., 2017, Tertiary) and 
thus have fewer common species to correctly interpret their 
morphotypes. Those that are from a similar period (van der 
Akker et al., 2000, Campanian–Maastrichtian) are largely 
from bathyal settings, contrary to the neritic one in the 
present study, and hence also have fewer common species 
for comparison. The closest comparative account is either 
that of Tyszka (1994) or of Koutsoukos and Hart (1990). The 
latter has the maximum number of common species with a 
detailed explanation of their habitat preferences. Thus, based 
on this latter dataset, the species from the present study are 
interpreted for their microhabitat assignment.

To infer bathymetry, the agglutinated foraminiferal data-
set is grouped based on their preference for palaeodepth, 
i.e., into simple-walled arenaceous agglutinated foraminif-
era assemblage (representing a littoral environment with 

fresh water supply), complex-walled arenaceous aggluti-
nated foraminifera assemblage (representing deeper littoral 
environment with normal marine water), and calcareous 
agglutinated foraminifera assemblage (representing shelf 
environment) (see also Berggren, 1974; Luger, 1985, 1988; 
Cherif and Hewaidy, 1986; Orabi, 1995, 2000) (Fig. 7). This 
is further corroborated with the bathymetry inferred from 
%Planktic foraminifera (%P) and total calcareous benthic 
foraminifera (see Fig. 7).

All the above-mentioned proxies are subjected to basic 
statistical analysis (Pearson correlation) (Appendices-
Tables 3–6) and are evaluated based on the framework of 
19 benthic foraminiferal assemblages as established by 
Farouk and Jain (2016, 2017) and Jain and Farouk (2017) 
(see Fig. 7).

Results

Species diversity

The correlation between diversity indices, Fisher’s α and 
Shannon H, yielded positive and statistically significant cor-
relation (0.949, 0.000, significant at the 0.01 level, 2–tailed); 
hence, Fisher’s α is used as a proxy for species diversity 
(Fig. 4). Fisher’s α displays high values at the bottom of the 
studied section (planktic foraminiferal zones CF8b–CF7; 
samples 1–17), low and fluctuating values until the K/Pg 
boundary (samples 18–200) and then moderate to high val-
ues for the post K/Pg interval (samples 201–315) (Fig. 4). 
Diversity is low just prior to the K/Pg boundary but gradu-
ally increases for the post K/Pg planktic foraminiferal zone 
P1c (see Fig. 4). The beginning of planktic foraminiferal 
Zone P2 registers high values as also the interval between 
P2–P3a zones, whereas the post-P3a–P4 zone interval has 
consistently low values, coincident with low %P (Fig. 4).

Palaeoproductivity proxies

High organic–flux species (% HOFS)

The high organic–flux species (% HOFS), on average, do not 
constitute a major fraction of the assemblage throughout the 
studied section; ranging between 0 to 12%, except in assem-
blage 19 where they make up 27% of the total population 
(Fig. 4). Individually, there are four data points that register 
appreciable higher values: sample 97 (35.3%), 112 (42.9%), 
240 (44.4%), and 306 (41.7%) belonging to assemblages 
5, 6, 13, and 19, respectively (see Fig. 8 for assemblages). 
At the K/Pg boundary (between assemblages 10 and 11; 
see Fig. 7), there is no appreciable change, and the proxy 
remains low (< 5%) (Fig. 4). Higher values are only noted 
at the lower part of planktic foraminiferal zones P3a (sample 
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238–254) and in P4 (sample 306–315), and moderate values 
for assemblages 5–8 (see Fig. 4).

Percent infaunal

The infaunal species make up 35% of the total benthic 
foraminiferal dataset (6,351 specimens), epifaunal makeup 
52% (8419 specimens), and the transitory epifaunal to shal-
low infaunal make up 11% (1789 specimens) (Fig. 4). There 
is a dominance of infaunal taxa throughout the pre–K/Pg 
boundary interval and particularly during the middle part of 
lower Maastrichtian (i.e., between samples 58–73) (Fig. 4). 
A dominance of epifaunal forms is noted at the bottom of the 
section in planktic foraminiferal zones CF8b–CF7 (sample 
1–17), just after the K/Pg boundary (samples 201–226), and 
in planktic foraminiferal zones P3a–P4 (sample 238–315) 
(Fig. 4). As regards to sequence stratigraphy (as established 
by Farouk and Jain, 2016, 2017 and Jain and Farouk, 2017), 
the transgressive system tracts (TST) displays higher abun-
dances of both epifaunal taxa and %P, and in the high system 
tracts (HST) of infaunal forms (Fig. 4).

Oxygenation proxies

% Oxyphilic taxa

As with species diversity and BFOI, the % oxyphilic taxa 
also follows the same trend; high values at the bottom of the 
section (planktic foraminiferal zones CF8b–CF7; samples 
1–17), fluctuating values until the K/Pg boundary (samples 
18–200), and then consistently high values for the post K/
Pg interval (samples 201–315) (Fig. 4).

