
Engineering with Computers (1999) 15: 12–36
 1999 Springer-Verlag London Limited

Object-Oriented Symbolic Derivation and Automatic Programming of
Finite Elements in Mechanics

D. Eyheramendy1,2 and Th. Zimmermann1
1Laboratory of Structural and Continuum Mechanics (LSC), Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne,
Switzerland;2CDCSP/ISTIL Universite´ Claude Bernard Lyon 1, Villeurbanne, France

Abstract. Symbolic approaches to assist in the develop-
ment of finite element formulations have been used since the
late 1970s. Today, symbolic mathematical software such as
Mathematica, Maple, etc., has proved to be helpful when
testing formulations. In earlier work, the authors introduced
a new way of integrating naturally symbolic concepts in
numerical finite element codes, taking advantage of an object-
oriented code organization. In this paper, we wish to prove
on practical examples that the proposed approach is very
attractive and promising today, leading to an alternative way
of conceiving finite element codes. After presenting a state-
of-the-art of symbolic approaches for finite element develop-
ments, we first give a practical application of symbolic
developments (for discontinuous space-time formulations),
and then examples of Computer Aided Software Engineering
tools that can be introduced into such a finite element
environment.

Keywords. Finite elements; Object-oriented pro-
gramming; Symbolic approaches

1. Introduction

New technologies in computer science applied to
mechanical computations open the way to alternative
approaches for the solution of mechanical problems.
The usual approach consists of performing a theor-
etical study of the given problem, which normally
leads to tedious procedures carried out by hand
and followed by a computer model implementation.
Nowadays, these successive operations can be per-
formed more efficiently through the use ofhigh

Correspondence and offprint requests to: Dr Th. Zimmermann,
LSC, Swiss Federal Institute of Technology of Lausanne, 1015
Lausanne, Switzerland. E-mail: lscKdgc.epfl.ch

level software tools, as shown in Fritzson and Fritz-
son [1]. These tools can be grouped into three
main categories. The first corresponds to the last
generation of high level programming tools, which
can be decomposed into two main classes: the classi-
cal procedural languages (Fortran 77 and 90, Pascal,
etc.) and the object-oriented languages (C++,
Smalltalk, Java, etc.). The second group includes
algebraic software systems such as Maple, Mathema-
tica, Matlab, etc. As shown in Fritzson and Fritzson
[1], it is worth having a third type of approach,
hybrid, and dedicated to general mechanical analysis,
which means an approach based on mixed symbolic-
numerical tools. The objective of this paper is to
introduce an example of the development of a finite
element formulation in such an environment, based
on high level programming languages, capable of
both manipulating algebraic equations and per-
forming efficient numerical computations. It must
be widely open to all types of future extensions,
such as the application to new finite element formu-
lations or alternative numerical schemes.

In Section 2, an attempt is made to classify
different kinds of implementations of symbolic con-
cepts for the finite element method. It is followed
by a description of the main concepts of a new
unifying environment called FEMTheory, mixing
symbolic and numerical features to support and
speed up the development of finite element code.
Earlier published work is extended in Section 3 to
an example of the development of space-time formu-
lations based on a one-dimensional linear advection
equation; and in Section 4, we show that high level
tools to assist the code developer can be conceived
very easily in such an environment. This is illus-
trated through the examples of writing consistency
control and dimensional analysis.

13Object-Oriented Symbolic Derivation

2. Overview of the Use of
Mathematical Tools and Object-
Oriented Programming for Finite
Elements

2.1. Use of Algebraic Computation Tools for
Finite Elements

The use of algebraic manipulations software has
always been a point of interest for finite element
development. The first related works date from the
beginning of the development of the finite element
method in the 1970s. Among these, Luft et al. [2]
describe a methodology to automatically generate
finite element matrices based on the characteristics
of the new element; the approach is restricted, how-
ever, to a finite number of problems: plane strain,
bending and shallow shells. Since then, a lot of
people have used algebraic computation capabilities
to assist finite element solution procedures. Similar
works, organized in three main categories, are men-
tioned here. First, some authors apply symbolic com-
puter systems directly to finite element analysis,
mixing both analytical and numerical approaches.
The second category groups all the works whose
main objective is to improve the efficiency of
numerical computations in classical finite element
codes. Finally, some authors aim at accelerating
finite element code development using either existing
tools or generating them.

2.1.1. Semi-analytical/numerical Approaches
In this type of approach, a classical finite element
approach is programmed within a symbolic software
package. Some variables are kept as symbolic para-
meters, and thus their influence on the computations
can be evaluated. Two typical examples are given
here.

In Choi and Nomura [3], an application to 2D
elasticity is developed within the symbolic algebra
software Mathematica. The displacement fields for
a 2D body subject to linear temperature distribution
is obtained in a semi-analytical form. Two tests
are performed: a homogeneous elastic body with
rectangular shape; and a body containing a circular
inhomogeneity. This method renders possible the
automation of otherwise tedious code writing, and
can be useful for sensitivity analysis because all
relevant parameters remain in symbolic form. In
Ioakimidis [4], the software tool Mathematica is
used for the solution of two simple elasticity prob-
lems by the finite element method. The principle of

the approach consists of keeping a parameter in the
symbolic form of the finite element matrices, and
using Taylor series expansion for approximations.
Thus, the objective is to try to optimize the para-
meter of the computation. It is applied [4] to a
square plane isotropic elastic medium under sym-
metric loads, divided in eight triangular elements.
The problem is solved by means of a Gauss–Seidel
method, which makes it possible to study the influ-
ence of Poisson’s ratio. The second example consists
of the bending analysis of a rectangular isotropic
elastic plate with simply supported edges and loaded
with a uniformly distributed perpendicular load.
Here the influence of the ratio of the dimensions
is studied.

This semi-analytical/numerical environment should
obviously provide a convenient framework for the
optimization of parameters, through the use of finite
element techniques for the computation. But at the
current state of development in software and hard-
ware, this can only be applied to small problems.
Moreover, extension to alternative linear anda for-
tiori nonlinear problems seems difficult.

2.1.2. Enhancing Finite Element Code
Performance
Another current use of mathematical software tools
consists of performing some preliminary compu-
tations in order to enhance the efficiency of the
finite element code.

In Yang [5], expressions for linear isotropic
materials in statics in 2D and 3D are evaluated
algebraically, and integration of the stiffness matrix
and external forces is performed. Thus the inte-
gration scheme is optimized before the code is writ-
ten.

In Silvester and Chamlian [6], the analytical inte-
gration scheme is also optimized, through the use
of Maple, and the Fortran finite element code is
generated directly by means of a Maple func-
tionality. The code is then applied to solve finite
element problems in magnetics. An approach with
similar purposes is developed by Yagawa et al.
[7]. Here REDUCE and Macsyma are employed to
optimize a 2D 4-node isoparametric element for
elastic analysis and to generate the corresponding
code. In Bardel [8], an application of symbolic
computing to the hierarchical FEM is shown; in this
method, the degreep of the approximating poly-
nomial functions tends to infinity, which addresses
the problem of the accurate computation of the
integrals for large values ofp. The approach chosen
in this paper is to evaluate them in a symbolic way

14 D. Eyheramendy and Th. Zimmermann

by means of the package REDUCE. This is illus-
trated on 2D elasticity, and the Fortran code is
produced automatically, by means of a REDUCE
function.

Two important features of using existing math-
ematical packages are the following. On the one
hand, it is possible to use the power and flexibility
of these environments to optimize the expressions
needed to evaluate finite element matrices. On the
other hand, the numerical code can be generated
directly within the environment; the advantage is
that the code which is generated automatically does
not need any debugging.

2.1.3. Speeding up Finite Element Code
Development
The derivation of finite element matrices generally
involves tedious mathematical computations. The
idea is to reduce the time spent on these manipu-
lations through the use of a symbolic mathematical
environment to determine the matrices of the finite
element method, and eventually introduce the final
elemental forms automatically into an existing
numerical code (written in Fortran for all the
examples of this section). This leads to a systematic
development of a finite element code for a given
formulation. Some of the works presented below
propose programs which directly generate the correct
matrices. They are fed with various input para-
meters, such as number of nodes or number of
degrees of freedom. Some other works use classical
mathematical software to perform the derivations.

