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Abstract
Seafloor sediment mapping traditionally relies on the experience and expertise of practitioners to classify sediment classes 
based on acoustic backscatter data and ground-truth information. However, recent advancements in automated seafloor map-
ping present a major development in objective methods that offer practical application for seafloor mapping and monitoring 
campaigns. In this study, a class-specific approach of ensemble modelling (ensemble mapping) was used to classify the sedi-
ment classes of a large-scale seafloor area (1550  km2) in the western Sylt Outer Reef, German North Sea. A pixel-by-pixel 
comparison of the modelled map and manually digitized map was also conducted to assess the efficiency of the ensemble 
mapping approach. The resulting seafloor sediment map, with an overall accuracy of 73%, demonstrates five sediment classes 
that represent most of the seabed of the German North Sea. The manually classified and ensembled maps were 63% identi-
cal, but mismatches were observed in the transitional boundaries of soft sediment classes and in stony areas that were not 
predicted in manual classification. The inconsistencies between the two maps was attributed to the different interpretation 
of sediment boundaries, the simplification of the sediment classification scheme, and the ability of ensemble mapping to 
classify more areas than manual classification. This study found that ensemble mapping performs better in characterizing 
coarse materials and produces maps that are comparable to the maps produced by manual classification, while the produc-
tion time and degree of subjectivity in the analysis are minimal. Hence, ensemble mapping is a viable alternative to create 
baseline seafloor sediment maps that can be used for environmental monitoring and resource planning.

Introduction

Detailed and accurate maps of the seafloor environment 
is one of the pre-requisites of a successful marine spatial 
planning (Diesing and Stephens 2015) and to designate 
marine protected areas (Harris and Baker 2012). Seafloor 

maps encompass all types of static maps that represent the 
physical, biological, and geological properties of the sea-
floor. This can be a map showing the seafloor morphology 
(Di Martino et al. 2021; Zeiler et al. 2008), benthic habitats 
(Baker and Harris 2020; Brown et al. 2011), or seafloor sedi-
ment distribution (Bockelmann et al. 2018; McBreen et al. 
2008). Mapping of the seafloor has been required by the 
European Union’s Marine Strategy Framework Directive 
(MSFD) (MSFD 2008) to monitor the environmental status 
of seafloor integrity in European waters (European Commis-
sion 2010). As a result, national seafloor mapping programs 
that are focused on mapping substrate type as a surrogate 
for biodiversity (Brown et al. 2017; Diesing et al. 2020; 
Ware and Downie 2020) were established in EU countries 
(MSFD 2008, Directive 2008/56/EC; (BSH 2016; Downie 
et al. 2016; Brown et al. 2017).

In Germany for example, the national seabed mapping 
program SedAWZ (“Full coverage sediment mapping in the 
German Exclusive Economic Zone”) was coordinated by 
the Federal Maritime Hydrographic Agency (BSH) to pro-
vide detailed information on sediment types, hard-substrate 
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distribution, and other seabed features on a scale of 1:10,000 
for the national implementation of the MSFD (Papenmeier 
and Hass 2020). The program standardized the seafloor map-
ping procedure and generated high-resolution seafloor sedi-
ment maps of the German North Sea and the Baltic Sea EEZ 
(geoseaportal.de, last accessed on 01.04.2022) (BSH 2016; 
Holler et al. 2019; Papenmeier et al. 2019). The published 
seafloor sediment map of the Sylt Outer Reef (SOR) in the 
German North Sea was created using the manual classifica-
tion approach. However, the production of this map requires 
time and intensive effort from the producer and since the 
trend nowadays has shifted to the development of automated 
seafloor mapping methods (Ierodiaconou et al. 2018; Misiuk 
et al. 2019; Menandro et al. 2020), an upgrade to automated, 
reproducible, and robust method would be timely.

