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Abstract
This study proposes a novel framework for learning the underlying physics of phenomena with moving boundaries. The pro-
posed approach combines Ensemble SINDy and Peridynamic Differential Operator (PDDO) and imposes an inductive bias 
assuming the moving boundary physics evolves in its own corotational coordinate system. The robustness of the approach 
is demonstrated by considering various levels of noise in the measured data using the 2D Fisher–Stefan model. The confi-
dence intervals of recovered coefficients are listed, and the uncertainties of the moving boundary positions are depicted by 
obtaining the solutions with the recovered coefficients. Although the main focus of this study is the Fisher–Stefan model, the 
proposed approach is applicable to any type of moving boundary problem with a smooth moving boundary front without an 
intermediate zone of two states. The code and data for this framework is available at: https:// github. com/ alica nbekar/ MB_ 
PDDO- SINDy.
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1 Introduction

Moving boundary problems are ubiquitous in engineering 
and biological systems such as melting or solidification [1, 
2], tumor growth and wound healing [3], free surface flows 
[4], and electrophotography [5]. Usually, moving boundaries 
split the solution domain with different governing PDEs for 
each subdomain. Also, interface of the split regions obeys 
a different governing equation [5–7], often expressed in its 
own coordinate system. Therefore, the moving boundary of 
the domain is solved in addition to the field variables. These 
features make physical systems with moving boundaries an 
intriguing and challenging case for learning their governing 
PDEs from field measurements.

Stefan type problems represent a suitable model for learn-
ing in the context of moving boundaries. Stefan problem 
describes heat transfer and interface evolution between a 
liquid and a solid domain. They have long been used as a 
benchmark problem for numerical solvers with a rich litera-
ture [8]. Various implicit and explicit solvers were devel-
oped to solve forward and inverse Stefan problem [1, 9, 10]. 
Recently, Wang and Perdikaris [11] proposed a Physics-
Informed Neural Network (PINN) solver for forward and 
inverse solutions of a Stefan type problem. They assume that 
either physics or data about the system are partially avail-
able, such as certain terms in the PDEs or sparse measure-
ments. Hence, their approach is not applicable if the terms in 
the governing equation are not known. When the governing 
equation of the system is unknown and the only available 
information is the measured data, reliable and physically 
consistent predictions can be made by discovering the under-
lying physics of the system from the field measurements. 
Purely data driven methods such as Dynamic Mode Decom-
position (DMD) also offers successful short-term predictions 
[12]. However, model discovery reveals interpretable models 
with more generalization capabilities [13].

Model discovery, particularly in the presence of noise is 
a challenging task. Bongard and Lipson [14] used a sym-
bolic regression approach to discover governing equations of 
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dynamical systems from measurements. Schaeffer [15] intro-
duced the concept of sparse learning of PDEs. The key idea 
is to numerically calculate the time derivatives of the field 
data and create a matrix that comprises the spatial deriva-
tives of the field data and subsequently cast the problem as 
a sparse regression between the two steps. Sparse regression 
is the mechanism to inflict parsimony. Schaeffer [15] solved 
sparse optimization with the Douglas-Rachford algorithm. 
This makes the framework robust to noise in time derivatives 
of the field variable. Brunton et al. [16] introduced Sparse 
Identification of Nonlinear Dynamics (SINDy). SINDy is 
a versatile framework with an efficient sparse optimization 
algorithm. They convert the nonlinear model identification 
to linear system of equations similar to [15] and solve for 
the sparse optimization by sequentially thresholding the least 
squares solutions to promote sparsity. In their influential 
work, Zhang and Schaeffer [17] analyzed the convergence 
behavior of SINDy, strengthening the theoretical founda-
tion of the method. Subsequently, SINDy has been widely 
adopted in the field of learning PDEs and applied to a wide 
range of problems [18–21]. Inspired by [22], Messenger and 
Bortz extended the work to leverage the weak formulation 
of ODEs and PDEs (Weak SINDy) [23, 24]. This method 
eliminates the pointwise approximation of derivatives using 
the weak form integral and significantly increases noise 
tolerance of SINDy algorithm. Fasel et al. [25] combined 
ensemble learning with the SINDy algorithm and intro-
duced Ensemble SINDy. They demonstrated the capabili-
ties of Ensemble SINDy by recovering the coefficients of 
several PDEs from noisy and scarce measurements. While 
Ensemble SINDy may not be as effective as Weak SINDy in 
handling noise, it can be used for experiments with moving 
boundaries because of the pointwise and corotational nature 
of the the problem. Furthermore, Ensemble SINDy can be 
combined with Weak SINDY to enhance its performance.