An illustration of the first approach is given by
Gunderson and Cetiner [9]. This paper presents the
main features needed to develop finite element stiff-
ness matrices with a computer. An illustration is
made for the development of a third order triangular
plate bending element. This makes it possible to
test, at low cost, new elements for solving a given
practical problem. References [10] and [11] are
based on the same approach. Applications are shown
on a cylindrical shell and on the analysis of a
curved beam element [9], whereas in [10], simple
examples are shown but the method is applied to
space-time elements. In Luft et al. [2], the use
of algebraic software is suggested to manipulate
polynomials and perform numerical integration for
finite element development. This methodology
includes the choice of parameters, such as the num-
ber of nodes, number of degrees of freedom per
node for each variable, expansion of the polynomial
for displacements, geometric and material properties.
The user then keeps the main features of a finite

model under his control in order to obtain the
correct matrix forms. Many authors have followed
the same approach. In Barbier [12], the mathematical
package REDUCE is used to automatically produce
elemental mass and stiffness matrices by means of
Hermite polynomials, and then generate the corre-
sponding Fortran code for a conventional finite
element code. In the same way, in Korncoff and
Fenves [13], symbolic generation of a finite element
stiffness matrix is achieved. Here, the authors have
taken advantage of the user-friendly capabilities of
MACSYMA: a library option gives access to a set
of pre-defined matrices’ shapes for material proper-
ties in linear elasticity. In Noor and Anderson [14],
the potential of using symbolic manipulations in the
development of nonlinear finite elements is shown.
This is the only work that was found relating to
the study of nonlinear problems. The development
of nonlinear finite elements goes through three steps:
the generation of the algebraic expressions for the
stiffness coefficients of nonlinear analysis; the gener-
ation of the corresponding Fortran code for numeri-
cal evaluation of stiffness coefficients; and the
checking of the consistency of the Fortran code
generated by comparing it to the Fortran statements
for the arrays of coefficients given in the MAC-
SYMA format. Two examples illustrate the
approach. A displacement formulation for a 2D
shear-flexible, doubly-curved deep shell element, and
a mixed formulation for the same model with dis-
continuous stress-resultant fields at inter-element
boundaries. In Cameron [15], the algebraic software
Maple is used for multivariate polynomials compu-
tation for finite element models. Polynomials and
their derivatives are computed through the use of
Horner’s method, and efficient C and Fortran codes
are produced. In Leff and Yun [16], a system for
the generation of the global stiffness matrix is
described. An input file for a specific problem is
created for a system called SFEAS (Symbolic Finite
Element Analysis System), which generates a file in
the symbolic mathematical language REDUCE. The
result is run and a Fortran code is produced, and
then integrated into the equation solving system.
The code produced here is much more efficient
than NASTRAN, but the preprocessing phase which
includes running the REDUCE system is slow. In
Wong [17], a Lisp-based system to derive formulas
for the finite element method and to generate Fortran
code directly is described. Efficient techniques for
code generation are employed, such as automatic
labeling of expressions and exploitation of sym-
metries in expressions. It is the only reference in
which the problem of automatic programming is

15Object-Oriented Symbolic Derivation

clearly addressed. The package is written in Lisp
and runs with MACSYMA. The input can be given
by the user interactively or introduced via a script
file. The different entities needed for finite element
formulations can be generated, for exampleB-matrix
(see [77, p. 87]), Jacobian matrix, stiffness matrix,
etc. The accent is put on the optimization of code
generation, aiming at getting an efficient numerical
code. These last two examples are probably among
the best systems which were developed. Many other
similar applications can be found in [18] and [19],
and the references therein.

The examples given in this section show the
usefulness of high level tools in the development of
finite elements, and this analysis draws the main
lines of the concepts needed for a general purpose
environment dedicated to the finite element method.
The proposed approaches demonstrate the potential
of symbolic software tools for enhancing FE tech-
niques in a computerized environment; on the one
hand, the domain of application is wide, and on the
other, various solution schemes exist. They show
that, in order to get a general purpose system for fast
prototyping of finite elements, several ingredients are
necessary: a natural and user-friendly description of
the problem, an efficient symbolic computation tool
and, finally, an efficient link between the symbolic
tool and the numerical finite element code. All
these systems need a preliminary analysis, usually
performed manually, before the development can be
passed over to the computer algebra software, and
suffer from a lack of generalization capabilities. In
fact, all these systems have their drawbacks. The
first and most important one is that all the systems
still need a preliminary analysis performed manually,
which can be rather tedious. The second one is the
necessity to use multiple systems whicha fortiori
require that the developer should know each of
them. For example, in [6–8], derivations of finite
element matrices are obtained through an algebraic
system (Maple, REDUCE, Macsyma); the elemental
forms are then introduced into a classical finite
element code by means of a classical programming
language (in all these cases Fortran). Consequently,
the user has to make the symbolic computations in
one environment and the numerical computations in
another, with the necessity for him to be able to
evolve in two different programming environments,
and to learn both an algebraic software language
and a classical programming language. The third
drawback has to do with the computerized symbolic
manipulations. Each of these systems has been
developed to optimize specific features of the finite
element approach; for example, in Yagawa et al.

[7], numerical integration is optimized, whereas in
Cameron [15] it is the accuracy of the computation
of polynomials that is optimized. This means that
all these systems are specialized for some specific
tasks. In fact, the extension of these tools or
approaches to new finite element problems can
become a tremendously time-consuming task, and
can lead to impossibilities in complex nonlinear
approaches.

The use of object-oriented techniques makes it
possible to overcome these difficulties, while keep-
ing the main advantages of the symbolic approaches.

2.2. Object-Oriented Finite Element
Programming

Several difficult steps precede the actual develop-
ment of FE software, which represents only the last
step in the process of developing simulation tools.
At the very beginning lies a given physical problem,
which is generally modelled by a set of partial
differential equations. At this stage, assumptions are
made on the geometry, the kinematics, the loading,
etc. A finite element strategy is then applied to the
mathematical model. This results in general in a
few pages describing the algorithms and the matrix
form of the problem, expressed in a rather simple
mathematical language. Traditional approaches lead
to the elaboration of the corresponding compu-
tational tool, which is usually quite different from
the original mathematical form. The problem of both
the architecture of the software and the language
used in this development is a crucial point evoked,
for example, in [20,21]; to summarize, it is neces-
sary in some sense to get closer to the natural
mathematical or mechanical language. Thus, the
coupling between conventional procedural
approaches (the most popular is Fortran) and the
developing of high level data abstraction concepts
with simple and natural programming rules, leads
to a new generation of FE codes [22,20].

A new approach for the FE code organization,
advocated in [23,24], promotes object-oriented pro-
gramming. This approach naturally encompasses
concepts for a high-level architecture, and evolution
towards more natural mathematical languages. For
the first time [24,25], object-oriented programming
has been proposed as a general methodology for
finite element implementation. Both implementation
examples use a Lisp-based system. One of the key
points of the method to get better structured pro-
grams is the very high level data abstraction capa-
bilities of the approach. In Rehak and Baugh [24],

16 D. Eyheramendy and Th. Zimmermann

objects of matrix type appear, and in Miller [25],
structural objects such as node, degree of freedom,
and element are described. The latter is completed
in Miller [26], where object-oriented languages are
discussed. In Fenves [27], the modularity and reus-
ability of object-oriented finite element codes are
put forward, and the efficiency in the design and
the implementation of FE is emphasized. The same
conclusions are drawn by Forde et al. [28]. Here
an interesting comparison is performed between a
classical FE code (a C program) and an equivalent
object-oriented version (a mixed C–Object Pascal
program). The size of the OO code is smaller,
mainly due to the use of both hierarchical organiza-
tion and inheritance. Similar remarks can be found
in many papers: [29–44]. In Zimmermann et al.
[45–47], a complete OO environment for linear FE
analysis is thoroughly discussed. A new concept is
introduced here as a programming rule, ‘the non-
anticipation rule’. By never anticipating the state of
the object when sending it a message, the code
becomes much more robust. The extension of the
ideas to nonlinear analysis can be found in Dubois-
Pélerin and Pegon [48,49], with additional interest-
ing concepts such as ‘unassembled matrix’, which
seems to allow a more flexible implementation of
solution schemes by means of alternative storage.
A complementary approach to that proposed by
Dubois-Pe´lerin and Zimmermann [47] is proposed
by Menétrey and Zimmermann [50] for nonlinear
constitutive laws, here J2 plasticity. Accordingly, in
References [51,52], an advanced description of the
object ‘material’ is given. The integration of com-
plex constitutive laws in a C++ object-oriented FE
code is made easier and more flexible through the
use of C++ programming rules, permitting dynamic
binding and linking of the code. Since then, the
object-oriented paradigm has been used in many
fields of computational mechanics: in parallel
implementations of the FE code [53–55], in rapid
dynamics [56,57], in multi-domain analysis for metal
cutting, mould filling, in composite material forming
[58,59], and in fracture mechanics [60]. This list is
of course non-exhaustive, but shows that these ideas
are now widespread in the computational mechanics
community. In most of these works, it has been
shown that the implementation more closely
resembles the mathematical developments. Roughly
speaking, the algorithms are easier to describe, and
the definition of basic mathematical entities is natu-
ral. The object-oriented paradigm has been shown to
be the most appropriate to easily describe complex
phenomena, but this description is usually limited

to the elemental forms and their management within
complex solution algorithms.

2.3. Object-Oriented Hybrid Symbolic-
Numerical Approach for Finite Element
Analysis

2.3.1. Basis of a Hybrid Symbolic-Numerical
Approach for Finite Element Formulations
Taking into account the features developed in the
works on symbolic derivations reported above, and
on object-oriented finite element approaches, the
idea is now to develop a system dedicated to fast
prototyping of finite element formulations.