Seafloor sediment maps are either produced by manual 
classification, unsupervised classification, or supervised 
classification algorithms (Lecours 2019). In manual clas-
sification, segmentation of the environmental layers (e.g., 
backscatter data) are performed manually by expert inter-
pretation, but this approach is dwindling because of its sub-
jectivity and inability to repeatedly delineate transitional 
habitats (Brown et al. 2011; Lecours 2019; Lucieer and 
Lucieer 2009). In unsupervised classification, environmen-
tal data are segmented before assigning a habitat type based 
on ground-truth observations made by camera or physical 
sampling (Brown and Collier 2008; Calvert et al. 2015; 
Kostylev et al. 2001). In contrast, supervised methods use 
the ground-truth information to form class signatures to be 
used to identify similar regions in the environmental dataset 
where no ground-truth data exist to produce a full-cover-
age habitat map (Calvert et al. 2015). Despite the progress 
made in recent years, seafloor sediment classification and 
monitoring using reproducible and automated methods is 
still in its infancy (Janowski et al. 2020; Zelada Leon et al. 
2020). Several studies attempted to address these issues by 
classifying backscatter mosaics through automated methods 
using machine-learning and modelling such as pixel-based 
and object-based analysis (Diesing et al. 2014; Ierodiaco-
nou et al. 2018; Janowski et al., 2020). One of these meth-
ods is ensemble modelling or the combination of multiple 
modelling algorithms to derive an accurate spatial predic-
tion. Ensemble modelling was first introduced to model 
suitable habitats or species distribution (Araujo and New 
2007; Guisan et al. 2017; Araújo et al. 2019), but it has 
already been applied in the marine environment to map sea-
bed sediments (Diesing and Stephens 2015; Galvez et al. 
2021), submarine geomorphology (Pearman et al. 2020), 
and benthic habitats in remote places (Jerosch et al. 2019). 
Another approach for sediment mapping is ensemble map-
ping, which has been suggested to alleviate the difficulties of 
predicting sediment classes in a complex heterogenous sea-
floor (Diesing et al. 2020). In this approach, predictions for 

each sediment class were generated using single or multiple 
classification techniques and then the results were combined 
into a single map by aggregating the modal classes (Diesing 
et al. 2020; Misiuk et al. 2019).

A class-specific approach of ensemble modelling or 
“ensemble mapping” was first introduced in our previous 
study (Galvez et al. 2021) to address the limitation of mini-
mal amount of available ground-truth samples and to reduce 
the effect of imbalanced ground-truth data in automated 
seafloor sediment classification. However, the method still 
needs to be tested in a larger area and to assess its ability to 
discriminate more sediment classes, in order to evaluate its 
efficiency for wide-scale seafloor mapping. Therefore, the 
aim of this study is to test the capacity of ensemble map-
ping to classify multiple sediment classes of a large seafloor 
area and to assess if this approach is a good alternative to 
baseline seafloor sediment mapping.

Physical settings

The study area (1550  km2) is located in the western part of 
the Special Area of Conservation — Sylt Outer Reef (SOR) 
in the German North Sea, which is approximately 70 km 
offshore from the island of Sylt, Germany (Fig. 1d). The area 
belongs to the eastern part of the Paleo-Elbe Valley (PEV) 
— a valley that was formed by several glacial advances and 
retreats during the Pleistocene and was submerged during 
Holocene transgression (Papenmeier and Hass 2020). The 
modern water depth in the area ranges from 23 to 46 m 
(Fig. 1b). The slope is increasing towards the northeast, 
where the water depth also decreases (Fig. 1c).

Seafloor substrates in the western SOR are characterized 
by heterogenous seafloor patterns on the east and homog-
enous seafloor patterns on the west. The heterogenous area 
is composed of patches of coarse-grained materials, which 
are classified as lag deposits or as sorted bedforms, and sur-
rounded by finer materials (Diesing et al. 2006; Mielck et al. 
2015; Galvez et al. 2020; Papenmeier and Hass 2020). The 
homogenous area is characterized by finer materials, which 
is composed of Holocene fine and medium marine sands. 
These fine materials were reworked during the postglacial 
transgression and are defined as mobile sediments (Figge 
1980; Zeiler et  al. 2000; Diesing and Schwarzer 2006; 
Kösters and Winter 2014).

The seafloor features in the SOR reflect the glacial ori-
gin of the subsurface (till) deposits and represent the highly 
dynamic oceanographic processes on the water column and 
on the seafloor (Diesing et al. 2006; Heinrich et al. 2017; 
Feldens et al. 2018; Bartholomä et al. 2020; Galvez et al. 
2020). The southern German North Sea is exposed to strong 
winds from the west, which results in a residual cyclonic 
circulation that is strongly affecting the sediment transport 
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(Staneva et al. 2009; Port et al. 2011; Kösters and Winter 
2014; Callies et al. 2017).

