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Abstract. This work results from the synthesis of author’s
works on the applications of stochastic techniques (genetic
algorithms with neural networks) for the optimisation of
mechanical structures. The emphasis of this work is on the
practical aspects and the feasibility of the aformentioned
techniques. The research strategy consists in substituting, for
finite element calculations in the optimisation process, an
approximate response of a neural network. More precisely,
the paper describes the use of backpropagation neural net-
works in creating function approximations for use in compu-
tationally intensive design optimisation based on genetic
algorithms. An example of application for space frame
optimisation of a helicopter tail boom is given in this paper,
for which we can talk of integrated optimisation. This
example (including displacement and frequency constraints)
show the use of neural networks as a function approximation
strategy to limit the computational costs associated with
stochastic search methods.
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Structural optimisation

1. Introduction: The Need for an
Integrated Optimal Design Process

The search for the best compromise between econ-
omic, mechanical and technological imperatives has
always been the primary objective of the mechanical
engineer. The methods used to achieve these objec-
tives have evolved considerably over the last few
years. The author’s experience in optimisation began
in 1983. At this time, design would come first, then
calculation and finally, optimisation. In practice, and
during experience of the optimisation of the shape
of mechanical structures between 1985 and 1990,
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many extreme cases were encountered. In these
cases, the question of optimisation was not dealt
with until damage had occurred in-service: the
author’s industrial partners realised (often too late)
that their designing left quite a bit to be desired.
They would then call for the author’s help in using
optimisation programs to supply them with an
improved ‘shape’. These shapes were reached
despite the technological limitations being very sev-
ere at this stage; so severe, in fact, that engineers
were powerless to resolve the problem. Innumerable
problems such as this were dealt with.

Figure 1 exemplifies this well. Some results in

Fig. 1. Optimal shape design of a rotor blade support.
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investigating the optimal shape of a helicopter gear
box are presented here. The part is located just
below the rotor blades. This axisymmetrical structure
is long enough to be considered as being clamped
at its base. The design variables and constraints
were given by the manufacturer. The objective is
the minimisation of the maximal tangential stress
along the exterior boundary. Figures 1 and 2 show
the initial and final boundaries and the tangential
stress distribution along the exterior boundary.

Such an approach to design has become unthink-
able nowadays. The economic competitive climate
has increased, design and manufacture delays have
been reduced, thus the numerous overlaps that this
approach involves have become prohibitive. In short,
optimisation can no longer be separated from the
act of design. It is now accepted that in an integrated
design approach, optimisation has to begin from the
design stage, taking into consideration the con-
straints of both specification and those induced by
different materials. Optimisation is therefore made
easier because constraints or limitations can more
easily be varied in accordance with all those
involved with the project. This was not the case in
the example above.

In this work, it will be shown that the integration
of optimisation from the design phase is, according
to the author, possible thanks to new optimisation
techniques. A number of optimisation methods are
popular at the moment, known asprobabilistic or
stochasticoptimisation. For example, the simulated
annealing method or genetic algorithms, whose prin-
ciple advantages are an assured convergence without
using derivatives, and eventual functions with dis-
crete and non-derivable variables, even though deter-
ministic methods of optimisation (calledgradient

Fig. 2. Tangential stress variations along the exterior boundary.

methods) necessitate a calculation that is resistant
to these sensitivities. Genetic algorithms rely on the
natural laws of selection, which allow a living
organism to adapt to a given environment. From
these principles, it seems sensible to apply genetic
algorithms to the optimisation of structures of mech-
anical structures. As will be shown in the example
of a helicopter’s tail boom, from the beginning of
the design process, genetic algorithms will allow
adaptation of the mechanical object to its environ-
ment, and to the specifications.

After a presentation of the methods and tools
used, this paper focuses on an application concerned
with the mechanics and calculation of structures
(Section 3). It will be seen later on, through the
example of Section 3, that the integrated optimis-
ation of mechanical structures has almost become a
reality. On the other hand, it will be seen in the
conclusion that the difficulties are more important in
an integrated, optimal design process for mechanical
systems, because of the complexity of the problems
encountered. Nevertheless, it will be seen that inte-
grated optimisation, and even alternatives to artificial
intellegence techniques, can effectively be con-
sidered for precise problems of mechanical tech-
nology.

