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Abstract High-resolution multi-channel seismic data from
continental slopes with minor sediment input off southwest
Mallorca Island, the Bay of Oran (Algeria) and the Alboran
Ridge reveal evidence that the Messinian erosional surface
is terraced at an almost constant depth interval between 320
and 380 m below present-day sea level. It is proposed that
these several hundred- to 2,000-m-wide terraces were
eroded contemporaneously and essentially at the same
depth. Present-day differences in these depths result from
subsidence or uplift in the individual realms. The terraces
are thought to have evolved during one or multiple periods
of sea-level stagnancy in the Western Mediterranean Basin.
According to several published scenarios, a single or
multiple periods of relative sea-level stillstand occurred
during the Messinian desiccation event, generally known as

the Messinian Salinity Crisis. Some authors suggest that the
stagnancy started during the refilling phase of the Mediter-
ranean basins. When the rising sea level reached the height
of the Sicily Sill, the water spilled over this swell into the
eastern basin. The stagnancy persisted until sea level in the
eastern basin caught up with the western Mediterranean
water level. Other authors assigned periods of sea-level
stagnancy to drawdown phases, when inflowing waters
from the Atlantic kept the western sea level constant at the
depth of the Sicily Sill. Our findings corroborate all those
Messinian sea-level reconstructions, forwarding that a
single or multiple sea-level stagnancies at the depth of
the Sicily Sill lasted long enough to significantly erode the
upper slope. Our data also have implications for the
ongoing debate of the palaeo-depth of the Sicily Sill. Since
the Mallorcan plateau experienced the least vertical
movement, the observed terrace depth of 380 m there is
inferred to be close to the Messinian depth of this swell.

Introduction

During the Messinian, tectonic uplift caused the closure of
the Mediterranean–Atlantic connection, which consisted of
several gateways in southern Spain and northern Africa
(Esteban et al. 1996). The Iberian corridors became
restricted prior to the Messinian (Martín et al. 2001; Betzler
et al. 2006). The closure of the African gateways caused a
substantial sea-level drop within the entire Mediterranean
basin, triggering the Messinian Salinity Crisis (MSC; Hsü
et al. 1973; Ryan and Cita 1978; CIESM 2008; Ryan 2009).
The resulting sub-aerial exposure caused massive erosion of
the continental slopes (Rizzini et al. 1978; Clauzon et al.
1996; Lofi et al. 2005; Sage et al. 2005; Bertoni and
Cartwright 2006, 2007; Maillard et al. 2006). The sea-level
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fall further resulted in an increased salinity of Mediterra-
nean water and in the precipitation of evaporites. An
overview of various models regarding the timing, duration
and degree of sea-level fluctuations during the MSC has
recently been presented by CIESM (2008). Notably, basinal
evaporites up to some km in thickness have been intensely
studied by means of seismic reflection surveys, revealing
differences west and east of the Sicily Strait (Fig. 1; see
below). Based on individual water budgets for the basins, it
has been speculated that, during the MSC, the western and
eastern basins became separated at the Sicily Sill, located
southwest of Sicily.

Because the Sicily Sill is located in the southern part of
the Apennines-Calabrian arc (e.g. Dewey et al. 1989;
Gueguen et al. 1998; Gelabert et al. 2002), a tectonically
active zone, its depth cannot be precisely reconstructed with
available data. Nevertheless, Blanc (2006) demonstrated
that the timing of accumulation of evaporites in the western
and eastern basins is directly linked to the depth position of
this swell. During an early phase of the MSC, the western
basin water level supposedly reached the sill’s top, and the

water level remained constant for some thousand years in
this basin, while inflowing water from the Atlantic was
bypassed from the western to the eastern basin.

Alternatively, numerical simulations of Messinian sea-
level fluctuations by Meijer and Krijgsman (2005) and
Gargani and Rigollet (2007) showed that, from the time of
sea-level drop below the Sicily Sill, the two basins evolved
individually. Later, during the reflooding stage (Zanclean
flood) of the Mediterranean Sea, the western basin was
filled first until the height of the sill was reached (Meijer
and Krijgsman 2005). Afterwards, the water spilled over
the sill into the eastern basin, where sea level started to rise.
The assumption underlying the model of Meijer and
Krijgsman (2005) was that the inflow rate of Atlantic water
into the Mediterranean Sea equalled that of the present day.
This means that the geometry of the Gibraltar Strait would
have been the same as today. Furthermore, the depth of the
Sicily Sill was assumed to have been 300 m relative to
global sea level (i.e. equal to its present-day depth).
However, neither the inflow nor the depth of the sill are
precisely known. Accepting the assumptions of Meijer and

Fig. 1 Bathymetric map of the Western Mediterranean basin, with the study areas indicated by arrows (GEBCO One Minute Grid). The western
and eastern basins are separated by the Strait of Sicily
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Krijgsman (2005), the bypass period of western Mediterra-
nean waters flowing into the eastern basin would have
lasted for some thousands of years, until sea level in the
eastern basin reached the height of the Sicily Sill. During
this time interval, sea level in the western basin would have
remained constant (Meijer and Krijgsman 2005; Fig. 2).
However, by examining the scenario for a wider and deeper
Gibraltar Strait geometry, and the resulting higher inflow
rate, Meijer and Krijgsman state that the refilling of the
Mediterranean could have been completed much faster.
According to Gargani and Rigollet (2007), repeated sea-
level fluctuations occurred during the MSC. It can be
hypothesized that recurring sea-level stagnancy at the
height of the Sicily Sill accompanied each refilling phase.