First, the need to deal with a large range of
problems leads to the creation of an environment
capable of managing all the concepts needed to
mathematically describe both the physical problem
(e.g. differential equations) and the elaboration of
the finite element formulation (e.g. variational for-
mulations, integration by parts, weak forms, finite
element approximations, etc.). A second important
feature is the necessity to keep a traditional numeri-
cal code, because of its efficiency. This can be
justified, for example, for the following reason: com-
plex geometric domains are necessary to test finite
element formulations; somehow, tests have to be
made on real life problems. The natural integration
of both a numerical finite element environment and
features for symbolic manipulations can easily be
achieved through the object-oriented paradigm.
Nowadays, in the category of high level languages,
object-oriented programming is getting more and
more attention in computational mechanics, as
shown above. In the particular context of finite
element software development, this type of approach
leads to better structured codes for which mainte-
nance and extendibility are facilitated. These are the
capabilities of the approach to represent complex
systems which lead us to select it. The result should
be a global environment in which the numerician is
able to move naturally, always using a language
close to his natural one. This work can be seen as
an extension of previous ideas developed for object-
oriented concepts applied to finite elements [45–47]
to the symbolic derivation of the finite elements
formulations; it may be seen as a new way of
programming finite elements. The link between the
numerical world and the symbolic world leads to
the development of object-oriented concepts for the
automatic programming of symbolic elemental
matrix forms derived from finite element formu-
lations. The new environment for symbolic deri-
vation is called FEMTheory [61,62].

17Object-Oriented Symbolic Derivation

2.3.2. Fast Overview of the Object-Oriented
Environment FEMTheory
Symbolic concepts have been introduced into an
object-oriented environment capable of representing
the different steps of the derivation of numerical
modeling [30,61–63]. The main classes of the
environment are recalled here.

I ClassTerm represents the smallest entity manipu-
lated here, the term. Its instances know their
name, their indices, their derivation indices and
time derivation indices. They are merely character
strings, but they are capable of analyzing them-
selves, and define whether the field is scalar or
tensorial; they can also identify if and which type
of derivation operator is applied to them. Finally,
they are capable of discretizing themselves.

I ClassExpression has a variety of behavior. First,
symbolic manipulations like addition, multipli-
cation, inversion, derivation in local and global
frames, identification of specific operators (like
the divergence), distribution and substitution. Sec-
ondly, discretization of terms and, finally, code
generation. ClassIntegral implements the same
mathematical tools asExpression. The main dif-
ference consists in the application of the linearity
property to expand the integral. This class has a
specific discretization scheme and code gener-
ation process.

I Class Functional also corresponds to an
expression, but with integrals as components.
Most of the behavior is inherited from the super
classExpression. However, it implements specific
discretization and code generation. A detailed
description of classes is beyond the scope of this
article; concepts are described by Zimmermann
and Eyheramendy [61], a complete description of
the environment is given in Eyheramendy and
Zimmermann [62], and automatic programming
principles are given by Eyheramendy and Zim-
mermann [63]. In the following section, a practi-
cal example of a general development of a
numerical formulation in the new environment is
illustrated on an advective problem.

3. An Example of Development to
Solve Advective Systems

3.1. Discontinuous Space-Time Formulations

In this section, the aim is to provide the environment
with features for computational fluid dynamics. In
this context, faced with the computation of

deforming domains leads to a crucial strategic
choice. This problem can be solved by adding a
new unknown and a new equation to handle the
interface (e.g. see [64–66] and references therein);
but without using additional unknowns, the formu-
lation to be used somehow needs to embed Lagrang-
ian ingredients. The first possibility would be to use
a fully Lagrangian formulation; large and sometimes
unnecessary mesh distortions are one of the draw-
backs of the method. An alternative approach is to
use formulations mixing Lagrangian and Eulerian
concepts. One of the most widely used is the Arbi-
trary Lagrangian Eulerian approach, widespread in
the finite element community [67,68]. Discontinuous
in time space-time formulations, initially used on a
fixed mesh for accuracy purposes (e.g. see [69] for
elastodynamics), were used with moving meshes
first in [70–73]. The great interest of the formulation
is its simplicity and its flexibility, i.e. its capability
to allow moving meshes (driven or not). This
method has also been used in large-scale flow simul-
ations (e.g. see [74,75] and references therein).

The purpose of this section is to show how natural
and easy it is to introduce the concepts needed to
handle this kind of formulation into the
FEM Theory environment.

3.2. Integration of Discontinuous Space-Time
Formulations Concepts in FEM Theory

3.2.1. The Objects Needed for Discontinuous
Space-Time Formulations
The best way to illustrate the new approach we
want to introduce in the environment is to isolate
the new concept by means of a simple formulation.
The new objects and behavior can then be deduced,
and a new class can be described.

A discontinuous space-time formulation for a linear
one-dimensional advective equation. In this section,
the formulation is presented on the resolution of a
simple linear one-dimensional advective equation,
which is discussed at length by Shakib [76]. The
purpose here is to introduce symbolic object-oriented
concepts to manage the kind of space-time formu-
lations described in [71–73] in FEMTheory. The
formulation is recalled first.

The strong form of the problem is given as
follows: Find u(x,t) with appropriate continuity con-
ditions on V = [0,1] for 0 # t # tf such that

u,t + Au,x = 0 on V

with boundary conditionsu(0,t) = u, u(1,t) = 0, and

18 D. Eyheramendy and Th. Zimmermann

initial conditions u(x,0) = u0, where A is the advec-
tion constant.

The variational formulation is written on the
space-time domainQn, on a space-time slab bounded
by tn and tn+1, as illustrated in Fig. 1 (see [74] for
more details about notations). Define the approxi-
mation spaces for solutionsu and weighting func-
tions w:

(Sh)n = { uh P [H1(Qn)]huuh = u on (Pn)u}

(Vh)n = { wh P [H1(Qn)]huwh = 0 on (Pn)u}

The approximation of the variational form is: For
each time slab [tn,tn+1], find uh P (Sh)n such that
∀wh P (Vh)n:

E
Qn

(uh
,t + uhuh

,x)whdq + Onel

e=1

E
Qne

(uh
,t + uhuh

,x)

t(wh
,t + uhwh

,x)dq + E
Vn

[[uh]](wh)+
ndv = 0

The design of the stabilization parameter proposed
by Shakib [76] is

t = SS 2
DtD2

+ S2uuu
h D2D−.

where Dt = tn+1 − tn and h is the mesh parameter
(spatial length of the element in the current case),
and where [[uh]] = (uh)+

n − (uh)−
n is called the ‘jump

term’, corresponding to the following definition:
(uh)6

n = limε→0uh(tn 6 ε).
The first integral of the formulation corresponds

to the classical Galerkin formulation written on
domain Qn; the second one is the Galerkin Least-
Squares term, added for stabilization purposes; the
last one allows weak enforcement of the continuity
of the solutionu over the global domain. Theoretical

Fig. 1. Description of the space-time domain.

details about this formulation can be found in
Shakib [76].

The objects for the discontinuous space-time formu-
lation. The first two terms of the formulation on
the space-time domain can be directly introduced in
the FEM Theory environment. In the sense of the
finite element method, the time can be considered
as an additional coordinate. So, the numerical treat-
ment is obvious in the symbolic environment. But
a new concept is needed to represent the third term,
i.e. the ‘jump term’ eVn

[[uh]](wh)+
ndv. Part of it is

known, i.e. (uh)−
n is computed at the previous time

slab; and part of it is the current unknown, (uh)+
n.

From the point of view of the finite element method,
the formulation leads to the solution of a linear
system at each time slab of the formKd = f, where
d is the vector of the nodal unknowns. The elemental
contributions coming from the first two terms are
obvious if classical finite elements are used. It is
worth describing the elemental contributions due to
the ‘jump term’. They can be expressed by means
of notations introduced by Hughes [77] as follows,
on an element illustrated in Fig. 2.

Ke
jump = E

V
e
n

NtN dV and fejump = Ke
jumpd−

where N is the classical matrix of shape functions
of [77], and d− is the vector of nodal unknowns
computed on the previous time slab. The integration
is done on the space domain in the initial configur-
ation (attn), i.e. on the surfaceVe

n, as seen in Fig. 2.
This shows that the FEMTheory environment is
capable of building elemental matrices such as
Ke

jump; the new concepts to add here are those to
manage and interpret the ‘jump term’, i.e. mainly
concepts linked to the numerical integration scheme,
and to the automatic implementation into the
numerical code.

The idea is then to introduce a new object to
represent the ‘jump term’ in the variational formu-
lation, and to enrich the existing objects to handle
this new object, particularly for automatic integration
into the numerical code. To make the implemen-
tation easier, one can note the following:

E
Vn

[[uh]](wh)+
ndv = FFE

Vn

uh(wh)+
ndvGG

This allows a treatment of the ‘jump’ at a higher
level than inside the integral. The new object, an
instance of a class calledJUMP TERM, is rep-
resented by the double bracket notation. It is natural
to manipulate it as a special term in the formulation.

19Object-Oriented Symbolic Derivation

Fig. 2. An example of space-time element for a one-dimen-
sional space.

The structure of the object appears in Fig. 3. The
object has as the only piece of data its variable,
which is in this example an integral. Most of the
tasks are decentralized to the attribute variable; the
algebraic manipulation methods are inherited from
class Term. This object is a specialization of an
object term. Additional tasks have to be added to
other objects such as products for generating the
code with the selector of methods needed for ‘jump
term’ in the numerical code. Note that the space

Fig. 3. Typical instance ofJUMP TERM .

domain of the integralVe
n has to be recognized; the

name of the domain used is,,Sp.., for spatial
domain. A generalization of the generation of the
code is needed here. Finally, the variational formu-
lation (successively classesIntEquation, Discreti-
zedEquation, System) is now given an attribute to
characterize the type of the formulation, i.e. either
‘Semi-discrete approach’ or ‘Space-time approach’.
In the latter, time is considered as a simple coordi-
nate like a space coordinate.