Methodology

Data collection and processing

The side-scan mosaic used in this study was collected 
in April–May 2013, while the ground-truth data were 
obtained from multiple expeditions from 2013 to 2019 in 
the SOR with the German research vessels “Heincke” and 
“Senckenberg”.

Side-scan data were collected with an Edgetech 4200 MP 
side-scan sonar (Edgetech, West Wareham, MA, USA) at a 
frequency of 300 and 600 kHz. The range was set at 230 m 
to achieve a 10% swath overlap and spatial grid resolution of 

1 m. The sonar was towed at a speed of 5 km behind the ves-
sel and was kept at 5–10 m above the seafloor. The SSS raw 
data were processed in SonarWiz (Chesapeake Technology, 
California, CA, USA) for slant range correction, speed, lay-
back, and gain normalization. The nadir line was cut out to 
5 m in both port and starboard direction to reduce the noise 
in the final mosaic. To enhance the quality and spatial accu-
racy of the SSS data, the mosaics underwent quality control 
following the procedures of Galvez et al. (2020). Multibeam 
echosounder (MBES) data were simultaneously collected 
with a hull-mounted Kongsberg EM710 system (Kongsberg 
Maritime AS, Kongsberg, Norway). The MBES has two 
positioning units. The primary positioning system is from 
Trimble SP461 DGPS (0.5–3 m accuracy), while the second-
ary unit is DEBEG/Leica GPS (5–15 m accuracy). The very 
shallow mode with a frequency range of 65–106 kHz and 
pulse length of 0.2 ms, which is ideal for the < 100-m-depth 

Fig. 1  Location of the study area and its morphological features: SSS backscatter intensity, bathymetry, slope, and aspects
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range (Kongsberg Maritime 2018), was used in our surveys. 
The default maximum reliable swath width was 90°. Post-
processing of MBES data was conducted in QPS Qimera 
v2.0.1 software (Quality Positioning Services BV, Zeist, the 
Netherlands) to correct the raw MBES data from tidal effects 
and reject invalid soundings.

Ground-truth information was collected by both under-
water video and sediment grain-size sampling in 429 differ-
ent locations, following a standardized sampling protocol 
(BSH 2016). Sediment samples were collected using a Van 
Veen Grab (HELCOM standard), while underwater videos 
were obtained using a Kongsberg OE14-366 Zoom Camera 
(Kongsberg Maritime AS, Kongsberg, Norway) and a GoPro 
3 + Black Edition (GoPro, Inc., San Mateo, CA, USA). The 
cameras were mounted on a robust metal frame with a laser 
scale, and deployed underwater as close as possible to the 
seafloor for at least 5 min while the ship was drifting at a 
speed of less than 1 kn. The on-board control unit of the 
camera system was connected to the GPS network of the 
research vessel for positioning. Ground-truth data from 
underwater videos were only used in the model to predict 
the location of lag sediments, because grab samples of lag 
sediment (e.g. boulders, rocks) were not collected. Further-
more, additional ground-truth information on hard substrates 
(lag sediment) that was obtained from parametric sediment 
echosounder using automated stone detection was used in 
the model (Papenmeier and Hass 2018).

Sediment samples were processed in the home laboratory 
to remove the carbonate and organic matter using chemi-
cal treatment according to the procedures described in Hass 
et  al. (2010). Subsequently, the samples were analysed 
using a CILASS 1180L laser particle sizer (LPS, range: 
0–04–2500 µm). Particles larger than 2000 µm were dry-
sieved. Grainsize statistics were calculated in GRADIS-
TAT v8.0© (Blott and Pye 2001). Underwater videos were 
screened for image quality to omit blurred footage, and the 
remaining videos were then converted into individual images 
at 2-s intervals using the scene video filter of VLC media 
player (VideoLan project, version 3.2.1.0).

All ground-truth samples were categorized according 
to Folk and Ward’s (Folk and Ward 1957) and BSH sedi-
ment classification (BSH 2016). The level A and C of the 
BSH sediment classification scheme was used to classify 
the ground-truth samples as lag sediment, coarse sediment, 
medium sand, fine sand, and fine sediment (Supplementary 
Table 1). The two levels were chosen to harmonize the sedi-
ment classes that were used for both ensemble mapping and 
manual classification.