Blanc (2002) modelled the Zanclean flood in terms of
erosional mechanisms at the gateway between the Atlantic
and Mediterranean, proposing that a change in geometry
due to erosion resulted in increased inflow rates and flow
velocities and, consequently, a much faster (11 years)
refilling of the Mediterranean. Recently, Garcia-
Castellanos et al. (2009) observed erosive channels in the
subsurface west and east of the Gibraltar Strait, based on
seismic and well data. They concluded that these channels
are interconnected and that they were eroded during the
terminal flooding of the Mediterranean, and calculated
dramatically high inflow rates and velocities at the Gibraltar
Strait. The refilling of the western basin would have
occurred within 500 days until the height of the Sicily Sill
was reached, followed by a 300-day overspill phase into the
eastern basin and another 150 days until complete refilling
of the entire Mediterranean.

Sea-level stillstands are inherent to both conflicting
models described above. In the case of an extended
stagnancy in the western Mediterranean basin, however,
erosional cliffs and terraces are expected to have formed at

the corresponding position of sea level. Although numerous
studies based on seismic reflection data indicate sub-aerial
erosion during the MSC, there is a lack of systematic
investigations of the Messinian Unconformity at shallow
depths. More precisely, for the identification of any
erosional features linked to sea-level stagnancies at the
level of the Sicily Sill, extensive mapping of this depth
interval is needed. Indeed, interpretation based on single
profiles is problematic for the discrimination between
erosional terraces and other features like incised valleys,
fault scarps or head scarps of submarine slides.

In search of evidence of such sea-level stagnancies at the
Sicily Sill, and of the duration of stagnant water levels in
the Western Mediterranean, we evaluated seismic reflection
data from the south-western shelf of Mallorca Island, the
Bay of Oran and the Alboran Ridge (Fig. 1), collected in
summer 2006 during the CARBMED research cruise M69/
1 aboard the R/V Meteor (Hübscher et al. 2010). The data
further allow constraining the palaeo-depth of the Sicily
Sill.

Messinian Salinity Crisis

Deep basin stratigraphy

Current understanding of the Messinian palaeo-environment
is based mostly on studies of exposed sedimentary succes-
sions in peri-Mediterranean basins (e.g. Crete, Sicily, Cyprus,
southern Spain; Clauzon et al. 1996; Riding et al. 1998;
Butler et al. 1999; Rouchy and Caruso 2006). However, such
marginal basins represent only ~5% of all Messinian
evaporites. Our knowledge of the deep basinal evaporites
comes largely from seismic reflection data, which can be
considered as the most important archive of Messinian
environmental changes (Hübscher et al. 2007). Seismic units
of MSC deposits have been investigated in several sub-
basins of the Western Mediterranean, including along the
Ligurian margin (Savoye and Piper 1991), and in the Gulf of
Lion (Lofi et al. 2005) and the Valencian Basin (Maillard et
al. 2006). Here, three units with distinct seismic facies have
been identified (Montadert et al. 1970), formerly labelled the
lower evaporite, salt and upper evaporite units. Recently, the
nomenclature has been modified to the lower, mobile and
upper units respectively (Lofi et al. 2010). East of the Sicily
Strait, seismic studies of basinal evaporites concentrated on
the Cyprus Arc (Bridge et al. 2005; Hall et al. 2005;
Hübscher et al. 2009), the Nile cone (Loncke et al. 2004,
2006) and the Levantine Basin (Mart and Bengai 1982;
Garfunkel and Almagor 1984; Cohen 1993; Bertoni and
Cartwright 2006, 2007). Up to six evaporitic sequences can
be traced throughout the Levantine Basin (Hübscher et al.
2007). The differing stratigraphy of basinal evaporites west

Fig. 2 Modelled sea-level curves for the Western and Eastern
Mediterranean (from Meijer and Krijgsman 2005). The sea level in
the western and eastern basins evolved differently from the time it
dropped below the depth of the Sicilian Sill. The assumptions for this
model are the present-day geometry and inflow rates at the Gibraltar
Strait and a depth of the Sicily Sill of 300 m. The reflooding of the
western basin was rapid until sea level reached the height of the sill,
after which sea level remained constant for about 2,000 years
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and east of the Sicily Sill suggests a separation of the
Western and Eastern Mediterranean basins and, consequently,
individual water budgets being responsible for the formation
of evaporitic sequences.

Messinian erosional surfaces

The MSC sea-level drawdown resulted in sub-aerial
exposure of the continental slopes and triggered massive
erosion, canyon development, and the deposition of detritus
on the lower slopes and adjacent fringing abyssal plains
(Rizzini et al. 1978; Clauzon et al. 1996; Lofi et al. 2005;
Sage et al. 2005; Bertoni and Cartwright 2006, 2007;
Maillard et al. 2006, 2010). Several erosion surfaces have
been evidenced on seismic data, labelled as the MES (for
margin erosion surface, after Sage et al. 2005), BES (for
bottom erosion surface, after Maillard et al. 2006), IES
(intermediate erosion surface) and TES (for top erosion
surface, after Maillard et al. 2006). For a recent detailed
overview, the reader is referred to Lofi et al. (2010) and
references therein.