The structure of the class JUMPTERM is sum-
marized in Table 1 (see elsewhere [62] for similar
descriptions).

Class JUMP TERM has one attribute called
variable. This class is used either for the continuous
problem or for the discrete problem; the simplicity
of this structure avoids distributing tasks among two
classes. For the continuous problem,variable can a
priori be of any class (Term, Integral, Expression,
etc.). Only classIntegral is used here. For the
discrete problem,variable is an instance ofDiscreti-
zedExpression. The consequence of this is that both
tasks, for continuous and discrete problems, lie in
the same structure.

Tasks linked to the integration into the hier-
archical parent tree organization [62] and to
algebraic manipulations are inherited from super-
classes. The tasks may be decomposed into four
groups. Most of the methods are in fact a specializa-
tion of existing methods of the classTerm.

Most of the tasks are decentralized to the attribute
variable. The only method which is specific to the
class isfindMatrixCorrespondingToUnknown: discret-
Var; it returns, in the case of the discrete form, the
elemental contribution corresponding to the nodal
unknown vector of the ‘jump term’.

The analysis tasks are, as before, specializations
of the classTerm. This behavior is part of a group
of tasks called manipulations.

The discretization procedure is decentralized to

20 D. Eyheramendy and Th. Zimmermann

Table 1. ClassJUMP TERM

Class JUMPTERM
Inherits from: Term, StructureWithDimension, FEMTheoryMathematicalStructures, FEMTheory, Object

Inherited tasks Inherited attributes Inherited methods

1) access to data of the hierarchic hierarchicParent getDiscretizationInfosForTerm: term
parent getListOfTerms

giveHierarchicParent
giveSpaceDimension
knowsAsUnknow: term
(from FEMTheoryMathematicalStructures)

2) algebraic manipulations +, p,% (from Term)

Tasks Attributes Methods

1) manipulation – variable asFunctional
comesFromSurfaceLoad
deriveWithRespectToVariable: i
findAllUnknowns
findMatrixCorrespondingToUnknown: discretVar
get0KAFUnknownMatrix
getDirectionalDerivative
getJumpTermCorrespondingToUnknown:
discretVar
printString
replaceYourselfUsingDictionary: dict
transpose
variable: aTerm

2) analysis isBodyMatrix
isSurfaceMatrix
isZero

3) discretization getDiscretizedForm

4) creation of code createCPlusLoadMethodsIn: path
forTimeDependentElement: elementName

the attribute variable, and the scheme described by
Zimmermann and Eyheramendy [61,62] to build
elemental contributions doesn’t need any special
implementation.

Code generation here implies the creation of the
elemental contributions on the left- and right-hand
sides of the discrete linear system. Both operations
are initiated at this stage, but practical tasks are
decentralized to the discrete form stored in the
attribute variable.

The FEM Theory environment is enriched
with new graphical features. The first is the
notation used for the ‘jump term’. The double
bracket notation introduced here can be direct-
ly integrated into FEMTheory. As an example,
the term [[eVn

u(w)+
ndv]] is represented as

,,[[INT{UW//Sp}]] .. (see the next section).
Note that here the term corresponding to the con-
tinuous problem is shown.

A new prompter window is added in order to ask
the user which type of formulation he wishes to
derive (see Fig. 4); this only influences the choice
of the time coordinate to be taken into account for
the space-time formulation as a simple coordinate
axis. An example of space-time formulation deri-
vation follows.

Fig. 4. Prompter to define the type of finite element formulation.

21Object-Oriented Symbolic Derivation

3.3. The Linear One-Dimensional Advection
Equation in FEM Theory

3.3.1. Derivation of the Linear 1D Advection
Equation
The space-time formulation for the linear one-
dimensional advection equation, derived in FEM
Theory is shown in Fig. 5 (the notations are close
to those of the previous section). As similar deri-
vations have already been shown in previous sec-
tions, only a brief line by line description is made
here. On line 1 the original Galerkin formulation
on the whole space-time domain is posted. On line
2, the ‘jump term’ is added; the formulation is
written on a time slab; it is a Galerkin continuous
in space and discontinuous in time form. On line
4, the formulation is approximated. The reference
element chosen here is a four-node element for
,,U.. and ,,W... Stabilization Galerkin
least-squares terms are added on line 5 (to the
approximated formulation). The arbitrariness of the
weighting function is invoked, and the resulting
system of discrete equations appears on line 6. The
equation is then transposed, in line 7, and an obvious
change of notation is made. Bilinear interpolation

Fig. 5. Derivation of a space-time formulation for a 1D advec-
tion equation.

Fig. 6. Partial view of the hierarchy of FEMObject for space-
time formulation.

for ,,U.. and ,,W.., and a two-by-two
Gauss integration rule, are chosen for all elemental
contributions. The code is then generated.

3.3.2. Code Generated Automatically in
FEM Object
As described in Eyheramendy and Zimmermann
[63], a new class is generated. As the numerical
code FEM Object has been enhanced to support
deforming domains with space-time formulations
[30], the new elementNewElement is now added
as a subclass of a class calledSTF ELEMENT ,
which contains special features for moving domains,
as shown in the hierarchy of FEMObject in Fig. 6.
Note that on the list of methods given in Fig. 7, a
new method to compute the ‘jump term’ in the load
vector of the ‘right-hand side’ in the FEMObject
appears. The contribution to the left-hand side of

Fig. 7. Partial view of the methods added for space-time formu-
lation in FEM Object.

22 D. Eyheramendy and Th. Zimmermann

Fig. 8. Initial solution for u of the numerical test of the linear
advection equation.

the ‘jump term’ is automatically integrated into the
stiffness matrix.

3.3.3. Numerical Tests
The test done uses as an initial condition a disconti-
nuity over one element, as shown in Fig. 8. The
space is decomposed into 20 elements; the height
of the time slab isDt = 0.05s. The boundary con-
ditions are u(0) = 1 and u(1) = 0. The first test is
done with a fixed mesh. The results are shown in
Fig. 9, with label STF (space-time formulation) for
various values of the stabilization parameter at
t = 0.5. These results show that for appropriate
values of stabilization parameters, the oscillations
before and after the discontinuity are attenuated, and
that the discontinuity is caught correctly. A second
derivation has been done with a semi-discrete
approach, with an equivalent stabilization scheme.
The results are also reported in Fig. 9. The numerical
integration scheme in time used for solving the
problem in the FEMObject is a generalized trap-
ezoidal rule presented by Hughes [77, Chap. 8]. The

Fig. 9. Numerical test of the linear advection equation att = 10 Dt.

results are posted for various values of the stabiliz-
ation parameter. The first remark that can be made
is that the semi-discrete formulation cannot catch
the sharp discontinuity as the space-time formulation
does. Adding stabilization rapidly adds too much
diffusivity. But the position of the discontinuity
can also be caught. In conclusion, the space-time
formulation seems to give better results in capturing
sharp discontinuities.

Finally, a mesh moving procedure is introduced
into the numerical computation. The mesh is moved
with the advection velocity (A = 1). The results are
shown in Fig. 10. It shows that the local advective
effects disappear; in fact, the exact solution is
obtained. This feature can be interesting whenever
sharp discontinuities have to be caught.

3.4. Towards the Numerical Solution of
Navier–Stokes Equation

In this section, the general framework to introduce
symbolic concepts for space-time formulations
which are discontinuous in time is created. This is
illustrated through a simple one-dimensional equ-
ation. Obviously, all the features created here can
be used for two- or three-dimensional problems, and
even for nonlinear problems. An application of
space-time formulations, discontinuous in time, to
non-linear problems, including the solution of the
Navier–Stokes equations, is discussed by Eyhera-
mendy [30].

23Object-Oriented Symbolic Derivation

Fig. 10. Numerical solution for moving domain att = 10 Dt.

4. Computer Aided Software
Engineering for Finite Element
Developments

4.1. High Level Concepts of CASE Tools for
Finite Element Developments

In this section, we wish to introduce several tracks
to easily implement CASE tools to develop finite
element formulations. The first is a tool to check
the dimensional consistency in the symbolic environ-
ment. This could, of course, be extended to the
numerical part of the code. The second consists in
ensuring writing consistency of formulations, using
index notation.

4.2. Dimensional Analysis in an Object-
Oriented Environment for Finite Elements

4.2.1. A Brief Analysis of Dimensional Analysis
The point of departure is here the international
system of units (ISO). Take the example of the
French norm [AFNOR: NF X 02-051] or the Swiss
norm [SNV 02121100]. From the normalization (see
Table 3), it can be deduced that each magnitude has
a unit that can be expressed by means of the seven
basic units shown in Table 2. The definition of the
unit can be completed by the use of a factor and a
prefix, e.g. 1 ft= 0.3048 m, where the factor is
0.3048, and 1 kN= 103N (prefix k). All the units

can be expressed in this way. The aim of this part
is to build structures to represent the units, capable
of conversion and analysis.

4.2.2. The Objects for Dimensional Analysis
In FEM Theory, the unit, the basic object to be
associated with a magnitude, and the behavior for
dimensional analysis are inherited from the class
StructureWithDimension (see [61,62]), e.g. for
terms, expressions, integrals, etc. This object is illus-
trated in Fig. 11 through the example of Newton.
The object has a name, a dimension and its defi-
nition can be completed by a prefix and a factor of
conversion. For the sake of simplicity, the factor
and prefix are not taken into account. The unit can
have access to a database, where it could find all
the data needed for conversion (similar to Table 3).
At least, the unit can be associated with an object.
So, classUnit is defined.