Manual classification

The SSS backscatter mosaic of the western SOR was 
manually digitized by an expert using a digitizer tablet 

and ArcGIS v.10.4, following the mapping procedures in 
the “Guideline for Seafloor Mapping in German Marine 
Waters” (BSH 2016). The backscatter mosaic was charac-
terized based on all ground-truth information from sediment 
samples and underwater videos and was classified according 
to all the levels (level A to C) of the BSH sediment classifi-
cation scheme (Supplementary Table 1). However, for this 
study, the original manually classified map was reclassified 
into a simpler classification scheme (only levels A and C) 
to enable map comparison analysis. The original manually 
classified sediment distribution map is presented in Sup-
plementary Material Fig. 1. The accuracy of the manually 
classified map was not calculated because all of the ground-
truth data was used in the production of the map; hence, 
no validation samples remained available for the accuracy 
analysis.

Ensemble mapping

The ensemble mapping presented in this study was described 
in detail in our previous publication (Galvez et al. 2021). 
To cite, ensemble mapping is done by predicting each sedi-
ment classes one by one (class-specific) through ensemble 
modelling, and then each prediction was assembled into one 
map according to their probability score. The workflow for 
ensemble mapping presented in Fig. 2 was adapted from the 
seafloor sediment mapping workflow in the BSH’s guideline 
for seafloor mapping (BSH 2016). The ensemble mapping 
process is divided into four steps: data preparation, data 
selection, ensemble modelling, and ensemble mapping.

Data preparation

The ground-truth samples were used as the response vari-
able in the ensemble model, while the textural features and 
seafloor properties were used as the predictor variables. For 
this purpose, ground-truth samples and acoustic data were 
processed beforehand to be compatible for the models.

The location of the sediment and video samples were 
converted into points and binary format. For example, loca-
tions in which coarse sediment was observed were assigned 
1, while areas where there was no coarse sediment were 
assigned 0. Pseudo-absences were also generated for each 
sediment class in three iterations using a random strategy 
to prevent sampling bias and to reduce the effect of spatial 
autocorrelation in the model (Barbet-Massin et al. 2012; 
Guisan et al. 2017; Galvez et al. 2021).

The original grid resolution (1 × 1 m) of the backscat-
ter mosaic was rescaled to 10 m to match the resolution 
of the bathymetric data from the BSH (geoseaportal.de, 
last accessed on 01.04.2022). The rescaling was conducted 
using the “nearest neighbor” method of the “Resample” 
tool of ArcGIS 10.7.1. After rescaling, the SSS backscatter 
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mosaic was analysed using the grey-level co-occurrence 
matrix package in R (GLCM v.1.6.5.) to extract textural 
features (i.e. homogeneity, correlation, entropy etc.) 
(Haralick et al. 1973). The bathymetric data was used to 
calculate seafloor properties (i.e. slope, aspect, and rug-
gedness) using the Benthic Terrain Modeler v3.0 Toolbox 
of ArcGIS 10.7.1 (Shaun Walbridge et al. 2018). Infor-
mation on the textural features, seafloor properties, and 

ground-truth samples that were used in the ensemble mod-
els is summarized in Supplementary Information 2.

Data selection

Proper selection of appropriate predictor variables is impor-
tant in a statistical model to avoid model overfitting and 
multi-collinearity (Breiner et al. 2015; Naimi and Araújo 

Fig. 2  The seafloor sediment mapping workflow using the ensemble mapping approach which was  adapted from the BSH Guideline (BSH, 
2016)
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2016). In this study, predictor variables were selected in an 
iterative process to ensure that only the most appropriate 
predictors will be used for the model. Initially, the variance 
inflation factor (VIF) was used to detect collinearity between 
predictors and to remove redundant variables. A VIF greater 
than 10 indicates a collinearity problem (Chatterjee and Hadi 
2006). The VIF analysis was performed using the “vifstep” 
function in the R package “usdm” (Naimi et al. 2014). All 
predictor variables were analysed in a stepwise procedure, 
whereas variables with VIF of > 5 were removed. Further 
feature selection was conducted during model calibration 
based on the variable importance score of the predictors. 
The variable importance function in the “BIOMOD2 pack-
age” in R (Thuiller et al. 2009; R Core Team 2020) uses a 
machine-learning approach to randomize one of the vari-
ables in each permutation and calculate a correlation score 
between the standard prediction and the new prediction. The 
higher the value, the more importance the predictor variable 
has on the model (Thuiller et al. 2009).