Combining Ensemble SINDy and Peridynamic Differ-
ential Operator (PDDO) introduced by Madenci et al. [26], 
we propose a discovery framework for learning dynamics 
of moving boundaries. We assume the moving boundary 
physics is governed in its own corotational coordinate sys-
tem, with normal and tangential directions to the bound-
ary, and its derivatives are calculated using the PDDO. The 
PDDO enables differentiation through integration and does 
not require uniform sensor placement. It simply considers 
the interaction between neighboring points for the evalua-
tion of derivatives, it can be used to calculate derivatives 
in any coordinate system by a straightforward modifica-
tion and it integrates well with the existing PDE discovery 
methods [27]. There appears no study in the open literature 
addressing the discovery of governing equations of moving 
boundaries.

This study is organized as follows. In Sect. 2, we explain 
the Ensemble SINDy. In Sect. 3, we briefly describe the 

multiphysics PDE model, Fisher–Stefan model and the 
numerical experiment to create training data synthetically. 
In Sect. 4, we present the results and performance of the 
proposed learning framework for different levels of noise in 
experimental data. Finally, we discuss the results and sum-
marize the main conclusions in Sect. 5.

2  Ensemble SINDy

Introduced by Brunton et al. [16], SINDy algorithm for 
sparse learning of PDEs is based on

in which � and � are the feature matrix and velocity vec-
tor, respectively. The vector � contains the unknown coef-
ficients appearing in the PDE and � is sparsity regularization 
parameter. An example of feature matrix � , consisting of the 
field variable u and its spatial derivatives in one dimensional 
space, x can be constructed as

where each column represents a different feature at n spatial 
points and m time instances (snapshots); the first column 
consists of unit values to accommodate for the bias term of 
the solution, i.e., a potential constant source. The velocity 
vector � consisting of the time derivative of the field vari-
able u is expressed as

The SINDy algorithm restates Eq. (1) as

where nf  is the number of features in the feature matrix. As 
shown by Zhang and Schaeffer [17], this algorithm presents 
attractive convergence features. However, it performs poorly 
in the presence of high correlation between the columns of 
feature library. On the other hand, STRidge algorithm is 
robust to the correlation between features. Therefore, Eq. (1) 
is modified to contain a penalty term, �

2
 and it can be recast 

as

(1)argmin
�

‖� − ��‖2
2
+ �‖�‖1,

(2)� =

⎡⎢⎢⎢⎢⎢⎢⎣
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1 u(x3, t1) ux(x3, t1) ⋯ u3
xxx
(x3, t1)
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��� ≥ 𝜆

�
, k ≥ 0
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�∈ℝ

nf ∶sup(�)⊆Sk
‖� − ��‖2, k ≥ 0,
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where �1 is the penalty parameter enforcing sparsity and �2 
is the penalty parameter regularizing the magnitude of the 
recovered coefficients. The optimization of Eq. (5) can be 
achieved through the STRidge algorithm as

This algorithm has been used successfully to recover gov-
erning nonlinear partial differential equations [28]. How-
ever, the success of this algorithm diminishes significantly 
in the presence of noise [28].

It is worth mentioning that the omission of higher-order 
terms in Eq. (2) is not due to any limitations of the method 
itself. While the method does not guarantee the discovery of 
the exact governing equation, it has been empirically proven 
effective in many cases. For instance, Shaeffer [15] notes 
that in the context of the KdV equation, phenomena such 
as traveling waves and solitons can create ambiguity, as the 
same dataset might be generated by different equations.

Fasel et al. [25] combined SINDy with ensemble learning 
to handle noisy measurements. Ensemble algorithms, which 
aggregate multiple hypotheses from a base learning algo-
rithm, offer statistical, computational, and representational 
advantages over conventional algorithms such as the deci-
sion trees, k-nearest neighbors, support vector machines, and 
logistic regression [29]. Generally, the resulting ensemble 
algorithm is significantly more accurate than the original 
classifier. However, unstable learning algorithms i.e., learn-
ing algorithms which are sensitive to small changes in train-
ing dataset, should be used to leverage the full potential of 
ensemble methods.

Bagging (Bootstrap aggregating) [29] is one of the well 
known ensemble methods which is based on running the 
same learning method over different subsets of the same 
dataset. In Bagging, given a set of M data points, N distinct 
datasets are created by uniformly sampling M data points 
with replacement. The original algorithm is trained on gen-
erated datasets and finally, hypotheses are combined with 
aggregating the trained models by using the sample mean. 
Bragging (Bootstrap robust aggregating) uses the sample 
median for aggregation instead.