The MES is a widespread unconformity commonly
interpreted as resulting from several phases of sub-aerial
erosion. It is overlain by Plio-Pleistocene deposits and
extends downslope to the onlap point of the deep basin
Messinian trilogy deposits. There it passes laterally to the
BES, TES and IES, each of these erosion surfaces being
defined based on their relationship to the downslope
Messinian units. Since the pre-Messinian marine sediments
were eroded mainly during the MSC, there is a sharp
contrast between the reflection characteristics of the
consolidated strata beneath the MES and of the lower
Pliocene strata deposited under marine conditions after the
reflooding of the Mediterranean (Barber 1981; Stampfli and
Höcker 1989; Lofi et al. 2005).

Physical and tectonic setting

The Mediterranean Sea is a semi-enclosed marginal sea
located between southern Europe and North Africa,
connected to the Atlantic Ocean through the Strait of
Gibraltar, and comprising a western and an eastern basin
(Fig. 1), each consisting of several sub-basins. The gateway
between the western and eastern basins is a relatively
narrow seaway around Sicily, separating the Italian penin-
sula from North Africa. At the Sicily Sill, the present-day
water depth is about 300 m.

The Western Mediterranean has undergone a complex
tectonic evolution, Gelabert et al. (2002) recognizing three
stages: during the first stage, which lasted from the latest
Cretaceous until the Eocene–Oligocene transition, E-W-
striking subduction of Tethyan oceanic crust beneath the

Iberian and the Austroalpine–Apulian plate occurred.
During the Early Oligocene (second stage), the Balearics,
Corsica and Sardinia collided with Iberia and the continen-
tal blocks of the Internal Zone of the Betics and Rif (Jolivet
and Faccenna 2000). From the Late Oligocene until the
Middle Miocene (third stage), extensional conditions led to
thinning of the continental crust in basins and the formation
of back-arc basins (e.g. Gelabert et al. 2002).

The opening of the western Mediterranean basins
occurred during the last 30 Ma. The westward subduction
(Apennines-Maghrebides arc) of Tethyan crust initiated an
extensional tectonic regime in the back-arc zone (e.g.
Dewey et al. 1989; Gueguen et al. 1998; Gelabert et al.
2002). Due to changing convergence rates and velocities,
the subduction zone retreated eastwards to its present-day
position beneath the Italian peninsular, reaching down to
Calabria and turning west via Sicily to the North African
margin (for details see Gueguen et al. 1998; Faccenna et al.
2001).

Sicily Strait

The Central Mediterranean has a complex tectonic history
because of the convergence between Africa and Europe
(see above). Sicily is located above the Apennines-
Calabrian convergence zone and was therefore affected by
complex tectonics during the Cainozoic.

The tectonic configuration of the Sicily Strait has been
reconstructed for Eocene to Recent times by Reeder et al.
(2002). During the Eocene, Neo-Tethyan crust existed
between southern Europe (Corsica, Sardinia and the
Balearic Islands) and northern Africa (Tunisia, Sicily;
Dewey et al. 1989). During the Oligocene and Miocene,
the eastward retreat of the Apennines-Calabrian arc caused
a reorganisation of the plate boundaries. By the end of the
Miocene, the present-day tectonic configuration was
developed (Dewey et al. 1989; Reeder et al. 2002). Using
the base levels of Western Mediterranean rivers incised
during sea-level stagnancy in the western basin, Blanc
(2006) reconstructed the depth of the Sicily Sill during the
MSC as ranging from 350–400 m relative to present-day
sea level.

SW shelf of Mallorca Island

The study area off Mallorca Island comprises the SW shelf
and shelf slope in prolongation of the Campos Basin
(Fig. 3). The shelf is between 100 and 150 m deep, and the
seafloor descends in a SW direction to the Mallorca
Channel, where water depths reach 1,000 m. In the
southeast the shelf is bounded by the Emile Baudot
Escarpment, which has a very steep slope, descending to
water depths exceeding 2,400 m.
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During the latest Oligocene and the Early Miocene, the
anticlockwise rotation of the Corso-Sardinic block (Mon-
tigny et al. 1981) led to extension and crustal thinning
between Iberia and the Balearic Promontory. As a conse-
quence, the Valencian Trough was opened (Vegas 1992).
During the Early Miocene, the Alboran Microplate started
to drift westwards, thereby imposing a compressional
tectonic regime on the Balearics. Mesozoic rocks,
consisting mainly of carbonates (Barnolas and Simó 1984;
Alvaro et al. 1989), were incorporated into the Alpine
fold-and-thrust belt during this phase. In the Late Miocene,
the persisting rotation of the Corso-Sardinic block and the
opening of the South Balearic-Algerian Basin caused an
extensional regime on Mallorca. During this phase evolved
both the main horst and graben structure, consisting of
Mesozoic and partially Palaeozoic basement (Jenkyns et al.
1990), and the small basins on the island (Pomar 1979).
From Miocene to Pliocene times, carbonate sediments
accumulated in these basins, onlapping onto the faulted
blocks (Pomar and Ward 1994; Alonso-Zarza et al. 2003
and references therein).