Morphogroups and subgroups

Following Koutsoukos and Hart (1990), for the aggluti-
nated (AG) morphotypes, three morphogroups (AG-A, 
AG-B, and AG-C) and two sub-morphogroups of AG-B 
(AG-B.1 and AG-B.2) are identified (see Figs. 5–6; Table 1; 
Appendix-Table 1). For the calcareous-hyaline (CH) mor-
photypes, two morphogroups (CH-A and CH-B) with six 
sub-morphogroups of CH-A (CH-A.1, CH-A.2, CH-A.3, 
CH-A.4, CH-A.5, and CH-A.6) and five sub-morphogroups 
of CH-B (CH-B.1, CH-B.2, CH-B.3, CH-B.4, and CH-B.5) 
are identified (see Figs. 5–6; Table 1; Appendix–Table 1). 
Two morohogroups, CH-B.1 and CP–A8 constitutes only 

one species (and in negligible numbers), Globulina lacrima 
and Quinquloculina gussensis, respectively. The former 
occurs in sample 154 only (assemblage 8) whereas the lat-
ter occurs in two samples (246 and 299; assemblages 13 and 
18, respectively) and hence, are not shown (Fig. 5).

Of the 16 identified sub-morphogroups, only five (CH-
A.4, CH-B.4, CH-B.5, AG-A and AG-B.2; 34%, 12%, 12%, 
9%, and 8%, respectively) dominate (Fig. 6–7). For the 
pre-K/Pg interval, for the calcareous forms, CH-A4 and for 
the agglutinated, AG-A and AG-B.2 dominate (Fig. 6) and 
for the post-K/Pg interval, CH-A4 and AG-B.2 dominate, 
respectively (Fig. 6). The deeper portions of the section are 
largely characterized by the dominance of CH-A4 (coinci-
dent with high %P values; see Fig. 6), whereas the shallower 
ones are either dominated by the agglutinated morphotypes 
AG-A and AG-B.2 (Fig. 6).

Wall structure

Of the palaeodepth indicators (littoral, deeper littoral, and 
shelf), the littoral setting dominates the section (Fig. 7); the 
deeper littoral proxy dominates at the base of the section 
(CF8b–CF7 planktic foraminiferal zone) and shelf forms 
dominate within the CF3 and at the end of P4 planktic 
foraminiferal zones (Fig. 7). The abundance of planktic 
foraminifera (%P; Fig. 3) correlates well with higher values 
of the deeper littoral and shelf indicators (Fig. 8; see also 
Appendix-Table 4).

Statistical analysis

All aforementioned proxies (Fischer’s α, BFOI, % Oxiphylic, 
% HOFS, and % Infaunal) are significantly and positively 
correlated (see Appendix-Table 3). The brief interval of 
high palaeoproductivity and low diversity and oxygenation, 
during the mid–lower Maastrichtian (between samples 58 
to 73), was also subjected to statistical analysis (Pearson 
correlation) and has returned with negative and statisti-
cally significant values for the palaeoproductivity prox-
ies, especially the % infaunal taxa (Appendix-Table 3b). A 
more high-resolution data set is likely to yield the same for 
the other palaeoproductivity proxy, % HOFS (Appendix-
Table 3b). Statistical analysis was again performed after 
deleting the samples for this brief interval (16 samples). 
The results have yielded the same positive and significant 
relationship between all proxies (Appendix–Table 3c). The 
relationship between the % P and test wall type (palaeodepth 
indicators; Fig. 7) was also analyzed; the shelf indicators 
correlate positively and statistically significantly with % P 
(Appendix-Table 4). Statistical analysis was also performed 
between the dominant morphogroups and all proxies and 
yielded positive and statistically significant relationships 

Fig. 6  Relationship between benthic foraminiferal morphogroups and 
sub-morphogroups and species diversity (Fisher’s α), palaeoxygena-
tion (BFOI), palaeoproductivity (% infaunal), sea level and TR cycles 
(TST–HST). Five morphogroups (in %) (CH-A.4, CH-B.4, CH-B.5, 
AG-A, and AG-B.2) dominate the studied interval (see text for expla-
nation and Appendix for actual counts). Bold lines are 5-point run-
ning averages

◂
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(Appendix-Table 5), corroborating the relationships noted 
for oligotrophic settings (Jain et al., 2007).

Changes at the K/Pg boundary

Comparative accounts

Most benthic foraminiferal records that address changes 
at the K/Pg boundary or for the intervening interval (Late 
Maastrichtian–Early Paleogene) are from the deep sea 
(Early Maastrichtian: Friedrich et al., 2005; Friedrich and 
Hemleben, 2007; Late Maastrichtian: Widmark and Speijer, 
1997; Widmark, 2000; K/Pg boundary: Keller, 1988; Speijer 
and Van der Zwaan, 1996; Culver, 2003; Palaeocene/
Eocene boundary, PETM: Miller et al., 1987, Thomas and 
Shackleton, 1996; Alegret and Ortiz, 2006, Giusberti et al., 
2009). There are very few records (see Culver, 2003 for a 
review) that address changes at shallow water settings (i.e., 
neritic, < 200 m water depth) (Sikora, 1984; Huber, 1988; 
Keller, 1992; Schmitz et al., 1992; Olsson et al., 1996; Keller 
et al., 1998). The classic records are by Plummer (1927) 
on midway (Palaeocene) and Cretaceous foraminifera from 
Texas (North America), and by Olsson (1960) on the latest 
Cretaceous–earliest Paleogene foraminifera from New Jersey 
(North America).