2. Methods Used: Optimisation Tools
Adapted to Mechanical Technology

The author’s experience began with the optimisation
of the shape of mechanical structures (2D and axi-
symmetrical), although this was in the context of
traditional design [1–4]. Mathematical optimisation
programs were quite difficult to use, and not suf-
ficiently versatile to be adapted quickly to new
cases. An optimal integrated design could not be
achieved easily with normal mathematical program-
ming techniques, which require a formulation heav-
ily adapted to each particular problem. It will be
shown in this article that stochastic techniques are
ideally suited to integrated optimisation, and to
mechanical technology problems in particular. Note
that the essential characteristics of the problems are
as follows:

I the design variables are often a mixture of discrete
and continuous values;

I they are often highly constrained by strict techno-
logical constraints.
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2.1. Genetic Algorithms

The problem is to maximize a function ofn vari-
ables. The principle of Genetic Algorithms (GA) is
to make a population of individuals evolve according
to a replica of Darwinian theories. The starting point
is a population of individuals chosen randomly and
coded by binary numbers (as an example, because
we can have codings other than binary codings),
called chromosomes. From this point, the algorithm
generates, more or less randomly, new populations
formed from individuals, increasingly more adapted
to a given, well-defined environment. Selections and
reproductions are made from the best performing
parents of the population from which they come:
they are stochastic or deterministic. The creation of
these offspring is done by the application of genetic
operators (mutation, crossing). It is always stochas-
tic. The new replacement population is created by
selecting the best performing individuals from
among either the offspring or the parents of the
offspring. The replacement is either stochastic or
deterministic [5].

The essential advantage of these methods is that
they operate simultaneously on a test space of the
solutions. In all cases, the convergence is assured
towards an extreme. This extreme is not necessarily
the absolute extreme, but it has a greater chance of
being so than if a traditional gradient method is
used [5]. In effect, a stochastic method explores a
larger solution space. In addition, another essential
advantage of these methods lies in the small number
of assumptions required for the objective function.

2.2. Neural Networks

The operation of Artificial Neural Networks (ANNs),
as their name suggests, takes inspiration from bio-
logical neural networks. A large part of their
vocabulary has thus been ‘borrowed’ to describe
them. Details of the theory can be found in Jodouin
[6]. Discussion of artificial neural networks will be
condensed here, as this paradigm is well documented
in the literature. The use of neural networks for
simulation or modelisation will be done in two
stages: one phase, which is calledapprenticeship,
using finite element calculations; followed by acal-
culation or generalisationphase. In the present case,
neural networks should be able to estimate an objec-
tive function or a cost function of entry or design
variables. In the case of the optimisation procedure
and binary coding for the chromosomes of the GA
(for example, because we can have codings other

than binary codings), the exterior entries will be 0s
or 1s, which will correspond to the chromosome’s
digits.

The application of neural networks to modelis-
ation, especially for simulation of the calculations
for mechanical structures, is relatively recent, and
seems promising from the results obtained [7–9].
Parallels do exist, however, in adaptative reponse
surface methods, where polynomial response sur-
faces are used in lieu of the ANNs. The continuation
to modelisation seems natural, as the action of
modeling a process or behaviour necessitates knowl-
edge of the principle characteristics of the process
or behaviour. The network knows how to extract
these characteristics, and can therefore be memorised
easily. On the other hand, this ability to model
exploits the adaptation qualities of networks,
allowing them to improve as they are exploited. In
this work, effective neural networks were used, at
the current level of knowledge, and for which
apprenticeship and generalisation/calculation algor-
ithms are described by Jodouin [4]. This neural
network, quite easily programmed, is a three-layer
network with a sigmoid neural function called a
MLP (Multi-Layer Perceptron). In this work, the
neural network has been used in a ‘train as you get
the training exemplars’ mode during optimisation.
This is different from previous approaches, where
the training exemplars are generated first, the neural
network is then trained to provide function approxi-
mations, and the trained network is ultimately linked
to the optimiser. Figure 3 summarises this global
strategy. After the firstn generations (calculated
using an exact FEM-based analysis,n being left
with the choice of the user within sight of the
errors made on the approximations of the objective
function), the neural network learning is carried out
in parallel with the optimisation process. For the
neural network, we must recall that the entry vari-
ables are the digits of the chromosomes when using
the GA, and the exit variables are the objective
function and constraints of the optimisation problem.
The neural network is used in a ‘train as you get
the training exemplars’ mode during optimisation.
Training is carried out with the results of the first
n generations. When a new design is generated and
analysed through the neural network approximator,
some fractions of new designs reanalysed using
exact FEM-based analysis can be used in training
an enhanced network, as can be seen in Fig. 3 at
generationsj and j+1. More precisely, updating of
the neural network can be carried out when the GA
has already trimmed the problem. In our examples,
we have enhanced the base of training using exact
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Fig. 3. The global strategy used.