The SW shelf of Mallorca represents the seaward
prolongation of the upper Miocene Llucmajor carbonate
platform and of the Campos Basin. The top of the
Llucmajor platform lies today about 70 m above sea level.
The Campos Basin subsided during the Pleistocene (Pomar
and Ward 1994). Mesozoic and Neogene carbonates are
only slightly tilted, due to normal and strike-slip faulting
(Pomar 2001).

Earlier seismic data of the Mallorca Channel and the
continental slope adjacent to our study area were acquired by
Acosta et al. (2001, 2003, 2004), showing an unconformity
truncating the poorly to well stratified underlying unit. They
interpreted this horizon as the MES (labelled Messinian
Unconformity in Acosta et al. 2001, 2003, 2004). In the
Mallorca Channel, the MES is at a relatively deep position
(approx. 1 s two-way traveltime; Acosta et al. 2004), but
ascends to approx. 0.5 s TWT at the shelf slope (Acosta et al.
2001). The unconformity shows an irregular topography and
has an erosional appearance. Above this horizon, two units
were interpreted to have been deposited during the latest
Messinian to Quaternary. According to Acosta et al., the
post-Messinian succession is faulted due mainly to gravita-
tional, rather than deep-rooted processes (cf. the latter would
indicate vertical movement). One of their published survey
lines extends into our new survey area, thus allowing
correlating the stratigraphy in both datasets.

Bay of Oran

The Bay of Oran is semi-oval in shape and extends 30 km
in a W–E direction. The study area includes the shelf and
the continental slope down to a water depth of 1,000 m
(Fig. 4). The Yusuf Fault is a NW-SE-oriented strike-slip
fault which takes a W–E direction west of the Bay of Oran
(Ballesteros et al. 2008). According to Domzig et al.
(2006), a branch of this fault may extend into the region
of the bay (Fig. 4).

Fig. 3 Bathymetric map (m) of
the SW shelf off Mallorca
Island. Lines Seismic profiles,
red lines profiles shown in
Figs. 6, 7 and 8; violet mapped
wide terraces with cliffs, white
change in dip of the MES;
dotted lines inferred continua-
tion of terraces between the
profiles
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The structural and geological setting in the vicinity of
Oran is dominated by the southward thrusts of the External
Tell, which formed during the Alpine continental collision
(de Lamotte et al. 2000). Folded and faulted Mesozoic
carbonates of the former southern margin of the Tethys are
unconformably overlain by post-orogenic Miocene marine
to coastal sediments (Cornet et al. 1952). From adjacent
areas southwest of Oran, some Messinian carbonate plat-
forms are known which evolved on folded Mesozoic
basement (Rouchy and Saint Martin 1992; Cornée et al.
1994 and references therein). The continental margin is
characterized by a steep north-dipping escarpment, with
possible normal faulting. Onshore, marine terraces of the
last interglacial (marine isotope stage 5) have uplifted at
rates of approx. 0.02 mm/year (Bouhadad 2001), indicating
active deformation in Oran Bay. Betzler et al. (2010)
observed that Holocene carbonate production occurs on the
shelf in the bay itself. Also, those authors found siliciclas-
tics close to the modern shoreline, but not on the outer
shelf.

At present, seismic activity in the region of Oran is
moderate in terms of intensity or magnitude, and charac-
terised by long recurrence periods (Bouhadad 2001), two
M<5 earthquakes having occurred in 1889 and 1959.
Stronger seismic events were recorded in 1790 (Oran,
intensity I=XI) and 1994 (Mascara earthquake, M 6.0), with
a high death toll (Ayadi et al. 2002). Generally, the focal
mechanisms showed thrust-related dissolution (Bouhadad
2001), whereby strike-slip faults had a dextral component

on N110-130-trending fault planes (Ayadi et al. 2002). This
is in accordance with the movement and seismicity along
the Yusuf Fault in the western Alboran Sea. Existing
bathymetry and seismic data for the Oran region do not
show any significant recent offshore tectonic activity, with
the exception of the Yusuf Fault (Domzig et al. 2006).

Alboran Ridge

The Alboran Ridge is a SW–NE elongated basement high
with a length of 180 km and a width of 30 km (Fig. 5),
rising up to 1,000 m above the surrounding abyssal plain
and forming Alboran Island. The ridge consists of mag-
matic and metamorphic rocks (Maldonado et al. 1992 and
references therein), while Alboran Island is composed
mainly of volcaniclastic rocks on a metamorphic basement
(Hoernle et al. 2003). The volcanic rocks are about 9.3 Ma
old (Duggen et al. 2004). The Alboran Ridge developed
due to compressional activity during the Tortonian to the
Present (Bourgois et al. 1992).

Drilling during ODP Leg 161 was performed in several
regions of the Alboran Sea, revealing that the oldest
sediments are derived from Early Miocene rocks and
overlie the metamorphic basement. Sedimentation contin-
ued until the MSC. An erosional surface represents the
MES (Campillo et al. 1992; Maldonado et al. 1992), and
deposition was re-established after the MSC.