At shallow neritic waters, for benthic foraminiferal spe-
cies that do not cross the K/Pg boundary, the data is variable: 
16% from Texas (North America) (Plummer, 1927), ~50% 
disappear/emigrate (but temporarily) at the Brazos River 
(Texas) (Keller, 1992), 32% in New Jersey (North America) 
(Olsson, 1960), 64% at Seymour Island, Antarctica (Huber, 
1988) and 13% “common” species that are restricted to the 
upper Maastrichtian at Seldja (Tunisia) (Keller et al., 1998). 
Culver (2003) while summarizing published data, noted 
that at shallow depths, 40% of benthic foraminiferal species 
disappeared, at intermediate depths, 35% (using maximum 
figures), or 29% (using minimum figures), whereas for deep 
waters, 32% (maximum) or 22% (minimum). He further 
noted that there is a (a) weak trend of decreasing values 
with increasing depth, (b) the pattern of one-third disap-
pearance/extinction/turnover, is regardless of bathymetry, 
and (c) available data do not support the suggestion that 
that shallow-water benthic foraminifera were more severely 
affected by environmental events across the K/Pg boundary 
than the intermediate or deep-water faunas.

Globally, at shallow water neritic depths, there are only 
four data points available for comparison. At Brazos River 
(Texas, North America), infaunal benthic foraminiferal spe-
cies dominate on both sides of the K/Pg boundary (Keller, 

1992). At Millers Ferry (Alabama, North America), the 
Maastrichtian infaunal species give way to Danian epifaunal 
ones (Olsson et al., 1996). At Aïn Settara (Tunisia), low-
diversity epifaunal species dominate in the Danian, reflect-
ing extreme oligotrophic conditions (Peyrt et al., 2002). At 
El Kef, 50 km to the north, similar low diversity and low 
dominance Danian assemblages are noted, reflecting low-
oxygen conditions (Keller, 1988; Speijer and van der Zwaan, 
1996). However, Peyrt et al. (2002) pointed out that there is 
no geochemical indication to suggest that low-oxygen condi-
tions prevailed (see also Tribovillard et al., 2000) and that 
the lack of burrowing within the laminated sediments may 
simply be related to the K/Pg mass extinction of burrowing 
invertebrates. Peyrt et al. (2002) also argued that the low-
diversity assemblages immediately above the K/Pg boundary 
are a product of environmental stress resulting from changes 
in the nature of the phytoplankton flux to the seafloor (see 
also Culver, 2003). The calcareous nannofossils, a major 
Late Cretaceous primary producer, suffered a major extinc-
tion (Romein and Smit, 1981), and so also the early Danian 
benthic foraminifera that were left with a changed food sup-
ply composed mainly of dinofagellates, a group that did not 
experience any mass extinction (Brinkhuis et al., 1998).

Thus, the disappearance of infaunal species and the dom-
inance of epifaunal species in the early Danian has been 
attributed to the sudden decline in primary productivity at 
the K/Pg boundary, coupled with the cessation of organic 
carbon flux to the seafloor (Thomas, 1990; Widmark and 
Malmgren, 1992; Alegret et al., 2001; Peyrt et al., 2002). 
This would have led to the eventual decline in abundance 
of the infaunal taxa that were typically adapted to high food 
supply and/or low-oxygen conditions. Therefore, food and 
oxygen availability are seen as prime ecological factors in 
influencing changes in benthic foraminiferal assemblages 
across the K/Pg boundary (see also Culver, 2003). In the 
context of the present study, this interplay of food and oxy-
gen is elaborated further under the “Discussion” section.

Present data

Seven scenarios (Table 2) are explored to access neritic 
benthic foraminiferal changes at the K/Pg boundary rang-
ing from the analysis of an assemblage below and above 
the K/Pg boundary (scenario “a,” assemblages 10 and 11, 
26 samples; the boundary is drawn between samples 200 
and 201; see Farouk and Jain, 2016) to a more extended 
interval (scenarios “f” and “g”; scenario “f”—incorporat-
ing data from assemblages 9 to 18, 294 samples; Upper 
Maastrichtian to the Thanetian interval and scenario “g”—
substage data, Upper Maastrichtian–Lower Paleocene). A 
sample-by-sample approach analysis is not undertaken as 
at the top of assemblage 10 and following the K/Pg bound-
ary, is marked by a regional hiatus (of missing CF2 to P1b 

Fig. 7  Relationship between benthic foraminiferal assemblages (after 
Farouk and Jain, 2016 and Jain and Farouk, 2017) and palaeodepth 
proxies. Bold lines are 5-point running averages

◂
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planktic foraminiferal zones; see Farouk, 2016; Farouk and 
Jain, 2016). Hence, an assemblage approach is used as it 
gives a broader and better picture of the prevailing benthic 
ecosystem. The logic for using an extended time interval 
(scenario f; Table 2) is to make sure that the temporary dis-
appearance/reappearance of species does not affect the data-
set and the interpretation, thereof (see Culver, 2003). Hence, 
for all analysis (scenarios a–e; Table 2), the term “disappear-
ance” is used, and “extinction” is used only for scenarios 
“f” and “g” (Table 2; see also Figs. 9–11), as the latter two 

analyses incorporate an extended time period (“extinction” 
is used with caution; only three Lazarus taxa are noted in 
this study, namely Cibicides beaumontianus, Praebulimina 
kikapoensis and Praebulimina russi). Scenario “f” (Fig. 9 
with abundances >5%) spans from Assemblages 9 to 18 (see 
Fig. 7) and scenario “g” (Table 2; see also Figs. 10–11 with 
abundances > 5%) deals with the comparison between sub-
stages, Upper Maastrichtian and Lower Palaeocene. Table 3 
summarizes the changes of proxies (before and after the K/
Pg boundary) both at the level of individual samples and 
assemblages (10 and 11) (see also Fig. 7).