FEM-based analysis for all of the individuals in
several successive generations (in general, two or
three successive generations). There is no general
rule with regard to the moment when a reactualis-
ation of the training base must be carried out. This
moment is left to the user within sight of the
evolution of convergence of the GA, and the evol-
ution of the errors made on the approximations of
the objective function.

3. Integrated Optimisation of
Mechanical Structures

Here we give an example of a space frame optimis-
ation subject to frequency constraints: a helicopter

tail boom. This example was used in the past [10,11]
and was dealt with by way of conventional optimis-
ation methods. It is an example of space frame
optimisation subject to frequency and displacement
constraints. We are going to apply our new global
strategy to the example.

A space frame idealisation of a helicopter tail
boom is shown in Fig. 4 along, with node numbers
and dimensions, given in centimeters. Element con-
nectivities can be found in Table 1. The frame sup-
ports eight concentrated masses located at nodes 13,
14, 15, 16, 25, 26, 27 and 28. Each mass has a
constant value of 22.68 kg. Some forces are applied
at nodes 25, 26, 27 and 28, and are given in Table 4.
All members are made of thin-wall tubes. Four
possible cross-sectional shapes for the members are
shown in Fig. 5. The sizes and properties of cross-
sectional shapes are given in Table 3.

All members are made of the same material
(E = 7.2E7 kN/m2, Poisson ratio= 0.3, mass per
volume= 0.00277 kg/cm3). The frame is designed
for minimum weight subject to constraints placed
on the fundamental frequency and the maximum
nodal displacement which occurs at nodes 25, 26,
27 and 28 (in they direction). The lower limit on
the fundamental frequency is 0.25 Hz, and the upper
limit on the maximum displacement is 2 cm.

The optimisation problems previously solved
[10,11] were different because continuous variables
were used. The methods used were also different.
In Lust and Schmit [10], the method is based on
the application of a full gamut of approximation
concepts. In Woo [11], a class of a generalised
hybrid constaint approximation that requires only
the first-order constraint function derivatives has
been developed to overcome the inherent nonlin-
earity of the frequency constraint.

In this paper, the optimisation problem is solved
using discrete variables. The 48 structural elements
are arranged in 12 groups, as shown in Table 2.
Each group can take one of the four cross-sectional
shapes given in Table 3. The coding for the chromo-
somes is made of 12 digits (one for each group of
elements). Each digit can take the values 1, 2, 3
or 4. For example, the chromosome 431111111111
signifies that the first group of elements takes the
cross-sectional shape number 4, the second group
takes the cross-sectional shape 3, and the other ten
groups take the cross-sectional shape 1.

The main objective of this problem is the mini-
misation of total massM with frequency and dis-
placement constraints. These constraints are taken
into account in a penalisation function. The con-
straints are,g1 = (fmin/f) −1 , 0 (f frequency);g2
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Fig. 4. Helicopter tail boom.

Fig. 5. Cross-sectional shapes.

= u/umax−1 , 0 (u maximum displacement). The
penalised objective function is,F = M (1 + k1C1
+ k2C2), with Ci = 0 if gi , 0, andCi = gi if gi
. 0; k1 andk2 are weighting coefficients (we have
taken k1=k2=k).