Fasel et al. [25] use bagging and bragging with Eq. (5) as 
the base learner. They demonstrate the capability of the pro-
posed method by recovering the coefficients of several PDEs 
from noisy and scarce measurements. The instability of the 
learner is ensured by systematically removing features from 
the feature matrix and adding random noise to the dataset. 

(5)argmin
�

‖� − ��‖2
2
+ �1‖�‖1 + �2‖�‖2,

(6)

�0 =
�
�T� + 𝜆2�

�−1
�T�

Sk =
�
j ∈ [nf ] ∶

����
k
j

��� ≥ 𝜆1

�
, k ≥ 0

�k+1 = argmin
�∈ℝ

nf ∶sup(�)⊆Sk
‖� − ��‖2 + 𝜆2‖�‖2, k ≥ 0.

The main algorithm for the Ensemble SINDy approach is 
shown in Fig. 1.

In this study, Ensemble SINDy approach is applied to 
learning 2D Fisher–Stefan system. This system involves a 
reaction–diffusion equation along with a moving boundary 
equation referred to as the Stefan condition. First equation 
evolves in a Cartesian coordinate system while the Stefan 
condition is defined in reference to the coordinate system of 
the moving boundary. Therefore, feature matrices for the dis-
covery of Stefan condition is constructed using derivatives 
with respect to the moving boundary corotational coordinate 
system.

3  2D Fisher–Stefan problem

This study concerns the recovery of the governing equa-
tion of the 2D Fisher–Stefan model [30]. Tam et al. [31, 32] 
recently conducted an extensive study on the 2D Fisher–Ste-
fan model. This model has practical applications, such as 
representing cell tumor growth, fibroblast cells invading 
a partial wound or porous media modeling for population 
dynamics [33] making it tangible and important. We cre-
ated the dataset using the open-source Julia code shared by 
Tam et al. [31, 32]. Also, the details of dataset generation 
is explained Appendix 3. 2D Fisher–Kolmogorov–Petro-
vsky–Piskunov (Fisher–KPP) equation is expressed as

where u(�, t) denotes the population density extending the 
problem domain Ω1 by spreading to the complement domain 
Ω2 . As the moving boundary progresses towards Ω2 , Ω2 
gradually shrinks, and Ω1 expands accordingly. This expan-
sion of Ω1 represents the spreading of the population density 
into the complementary domain, effectively extending the 
problem domain.

It is assumed that the regions Ω2 and Ω2 are predefined 
and available at every timestep. In practical applications, 
these regions may require a priori segmentation from the 
observations. This segmentation can be done manually or by 
using a model like UNet, which is well-suited for such tasks.

This equation is a reaction–diffusion equation and 
has a logistic type of nonlinear source term on the right 
hand side u(1 − u) which controls the growth and compe-
tition of the species u [34]. Inspired by the classical Ste-
fan problem [8, 35], Fisher–Stefan problem is defined by 
coupling Fisher–KPP equation with a moving boundary 
Γ(�, t) = �Ω1 ∩ �Ω2 . This boundary moves in its normal 
direction defined by the gradient of the population density. 
As a result, the problem domain Ω1 evolves with the mov-
ing boundary. The Stefan and Dirichlet boundary conditions 
defined on the moving boundary are

(7)
�u

�t
= ∇ ⋅ (∇u) + u(1 − u), for � ∈ Ω1,
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where 𝜅 > 0 is the Stefan parameter, which connects the 
gradient of population density and surface evolution veloc-
ity. We consider two distinct test cases (datasets) for learning 
the governing equations of this system: (1) a vertical moving 
boundary with a sinusoidal perturbance, and (2) a circular 
moving boundary with irregularity.

3.1  Vertical moving boundary with a sinusoidal 
perturbation

Spatial domain for this problem is defined as 
� ∈ [0, 10] × [0, 10][0, 10] and boundary conditions in y direc-
tion are defined as periodic. Initial-boundary conditions for 
this problem are depicted in Fig. 2.