Discussion

In the present study, six points are noted:

1. Species diversity, palaeoproductivity, and palaeooxy-
genation are correlated positively and significantly, a 
characteristic feature of an oligotrophic environment. 
But a very brief interval (the mid–lower Maastrichtian; 
samples 58–73) of increased palaeoproductivity with 
reduced diversity and oxygenation (reduced ventilation) 
yields a negative and significant correlation characteris-
tic of a mesotrophic–eutrophic setting.

2. Test wall-based palaeodepth indicators suggest litto-
ral depths throughout the studied interval, punctuated 
briefly by deeper littoral depths at the base of the sec-
tion (planktic foraminifera zones CF8b–CF7), and shelf 
environment for planktic foraminiferal zones CF3 and at 
the end of P4. The abundance of planktic foraminifera 
(%P) correlates with higher values for the deeper littoral 
and shelf indicators, being positive and significant with 
the shelf indicator.

3. Seven (a–g) scenarios are explored to access changes at 
the K/Pg boundary. The “long term” data for the sub-
stage (Upper Maastrichtian–Lower Palaeocene) suggests 
that 38% of the agglutinated and 40% of the calcareous 
species became extinct after the K/Pg boundary with 
an overall 40% “extinction.” The data for the short term 
(i.e., samples before and after the K/Pg; termed “disap-
pearances”) are 10% (agglutinated), 36% (calcareous), 
and 25% (overall).

4. As regards benthic foraminiferal changes across the K/
Pg boundary, in this study as with other global ones, 
the dominance of epifaunal taxa in the early Danian is 
marked.

5. In an oligotrophic setting like this, the effects noted 
across the K/Pg are more dramatic with respect to a 
shift in species composition (assemblage), a shift from 
a pre-K/Pg agglutinated–dominated assemblage (Hap-
lophragmoides-Ammobaculites) to a post-K/Pg calcare-
ous one (Cibicodoides-Cibicides-Anomalinoides), rather 

Fig. 8  The relationship between palaeoproductivity, palaeooxy-
genation, and species diversity for the present study duration can be 
explained using a combination of both the TROX model (the trophic 
condition and oxygen concentration of Jorissen et al., 1995) and the 
parabolic curve of Levin et  al., (2001). Samples 1–57 and 74–315 
represent the left hand-side the figure, whereas, samples 58–73 rep-
resent the top right hand-side of the figure (see text for explanation)
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than in the community structure, itself (i.e., species 
diversity—Fisher’s α).

This contribution reaffirms that palaeoproductivity, pal-
aeooxygenation, and species diversity are closely interlinked 
(Fig. 4; Appendix-Table 5) (see also Mackensen et al., 1990, 
1995; Thomas and Gooday, 1996; Schmiedl et al., 1997; van 
der Zwaan et al., 1999; Levin et al., 2001; Gooday, 2003; 
Jorissen et al., 2007; Jain et al., 2007; Alegret and Thomas, 
2009). In oligotrophic settings, benthic foraminiferal diver-
sity and palaeoproductivity display a positive relationship as 
noted in examples from the Arctic (Wollenburg and Mack-
ensen, 1998; Wollenburg and Kuhnt, 2000), Eastern Central 
Atlantic (Heinz et al., 2004), South China Sea (Hess and 
Kuhnt, 2005), and the Caribbean (Jain et al., 2007), whereas 
a negative relationship is noted in mesotrophic–eutrophic 
environments such as in the Arabian Sea (Den Dulk et al., 
1988; Gooday et al., 1998). Wollenburg and Mackensen 
(1998), in the ice-covered Arctic (an oligotrophic setting), 
noted that food availability and competition for it largely 
controls benthic foraminiferal species composition. In sea-
sonally ice-free periods, high abundance and high benthic 
foraminiferal diversities increase with increased food supply 
(Wollenburg and Mackensen, 1998). This positive relation-
ship is also noted for low latitude sites in the Neogene Carib-
bean (Jain et al., 2007; Jain and Collins, 2007; Jain, 2011) 
and also in the present study (Fig. 8).

However, a very brief interval within the mid–lower 
Maastrichtian (samples 58–73 only; Assemblage 3) reflects a 
period of increased palaeoproductivity with reduced species 
diversity and ventilation (reduced oxygenation), consistent 
with mesotrophic–eutrophic settings (Fig. 4). This interval 
coincides with shallow littoral depths (HST1; Figs. 4 and 8), 
high % of infaunal taxa (Fig. 4), and the dominance of the 
agglutinated morphogroups AG-A (infaunal) and AG-B.2 
(infaunal to shallow infaunal) (Figs. 5–6). This brief interval 
(Assemblage 3; see Fig. 8) is also marked by the abundance 
of Ammobaculites khargaensis, a species that disappeared 
after the K/Pg boundary when the environment became 
more oxygenated (Figs. 4 and 9a) suggesting a preference 
of this species for low oxygen conditions in shallow to deep 
infaunal microhabitats. However, for this brief interval, 
moderate diversity values and moderate dominance (Fig. 4) 
suggests that oxygen was not a limiting factor, in spite of 
increased palaeoproductivity (food availability), that was 
possibly made available due to increased runoff in a brack-
ish/lagoonal setting (as evidenced by reduced values of the 
diversity index Fisher’s α; < 5) (see Fig. 4).