The genetic population is made of 100 chromo-
somes. The global strategy given in Fig. 3 is applied.
After the five first generations (frequency and dis-
placement being calculated by the finite elements
method), neural network learning is carried out for
the calculation of frequency and displacement con-
straints. For the neural network, we must recall that
the entry variables are the digits of the chromosomes

when using the GA, and the exit variables are the
frequency and the maximum displacement. The neu-
ral network is used in a ‘train as you get the training
exemplars’ mode during optimisation. The training
is carried out with the results of the five first
generations, so the training uses 500 vectors. To
test the accuracy of the neural network approxi-
mations, 1000 other vectors have been chosen ran-
domly to compare finite element calculations with
neural network approximations. Table 5 gives the
relative errors between the two calculations. For the
displacement by example, it must be noted that
93.5% (of the 1000 vectors) have a relative error
less than 1%, and none of the 1000 vectors has an
error greater than 2%. 400 generations are then
made, and only neural network approximations are
used for these 400 further generations. The savings
in computational resources is very important,
because the 100 analyses necessary for each gener-
ation are made 60 times faster than when using
finite element analyses for each of the 100 elements
of the population.

The best final designs are given in Table 6 for
four different coefficientsk. For final design, in
each case the frequency is at the lower bound of
0.25 Hz and the maximum displacement is at the
upper bound of 2 cm. The final design material
distributions are almost the same for all cases. The
final structural weight obtained in the different cases
is approximately 53 Hz. Finally, it is interesting to
note the intuitively satisfying result whereby the
lighter designs contain slightly larger members at
the base (fixed) end of the structure.
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Table 1. Connectivities

Element Node 1 Node 2 Element Node 1 Node 2 Element Node 1 Node 2 Element Node 1 Node 2

1 1 5 13 10 9 25 13 17 37 22 21
2 2 6 14 12 11 26 14 18 38 24 23
3 3 7 15 9 11 27 15 19 39 21 23
4 4 8 16 10 12 28 16 20 40 22 24
5 6 5 17 9 13 29 18 17 41 21 25
6 8 7 18 10 14 30 20 19 42 22 26
7 5 7 19 11 15 31 17 19 43 23 27
8 6 8 20 12 16 32 18 20 44 24 28
9 5 9 21 14 13 33 17 21 45 26 25

10 6 10 22 16 15 34 18 22 46 28 27
11 7 11 23 13 15 35 19 23 47 25 27
12 8 12 24 14 16 36 20 24 48 26 28

Table 2. Groups of elements

Group Elements of the group Group Elements of the group

1 1 2 3 4 7 25 26 27 28
2 5 6 7 8 8 29 30 31 32
3 9 10 11 12 9 33 34 35 36
4 13 14 15 16 10 37 38 39 40
5 17 18 19 20 11 41 42 43 44
6 21 22 23 24 12 45 46 47 48

Table 3. Sizes and properties of sections

Cross-section 1 2 3 4

Interior (cm) 4 9 6 4.5
Exterior (cm) 4.15 9.2 6.8 5
Surface (cm2) 3.77 7.2 10.24 14.92
Inertias Ixx=Iyy 30.16 48.6 70.18 168.81
(cm4)
Torsional inertia 60.32 145.8 111.8 337.62
J (cm4)

Table 4. Forces applied to the structure

Node 25 26 27 28

FX (kN) 6.76 6.76 −6.76 −6.76
FY (kN) 7.67 −6.20 7.67 −6.20

4. General Conclusions and Synthesis

4.1. Conclusions on Neural Networks

This paper has presented an application of GAs in
problems of structural optimisation, where savings

in computational resources are achieved by using a
feedforward (backpropagation) neural network as a
universal function approximator. In fact, there is
substantial literature where neural network-based
function approximations have been coupled with
GA-based search techniques. The originality of this
work is that the neural network has been used in a
‘train as you get the training exemplars’ mode dur-
ing the optimisation. This is different from previous
approaches, where the training exemplars are first
generated, the neural network is then trained to
provide function approximations, and the trained
network is ultimately linked to the optimiser.