The remaining boundary condition on the left edge repre-
senting a fixed population density and the periodic boundary 
conditions in y direction are expressed as

(8)
�Γn

�t
= −�∇u ⋅ � and u = uf for � ∈ Γ,

(9)
u(0, y, t) = u�

u
(
x, y + nLy, t

)
= u(x, y, t), for n ∈ ℤ,

where Ly = 10 is the length of the domain in y direction. The 
initial conditions are defined as

Fig. 1  Ensemble SINDy algorithm

Fig. 2  Initial-boundary conditions for the 2D Fisher–Stefan problem 
with a vertical moving boundary having a sinusoidal perturbation



Engineering with Computers 

where u0(�) is obtained by solving two overdetermined sec-
ond order ordinary differential equations as described in 
[32]. The solution to the system of equations is obtained 
for � = 0.5 , Δx = Δy = 0.025 , Δt = 0.01 , t ∈ [0, 5] using the 
open source code shared by [32] and the rest of the param-
eters of the problem can be also found in [32]. As time pro-
gresses, this solution for the population density along with 
the moving boundary is depicted in Fig. 3.

(10)
u(�, 0) = u0(�), for � ∈ Ω1

u(�, 0) = uf , for � ∈ Ω2,

3.2  Circular moving boundary with irregularity

Figu re   4  shows  t he  spa t i a l  doma in  w i t h 
� ∈ [−10, 10] × [−10, 10] and the ini t ial-boundary 
conditions.

The initial position of the moving boundary Γ(�, 0) is 
defined as

where

The remaining boundary conditions on the outer edges 
representing fixed population density are expressed as

The initial conditions are defined as

The solution to the system of equations is obtained using 
the open source code shared by Tam and Simpson [31] for 
� = 0.1 , Δx = Δy = 0.1 , Δt = 0.04 , t ∈ [0, 40] . As time pro-
gresses, this solution for the population density along with 
the moving boundary is depicted in Fig. 5.

(11)Γ(�, 0) = 3.5 + 0.2(sin 3� + sin 12� + sin 16�),

(12)� = tan−1
y

x
.

(13)u(�, 0) = 0 for � ∈ �Ω2.

(14)
u(�, 0) = uf , for � ∈ Ω1

u(�, 0) = 0, for � ∈ Ω2.

Fig. 3  Time evolution of the field data Θ = [u,Γ] for the 2D Fisher–Stefan problem with a vertical moving boundary having a sinusoidal pertur-
bation

Fig. 4  Initial-boundary conditions for the 2D Fisher–Stefan problem 
with a circular moving boundary having irregularity

Fig. 5  Time evolution of the field data Θ = [u,Γ] for the 2D Fisher–Stefan problem with a circular moving boundary having irregularity
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3.3  Corotational coordinate system of the moving 
boundary and the surface evolution velocity

This section describes the learning of the underlying govern-
ing equations for the 2D Fisher–Stefan problem. The learn-
ing includes the 2D Fisher–KPP equation which evolves in a 
2D Cartesian coordinate system and the governing equation 
for the moving boundary (Stefan condition) which evolves 
in its own corotational coordinate system.

The derivatives of the field are constructed by employ-
ing the PDDO [26, 41] as explained in Appendix 1. For 
the derivatives in Cartesian coordinate system, the approach 
described by Bekar and Madenci [27] is adopted without any 
special treatment. The derivatives in corotational coordinates 
are calculated by rotating the coordinate system to the nor-
mal and tangent directions to the interface at the “sensor” 
locations. The “sensor” locations refer to imaginary nodes 
situated on the moving boundary as well as on the nodes of 
discretization within the domain to draw analogy to meas-
urement locations in a real experimental setup. The families 
of the material points (representing the unique set of points 
interacting with the point of interest inside a finite radius) 
are also demarcated using the tangents. This approach is 
described in Fig. 6.

Coordinate transformation can be accomplished by using 
two different methods. The first method is based on the use 
of arctangents of the line sections between sensor locations 
on the moving boundary. The second method is based on 
the use of level sets. Using the snapshots of the moving 
boundary, the level set equation is solved and the gradients 
of level sets are calculated. These gradients after normali-
zation define the normal directions to the moving boundary 
(interface).

Figure 7 illustrates the coordinate system rotation and 
advancing interface velocity calculations using panels 

between the coordinate locations on the interface. First, we 
consider a coordinate point, p̃t

i
 between two neighboring 

points on the moving interface. Subsequently, we rotate 
the coordinate system based on the arctangent of the angle 
� . At last, we calculate the distance vector �t

i
 between the 

panel midpoint p̃t
i
 and the nearest coordinate point on the 

moving interface in the next time step.

Fig. 6  Peridynamic (PD) fami-
lies and interface coordinate 
system on the moving boundary

Fig. 7  Discrete points on the moving boundary (interface), rotation of 
the coordinate system using panel angles and calculation of the dis-
tance vector
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The norm of this distance vector can be divided to 
timestep size Δt to calculate the velocity of the interface in 
the normal direction as

An alternative approach is to rotate the vector �t
i
 using the 

calculated panel normal and use the norm of the resulting 
vector as

where �t
i
 is the calculated panel normal at time t and loca-

tion i . As discussed in [36], the peridynamic analysis could 
provide an alternative method for computing normal direc-
tions to the boundary.