The samples 58–73 (Assemblage 3) are barren of plank-
tic foraminifers but most likely encompass the middle part 
of lower Maastrichtian, the planktic foraminifera Zone CF6 
(see also Tantawy et al., 2001; Farouk and Jain, 2016) (se 
Fig. 3). For this interval, cooler climates and lower sea level 

(the latter is also noted in the present study; see Fig. 4) are 
well-documented (Li et al., 1999, 2000; Haq, 2014). It is 
likely that in such a shallow setting, possibly there was an 
upwelling of cooler waters (and aided by increased runoff) 
resulted in increased food supply, but not beyond a threshold 
so as to result in oxygen being a limiting factor.

The mid Maastrichtian is also an interval that is globally 
marked by a positive δ13C values (a plateau-like high) called 
the Mid Maastrichtian Event (MME) (Voigt et al., 2012) and 
has recently been identified (in part) at Gebel Matulla (west-
central Sinai, Egypt; Farouk, 2014) encompassing the top of 
planktic foraminiferal zone CF5 and broadly corresponds 
to the top of HST1 (= present work Assemblages 5 and 6; 
samples 86–127; see Fig. 4). Since the duration is barren 
of planktic foraminifera (Fig. 3), the placement of MME 
is tentative but follows the same pattern - HST, marked by 
low species diversity, neritic depth, higher percentages of 
infaunal taxa and % HOFS (Fig. 4) as noted in the Gebel 
Matulla section in Sinai, Egypt (Farouk, 2014: CF7–CF5 = 
Coryphostoma incrassata, Gavelinella limbata, Nonionella 
cretacea, N. robusta, and Osangularia expansa; = middle 
to outer neritic). As in the present study, the influence of sea 
level coupled with tectonic uplift (to shallower depths) is the 
main causal mechanism. Assemblage 5 and 6 in the present 
work (see Fig. 7) are also marked by, but, with somewhat 
more shallow-water taxa (inner to ?middle neritic depths) 
including the calcareous species, Discorbis pseudoscopus 
and Valvalbamina depressa and the agglutinated, Ammob-
aculites khargaensis and Trochammina rainwateri (Fig. 7).

The distribution of morphogroups, in the present study, 
also reflects the influence of the availability of food (palaeo-
productivity), oxygenation and palaeodepth (Fig. 6; Appen-
dix-Table 5). The TST’s are marked by the dominance of the 
epifaunal calcareous morphogroup CH-A4 and the HST’s by 
the agglutinated morphogroups of AG-A and AG-B.2 (and 
% infaunal taxa) (Fig. 6). Palaeoproductivity never reached 
the threshold, where one would expect negative relationship, 
characteristic of meso– to eutrophic environment (Appen-
dix-Table 5). The influence of palaeodepth (Fig. 7) seems 
remarkable as the calcareous morphogroups CH-A4, CH-B4 
and CH-A5 do not correlate with the shallower depth proxies 
(littoral and deeper littoral) but positively and significantly 
with the deeper shelf indicator (Appendix-Table 5).

This study also demonstrates (both qualitatively and 
quantitatively; Figs. 4, 5–7, Table 1; Appendix-Tables 3–6, 
respectively) that in a shallow water setting, the distribution 
of benthic foraminifera is not just governed by the avail-
ability of organic-flux to the sea floor (palaeoproductivity) 
and oxygen content (palaeooxygenation) but also by pal-
aeodepth. But, for now, the individual influence of these 
three to the distribution of benthic foraminifera are hard to 
delineate but it appears that in a well-oxygenated setting, the 
availability of food is a function of depth and its downward 
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movement is governed by the availability of oxygen. Diver-
sity clearly shows depth-dependency, with significant posi-
tive correlations increasing in strength with increasing depth 
(least for littoral depths; see Appendix-Table 6).

The relationship of palaeoproductivity, palaeooxygenation 
and species diversity for the present study can be explained 
using a combination of the TROX model of Jorissen et al. 
(1995) and Jorissen (1999) and the parabolic curve of Levin 
et  al. (2001) (see also Gooday, 2003; Jain et  al., 2007) 
(Fig. 8). Species diversity is low in highly oligotrophic 
settings as food supply (flux of organic carbon to the seafloor 
= productivity) is very low; diversity is maximized in well-
oxygenated settings (even at bathyal and abyssal depths; see 
also Gooday et al., 1998) (the left hand-side of Fig. 8). In 
highly mesotrophic–eutrophic settings (such as in oxygen 
minimum zones), species diversity is also low, as the 
stress caused by the abundance of species leads to reduced 
diversity (the right hand-ide of Fig. 8). The abundance of 
food and reduced predation facilitates increased species 
diversity. However, when oxygen is a limiting factor, species 
diversity falls (see Fig. 8). In the present study, samples 1–57 
and 74–315 represents the left hand-side of Fig. 8, whereas, 
samples 58–73 represent the top right hand-side of Fig. 8.