Evidence for Pleistocene to Holocene deformation was
found in seismic sections of the ridge (Comas et al. 1999),

Fig. 4 Bathymetric map (m) of
the Bay of Oran (Algeria). Lines
Seismic profiles, red lines pro-
files shown in Figs. 9 and 10;
white mapped terraces of the
MES correlated between the
profiles; dotted lines inferred
continuation of terraces between
the profiles
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where the MES is characterised by an angular unconformi-
ty. Site 976 in the West Alboran Basin reveals two periods
of subsidence, one at 11-10.7 Ma (rate of 3 km/106 years),
another at 2.5-0 Ma (rate of 0.5 km/106 years), as well as
uplift at 5-2.5 Ma (Comas et al. 1999). Compressional
structures have been identified along both the southern and
the northern flanks of the ridge. On the southern flank,
fault-related uplifting and folding can be found within the
Pliocene–Holocene sediments. Comas et al. (1999) pro-
posed that both uplifting due to folding and faulting
occurred at different locations along the Alboran Ridge
since Late Miocene times. Furthermore, based on a fault
population analysis Maestro-González et al. (2008) con-
cluded a reactivation of basement faults at the ridge due to
compression during the late Tortonian and Messinian.
These authors suggest that the compressional regime
probably prevailed also during more recent times.

Materials and methods

Seismic data were acquired using a 600-m-long digital
streamer incorporating 144 channels (Mallorca), a 150-m-
long 24-channel analog streamer (Bay of Oran and Alboran
Ridge), and two GI-guns as seismic sources. The volumes for
the generator and injector were 45 and 105 cubic inches

respectively, and the pressure within the air chambers was
kept constant at 140 bar. The shot distance was 25 m.

For the datasets from the Oran and Alboran study areas, a
CMP (common midpoint)-based data processing procedure
was used (editing, geometry processing, interactive velocity
analysis, stacking, post-stack time migration). The dataset
from the Mallorca study area was processed using a CRS
(common reflection surface) stacking routine (Mann 2002).
The procedure includes stacking over a hyperbolic area and,
thus, over neighbouring CMPs. As a result, the fold is
increased and, thereby, the data quality (e.g. S/N ratio). The
main frequencies were 20–160 Hz for all three study areas.
Assigned depths were calculated assuming a seismic velocity
of 1,500 m/s for the water column and an average velocity of
1,800 m/s for the post-Messinian sediments.

Seismo-stratigraphic interpretation incorporates previously
published information from surrounding areas such as the
Valencian Trough (Maillard et al. 2006), the Mallorca and
Ibiza channels (Acosta et al. 2003, 2004) and the Alboran
Sea (Comas et al. 1999). The correlation was performed on
the basis of specific acoustic facies characteristics of
individual seismic units and the occurrence of prominent
horizons—e.g. the MES.

The locations of seismic profiles acquired during the
M69/1 cruise are illustrated in Figs. 3, 4 and 5. Of these,
seven are reported in more detail below.

Fig. 5 Bathymetric map (m) of the Alboran Ridge. Lines Seismic profiles, red lines profiles shown in Figs. 11 and 12; violet mapped terraces of
the MES
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Results

SW shelf of Mallorca

Three seismic profiles from the south-western shelf of
Mallorca cover the shelf and upper slope (Figs. 6, 7 and 8).
The profile in Fig. 6 has a length of 18 km. In the proximal
part, the water depth is about 75 m and the seafloor
descends basinwards to a depth of 300 m. The profile in
Fig. 7 has a length of about 23 km. On the shallow shelf,
the water depth is about 75 m and the seafloor descends
south-westwards to 450 m. The profile in Fig. 8 has a
length of about 27 km and also strikes perpendicular to the
bathymetric contours. In the shallower part of the profile,
the water depth is 75–150 m. The seafloor descends to a
depth of 375 m towards the SW.

In all seismic profiles for this study area, we identified a
prominent high-amplitude reflection with an erosive char-
acter in the proximal part of the profiles. This reflection
correlates well with the MES of the seismic lines of Acosta
et al. (2004). In Fig. 6, the MES is located at 0.55 s TWT in
the proximal part, and ascends coastwards to the seafloor,
truncating several strong reflections at about 0.5–0.48 s
TWT. Adjacent to this truncation, a terrace about 1.5 km
wide is present at 0.48 s TWT.

In the distal part of the seismic section in Fig. 7, the
MES is downfaulted by 0.05 s TWT. Coastwards of this
morphological step, the MES occurs at 0.75 s TWT and
ascends at an angle of 1.4° up to a TWT of 0.48 s (approx.
400 m). At this depth, a change in dip is observed, the MES
becoming nearly horizontal (0.4°). Coastwards of this 400-
m-wide terrace, the MES ascends to 0.34 s TWT (1.5°)
before rising more steeply up to 0.19 s TWT. In the

proximal part of the profile, the MES has an irregular, near-
horizontal morphology.