Ensemble modelling

Ensemble modelling was performed using the “BIOMOD2” 
package within the statistics software R (CRAN) v.4.0.3 
(Thuiller et al. 2009; R Core Team 2020). The package was 
developed for ecologists to predict species distribution, but 
it can also be used to model any binomial data (Thuiller 
et al. 2009). Four classifiers were selected within the BIO-
MOD package for the ensemble modelling: classification 
tree analysis (CTA), random forest (RF), artificial neural 
networks (ANN), and generalized boosted models (GBM) 
(Galvez et al. 2021).

During the ensemble modelling process, the four clas-
sifiers trained 70% of the ground-truth data and validated 
the remaining 30% using a 20-fold cross-validation method. 
After 240 model runs, the classifiers voted for the best pre-
diction based on the individual model’s performance to 
generate the final prediction. The model performance was 
assessed based on their true skill statistics (TSS) value, 
which is the evaluation of the predictive accuracy of the 
spatial distribution model (Thuiller et al. 2009). Models with 
TSS value of ≥ 0.7 indicate very good performance (Thuiller 
et al. 2009, 2010; Guisan et al. 2017); therefore, only single 
models with TSS of at least 0.7 were included in the ensem-
ble model. The ensemble model was built based on the com-
mittee average of the single models and was used to predict 
the distribution of the sediment class. Committee average is 
the sum of the TSS value of the single models divided by 
the total number of models (Guisan et al. 2017; Pearman 
et al. 2020). BIOMOD also applies the same weight to all 
predictions to remove the bias across the selected models 
when building an ensemble model (Thuiller et al. 2009; 
Guisan et al. 2017). The uncertainty of the ensemble model 

predictions was calculated based on the coefficient of varia-
tion of the model predictions. The R script used for ensem-
ble modelling in this study is available at https:// github. com/ 
galve zDS/ galve zDS_ seafl oorSed_ ensem bleMo delli ng. git 
(accessed on 02 March 2022).

After ensemble modelling, the class-specific sediment 
distribution maps were filtered automatically in ArcGIS 
using the “Majority Filter” to remove the noise or artefacts 
from the ensemble models. The majority filter used a 4 × 4 
grid cell window to determine the most common value 
(majority) to replace the smaller cells/pixels in the raster 
image (ESRI 2021).

Ensemble mapping

The last step of ensemble mapping is the aggregation of 
all ensemble model predictions into one map to generate 
a seafloor sediment distribution map. Each sediment class 
that was modelled separately was aggregated into one map 
in ESRI ArcGIS v 10.7 using the raster analysis functions 
(see Galvez et al. 2021 for the detailed procedure). Subse-
quently, the accuracy of the ensembled map was measured 
using the confusion matrix to calculate its overall accuracy. 
The “caret” package in R was used to generate a confusion 
matrix (Kuhn 2008).

Results

Seafloor sediment distribution in the western SOR

Five sediment types were classified by the ensemble model 
in the western SOR namely: lag sediments (LagSed), coarse 
sediments (Csed), medium sand (mSa), fine sand (fSa), and 
fine sediments (FSed) (Fig. 3). Each sediment class was pre-
dicted with very good accuracy through ensemble modelling 
(Fig. 3; Table 1). Medium sand has the highest accuracy 
while fine sand received the lowest model performance 
(TSS = 0.70) (Table 1). The class-specific predictions show 
fine sediment and fine sand as the most dominant classes in 
the study area. Fine sediment covers 32% of the study area, 
and fSa occupies 31% (Table 2). In contrast, lag sediment 
occupies only 7% or 105  km2 of the 1550-km2 study area.

The ensembled map shows the overall distribution of the 
five sediment classes in the western Sylt Outer Reef (Fig. 4). 
The accuracy assessment shows that ground-truth samples 
were successfully classified in the map with an overall 
accuracy of 73%. In some areas in the northwest, the model 
predicted high-backscatter areas as both CSed and LagSed 
class.