Our advancement scheme of material points on the mov-
ing boundary does not prevent the material point accu-
mulation or crossing. However, the material points can be 
updated if accumulation occurs since the sensor locations on 
the moving boundary are based on visual data.

4  Numerical results

This section presents the numerical results of the recov-
ery experiments conducted to test the proposed learning 
framework. It presents the recovered models for the Stefan 
condition and Fisher–KPP equation, obtained for different 
noise levels. The relative error of the model coefficients is 
calculated as

where � is the vector of ground truth coefficients and �̂ is 
the vector of the recovered coefficients. Our framework is 
implemented in Python, the codes and data are available at: 
https:// github. com/ alica nbekar/ MB_ PDDO- SINDy.

4.1  Discovery of the Stefan condition

We employ Ensemble SINDy to discover the Stefan condi-
tion from the field measurements. The candidate features 
consisting of the field derivatives and their products are 
assembled as

The derivatives of the field variable u are constructed 
in the corotational coordinate system using the PDDO as 

(15)
[
�Γn

�t

]i
≈

|||�ti
|||

Δt
.

(16)
[
�Γn

�t

]i
≈

|||�ti ⋅ �ti
|||

Δt
,

(17)𝜀c =
‖� − �̂‖2
‖�‖2 .

(18)

[
1 u uxn uxt uxn × uxn uxn × uxt uxt × uxt uxnxn uxtxt uxnxt uxnxn+ uxtxt

]
.

described in detail in Appendix 1. This candidate space can 
also include derivatives of the field variable in the Cartesian 
coordinate system or higher-order derivatives and their prod-
ucts. In real life applications, the derivatives of the moving 
boundary curve with respect to the coordinate system of the 
field equation can also be added to the feature library, e.g. 
curvature of the moving boundary ∇2Γ . It is worth noting 
that there is no guaranteed method for selecting the candi-
date space. However, we keep the candidate space simple 
and assume that it includes only the terms to explain the 
underlying dynamics of the moving boundary. Furthermore, 
we normalize each feature by its maximum absolute value to 
prevent the optimizer to be biased.

We test Ensemble SINDy with library bagging on 3 dif-
ferent noise levels. We aggregate the models by choosing 
the median of the recovered coefficients from different boot-
strapped datasets. Additionally, we construct the probability 
distributions using Gaussian kernel estimation [37]. For the 
dataset with no measurement noise, we bootstrap the data for 
60 times and bootstrap the features by leaving 3 out at every 
regression. This results in 9900 different tests. We calculate 
the inclusion probabilities of the features by dividing the 
number of appearances to the total number of tests. We set 
the threshold for the inclusion probability Pinc as 0.7. This 
means that we disregard the features appearing less than 
70% of the time. We calculate the standard deviation of the 
coefficients of the features that appear more than Pinc , and 
construct the confidence intervals using the margins of 3� 
from the mean �.

We chose the parameters for the STRidge regression as 
�1 = 0.3 and �2 = 1.0 . The selection of �2 = 1 is heuristic, 
and it is primarily used to regularize the ridge regression 
solutions between threshold operations. The value of �1 can 
be chosen using information criteria like BIC [38] or AIC 
[39]. The Python library we share contains a function to 
evaluate the AIC scores of the models and returns the suit-
able value for �1.

4.1.1  Discovery of the vertical moving boundary 
with a sinusoidal perturbation

Figure 8 depicts the recovered coefficients, uncertainties, 
inclusion probabilities and the probability density estima-
tions for the case with clean data. It shows that out of 11 
terms, only 8 terms appear at least once. Also, majority of 
the recovered coefficients appear less than 3% of the time. 
Only 2 terms have significant inclusion probabilities, uxn and 
uxn × uxn . Considering the correlation among them makes 
this appearance rational. The only term appearing more than 
the threshold probability is uxn with Pinc = 0.788 and median 
value of 0.514, which is the term responsible for the underly-
ing dynamics of the moving boundary. We calculate �c using 

https://github.com/alicanbekar/MB_PDDO-SINDy
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Eq. (17) as 0.028 which corresponds to less than 3% relative 
error in the recovered coefficient.