As regards benthic foraminiferal changes across the K/Pg 
boundary, it is apparent from the present data that depend-
ing upon the calculated interval, the “disappearance” and 
“extinctions” vary considerably (see Figs. 9–11; Table 2-3). 
But, by only considering the short-term interval data (i.e., 
across the K/Pg boundary; samples 200/201; scenario “a”; 
Table 3), the picture may not be complete due to the hiatus 
that is ubiquitous across Egypt, from CF2 to P1c planktic 
foraminiferal zones (see Farouk, 2016; Jain and Farouk, 
2017). Hence, scenarios “b–e” (the Assemblage approach) 
gives a somewhat better picture but on a coarser timescale 
(see Table 2). However, the latter is the best option for 
understanding changes at the K/Pg boundary in Egypt, for 
now. Interestingly, the results of this “long-term” approach 
(see Figs. 9–11; Table 2–3) is also consistent with the “pat-
tern of approximately one third disappearance/extinction/
turnover” noted in other exposures, globally (Culver, 2003) 
(see also Table 2).

The other point of commonality in the present study with 
other global ones (Culver, 2003) is the general pattern of 
the dominance of epifaunal taxa in the early Danian (see 
Fig. 4). This shift is also corroborated by the morphogroup 

analysis where a sudden increase in the epifaunal mor-
phogroup CH-A4 is noted (see Fig. 4 and 6). Both these 
changes (dominance of epifaunal taxa and epifaunal mor-
phogroup) also coincide with improved ventilation (higher 
BFOI and % Oxiphylic values; see Fig. 4) suggesting that 
in shallow largely oligotrophic waters, as this one (< 100 
m), the breakdown of productivity (surface and bottom) and 
the subsequent decrease in food supply due to the bolide 
impact, may not have had a dramatic effect on the larger 
benthic environment (represented by the cumulative proxies 
such as species diversity, palaeoproductivity and palaeooxy-
genation) that were already well-adapted to a lowered food 
supply (oligotrophy). Hence, in such oligotrophic settings, 
the effects noted are more dramatic with respect to a shift 
in species composition (assemblage) (see Figs. 9–11), i.e., 
a shift from a pre–K/Pg agglutinated-dominated assemblage 
(Haplophragmoides–Ammobaculites) to a post-K/Pg calcar-
eous one (Cibicodoides–Cibicides–Anomalinoides), rather 
than in the community structure (species diversity), itself 
(see also Fig. 4). Even, from the prospective of the morpho-
group analysis, the shift occurs from a largely agglutinated 
AG-A morphogroup (infaunal, deposit feeders) to a domi-
nantly CH-A4 morphogroup (epifaunal, deposit feeders and 
passive herbivores; browsers), across the K/Pg boundary 
(see Figs. 5–6). The other ubiquitous agglutinated morpho-
group, AG-B.2 (epifaunal/shallow infaunal, deposit feeders), 
successfully transgresses, albeit a bit diminished, across the 
boundary event (see Figs. 5–6); both emphasizing the pref-
erential survivorship of epifaunal forms or that the neritic 
species may have been more adapted to environmental vari-
ability, as compared to bathyal forms (Alegret and Thomas, 
2013).

Globally, the shift in the early Danian, towards the domi-
nance of the epifaunal taxa is also reflected (directly or indi-
rectly) by other proxies, such as the (a) collapse in δ13C 
values, (b) interruption in primary productivity, and (c) by 
its geographical heterogeneity. Globally, the K/Pg boundary 
displays a collapse in the δ13C gradient between surface and 
deep-sea carbonates (Alegret et al., 2003; d'Hondt, 2005; 
Alegret et al., 2012; Alegret and Thomas, 2013) and has 
been interpreted as the result of a long-term interruption 
of primary productivity (the Strangelove Ocean and Living 
Ocean models; Hsü and McKenzie, 1985). But the lack of 
correspondingly significant extinction in benthic foraminif-
era (Alegret et al., 2012), whose species abundance and 
diversity are a function of the export of organic matter from 
surface down to the sea floor, the benthic-pelagic coupling, 
suggests otherwise. Probable explanations for this decou-
pling include: (a) the oceanic primary productivity recovered 
very quickly after the K/Pg event, (b) the collapse in δ13C 
values (highly negative) reflects the effects of the extinction 
of the carriers of the isotope signal, i.e., the calcareous nan-
noplankton and planktic foraminifera, that were eventually 

Fig. 9  Benthic foraminiferal patterns for extinction, immigrant, and 
survivor taxa noted for long–term interval incorporating taxa from 
assemblages 9 to 18. Taxa that have abundance > 5% are illustrated. 
Complete number of taxa is given in Table  2f and a list of species 
for the three categories given in Appendix-Table 7. For this interval, 
22% (7 species) agglutinated species (a) are absent after the K/Pg 
boundary, 37% (37 species) for calcareous species (b) with an overall 
extinction percentage of 33 (44 species; see Table 2f)

◂
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replaced by taxa with a much lighter carbon isotope signa-
ture than their Maastrichtian predecessors (Alegret et al., 
2012; Birch et al., 2012), and (c) there exists geographical 
heterogeneity with increased primary productivity in some 
areas (Pacific Ocean, New Zealand), and decreased in other 
areas (in Indian Ocean, Tethys, and in some Atlantic sec-
tions; see Hollis et al., 2003; Alegret and Thomas, 2005, 
2009; Alegret, 2007; Hull and Norris, 2011; Alegret et al., 
2012; Sibert et al., 2014; Esmeray–Senlet et al., 2015; Birch 
et al., 2016). Recently it has been documented that the last 
scenario (“c”) is a more viable option (Birch et al., 2016) and 
operated in three stages. These include Stage 1 (i.e., from 
the K/Pg boundary to ~300 k.y.): this is marked by plank-
tic to benthic δ13C values that are close to zero or negative 
with very low bulk δ13C and carbonate accumulation rates. 
Stage 2: the planktic–benthic Δδ13C returns to pre–extinc-
tion levels and the bulk δ13C and carbonate accumulation 
rates also increase. Stage 3 is the final recovery stage 3 that 
occurs ~2.5 m.y. after the event. This is marked by the return 
of differences between mixed-layer and thermocline dwell-
ing planktic foraminifera. Our data is too coarse to corrobo-
rate or evaluate this heterogeneity model but rather points 