The main component of the object unit is its
dimension (instance of classDimension). The goal
is to build a structure capable of giving a represen-
tation of the dimension based on Table 2. This is
illustrated in Fig. 12. The idea is to use an existing
structure of Smalltalk, the dictionary [78–80]. The
key to getting access to the data stored in the
dictionary is a symbol corresponding to the name
of the magnitude. The data stored at the correspond-
ing key is an integer, with a sign which gives
the power of the basic unit. In Fig. 12, the power
corresponding to the length (l) is 1, to the mass (m)
is 1, to the time (t) is −2; the others are 0. The
result for Newton is kg.m.s−2. The main tasks of

24 D. Eyheramendy and Th. Zimmermann

Table 2. Basic units of the international system

Magnitude Unit basis

name symbol name symbol

Length l meter m
Mass m kilogram kg
Time t second s
Intensity of current I ampere A
Thermodynamic temperature T kelvin K
Quantity of material n mole mol
Luminosity intensity Iv cadela cd

Fig. 11. Definition of the object unit
in the example of Newton.

Fig. 12. Example of dimension.

this object are to define itself, by asking information
from the user for example, and to combine dimen-
sions in products. It is best to illustrate this through
an example. Consider the productP = m · g, where
m is the mass expressed in kg (kilogram),g the
acceleration of gravity expressed in m.s−2, and P

the weight. The resultP is then expressed in
kg.m.s−2. This is found as follows. Represent the
dimension of a magnitude by the notation []. So,
the dimension ofP, [P], is obtained by multiplying
the dimension ofm by the one ofg: [P] = [m]p[g].
The ‘product’ which makes it possible to obtain this
dimension is sketched in Fig. 13. The final dimen-
sion of P is obtained by simply adding the indices
corresponding to the basic units. Thus, this object
has the possibility to be multiplied or divided by
another object dimension; so a basic algebra is
defined at the level of the objectDimension.

The last object needed for dimensional analysis
is a dictionary to store the units that can be seen,
for example, in Table 3. A simple dictionary object
in Smalltalk could be used here, but a specialization
scheme is needed to look up units in the dictionary.
This object is an instance ofFEMTheoryGeneralD-
ictionaryOfUnits .

25Object-Oriented Symbolic Derivation

Fig. 13. Sketch for the dimension ofP = m · g.

4.2.3. The Classes
Class Dimension. Class Dimension, presented in
Table 4, is a dictionary of size 7, which corresponds
to the number of basic units, i.e. length (symboll),
mass (symbolm), time (symbolt), intensity of cur-
rent (symbolI), thermodynamic temperature (symbol
T), material quantity (symboln) and luminosity
intensity (symbol Iv) – see AFNOR X02-051 or
SNV 012100 for more details. Each of these sym-
bols gives access in the dictionary to an integer
which represents the power of the corresponding
basic unit. The behavior of the classes consists, first,
in defining the dimension and, second, in performing
basic algebra manipulations on it.

Class Unit. The classUnit (see Table 5) has five
attributes. The first four make it possible to define
the unit: the attributedimension which is an
instance ofDimension is completed by the attribute
name, instance ofSymbol. The unit can be the unit
of a data, a term, a product, etc.; it is the attribute
object. At last, the unit may need information to
complete its definition from data stored in the dic-
tionary of units, attributeunitsDictionary .

Table 3. Example of dimension of units (from NF X 02-051)

Unit symbol Factor of conversion Magnitude

farad F 1 C.V−1 capacity
fluid ounce (U.K.) fl oz (U.K.) 2.84130 10−5 m3 volume
fluid ounce (U.S.) fl oz (U.S.) 2.95735 10−5 m3 volume
foot ft 3.048 10−1 m length
henry H 1 V.s.A−1 inductance
joule J 1 N.m energy
meter m 1 m (basis unit) length
newton N 1 kg.m.s−2 force

The first part of the behavior is linked to the
complete definition of the unit, i.e. its symbol, attri-
bute name, its dimension, and perhaps an object
(term, expression, etc.) with which the unit is asso-
ciated. The second part of the behavior is the man-
agement of the data contained in the dictionary
of units.
Remark 1: The definition of the dimension by the
user is decentralized to the attributedimensionitself
(access to the prompter of Fig. 17).
Remark 2: To give a complete definition of all
types of units two attributes could be added here.
The first one is needed to represent the prefix of
the unit (see NF 02-051), e.g. prefix ‘k’ for ‘kilo’
corresponding to 103. This new attributeprefix could
be an instance of a new classPrefix similar to class
Unit , but managing the prefixes. A second attribute,
call it factor, a float instance ofFloat, is needed
to achieve conversions between the units of the
international system and the others (e.g. darcy, gal-
lon, foot, etc.).

Class FEMTheoryGeneralDictionaryOfUnits. This
class, presented in Table 6, is used only to store the
different units that can be used in FEMTheory,
and behaves as a classical Smalltalk dictionary
[80,83]. Only one instance appears during execution;
this instance is stored on disk, and recovered when-
ever needed, using the tool classObjectFiler [79].

The key used to store the objects of typeUnit is
a symbol that is the name of the unit. For example
the unit ‘Joule’ corresponding to work or energy,
has as symbolJ and dimension kg.m2.s−2. All the
behavior of the class is inherited fromDictionary .
Only one special method is added to get a unit
from the definition of its dimension. This method
allows us to make a loop on the values of the
dictionary in order to get the key, i.e. from the
definition of the dimension kg.m2.s−2, to get the
unit J.

26 D. Eyheramendy and Th. Zimmermann

Table 4. ClassDimension

Class Dimension
Inherits from: Dictionary, FEMTheoryDictionaries,%, Object

Inherited tasks Inherited attributes Inherited methods

– – – all the methods for dictionaries

Tasks Attributes Methods

1) Definition – answerYourselfFor: an Obj
asArray
atAllPut: anInteger
define
defineFor: obj
getBasicUnits
giveBasicUnitsArray
isDefined
isNotDefined

2) Algebra p aDimension
/ aDimension
inverse
power: anInt
= aDict

Table 5. ClassUnit

Class Unit
Inherits from: FEMTheory, Object

Inherited tasks Inherited attributes Inherited methods

– – –

Tasks Attributes Methods

1) Definition – dimension define
– name defineDimension
– object dimension: aDim

isDefined
isUnit
name: aSymbol
object: anObj
prefix: aSymbol

2) Manipulations – unitDictionary getBasicUnits
getDimension
giveDimension
giveName
giveObject
givePrefix
initUnitDictionary

Class StructureWithDimensionand subclasses.
The classStructureWithDimension (see Table 7)
regroups the behavior common to subclasses needed
for representing the variational formulation (see the

general hierarchy of classes of FEMTheory,
Section 2). The only attribute of the class is called
a unit and becomes an instance of a classUnit .
The only class level behavior is linked to the man-

27Object-Oriented Symbolic Derivation

Table 6. ClassFEMTheoryGeneralDictionaryOfUnits

Class FEMTheoryGeneralDictionaryOfUnits
Inherits from: FEMTheoryDictionaries, Dictionary,%, Object

Inherited tasks Inherited attributes Inherited methods

– – –

Tasks Attributes Methods

Manipulations findUnitOfDimension: aDim

Table 7. ClassStructureWithDimension

Class StructureWithDimension
Inherits from: FEMTheory, FEMTheoryMathematicalStructures, Object

Inherited tasks Inherited attributes Inherited methods

– – hierarchicParent – “management of the attributehierarchicParent”

Tasks Attributes Methods

Managing of the unit unit addDimensionCharacteristicsTo: col forObject: an Obj
deduce Dimension
findDimensionBackwards
giveUnit
updateDimensionForTerm: aTerm

agement of the unit, i.e. its definition and the pro-
cedure to check the consistency of units in a vari-
ational formulation. This scheme is described in the
next section.

4.2.4. Strategy for Dimensional Analysis in
FEM Theory
The scheme for dimensional analysis is based
on the data structure presented in Section 2. The
simple algorithm described here involves the class
StructureWithDimension and subclasses (Term,
Expression, IntEquation, etc.). The problem is to
deduce the dimension of an object within a complex
expression, just by giving the dimension of some
terms. The purpose is not to give a general algorithm
for the problem, rather to give an overview of the
possibilities of such a tool. The principle of the
algorithm is sketched in Fig. 14 on the equation
eV(sij ,j + fi)widv = 0 taken from the example of linear
elasticity [81]. This scheme is described to find the
dimension of the object integraleV(sij ,j + fi)widv, but
could be applied to any objects:

I on the screen, the object integral is selected;

I the tool ‘Find Dimension For Term’is selected
and applied; consequently, the message
deduceDimensionSelection: integralStringis sent
to the objectIntEquation ;

I the message goes down the roots of the tree
following the dotted arrows in Fig. 14, until the
selected integral is recognized (highlighted in gray
in the figure);

I when the integral is found, the message
deduceDimensionis sent to the integral itself;

I in the methoddeduceDimension, a first search is
made while descending the roots, sending success-
ive messagesfindDimensionForward, shown by
plain arrows in the figure; the goal is to try to
deduce the dimension of an object, just from the
dimensions of the objects composing it; this
scheme is successful when one branch of a root
at a sum level is completely defined;

I in the methoddeduceDimension, if the dimension
is not found with a process descending the roots,
an ascending process is started by the message
findDimensionBackward (dashed line in the
figure), which has the task of sending the message

28 D. Eyheramendy and Th. Zimmermann

Fig. 14. Sketch illustrating the dimensional
analysis strategy.

deduceDimensionForObject: integral; in this
method either messagefindDimensionForwardor
findDimensionBackward, or both, are sent to try
to deduce the dimension at the current node
(recursive message passing);

I so, the messages go down and up at each node,
i.e. each object composing the tree of the equ-
ation; the process stops either when the dimension
asked by the user is found, or when all the nodes
of the tree have been tested.