Figure 8 also shows the 99% or 3� confidence interval of 
the recovered coefficient of the feature uxn . We use the limits 
of the confidence interval and solve for the moving boundary 
locations to show the uncertainty of the position of the inter-
face. Figure 9 depicts the region of uncertainty, ground truth 
solution and solution obtained with the median value from 
the recovery. We also provide the Fréchet distance between 
the ground truth and predictions in Appendix 4. Since the 
dataset is clean, the recovered coefficients and the position 
of the moving boundary has a narrow region of uncertainty. 
Furthermore, the solution obtained with the median value 
of the recovery coincides with the ground truth solution.

Subsequently, we add noise to the training data as 
u = u + n where n ∼ N

(
0, �2

)
 and N

(
�, �2

)
 is Gaussian ran-

dom variable defined as f (x) = e−(x−�)
2∕ 2�2

�
�

√
2� with � 

and � representing the standard deviation and mean of the 
distribution, respectively, where � is chosen to be the 

standard deviation of u . The noise magnitude � multiplied 
with � to introduce the desired level of noise to the dataset. 
The data is corrupted by considering 1% Gaussian random 
noise for the first trial. The learning and bragging parameters 
are the same as those of the clean data case.

Figure 10 depicts that adding noise increases the prob-
ability of irrelevant features appearing in the recovered 
model. Also, the confidence interval of the coefficient of 
the feature uxn increases and 3� confidence interval corre-
sponds to [0.316, 0.617] . Interestingly, inclusion probabil-
ity of the correct model also increases with Pinc = 0.975 
and median value of 0.504 is closer to the ground truth 
value compared to the case with clean data ( �c = 0.008 ). 
This is caused by the probabilistic nature of the bagging 
process. However, noise in the field data increases the 
uncertainty of the recovered model, making the recovered 
median value less reliable. Figure 11 depicts that the noise 
in the dataset widens the 99% confidence interval and 
increases the uncertainty of the predicted position of the 
moving boundary. However, the recovered position using 

Fig. 8  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a ver-
tical moving boundary having a 
sinusoidal perturbation for the 
clean dataset

Fig. 9  Interface positions with the confidence intervals at t = 1, 2, 3, 4 s for the clean data case with a vertical moving boundary having a sinusoi-
dal perturbation
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the recovered coefficient still overlaps with the ground 
truth position att = 4s.

Finally, we corrupt the data by considering 5% Gauss-
ian random noise. The learning and bragging parameters 
are the same as those of the clean data case. Figure 12 
shows the results for the recovery. The 3� confidence 
interval of the coefficient of the feature uxn corresponds to 
[−0.054, 0.732] with the median value of 0.387 ( �c = 0.226 ) 
which indicates a larger error. Nonetheless, Ensemble 
SINDy can properly identify the responsible terms for 
underlying dynamics even in the presence of relatively 
high measurement noise.

Figure 13 illustrates an increasing discrepancy between 
the ground truth position and the recovered position as 
noise levels escalate. However, compared to the confi-
dence region, recovered position is relatively close to the 
ground truth position. Table 1 in Appendix 2 shows the 
comparison of the recovered coefficients with the ground 
truth model.

4.1.2  Discovery for circular moving boundary 
with irregularity

For this case, we modify the sparsity penalty and change it 
from �1 = 0.3 to �1 = 0.1 . The reason for this modification 
is that none of the inclusion probabilities exceed the thresh-
old inclusion probability for �1 = 0.3 . Figure 14 depicts the 
results of the ensemble process for the clean dataset.

Figure 14 shows that uxn is the only relevant term explain-
ing the underlying dynamics of the moving boundary, with 
Pinc = 0.714 and median value of 0.086 ( �c = 0.14 ). It can 
be seen that compared to Fig. 9, Fig. 15 shows a broader 
region of uncertainty. This is primarily caused by the longer 
duration of the analysis t = 40.

Subsequently, we corrupt the data using 1% Gaussian 
random noise. Figure 16 shows that added noise widens the 
confidence interval to [0.037, 0.166] . However, the median 
value of 0.105 is closer to the ground truth value compared 
to the case with the clean data ( �c = 0.05).

Fig. 10  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a ver-
tical moving boundary having 
a sinusoidal perturbation using 
dataset with 1% noise level

Fig. 11  Interface positions with the confidence intervals at t = 1, 2, 3, 4 s for the case of 1% Gaussian noise case with a vertical moving boundary 
having a sinusoidal perturbation
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Figure 17 shows that recovered position using the median 
value of the recovered coefficient still overlaps with the 
ground truth position at t = 40 despite the added noise.