towards a much larger role of sea level. The rising sea level 
near the end of the Maastrichtian and across the K/Pg bound-
ary (see Li et al., 1999, 2000; Haq, 2014; Farouk and Jain, 
2016), would have brought in warm waters to the largely 
shallow (deeper littoral; see Figs. 4 and 7) oligotrophic set-
ting (Fig. 4), thereby providing an already thriving epifaunal 
community newer niches to exploit further and diversify. A 
gradually increasing diversity indices with consistently mod-
erate to high values after the K/Pg boundary (Fig. 4) would 
have also meant that oxygen was not limiting, which is what 
one would expect from a transgressive event. This marine 
incursion also possibly coincided with subsidence (regional 
tectonic) as noted by a sudden increase in %P, from 0 to 63 
(see Table 3) as well as by changes in benthic foraminiferal 
assemblage and paleodepth proxies (see Fig. 7).

Conclusions

This multi-proxy approach enables to better understand the 
palaeoenvironmental changes and the inter-relationships 
between palaeooxygenation, palaeoproductivity, species 

Fig. 10  Substage calcareous benthic foraminiferal patterns for extinc-
tion, immigrant, and survivor taxa noted for long-term interval 
(Upper Maastrichtian–Lower Paleocene). Taxa that have abundance > 
5% are illustrated. Complete number of taxa is given in Table 2g and 

a list of species for the three categories given in Appendix-Table 8. 
For this interval, 40% (37 species) calcareous species are absent after 
the K/Pg boundary with an overall extinction percentage of 40 (55 
species; including the agglutinated ones; see Table 2g)
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diversity, and palaeodepth for the shallow water Maastrich-
tian–Thanetian rocks exposed at the Dakhla Oasis (Western 
Desert, Egypt).

• Data suggests a positive and statistically significant cor-
relation between species diversity, palaeooxygenation, 
and palaeoproductivity consistent with a well-oxygenated 
oligotrophic setting. A brief interval (mid–lower Maas-
trichtian) of increased palaeoproductivity with reduced 
diversity and oxygenation shows a negative and signifi-
cant correlation, consistent with mesotrophic–eutrophic 
settings. This interval also coincides with very shallow 
waters during a Highstand System Tract (HST) and is 
dominated by the dysoxic agglutinated taxa, Ammobacu-
lites khargaensis.

• Species diversity (Fisher’s α) displays high values at 
the bottom of the studied section (planktic foraminiferal 
zones CF8b–CF7), low and fluctuating values until the 
K/Pg boundary, and then moderate to high values for the 
post K/Pg interval.

• On average, the high organic-flux species (% HOFS) do 
not constitute a major fraction of the assemblage except 
in assemblage 19 where they make up 27%. At the K/Pg 
boundary (between assemblages 10 and 11) there is no 
appreciable change, and the proxy remains low (< 5%).

• The infaunal species make up 35% of the total benthic 
foraminiferal dataset. A dominance of epifaunal forms is 

noted at the bottom of the section in planktic foraminif-
eral zones CF8b–CF7, then, just after the K/Pg boundary 
and somewhat for planktic foraminiferal zones P3a–P4. 
The transgressive system tracts (TST) display higher 
abundances of the epifaunal taxa (and of %P) whereas 
the high system tracts (HST) are marked by an increase 
in infaunal taxa.

• The BFOI, the % Oxyphilic taxa follow the diversity pat-
tern (Fisher’s α); high values at the bottom of the section, 
fluctuating values until the K/Pg boundary and then con-
sistently high values for the post K/Pg interval.

• Of the 16 identified sub-morphogroups only five (CH-
A.4, CH-B.4, CH-B.5, AG-A, and AG-B.2) dominate. 
For the pre-K/Pg interval, for the calcareous forms, 
CH-A4 and for the agglutinated one, AG-A and AG-B.2 
dominate, and for the post-K/Pg interval, CH-A4 and 
AG-B.2 dominate, respectively. The deeper portions of 
the section are largely characterized by the dominance 
of CH-A4 (coincident with high %P values), whereas 
the shallower ones are dominated by the agglutinated 
morphotypes AG-A and AG-B.2.

• Of the palaeodepth indicators (littoral, deeper littoral, 
and shelf), the littoral dominates the entire studied sec-
tion; the deeper littoral proxy dominates at the base of 
the section (CF8b–CF7 planktic foraminiferal zone) and 
shelf forms dominate within the CF3 and at the end of 
P4 planktic foraminiferal zones.