The methods enumerated here will be implemented
differently for each object, but the scheme presented
for the object ‘integral’ is the same for all objects.
Notice that this scheme cannot solve all the situ-
ations. It is based on the assumption that each node
can be solved locally. This is true for the most
common situations, but the scheme fails when
reasoning concepts at a global level become neces-
sary.

4.2.5. The Graphical Environment for
Dimensional Analysis
The object presented in the above sections can be

visualized within the graphical environment
presented and discussed by Eyheramendy and Zim-
mermann [82]. In the graphical environment of
FEM Theory, a push-button is added (see Fig. 15),
which launches an editor that can be seen in Fig. 16.
In this editor, the units contained in the dictionary,

Fig. 15. Main window of FEM Theory with the management of
the dictionary of units.

29Object-Oriented Symbolic Derivation

Fig. 16. Units dictionary editor.

Fig. 17. Prompter to define a dimension.

Fig. 18. Prompter to visualize a dimension.

Fig. 19. Dimensional analysis of a penalty formulation for 2D
Stokes problem.

instance ofFEMTheoryGeneralDictionaryOfUnits
and stored on disk in a file named ‘fem.dct’, can
be viewed and new units can be added. The units
are described in this editor by their name, and their
dimension is given, e.g. Newton (symbol N) is
highlighted and its dimension is kg.m.s−2. During a
derivation, the dimension of a term can be defined
by the user; this is done by means of the editor in
Fig. 17. The dimension of every object can also be
visualized through the use of the prompter in
Fig. 18. The list of tools for the instances of class
IntEquation is enriched with new tools: ‘Define
Dimension For Selected Term’, ‘ Find Dimension
For Selected Term’, ‘Check Dimension’.

The dimension can be defined in terms of any
units, including derived units; the conversion of
units is obvious in this framework.

4.2.6. A Simple Illustration of Dimensional
Analysis in FEM Theory
The goal of this section is to give a trivial example
of the usefulness of a dimensional analysis scheme
in the symbolic environment. Take the example of
the penalty formulation for Stokes flow presented
in Eyheramendy and Zimmermann [63, Section 3].
The formulation is posted onto the screen of
FEM Theory in Fig. 19, line 1. The problem and
the notations are defined in Eyheramendy and Zim-
mermann [63, Section 3]. Let us define in the formu-
lation on line 1 the dimensions of the terms that
are obvious. This is done by selecting the term on
screen line 1, and applying to it the new tool ‘Define
Dimension For Selected Term’. This tool gives
access to the prompter shown in Fig. 20. Here are
the definitions of the following terms (the notation
‘bracket’ [X] means ‘dimension of X’):

I the weighting velocitywi: [wi] = m.s−1

I the pressureP: [P] = N.m−2

I the weighting pressureQ: [Q] = N.m−2

I the body loads (dimension given through the use
of its expression, i.e. the product between the
density and the acceleration of gravity)R:
[R] = [r] · [g] = (kg.m−3) · (m.s−2).

Fig. 20. Definition of the dimensions for selected terms.

30 D. Eyheramendy and Th. Zimmermann

The dimension of all the entities composing this
equation are now defined, and their dimension can
be retrieved through the tool ‘Find Dimension For
Selected Term’. The result is posted in prompters,
such as those in Fig. 21, e.g. the dimension of the
term 1/l is

F1
lG = m.kg−1.s

The dimension of the various objects of the equation
are shown in Fig. 21.

4.2.7. Dimensional Control in Finite Elements
The dimensional analysis process has been applied
here in the context of the symbolic development of
finite elements for trivial purposes. This ensues from
the wish to develop concepts for finite elements
with a high level of abstraction in the finite element
derivation. The next step would be to use all theor-
etical concepts developed and used during the sym-
bolic derivation in the numerical computation. The
control of the data introduced for a computation by
the user is a crucial problem in numerical compu-
tation. The proposed approach could be extended to
solving this problem. First, the tree structures pro-
posed in the previous sections can be used in any
context, i.e. not only in a symbolic environment.

Fig. 21. Dimensional analysis of various
objects.

Any type of structure can be given a characteristic
‘unit’. From there, the control of dimensions could
easily be done, even during a numerical compu-
tation, through the use of a similar approach to that
presented in the previous section. A second exten-
sion would be to pass information about dimensional
analysis from the symbolic environment to the
numerical one, in which it could be used to check
dimensions.

4.3. Checking Index Writing Consistency

4.3.1. Goal
In FEM Theory, the writing of the formulation is
based on index notation. This notation is used for
its general aspect, but mistakes in the notation are
easy to make, and can have disastrous consequences
on the discretization process. The idea is to intro-
duce a checking process for consistency of the
writing. This new tool does not need any new
object, only an enhancement of the classes involved
in the representation of the variational formulation
of the continuum problem. The process is
described next.

31Object-Oriented Symbolic Derivation

Fig. 22. Method checkIndicialNotationin classSumList.

4.3.2. Implementation of Writing Analysis
Contrary to the dimensional analysis process
described in the previous section, the checking of
the writing can be made at the local level, i.e. at
the level of each object (see all the objects involved
in the process in Fig. 24). Thus, each object is able
to recover the contracted indices characterizing
itself. The implementation ensues naturally. Each
object has a method calledcheckIndicialNotation,
which returns a string representing the indices of
the receiver after contracting, e.g. the objectsij ,j

returns the string ‘i’ which is the contraction of the
indices ‘ijj ’ (rules for classical index notation). For
all the objects, the structure of the method is the
same:

(a) ask the objects composing it to check their
index notation (messagecheckIndicialNotation);
they return a string representing the contrac-
ted indices;

(b) check the coherence of the indices at its level
if necessary;

(c) return the string representing the indices
(contracted).

Two examples of implementation of this method are
given in Figs 22 and 23, for objects integral (class
Integral) and sum (classSumList); they respect
the three points given previously. The message for

Fig. 23. Method checkIndicialNotationin class Integral .

checking the notation goes down the tree, as illus-
trated in Fig. 24. The process ends when each node
of the tree has made this check.

4.3.3. Example of Analysis
An illustration of the use of this scheme in FEM
Theory is shown in Fig. 25; on line 1, the penalty
formulation for Stokes of the previous section [63]
is posted. In the integral selected on line 1
(highlighted object on the screen), the prompter of
Fig. 26 allows the replacement of the termsij ,j by
the expressionCijklεkl(u), and instead ofCijklεkl,j(u)
as it should be. But an error is introduced in the
prompter (the index ‘j’ is left out). Then, the
prompter in Fig. 27 appears, indicating that the
expressions introduced are not correct.

5. Conclusion

This paper illustrates the fast and natural extend-
ibility capabilities of object-oriented symbolic
environments for finite elements. With respect to
existing symbolic finite element approaches, a new
track to develop finite element software is proposed
here. In Section 3, we showed that the addition to
the environment of a new formulation, like the
discontinuous space-time formulation, requires only

32 D. Eyheramendy and Th. Zimmermann

Fig. 24. Sketch for the checking of index
notation.

Fig. 25. Illustration of the writing consistency on a penalty for-
mulation of Stokes’ problem.

minor extensions; the only extensions needed are,
first, the generalization of the scheme to handle
spatial differential operators correctly, secondly, the
introduction of new matrix forms for the spatial
differential operators, and thirdly, the enrichment of
the shape functions database. These changes are
taken into account at a high level of abstraction,
close to the mathematical formulation. Moreover,
this extension, illustrated here on a one-dimensional
advective equation, is also valid for any other kind
of equation (e.g. Navier–Stokes). In Section 4, we
showed that CASE tools can be integrated very
easily into such an environment, to help the user in
conducting his derivations.

In fact, a global computerized framework for
finite element development has been created, based
on a hybrid symbolic/numerical approach. The appli-
cation of the object-oriented paradigm is considered

33Object-Oriented Symbolic Derivation

Fig. 26. Prompter for the replacement of an expression with a
notation error.

Fig. 27. Notification of the error in the notation.

crucial for this kind of approach, allowing a fast
and simple introduction of high level concepts. The
approach has already been tested on various mechan-
ical problems including nonlinear ones: heat dif-
fusion [84], linear elasticity in statics [88] and
dynamics [81], a trivial beam [61,63], Stokes flow in
the incompressible limit [63,82], and incompressible
Navier–Stokes [30,83,86]. Various finite element for-
mulations were used on these problems: like classi-
cal Galerkin formulations [61–63,81], Galerkin least-
squares formulations [63,89], and Galerkin space-
time formulations [30]. These developments demon-
strate the broadness of the approach, capable of
dealing with problems in solid, structural and fluid
mechanics. The major drawback remains at present
the relative lack of numerical efficiency of automati-
cally generated code.