Finally, we corrupt the data using 5% Gaussian ran-
dom noise. Figure 18 shows that similar to the clean data 
case of the vertical moving boundary having a sinusoidal 

perturbation, the term uxn × uxn appears in addition to the 
term uxn . The 3� confidence interval of the coefficient of 
the feature uxn corresponds to [0.048, 0.204] with the median 
value of 0.106 ( �c = 0.06 ). Figure 19 shows the recovered 
position using the median value of recovered coefficients. 

Fig. 12  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a ver-
tical moving boundary having 
a sinusoidal perturbation using 
dataset with 5% noise level

Fig. 13  Interface positions with the confidence intervals at t = 1, 2, 3, 4 s for the 5% Gaussian noise case with a vertical moving boundary having 
a sinusoidal perturbation

Fig. 14  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a 
circular moving boundary hav-
ing irregularity using the clean 
dataset
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Fig. 15  Interface positions with the confidence intervals at t = 4, 16, 24, 40 s for the clean data case with a circular moving boundary having 
irregularity

Fig. 16  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a cir-
cular moving boundary having 
irregularity using dataset with 
1% noise level

Fig. 17  Interface positions with the confidence intervals at t = 4, 16, 24, 40 s for the 1% Gaussian noise case with a circular moving boundary 
having irregularity



 Engineering with Computers

Table 2 in Appendix 2 shows the comparison of the 
recovered coefficients with the ground truth model.

4.2  Discovery of the Fisher–KPP Equation

For this case, we also employ Ensemble SINDy to discover 
the Fisher–KPP equation from the field measurements. 
Our candidate space terms for the discovery are based on 
the assumption that the population density evolves in a 
Cartesian coordinate system. Therefore, the derivatives of 
the field variable u are constructed in x and y directions. 

This is the inductive bias of our model for the Fisher–KPP 
equation. The candidate space consisting the field deriva-
tives and their products is assembled as

Again, we keep the candidate space simple because of 
the computational burden of the ensembling process and 
assume that it includes only the terms to explain the under-
lying dynamics of the Fisher–KPP equation. We scale each 
feature by its maximum absolute value.

(19)
[
1 u u2 ∇2u ux uy uxx uxy uyy uyuxx

]
.

Fig. 18  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Stefan condition with a cir-
cular moving boundary having 
irregularity using dataset with 
5% noise level

Fig. 19  Interface positions with the confidence intervals at t = 4, 16, 24, 40 s for the 5% Gaussian noise case with a circular moving boundary 
having irregularity
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Fisher–KPP equation with the chosen initial conditions 
is a challenging case for discovery. The main reason for this 
is that the saturation of the concentration values far from 
the moving boundary. When the field variable saturates, its 
derivatives vanish, giving no information about the field 
equation; nevertheless, we use Ensemble SINDy with library 
bagging on Fisher–KPP equation to discover the underlying 
dynamics. For the dataset with no measurement noise, we 
bootstrap the data for 60 times and bootstrap the features by 
leaving 1 out at every regression. This results in 600 differ-
ent tests. We set the threshold for the inclusion probability 
Pinc as 0.7. We calculate the standard deviation of the coef-
ficients of the features appearing more than Pinc and con-
struct the confidence interval using 3� . The learning and 
parameters are specified as the same as those of the Stefan 
condition experiments. Figure 20 shows the results for the 
recovery for Fisher–KPP equation.

Figure 20 shows that the terms u and u2 appear with 
Pinc = 0.889 and median values have the same magni-
tude ± 0.980 with opposite signs. This means that these 
terms appear as a pair and can be combined to a form 
u(1 − u) . Laplacian term ∇2u appears with Pinc = 0.778 
which is also greater than the threshold probability with 
the median value 0.972. Other appearing terms uxx and uyy 
also show up in pairs when Laplacian term is singled out, 
which is combined to form the Laplacian term. Hence, all 
recovered coefficients are relevant but the algorithm chooses 
the parsimonious solution. We calculate �c as 0.022 which 
corresponds to less than 3% relative error in the recovered 
coefficients. Figure 21 shows the absolute error between the 
ground truth solution and the recovered solution with the 
largest error being ≈ 4 × 10−3.

Additional Gaussian noise in Fisher–KPP equation results 
in recovering incorrect models, vanishing derivatives might 
be the real cause of this failure. A potential solution to this 
issue can be the initialization of the same model multiple 
times with varying initial conditions; thereby generating a 

more diverse training dataset. Additionally Weak SINDy can 
be employed for this problem to increase recovery success. 
However, Weak SINDy is beyond the scope of this study.