Fig. 11  Substage agglutinated 
benthic foraminiferal patterns 
for extinction, immigrant, and 
survivor taxa noted for long-
term interval (upper Maastrich-
tian–lower Paleocene). Taxa 
that have abundance > 5% are 
illustrated. Complete number 
of taxa is given in Table 2f and 
a list of species for the three 
categories given in Appendix-
Table 8. For this interval, 38% 
(18 species) calcareous species 
are absent after the K/Pg bound-
ary with an overall extinction 
percentage of 40 (55 species; 
including the agglutinated ones; 
see Table 2f)
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• Seven scenarios were explored to access neritic benthic 
foraminiferal changes at the K/Pg boundary ranging 
from an analysis of an assemblage below and above the 
boundary (assemblages 9 and 10) to a more extended 

interval incorporating data from assemblages 9 to 18 
(Upper Maastrichtian–Thanetian interval). The “long 
term” data (Upper Maastrichtian–Lower Palaeocene) 
suggests 38% agglutinated and 40% calcareous species 

Table 2  Seven scenarios (a–g) are explored to access neritic benthic 
foraminiferal changes at the K/Pg boundary ranging from an analy-
sis of an assemblage below and above the boundary (scenario “a,” 
assemblages 10 and 11, 26 samples; the boundary is drawn between 

samples 200 and 201) to a more extended interval (scenarios “f” and 
“g”). The lower panel summarizes the result of the seven scenarios 
(a–g). See Fig. 7 for benthic foraminiferal assemblages

DISAPPEARENCES

[a] [b] [c]

Assemblage Samples Assemblage Samples Assemblage Samples

11 16 11+12 38 11+12 38

10 10 10 10 9+10 36

Agglu�nated species Agglu�nated species Agglu�nated species

Survivors 2 10% Survivors 2 9% Survivors 9 32%

Absent a�er K/Pg 2 10% Absent a�er K/Pg 2 9% Absent a�er K/Pg 7 25%

Present a�er K/Pg 16 80% Present a�er K/Pg 19 83% Present a�er K/Pg 12 43%

Calcareous species Calcareous species Calcareous species

Survivors 5 9% Survivors 3 6% Survivors 7 13%

Absent a�er KpG 17 32% Absent a�er KpG 19 36% Absent a�er KpG 16 30%

Present a�er KpG 31 58% Present a�er KpG 31 58% Present a�er KpG 30 57%

Overall species Overall species Overall species

Survivors 7 10% Survivors 5 7% Survivors 16 20%

Absent a�er KpG 19 26% Absent a�er KpG 21 28% Absent a�er KpG 23 28%

Present a�er KpG 47 64% Present a�er KpG 50 66% Present a�er KpG 42 52%

[d] [e]

Assemblage Samples Assemblage Samples

11 to 13 (up to P2) 47 11 to 13 54

9+10 36 9+10 36

Agglu�nated species Agglu�nated species

Survivors 8 28% Survivors 8 26%

Absent a�er K/Pg 7 24% Absent a�er K/Pg 7 23%

Present a�er K/Pg 14 48% Present a�er K/Pg 16 52%
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Table 2  (continued)

Calcareous species Calcareous species

Survivors 5 8% Survivors 6 9%

Absent a�er KpG 18 28% Absent a�er KpG 17 25%

Present a�er KpG 42 65% Present a�er KpG 46 67%

Overall species Overall species

Survivors 13 14% Survivors 14 14%

Absent a�er KpG 25 26% Absent a�er KpG 24 24%

Present a�er KpG 56 59% Present a�er KpG 62 61%

EXTINCTIONS

[f] [g]

Assemblage Samples Assemblage Samples

11 to 18 (up to P4) 258 11-16 (E. Paleo.) 84

9+10 36 8+10 (U Mast.) 52

Agglu�nated species Agglu�nated species

Survivors 8 25% Survivors 12 26%

Absent a�er K/Pg 7 22% Absent a�er K/Pg 18 38%

Present a�er K/Pg 17 53% Present a�er K/Pg 17 36%

Calcareous species Calcareous species

Survivors 6 6% Survivors 26 28%

Absent a�er KpG 37 37% Absent a�er KpG 37 40%

Present a�er KpG 58 57% Present a�er KpG 29 32%

Overall species Overall species

Survivors 14 11% Survivors 38 27%

Absent a�er KpG 44 33% Absent a�er KpG 55 40%

Present a�er KpG 75 56% Present a�er KpG 46 33%

[h]

Sc. Agglu�nated species Calcareous species Overall Samples

[a] 10%

Di
sa
pp

ea
re
nc
es

26% 26% 26

[b] 9% 28% 28% 48

[c] 25% 30% 28% 74

[d] 28% 26% 26% 83

[e] 29% 25% 24% 90

[f] 22%
Ex�nc�ons

33% 33% 294

[g] 38% 40% 40% 136
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became extinct after the K/Pg boundary with an overall 
40% “extinction.” The data for the short term (i.e., sam-
ples before and after K/Pg; termed “disappearances”) is 
10% (agglutinated), 36% (calcareous), and 25% (over-
all).

• In an oligotrophic setting like this, the effects noted 
across the K/Pg are more dramatic with respect to a 
shift in species composition (assemblage), a shift from 
a pre-K/Pg agglutinated-dominated assemblage (Hap-
lophragmoides-Ammobaculites) to a post- K/Pg cal-
careous one (Cibicodoides-Cibicides-Anomalinoides), 
rather than in the community structure, itself (repre-
sented by Fisher’s α).

• All change in benthic foraminifera (proxies, diversity, 
morphogroup, and assemblage) is a function of changes 
in the sea level exacerbated by regional tectonics, 
whenever they work in tandem such as during the K/
Pg boundary interval where sudden deepening provided 
newer niches to the already thriving (oligotrophic) epi-
faunal community.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00367- 023- 00745-2.
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