The ideas developed in this paper represent, in
the authors’ opinion, an important step towards a
general environment for easy development of com-
puterized solution schemes for mechanical problems.
Nevertheless, the present environment is still limited,
at this stage, to the introduction of finite element
matrices. Extension to algorithmic descriptions of
finite element formulations should allow the intro-
duction of new solution schemes, e.g. new time
integration schemes, strategies for updating vari-
ables, strategies for updating meshes or remeshing,
constitutive modeling, etc. This is a particularly
crucial point for nonlinear finite element analysis

of, for example, coupled systems. Extensions to
strategies such as parallelism, indeed an important
ingredient, especially for high performance compu-
tations, would be natural. Mixing symbolic and
numerical concepts opens new doors for the devel-
opment of scientific software.

Acknowledgements

The financial support of the first author by the Swiss
National Science Foundation under grant 20-45697.95 is
acknowledged.

References

1. Fritzson, P; Fritzson, D. (1992) The need for high-
level programming support in scientific computing
applied to mechanical analysis. Computers & Struc-
tures, 45, 387–395

2. Luft, RW; Roesset, JM; Connor, JJ. (1971) Automatic
generation of finite element matrices. J. Struct. Div.,
Proceedings of ASCE, January, 349–361

3. Choi, DK; Nomura, S. (1992) Application of symbolic
computation to two-dimensional elasticity. Com-
puters & Structures, 43, 645–649

4. Ioakimidis, NI. (1993) Elementary applications of
MATHEMETICA to the solution of elasticity prob-
lems by the finite element method. Comput. Methods
Appl. Mech. Engrg., 102, 29–40

5. Yang, CY. (1994) An algebraic-expressed finite
element model for symbolic computation. Com-
puters & Structures, 52(5), 1069–1077

6. Silvester, PP; Chamlian, SV. (1994) Symbolic gener-
ation of finite elements for skin-effect integral equa-
tions. IEEE Trans. Magnetics, 30(5), 3594–3597

7. Yagawa, G; Ye, GW; Yoshimura, S. (1990) A numeri-
cal integration scheme for finite element method based
on symbolic manipulation. Int. J. Numer. Methods
Engrg., 29, 1539–1549

8. Bardel, NS. (1989) The application of symbolic com-
puting to the hierarchical finite element method. Int.
J. Numer. Methods Engrg., 28, 1181–1204

9. Gunderson, RH; Cetiner, A. (1971) Element stiffness
matrix generator. J. Struct. Div., Proceedings of
ASCE, January, 363–375

10. Hoa, SV; Sankar, S. (1980) A computer program for
automatic generation of stiffness and mass matrices
in finite-element analysis. Computers & Structures, 11,
147–161

11. Cecchi, MM; Lami, C. (1977) Automatic generation
of stiffness matrices for finite element analysis. Int. J.
Numer. Methods Engrg., 11, 396–400

12. Barbier, C. (1992) Automatic generation of bending
element matrices for finite element method using
REDUCE. Engineering Computations, 9, 477–494

13. Korncoff, AR; Fenves, SJ. (1979) Symbolic generation
of finite element stiffness matrices. Computers &
Structures, 10, 119–124

14. Noor, AK; Andersen, CM. (1981) Computerized sym-

34 D. Eyheramendy and Th. Zimmermann

bolic manipulation in nonlinear finite element analysis.
Computers & Structures, 13, 379–403

15. Cameron, F. (1997) Automatic generation of efficient
routines for evaluating multivariate polynomials aris-
ing in finite element computations. Adv. in Engr.
Soft., 28, 239–245

16. Leff, L; Yun, YY. (1991) The symbolic finite element
analysis system. Computers & Structures, 41, 227–231

17. Wang, PS. (1986) FINGER: A symbolic system for
automatic generation of numerical programs in finite
element analysis. J. Symbolic Computation, 2, 305–
316

18. Noor, AK; Andersen, CM. (1979) Computerized sym-
bolic manipulation in structural mechanics-progress
and potential. Computers & Structures, 10, 95–118

19. Noor, AK; Elishakoff, I; Hulbert, G. (1990) Symbolic
Computations and their impact on mechanics. Winter
Annual Meeting of the American Society of Mechan-
ical Engineers, Dallas, Texas, November 25–30,
PVP, 205

20. Breitkopf, P; Touzot, G. (1997) Architecture des logic-
iels et langages de mode´lisation. La Revue Europe´enne
des éléments finis, 1(3), 333–368

21. Chambon, R; Thomas, JB. (1988) Langages pour le
calcul des structures. Pluralis, 2, 261–271

22. Verpaux, P; Charras, T; Millard, A. (1988) CASTEM
2000: une approche moderne du calcul des structures.
Pluralis, 2, 261–271

23. Collain, E; Fouet, JM; Regnier, G. (1988) Pour un
calcul de structures oriente´ objets. Pluralis, 2, 371–390

24. Rehak, DR; Baugh Jr, JW. (1989) Alternative Pro-
gramming Techniques for Finite Element Program-
ming Development. Proceedings IABSE Colloquium
on Expert Systems in Civil Engineerings, Bergamo,
Italy, IABSE

25. Miller, GR. (1988) A LISP-based object-oriented
approach to structural analysis. Engr. with Comp., 4,
197–203

26. Miller, GR. (1991) An object-oriented approach to
structural analysis and design. Computers & Struc-
tures, 40(1), 75–82

27. Fenves, GL. (1990) Object-oriented programming for
engineering software development. Engr. with Comp.,
6, 1–15

28. Forde, BWR; Foschi, RO; Stiemer, SF. (1990) Object-
oriented finite element analysis. Computers & Struc-
tures, 34, 355–374

29. Filho, JSRA; Devloo, PRB. (1991) Object-oriented
programming in scientific computations: The begin-
ning of a new area. Eng. Computations, 8, 81–87

30. Eyheramendy, D. (1997) Object-oriented finite element
programming: Symbolic derivations and automatic
programming. PhD thesis report 1752, Swiss Federal
Institute of Technology

31. Lucas, D; Dressler, B; Aubry, D. (1992) Object-
oriented finite element programming using the ADA
language. In Hirsh, C.et al. (eds.), Numerical Methods
in Engineering ’92, 591–598

32. Dubois-Pe`lerin, Y; Bomme, P; Zimmermann, Th.
(1991) Object-oriented finite element programming
concepts. Proceedings of European Conference on new
Advances in Computational Structural Mechanics.
Elsevier, pp 95–101

33. Baugh, JW; Rehak, DR. (1992) Data abstraction in

engineering software development. Comp. Civ. Engr.,
6, 282–299

34. Devloo, PRB; Magalhaes, CA; Noel, AT. (1992) On
the implementation of the p-adaptive finite element
method using the object oriented programming philo-
sofy. Numerical Methods in Engineering and Applied
Sciences, Part 1, CIMNE, Barcelona

35. Devloo, PRB. (1992) An object oriented approach
to finite element programming (Phase I): a system
independent windowing environment for developing
interactive scientific programs. Advances in Engineer-
ing Software, 14, 41–46

36. Ross, JT; Morrow, JP; Wagner, LR; Luger, GF. (1992)
Two paradigms for OOP models for scientific appli-
cations. Proceedings of 8th Conf. held in conjunction
with AEC Systems 92, Dallas, TX, ASCE, pp 535–542

37. Ross, JT; Wagner, LR; Luger, GF. (1992) Object-
oriented programming for scientific codes. I: Thoughts
and concepts. Comp. Civ. Engr., 6, 480–496

38. Ross, JT; Wagner, LR; Luger, GF. (1992) Object-
oriented programming for scientific codes. II:
Examples in C++. Comp. Civ. Engr., 6, 480–496

39. Mackie, RI. (1992) Object-oriented programming of
the finite element method. Int. J. Num. Meth. Engr.,
35, 425–436

40. Scholz, SP. (1992) Elements of an object-oriented
FEM ++ program in C++. Comp. and Struct., 43,
517–529

41. Nielsen, LO. (1994) A C++ class library for FEM
special purpose software. Internal report, Department
of Structural Engineering, Technical University of
Denmark, Serie R vol. 308

42. Zeglinski, GW; Han, RPS. (1994) Object oriented
matrix classes for use in a finite element code using
C++. Int. J. Num. Meth. Engr., 37, 3921–3937

43. Drolet, J. (1996) Towards a cross-platform finite
element application framework: A toll to simplify
finite element simulations. Proceedings of 1st Struc-
tural Specialty Conference, Edmonton, Canada

44. Mackie, RI. (1997) Using objects to handle complexity
in finite element software. Eng. with Computers, 13,
99–111

45. Zimmermann, Th; Dubois-Pe`lerin, Y; Bomme, P.
(1992) Object-oriented finite element programming: I.
Governing principles. Comput. Methods Appl. Mech.
Engrg., 98, 291–303

46. Dubois-Pe`lerin, Y; Zimmermann, Th; Bomme, P.
(1992) Object-oriented finite element programming: II.
A prototype program in Smalltalk. Comput. Methods
Appl. Mech. Engrg., 98, 361–397

47. Dubois-Pe`lerin, Y; Zimmermann, Th. (1993) Object-
oriented finite element programming: III. An efficient
implementation in C++. Comput. Methods Appl.
Mech. Engrg., 108, 165–183