LagSed was observed as areas with the highest backscat-
ter intensity (120–180 grey values) in the SSS mosaic and 
situated in deeper depths (35–40 m) than its surroundings. 

https://github.com/galvezDS/galvezDS_seafloorSed_ensembleModelling.git
https://github.com/galvezDS/galvezDS_seafloorSed_ensembleModelling.git
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They were mostly found closed to the boundary of the het-
erogenous and homogenous seafloor and occupies 105  km2 
(7%) of the study area (Table 1). The Csed class was also 
reflected with high backscatter intensity (100–200 grey 

values) and occupies the easternmost part of the study area 
(184  km2). CSed areas appear as patches of bedform features 
with northeast-southwest orientation and have a sickle-like 
shape (Fig. 3). Their boundaries are sharp on one end and 
fuzzy on the other side (Fig. 3).

Medium sands were generally observed between the 
coarser sediments (LagSed or Csed) and fine sand classes 
(Fig.  4) and appeared in the SSS mosaic with medium 
backscatter intensity (40–50 grey values). They occupied 
approximately 228  km2 (16%) of the total study area (Fig. 3; 
Table 1). Fine sands dominated the eastern section and were 
mainly observed in the surroundings of coarser materials 
(i.e. LagSed and CSed) and in areas with water depths of 

Fig. 3  Mean probability of occurrence and uncertainty of the predictions of each sediment class derived from ensemble models

Table 1  Model performance of 
the class-specific predictions 
based on true skill statistics 
(TSS) and receiving operating 
characteristic (ROC). TSS value 
of at least 0.70 indicates very 
good performance

Ensemble models TSS ROC

Lag sediment 0.84 0.97
Coarse sediment 0.80 0.96
Medium sand 0.86 0.97
Fine sand 0.70 0.92
Fine sediment 0.74 0.92

Table 2  Total area coverage of 
the classified sediment types 
using manual classification 
and ensemble modelling, with 
respect to the total study area. 
The last two columns show the 
agreement and disagreement of 
the two maps

Manual classification Automated classification Agree Disagree

Lag sediment 68  km2 (4%) 105  km2 (7%) 27  km2 (2%) 42  km2 (3%)
Coarse sediment 184  km2 (12%) 225  km2 (15%) 86  km2 (6%) 97  km2 (6%)
Medium sand 228  km2 (15%) 246  km2 (16%) 83  km2 (5%) 145  km2 (9%)
Fine sand 641  km2 (41%) 481  km2 (31%) 356  km2 (23%) 285  km2 (18%)
Fine sediment 429  km2 (28%) 493  km2 (32%) 420  km2 (27%) 8  km2 (1%)
Total 1550  km2 1550  km2 63% 37%
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25–30 m and steeper slopes (2–3°). Fine sand areas can be 
seen in the SSS mosaic as low backscatter areas (20–40 grey 
values) and dominated the 31% of the study area (Table 2).

Lastly, fine sediment (FSed) occupies the western section, 
which has lower elevation and flat gradient compared to the 
eastern section of the western SOR (Figs. 1 and 3) The FSed 
area was characterized by low backscatter intensity (< 20 

grey values) in the SSS mosaic and has deeper water depths 
that range from 40 to 60 m. Fine sediment occupies most of 
the study area by approximately 32% (Table 1).

In summary, the heterogenous eastern seafloor was char-
acterized by patches of coarser materials that were organized 
into bedform features (Figs. 1a and 4). The bedform features 
have sickle-like shapes with northeast-southwest orientation 

Fig. 4  (left) Location of 
ground-truth samples that were 
classified into sediment types. 
(right) Sediment classification 
map using ensemble mapping
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and are composed of either LagSed or CSed classes (Fig. 4). 
Moreover, these features were found in shallower depths 
(5–10 m difference from the homogenous seafloor), steeper 
by up to 3°, and surrounded by sandy materials (mSa and 
fSa) (Figs. 1c and 4). The sandy materials were found on the 
eastern side of the bedforms, which is the most elevated and 
shallowest areas (25 m). On the other hand, the western part 
of the study area or the homogenous seafloor is dominated 
by fine sediments, has a relatively flat surface, and is located 
in deeper water depths (> 40 m) (Figs. 1b and 4).