In the course of our numeric experimentation on
neural networks, they have seemed to present some
limitations. These limitations are not to do with data
processing: currently, thanks to improvements in
computers, it is possible to use neural networks of
a significant size. It is more the absence of an
established theoretical knowledge of the functioning
of the networks that renders their use as being
delicate. Various problems have needed to be dealt
with, such as the necessity to study the feasibility
of every application before the numerable numeric
experiments, the uncertain sizing of a network, or
the absence of theory for the anticipatory calculation
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Table 5. Relative errors

Error (%) −,1 1,−,2 2,−,3 3,−,4 4,−,5 5,−

Frequency (%) 53.8 29.3 10.2 4.0 2.0 0.7
Displacement (%) 93.5 6.5 0 0 0 0

Table 6. Solutions

Case Penality Solution Mass Frequency Frequency Displacement Displacement
factor k chromosome (kg) neural finite neural finite

network element network element
(Hz) (Hz) (cm) (cm)

1 0.9 41 21 21 50.538 0.2449 0.2450 2.027 2.040
21 21 11

2 1 41 22 21 52.389 0.2516 0.2532 1.989 1.999
21 21 11

3 5 41 22 21 52.389 0.2516 0.2532 1.989 1.999
21 21 11

4 10 41 31 21 53.365 0.2534 0.2537 1.955 1.958
21 21 11

of errors. Fortunately, various new techniques are
now available to predict the bounds on neural
network-based function approximations. While such
bounds tend to be conservative, they nevertheless
exist, and can be used as guidelines with which to
generate a network architecture, as well as for the
distribution of training data for the network.

For the modelling of mechanical structures, it is
reasonable to wonder if the use of a simple method
derived from the Rayleigh–Ritz method (well known
in the field of vibrations) would not be more suitable
for the problems considered here. This idea can be
illustrated using a well known example in statistics.
Suppose that one wanted to optimise the number
and situation of stiffeners on a given plate. As with
the neural network, one can begin to evaluate a
number of representative solutions by finite element
methods. In a neuromimetic strategy, these solutions
act as the ‘learning’. In a Rayleigh–Ritz type strat-
egy, the solutions are used to find the stiffness
corresponding to a new configuration of stiffeners,
without having to redo the finite element calcu-
lations. The new solution is searched in the form
of a weighted sum of test solutions calculated pre-
viously. To find the weighting coefficients, or
weights (as with neural networks), mechanics offers
a reliable theory: the weights are obtained by
minimising the total potential energy of the plate in
question. It is also possible to take the minimisation
of the error, or of the residue on the equilibrium
equation, as the criterion.

The method then appears to be more a Galerkin
weighted residue method. One notes a certain simi-
larity between these strategies and the neural net-
works, the difference being that mechanics offers a
rigorous error criterion. In their favour, neural net-
works have the advantage of having a better capa-
bility to adapt. Moreover, there is nothing to stop
us operating a neural network using the error cri-
terion of mechanics to optimise and control the
weights. It is proposed to test these strategies in the
near future.

Section 3 of this work has been given over to
neural networks, which present a number of intrinsic
qualities. These qualities may eventually make the
networks superior to the conventional mechanical
methods discussed earlier. The first quality is paral-
lelism: the networks are made up of elementary
units which can calculate simultaneously (one of the
reasons for the superiority of the brain). They are
also very capable of adapting. Finally, they can
resolve the imprecise, recognise the vague, and so
prove to be highly robust.

4.2. Towards an Optimal Integrated Design
for Mechanical Systems

As was shown in Section 3, it is possible to tend
towards an optimal integrated design for mechanical
structures. The GA technique proves itself to be
extremely effective, successful and easy to use for
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constrained optimisation problems, when the cost of
calculation is reasonable. It is possible to talk of
integrated optimisation due to the versatility, ease
of use and adaptability of genetic algorithms. In
contrast, as soon as it is desirable to work at a
higher level, such as the optimisation of complex
mechanical structures, the calculations quickly
become prohibitive and render genetic algorithms
absolutely inoperable. The idea of this paper is to
model these structures by neural networks which
may, as previous numerical experience has shown,
allow the process to be given the power to carry
out the calculations, once learning and various
adjustments have been undertaken.
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