In Fig. 8, the MES is observed at about 0.8 s TWT in
the distal part and at 0.2 s TWT in the proximal part. At
about 0.45 s TWT (approx. 380 m), it forms an approx.
1.5-km-wide terrace and a morphologic step; an incision
into the underlying unit can be clearly seen at the foot of
this step. This change in morphology occurs at a relatively
constant depth interval (380–400 m) in all available
seismic data from the Mallorcan shelf, except for one
profile. In this profile (not shown), a depression in the
MES occurs at 0.45 s TWT, but here the morphology of
the underlying unit is generally irregular. The changes in
MES morphology on the SW shelf of Mallorca and, in

Fig. 7 Seismic section from the SW shelf of Mallorca (for location,
see Fig. 3; VE vertical exaggeration). In the distal part a fault can be
seen, the MES (red line) being displaced by about 30 m. The MES
ascends up to a TWT of 0.48 s with an angle of 1.4°. At 0.48 s TWT,
the MES has a gentle dip of 0.4° for about 1 km. Coastwards, it
proceeds more steeply to 0.38 s TWT, where it ascends even more
steeply to 0.19 s TWT

Fig. 6 Seismic section from
the SW shelf of Mallorca
(for location, see Fig. 3; VE
vertical exaggeration). The MES
(red line) truncates internal
reflections of the underlying
unit at about 0.45 s TWT (red
arrow), and is overlain by a unit
with relatively weak reflections
which merges upwards into a
unit with strong reflections
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particular, the locations of terraces and cliffs are indicated
in Fig. 3.

In all seismic profiles, the MES is overlain by two
distinct units with different acoustic facies. The lower unit
consists of generally continuous, low-amplitude internal
reflections parallel or sub-parallel to the MES. In Figs. 6
and 7, undulations in these reflections mirror the irregular-
ities of the MES, and gradually diminish upwards. This
lower unit is superimposed by a high-amplitude unit. The
transition is marked by an increase in the amplitude of
concordant reflections. In Fig. 8, an unconformity marks
the boundary between the low-amplitude unit and the
overlying unit. In the proximal part of this profile, channels
are incised into the low-amplitude unit. The infill deposits

of these channels correlate basinwards with higher-
amplitude reflections and, accordingly, with the high-
amplitude unit of Figs. 6 and 7. Figure 8 also shows a
sediment body which overlies the infill deposits of the
incised valleys. The internal reflections of the wedge dip
basinwards at an angle of about 1°. This unit is notably
present only in this seismic profile.

Bay of Oran

Figures 9 and 10 show seismic sections across the shelf
and the adjacent continental slope of the Bay of Oran, at
water depths of 75–150 m. The continental slope dips at
an angle of about 19°. Both profiles reveal an unconfor-
mity below the outer shelf deposits. This unconformity
forms a terrace at a TWT of about 0.38 s (320 m). In
Fig. 9, the width of this terrace is about 1 km, the
corresponding value being about 800 m in Fig. 10. This
terrace has been identified on four profiles from this study
area (Fig. 4), the unconformity being masked by the
seafloor multiple on other profiles.

Coastwards, the unconformity ascends to a TWT of
about 0.18 s, where another hummocky terrace approx.
2 km wide is visible (Fig. 10). In this region, a truncation of
the underlying deposits at the unconformity can not be
clearly identified. Above the deeper terraces occurs a
prograding wedge composed of several dipping clinoforms;
basinwards, it is tilted due to normal faulting.

Alboran Ridge

Figures 11 and 12 show details of seismic profiles from the
northern flank of the Alboran Ridge. In Fig. 11, the seafloor

Fig. 10 Seismic section from the Bay of Oran (for location, see
Fig. 4; VE vertical exaggeration). A strong reflection (red line) forms a
terrace-like feature at about 0.35 s TWT (red arrow), about 500 m
wide. Coastwards, the strong reflection ascends to about 0.2 s TWT. In
the proximal part of the profile, the reflection is irregular and rugged,
probably due to former sub-aerial exposure. Superimposed on the
unconformity is a transparent seismic unit which itself is overlain by a
unit with basinward-dipping reflections. This latter unit is tilted due to
normal faulting in the distal part

Fig. 9 Seismic section from the Bay of Oran (for location, see Fig. 4;
VE vertical exaggeration). At about 0.35 s TWT, a morphologic
terrace can be seen (red arrow) in the prominent reflection (red line).
This terrace is about 1 km wide; coastwards, the reflection which
forms the terrace ascends to 0.18 s TWT. It is overlain by a transparent
unit comprising basinward-dipping clinoforms

Fig. 8 Seismic section from the SW shelf of Mallorca (for location,
see Fig. 3; VE vertical exaggeration). At about 0.45 s TWT, the MES
(red line) is incised into the underlying unit (red arrow) and forms a
step-like feature about 1.5 km wide. Coastwards, the MES ascends
steeply to 0.22 s TWT. Above it, a unit comprising relatively weak
reflections is itself truncated at the top. This unconformity is
characterized by incisions in the proximal part (green arrows),
whereas the transition between the two units is more successive in
the distal part
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ascends from 0.4 s (300 m) to 0.15 s TWT (112 m). A
distinct unconformity underlies the platform edge at
approx. 200 ms TWT below the seafloor. At a TWT of
0.43 s (360 m), underlying reflections are clearly truncated
at the unconformity. The unconformity shows a change in
dip indicating a 250-m-wide terrace-like feature, above
which a transparent seismic unit occurs. Close to the
seafloor, some high-amplitude reflections dip basinwards.