Map comparison

The ensembled map is 63% identical with the manually clas-
sified map (Fig. 5; Table 2). A 37% inconsistency between 
the two maps was observed along sediment boundaries and 
in areas that were classified differently through manual clas-
sification. For instance, sediment boundaries were depicted 
as fuzzy boundaries in the ensembled map, but they were 
delineated as sharp boundaries in the manually classified 
map. The ensembled map was also able to classify more 
LagSed, Csed, mSa, and FSed areas than the manually clas-
sified map (Fig. 5; Table 2). For example, the ensemble 
mapping has classified more mSa areas in the southwest 
and central part of the study area than manual classification 
(Fig. 5; Table 2).

On the other hand, the manual classification identified 
more FSed and fSa areas in the map than the ensemble 
model. The highest disagreement between the two maps was 
observed in areas of mSa and fSa, while high agreement was 
found in the location of FSed, Csed, and LagSed classes 
(Fig. 5; Table 1).

Overall, ensemble mapping was able to identify similar 
sediment distribution pattern with manual classification, 
but the time and effort spent were less. The ensemble map-
ping process of a large area (1550  km2) was conducted in 
1–2 days. In contrast, without a structure or guideline to 
follow at the beginning, the digitalization of the SSS mosaic 
took 2 years to finished.

Discussion

The goal of this study is to assess the efficiency of ensem-
ble mapping in creating a baseline seafloor sediment map 
of a large area, and if this approach can substitute manual 
classification for baseline mapping. The results suggest 
that the ensembled map is in accordance with the manu-
ally classified map by 63%, which means that the ensemble 
mapping approach produced comparable information with 
the manually classified map. The method was also able to 
classify more sediment classes in contrast to our previous 
study (Galvez et al. 2021) where only two sediment classes 

Fig. 5  Comparison of the two maps produced via manual classification (simplified) and ensemble modelling, and their agreement
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were classified. Moreover, ensemble mapping performs bet-
ter in characterizing coarse materials (i.e. LagSed and CSed) 
because more data was used in the model to predict their dis-
tribution, including the map of hard substrates distribution, 
textural features, and seafloor properties that improved the 
ensemble model performance. In contrast, only ground-truth 
data from videos and sediment sampling were used during 
manual classification to characterize the coarse sediment 
areas.

Sediment boundaries between soft sediments are natu-
rally transitional and indeterminate and are therefore diffi-
cult to interpret subjectively or through manual classification 
(Lucieer and Lucieer 2009). Ensemble mapping was able to 
delineate the transitional boundaries of the soft sediment 
classes better than manual classification. The inconsisten-
cies in the maps highlighted the low capacity of manual 
classification to distinguish backscatter intensities of transi-
tional areas and soft sediments (i.e. medium, and fine sand). 
This drawback of manual classification was also identified 
in previous studies and was addressed by introducing objec-
tive classification methods (e.g. Lucieer and Lucieer 2009; 
Mascioli et al. 2021), as what was conducted in this study.

The ensemble mapping approach also provided class-
specific sediment distribution maps with the uncertainty of 
the predictions (Fig. 3). These maps are useful for planning 
offshore installations of wind farms, identifying dredging 
areas, selecting sampling areas for future seafloor mapping 
efforts, and delineating soft-sediment habitats for environ-
mental management. For example, tubeworms are typically 
observed in the fine sediment areas of the SOR (Heinrich 
et al. 2017; Schönke et al. 2017) and these areas were accu-
rately depicted in the output map, which can help environ-
mental managers to locate their habitats.

In some cases, manual classification still has an advantage 
over automated methods, i.e. it allows unwanted informa-
tion or artefacts in the backscatter mosaics to be ignored, 
which can reduce the sources of uncertainties in the final 
map (Heinrich et al. 2017). More information can also be 
provided in manually classified maps (e.g. characteriza-
tion up to sub-classes), because the sediment data used to 
generate the maps has more information about grain size 
(i.e. sediment fractions, sorting, skewness, etc.) that can 
help the mapping expert in deciding the location and type 
of sediment class during manual classification even with 
small number of ground-truth data. For example, the original 
manually classified map in Supplementary Fig. 1 described 
up to 35 sediment classes, but this was reduced into five 
sediment classes in the ensembled map. Detailed sediment 
classification is more challenging in automated classification 
especially in supervised methods because the ground-truth 
data were already assigned into class signatures prior to clas-
sification. Although a more detailed class signature can be 
made before modelling, the model requires sufficient and 

well-distributed (spatially) ground-truth information to be 
able to predict accurately.