48. Dubois-Pe´lerin, Y; Pegon, P. Object-Oriented pro-
gramming in nonlinear finite element analysis. Com-
puters & Structures (submitted)

49. Dubois-Pe´lerin, YD; Pegon, P. (1997) Improving
modularity in object-oriented finite element program-
ming. Commun. Numer. Methods. Engin., 13, 193–198

50. Menétrey, Ph; Zimmermann, Th. (1993) Object-ori-
ented non-linear finite element analysis: application to
J2 plasticity. Computers & Structures, 49(5), 767–777

51. Besson, J; Foerch, R. (1997) Large scale object-ori-

35Object-Oriented Symbolic Derivation

ented finite element code design. Comput. Methods
Appl. Mech. Engrg., 142, 165–187

52. Foerch, R. (1996) Un environnement oriente´ objet
pour la mode´lisation nume´rique des mate´riaux en cal-
cul des structures. PhD thesis report, Ecole Nationale
Supérieure des Mines de Paris

53. Angus, IG. (1992) Parallelism, object-oriented pro-
gramming methods, portable software and C++. Pro-
ceedings of 8th Conf. held in Conjunction with AEC
Systems 92, Dallas, TX, ASCE, pp. 506–513

54. Buffat, M; Yudiana, I; Leribault, C. (1992) Parallel
simulation of turbulent compressible flows with
unstructured domain partitioning. Performance on T3D
and SP2 using OOP. In Schiano, A; Ecer, JP; Sato-
fuka, N. Parallel computational fluid dynamics: Algor-
ithm and results Advanced Computers, Elsevier,
pp 76–83

55. Hsieh SH; Sotelino, ED. (1997) A message-passing
class library C++ for portable parallel programming,
Eng. with Computers, 13, 20–34

56. Potapov, S; Jacquart, G. (1997) Un algorithme ALE
de dynamique rapide base´ sur une approche mixte
éléments finis-volumes finis. Actes du 3ie`me Colloque
National en Calcul des Structures de Giens, Herme`s,
pp 509–514

57. Potapov, S. (1997) Un algorithme ALE de dynamique
rapide base´ sur une approche mixte Ele´ments finis-
Volumes finis. Imple´mentation en langage oriente´
objet C++, PhD thesis report, Ecole Centrale Paris.

58. Walterthum, L. (1996) Programmation oriente´e objet
et calcul par e´léments finis. Application a` la concep-
tion d’un logiciel de simulation en mise en forme des
matériaux. PhD thesis report, Universite´ de Franche-
Comté

59. Gelin, JC; Walterthum, L. (1995) Conception d’un
logiciel orienté-objets pour la simulation de processus
de formage. Actes du 2nd Colloque national en calcul
des structures, Giens, Herme`s, pp 552–558

60. Kawata, H; Yoshimura, S; Yagawa, G; Kawai, H.
(1995) Object-oriented system for evaluation of frac-
ture mechanics-Parameters of linear and nonlinear 3D
cracks. Proceedings of IECS 95, vol. 1, pp 39–44

61. Zimmermann, Th; Eyheramendy, D. (1996) Object-
oriented finite elements: I. Principles of symbolic deri-
vations and automatic programming. Comput. Methods
Appl. Mech. Engrg., 132, 277–304

62. Eyheramendy, D; Zimmermann, Th. (1996) Object-
oriented finite elements: II. A symbolic environment
for automatic programming. Comput. Methods Appl.
Mech. Engrg., 132, 259–276

63. Eyheramendy, D; Zimmermann, Th. (1998) Object-
oriented finite elements: III. Theory and application
of automatic programming. Comput. Methods Appl.
Mech. Engrg, 154, 41–68

64. Codina, R; Scha¨fer, U; Oñate, E. (1994) Mould filling
simulation using finite elements. Int. J. Num. Heat
Fluid Flow, 4, 291–310

65. Sussman, M; Smereka, P; Osher, S. (1994) A level
set approach for computing solutions to incompressible
two-phase flow. J. Comp. Phy., 114, 146–159

66. Tezduyar, TE; Aliabadi, S; Behr, M. (1997) Enhanced-
discretization interface-capturing technique. AHPCRC-
University of Minnesota, Preprint 97-019

67. Hughes, TJR; Liu, WK; Zimmermann, Th. (1981)

Lagragian–Eulerian finite element formulation for
incompressible viscous flows. Comput. Methods Appl.
Mech. Engrg., 29, 329–349

68. Huerta, A; Liu, WK. (1988) Viscous flow wih large
free surface motion. Comput. Methods Appl. Mech.
Engrg., 69, 277–324

69. Hughes, TJR; Hulbert, GM. (1988) Space-time finite
element methods for elastodynamics: formulations and
error estimates. Comput. Methods Appl. Mech. Engrg.,
66, 339–363

70. Hansbo, P. (1992) The characteristic streamline dif-
fusion method for convection-diffusion problems.
Comput. Methods Appl. Mech. Engrg., 96, 239–253

71. Hansbo, P. (1992) The characteristic streamline dif-
fusion method for the time-dependent incompressible
Navier–Stokes equations. Comput. Methods Appl.
Mech. Engrg., 96, 239–253

72. Tezduyar, TE; Behr, M; Liou, J. (1992) A new strat-
egy for finite element computations involving moving
boundaries and interfaces – The deforming-spatial-
domain/space-time procedure: I. The concept and the
preliminary numerical tests. Comput. Methods Appl.
Mech. Engrg., 94, 339–351

73. Tezduyar, TE; Behr, M; Mittal, S; Liou, J. (1992) A
new strategy for finite element computations involving
moving boundaries and interfaces – The deforming-
spatial-domain/space-time procedure: II. Computation
of free-surface flows, two liquid flows, and flows
with drifting cylinders. Comput. Methods Appl. Mech.
Engrg., 94, 353–371

74. Behr, M; Tezduyar, TE. (1994) Finite element solution
strategies for large-scale flow simulation. Comput.
Methods Appl. Mech. Engrg., 112, 3–24

75. Masud, A; Hughes, TJR. (1997) A space-time
Galerkin/Least-squares finite element of the Navier–
Stokes equations for moving domain problems. Com-
put. Methods Appl. Mech. Engrg., 146, 91–126

76. Shakib, F. (1988) Finite Element analysis of the com-
pressible Euler and Navier–Stokes equations. PhD the-
sis report, Stanford University

77. Hughes, TJR. (1987) The Finite Element Method,
Prentice-Hall

78. VisualSmalltalk Enterprise – 32 Bit Pure Object-Ori-
ented Programming System (1995) User’s guide, Park-
Place Digitalk

79. VisualSmalltalk Enterprise – 32 Bit Pure Object-Ori-
ented Programming System (1995) Language Refer-
ence, Parkplace Digitalk

80. VisualSmalltalk Enterprise – 32 Bit Pure Object-Ori-
ented Programming System (1995) Encyclopedia of
classes for Win32, ParkPlace Digitalk

81. Eyheramendy, D; Zimmermann, Th. (1996) Object-
oriented finite element Programming: an interactive
environment for symbolic derivations. Application to
an Initial Boundary Value Problem. Advances in
Engineering Software, 27, 3–10

82. Eyheramendy, D; Zimmermann, Th. (1998) Fonction-
nalité d’un environnement oriente´ objet pour le
développement de code e´léments finis. La Revue Euro-
péenne des Elements Finis, 7, No 1–3

83. Eyheramendy, D; Zimmermann, Th. (to appear).
Object-oriented finite elements: IV. Symbolic deri-
vation and automatic programming of non-linear prob-

36 D. Eyheramendy and Th. Zimmermann

lems. Comput. Methods Appl. Mech. Engrg.
(submitted)

84. Eyheramendy, D; Zimmermann, Th. (1995) Pro-
grammation oriente´e objet applique´e à la méthode des
éléments finis: de´rivations symboliques, programm-
ation automatique. Revue Europe´enne des e´léments
finis, 4, 327–360

85. Eyheramendy, D; Zimmermann, Th. (1998) Inte´gration
d’une approche variationnelle pour la me´thode des
éléments finis dans un environnement oriente´ objet:
Application àun problème de convection non-line´aire.
La Revue Europe´enne des e´léments finis, 7, No 5

86. Zimmermann, Th; Eyheramendy, D. (1995) Symbolic
object-oriented Finite Element programming – Appli-
cation to incompressible viscous flow. Proceedings of
IECS 95 Hawaii, vol. 1, pp 21–26

87. Zimmermann, Th; Eyheramendy, D; Bomme, P; Com-
mend, S; Arruda, RS. (1997) Object-oriented finite
element programming: Languages, Symbolic deri-
vations, Reasoning capabilities. Proceedings of
NAFEMS 97, Stuttgart, vol. 1, pp 652–663

88. Eyheramendy, D; Zimmermann, Th. (1997) De´ri-
vations symboliques pour code e´léments finis – Appli-
cation à un problème d’élasticité. Actes du 3ie`me
Colloque national en calcul des structures de Giens,
vol. 2, pp 553–558

89. Zimmermann, Th; Eyheramendy, D; Bomme, P.
Object-oriented finite element programming – From
governing principles to automatic coding. In Onate,
E; Idelsohn, SR (eds), CIMNE, (Proceedings of the
Word Congress on Computational Mechanics, Buenos
Aires, Argentina)