In Fig. 12, the seafloor ascends from 0.67 s (502 m) to
0.14 s TWT (105 m). There is a significant change in dip of
the seafloor at 0.15 s TWT (112 m), which marks the margin
of the flat-topped ridge. At about 0.45 s TWT (approx.
360 m), a 350-m-wide terrace-like feature similar to that in

Fig. 10 is present. A transparent seismic unit is again
observed to be superimposed on the unconformity. The
terrace-like feature was clearly identified on four profiles,
mainly along the northern flank of the ridge (Fig. 5).

Discussion and conclusions

Stratigraphy

Mallorca

On the seismic profiles off Mallorca, the morphology of the
MES resembles an embayment with cliffs and terraces at its
margins but a much smoother morphology at its centre
(Fig. 3). This laterally changing MES morphology probably
reflects the existence of calmer hydrodynamic conditions in
the interior part of the embayment and higher energy along
the offshore margins. The transparent unit overlying the
MES consists of lower Pliocene sediments, and has been
identified in many other parts of the Mediterranean (e.g.
Acosta et al. 2004; Maillard et al. 2006). Because of the
low reflection amplitudes, it is likely that this unit is
composed of hemipelagic sediments which have accumu-
lated during a sea-level highstand. The incisions at the top
of this unit can be related to a drop in sea level, presumably
dating to the Mid or Late Pliocene. The infill deposits, as
well as their distal equivalents, accumulated during the
subsequent sea-level rise and highstand. The superimposed
sediment body on Fig. 8 with basinward-dipping reflections
is interpreted to have formed during Pleistocene to
Holocene times.

Bay of Oran

No seismic data from the Bay of Oran have previously been
published and the stratigraphy can not be linked to any well
data. However, marine and coastal sediments of Neogene
age occur in the vicinity of Oran (Cornet et al. 1952).
Furthermore, Miocene carbonate platforms are known from
onshore sites NW of Oran (Cornée et al. 1994). In the
seismic data, a distinct unconformity can be recognized at
the base of the progradational unit. There is no indication of
sub-aerial exposure within this superimposed unit. We
therefore interpret the unconformity as the MES, at which
underlying rocks have been eroded during the MSC. The
progradational unit is most likely composed mainly of
carbonates which were produced on the shelf and exported
to the continental slope since the Pliocene. This interpre-
tation is corroborated by the analytical data of Betzler et al.
(2010), who found Holocene carbonates unconformably
overlying Miocene to Pliocene or older rocks on the outer
shelf.

Fig. 12 Seismic section from the Alboran Ridge (for location, see
Fig. 5; VE vertical exaggeration). An irregular rugged reflection (red
line) at about 0.43 s TWT represents an erosional unconformity (red
arrow). As in the case of the Bay of Oran (Fig. 10), this unconformity
is overlain by a transparent seismic unit above which basinward-
dipping clinoforms are visible

Fig. 11 Seismic section from the Alboran Ridge (for location, see
Fig. 5; VE vertical exaggeration). At a TWT of about 0.43 s, a
reflection (red line) truncates the internal reflections of the underlying
unit and forms an approx. 150-m-wide, terrace-like feature (red
arrows). The unconformity is overlain by a transparent seismic unit
which, in its proximal part, is characterized by a few strong,
basinward-dipping reflections just beyond the seafloor
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Alboran Ridge

Seismic and sedimentologic data from the Alboran Basin
show that the sediments have accumulated on a folded
metamorphic basement, while the seismic data from the
Alboran Ridge reveal that it is composed of volcaniclastic and
volcanic rocks (Hoernle et al. 2003; Duggen et al. 2004).
Betzler et al. (2010) show that neritic carbonates are produced
on the ridge, which probably was also the case during past
episodes of sea-level highstands. Our data suggest that
sediments are present on the ridge crest as well as on its
flanks. An erosional surface can be seen in the seismic sections
which we interpret as the MES. Although the composition of
the basement rocks (carbonates or volcaniclastics) is unclear,
the pattern of basinward-dipping reflections below the MES
suggests the presence of sedimentary strata.

Since terrigenous input from adjacent areas can be
neglected, we conclude that the superimposed transparent
unit, which partly shows dipping reflections above the
MES, consists of material exported from the ridge crest,
which is expected to represent an admixture of volcani-
clastics and carbonates.

Evolution of erosional terraces

In each of the investigated areas, terrace-like features and
morphologic elongated steps coastwards of these are
observed along a high-amplitude reflection. Commonly,
these may result from normal faulting or submarine
landsliding. Assuming faulting, the step would represent
the fault plane of the footwall block. If the step is
considered to result from mass wasting, it would represent
a head scarp upslope of the slide (Locat and Lee 2002).
However, a deep-rooted fault should also be observable in
the seismic data in the downward prolongation of the
escarpment, which is not the case. Furthermore, the spatial
extent of a normal fault should be linear. If the escarpment
is considered to result from sliding, a curved head scarp
should have the concave side facing the basin (Lewis 1971;

Dingle 1977). However, these diagnostic features differ
from the mapped escarpment and terrace morphology. Off
Mallorca, the morphologic step and terraces are present
only at the offshore margins of an embayment-like feature,
and not in its interior part (Fig. 3). In the Bay of Oran, the
step is bended with the convex side facing the deep basin
(Fig. 4). At the Alboran Ridge, no distinct step has been
observed, which rules out the presence of faulting or
sliding. Thus, we conclude that the terraces are formed by
erosion and, consequently, the elongated steps represent
cliffs which were generated during the MSC.