The disagreement between the two maps can be caused by 
different factors such as mismatches in scale (e.g. grid reso-
lution), simplification of the sediment classification scheme, 
and smaller number of ground-truth samples that was used 
in manual classification. The manually classified map was 
classified at 1-m grid resolution, but the ensembled map 
was modelled at 10-m resolution; hence, the mismatches 
between the two maps can be attributed to the differences in 
their grid resolution. Simplifying the classification scheme 
has also resulted to differences between the two maps, which 
are typical when multiple classes are nested within a broader 
class (Mitchell et al. 2019). For example, some areas are 
classified as “fSa + mSa” in the original manually classified 
map (Supplementary Fig. 1), but these areas were classified 
only as fine sand in the maps presented in this study (Fig. 5). 
Lastly, a manually classified map was created with less 
ground-truth samples than the ensemble map, which may 
be the cause of poor characterization of hard substrates and 
medium sand that resulted to inconsistencies in two maps. 
Manual classification was conducted in 2015, and only the 
samples available at that time were used for the classifica-
tion. The ensembled map, on the other hand, used all the 
ground-truth samples that were collected from 2013 to 2019 
to model the sediment distribution. The use of legacy data is 
not uncommon in the field of seafloor mapping; in fact, it has 
been utilized to produce a generalized seafloor sediment dis-
tribution map of the north-west European continental shelf 
(Mitchell et al. 2019). However, using ground-truth data 
from different time periods may incorporate some errors in 
the map caused by the spatiotemporal variations in sedi-
ment conditions. The use of legacy data may be acceptable 
for various applications such as baseline seafloor mapping 
that solely aims to inform on the general seafloor sediment 
distribution but would not necessarily be appropriate for 
monitoring seafloor sediment changes or to inform certain 
anthropogenic activities such as aggregate extraction and 
offshore engineering (Mitchell et al. 2019). Nevertheless, the 
presented seafloor sediment distribution maps in this study 
are accompanied by map accuracy information, which can 
guide the map users to evaluate the usability of the maps for 
their activities.

In summary, this study supported the applicability of the 
ensemble mapping approach to map a larger seafloor area 
and suggests that ensemble mapping is a promising tool to 
generate a baseline map of the spatial distribution of seafloor 
sediments in the western Sylt Outer Reef, German North 
Sea. This study found that ensemble mapping performs bet-
ter in characterizing coarse materials and produces maps 
that are comparable to the maps produced by manual clas-
sification, while the production time and degree of subjec-
tivity in the analysis are minimal. Though this comparison 
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was inconclusive as to whether one classification method 
is better than the other, there were significant differences 
that determine their suitability for seafloor mapping. For 
instance, the ensemble mapping approach predicted under-
sampled sediment classes accurately and identified transi-
tional areas that are usually difficult to classify manually. 
This may be an asset in monitoring transitional and sandy 
areas on the seafloor. In some cases, more information on 
sediment composition is required to monitor certain benthic 
habitat communities or seafloor activities (i.e. offshore engi-
neering, dredging); for this purpose, manual classification 
is more suitable.

Conclusions

In this study, the efficiency of ensemble mapping was 
proven by comparing its capacity to characterize seafloor 
sediment distribution with the traditional manual classifi-
cation method. The advantage of ensemble mapping over 
manual classification is that it provides comparable informa-
tion required for mapping sediment distribution, while the 
production time and expert knowledge needed are minimal. 
Moreover, the reproducibility of the map is very important 
to adapt in the continuous environmental monitoring activi-
ties. The approach presented here is not only fast and effi-
cient but also allows integration of new input data such as 
hard substrate maps, hydrodynamic models, and additional 
ground-truth samples that can be collected in future sea-
floor mapping campaigns. Alternately, the ensembled map 
can also be used as data input to model seafloor sediment 
dynamics and hydrological process or can be integrated into 
an ecosystem-based management system. In conclusion, 
ensemble mapping of seafloor sediment distribution is an 
alternative to manual seafloor classification for the creation 
of maps that can be the basis or reference point of seafloor 
monitoring campaigns.
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