The presence of terraces at similar depths in three
different study areas strongly suggests that a common
regional event triggered their development. The notion of a
constant sea level in the Western Mediterranean at the depth
of the Sicily Sill during the MSC, as proposed by Blanc
(2000, 2006) and Meijer and Krijgsman (2005), is
consistent with these observations if the terraces evolved
contemporaneously and at essentially the same depth.

In the Bay of Oran, the TWT of these terraces
corresponds to a depth of approx. 320 m, whereas in the
study area on the Alboran Ridge they are found at about
360 m depth. Off Mallorca, the erosional truncation and the
terraces of the MES are present at a depth of about 380 m
(cf. all values calculated using a velocity of 1,500 m/s for
the water column and 1,800 m/s within the sediments).
These slight differences in terrace depths could be
explained by distinct subsidence and uplift rates in the
various study areas. Late Miocene reefs exist about 70 m
above present-day sea level in the hinterland of Mallorca
(Pomar 1979; Pomar and Ward 1995). According to Haq et
al. (1987), sea level was about 70–80 m higher in the Late
Miocene than today, but lower values (50–60 m higher sea
level) have recently been published (e.g. Müller et al.
2008). Although subsidence during the Pleistocene in the
Campos Basin was reported by Pomar and Ward (1995), we
conclude that the study area off Mallorca has been relatively
stable in terms of vertical movements since the Miocene.
The difference between the depths of the Mallorcan and the

Fig. 13 Schematic sketch illustrating the development of the MES
and associated terraces in the Western Mediterranean. During flooding
or drawdown events, water overflowed into the eastern basin, while
the sea level in the western basin remained constant. These events

triggered the development of erosional terraces due to abrasion,
dissolution and karstification close to sea level on western Mediter-
ranean continental margins
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Alboran Ridge terraces corresponds to an uplift rate of
0.004 mm/year at the ridge, which is consistent with data
reported by Comas et al. (1999). In the study area off Oran,
the calculated uplift rate based on terrace depth is about
0.012 mm/year in terms of a stable Mallorca scenario. This
value is in the order of previously published uplift rates
(0.02 mm/year) since the last interglacial (Bouhadad
2001).

As our observations reflect the postulated uplift trends in
the Oran (Bouhadad 2001) and Alboran region (Bourgois et
al. 1992; Comas et al. 1999; Maestro-González et al. 2008),
and a possible minor subsidence trend off Mallorca (Pomar
and Ward 1995), we infer a contemporaneous development
of the terraces at essentially the same depth in these areas.

Implication of occurrences of erosional terraces

Considering the sea-level history of the Mediterranean
basins during the MSC, the Sicily Sill is of central
importance. According to our interpretation for the
sediment-starved continental slopes investigated in this
paper, the margin erosion surface was shaped during
periods of sea-level stagnancy when water from the western
Mediterranean Sea overflowed into the eastern basin.
During these stillstands, hydrodynamic processes and,
accordingly, mechanical abrasion resulted in massive
erosion of MSC and older deposits. In addition, intensified
dissolution and karstification at or close to the sea level
could have contributed to the development of the observed
terraces and cliffs (Fig. 13).

Since the stratigraphy off Mallorca suggests that no
significant uplift or subsidence occurred after the Messi-
nian, we conclude that uplift must have occurred at the
Alboran Ridge and the Bay of Oran. Furthermore, we infer
that the palaeo-depth of the Sicily Sill corresponds to the
observed terrace depth of 380 m off Mallorca, thereby
contributing to the ongoing debate about the Sicily Sill
depth during the MSC. It remains unclear whether this
erosion appeared during the sea-level drawdown (Blanc
2000, 2006), during sea-level fluctuation in the MSC
(Gargani and Rigollet 2007) or during the terminal flooding
at the end of the MSC (Meijer and Krijgsman 2005). In the
case of rapid flooding (Blanc 2000, 2006; Garcia-
Castellanos et al. 2009), hydrodynamic processes would
not have the potential for massive erosion of the subsurface.
Even within such a scenario, however, modelling of the
genesis of evaporitic sequences in the Mediterranean
suggests that, during an early drawdown of the sea level,
water spilled over the Sicily Sill and stagnated in the
western basin during some thousand years (Blanc 2000,
2006). Such a protracted period of sea-level stagnancy
would plausibly suffice to erode the continental shelves and
to produce the detected terraces. Consequently, our obser-

vations support all those scenarios which accommodate
long-term sea-level stagnancies during the MSC.

Future work should focus on areas of minor sediment input
to validate this hypothesis. In such settings, the geometries of
the continental slopes are essentially affected only by
hydrodynamic processes—e.g. erosion at the wave base or in
the breaker zone. Such data could provide valuable information
on the sea-level history of the time period in question.
Furthermore, if this concept were to be verified at other
locations of a wider study region, this would be a valuable tool
for reconstructing subsidence and uplift rates along theWestern
Mediterranean margins since the Messinian Salinity Crisis.
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