5  Discussion and conclusions

This study proposes a novel framework for learning underly-
ing physics of processes with moving boundaries. By com-
bining the recently introduced Ensemble SINDy and PDDO, 
we have successfully recovered the moving boundary equa-
tion and Fisher–KPP equation of Fisher–Stefan model. We 
impose the inductive bias assuming that the corotational 
coordinate system admits the parsimonious dynamical 
model. While this inductive bias does not limit the addi-
tional features evolving in a Cartesian coordinate system, it 

Fig. 20  Median values, 99% 
(� ± 3�) confidence intervals 
and inclusion probabilities for 
the Fisher–KPP equation using 
the clean dataset

Fig. 21  The absolute error between the ground truth and the recov-
ered solutions
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is a critical part of the algorithm. We have demonstrated the 
robustness of the present approach by considering various 
levels of noise in the measured data. We present the confi-
dence intervals of recovered coefficients and demonstrate the 
uncertainties of the moving boundary positions by obtaining 
the solutions using the recovered coefficients.

Although the main focus is Fisher–Stefan model, this pro-
posed framework is applicable to any kind of moving bound-
ary problem with a smooth interface without a transitional 
region between the interacting domains. There are many 
other potential applications of the proposed framework, but 
one interesting application can be the discovery of math-
ematical models for regrowing limbs and tissue [40, 41]. 
Regrowing limbs by nature is a moving boundary problem, 
and mathematical understanding of this complex mechanism 
can help researchers govern or predict the process better. 
Exploring the physics of crystal growth presents another 
valuable application. Understanding these dynamics is cru-
cial for enhancing the efficiency and quality of semiconduc-
tor production.

In spite of the success of the proposed framework for 
learning physics with moving boundaries, there is still room 
for improvement. One limitation is locating the moving 
boundary. We assume that the location of the moving bound-
ary is known beforehand. This process can be automated 
using a segmentation algorithm. Another improvement is to 
use the suitable measurement techniques for moving bound-
ary problems because field measurements can disturb the 
moving boundary. One suitable way can be digital parti-
cal image thermometry/velocimetry [42] for measuring the 
temperature change while following the moving boundary 
using the visual input. An additional feature to the proposed 
algorithm can be discovery of parametric PDEs. Ultimately, 

proposed algorithm might also be integrated with the Weak 
SINDy approach, this can allow the recovery of Fisher–KPP 
equation in presence of noise. A possible extension of the 
Weak SINDy can be by using the weak form of peridynam-
ics for discovering the nonlocal forms of the local PDEs 
[42]. The assumption of the parsimonious dynamics evolve 
in moving boundary curve corotational coordinate system 
can also be relaxed using an approach similar to [18].

Appendix 1: Peridynamic differential 
operator

PDDO is based on the idea of peridynamic interactions 
which was originally proposed by Silling and Lehoucq [44] 
in his work about Peridynamic (PD) theory. With the PDDO, 
the nonlocal representation of a field f = f (�) can be con-
structed at a point � by incorporating the effect of its interac-
tion with the other points, �′ in its vicinity. The extent of this 
interaction is limited to a finite radius called the horizon 
radius, � . The unique set of points interacting with the point 
of interest is called the family of point of interest. This fam-
i ly  c a n  b e  m a t h e m a t i c a l ly  d e s c r i b e d  a s 
�� =

{
��
|||d
(
�� − �

)
<𝛿

}
 . Each point inside the family 

occupies an infinitesimal volume area or length depending 
on the dimensionality of the domain. Similarly, all family 
members �′ also have their own families, ��′ . Moreover, 
there is no constraint on families being symmetric. The rela-
tive position of family members to the point of interest is 
defined as ξ = x′ − x. Figure 22 depicts the families and inter-
actions between material points.

Fig. 22  Interaction of PD points, � and �′ with arbitrary family size 
and shape

Fig. 23  Interaction domain �� of point � and the form of the Gauss-
ian weight function
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In a 2-dimensional space, a function, f (� + �) can be 
expressed in terms of Taylor Series Expansion (TSE) as

where R is the remainder. Multiplying each term with PD 
functions, gp1p2

2
(�) and integrating over the domain of inter-

action (family), �� result in

in which the point � is not necessarily symmetrically located 
in the domain of interaction.

The initial relative position, � , between points � and �′ 
can be expressed as � = �� − � . This ability permits each 
point to have its own unique family with an arbitrary posi-
tion. Therefore, the size and shape of each family can be 
different, and they significantly influence the degree of 
nonlocality. In general, the family of a point can be non-
symmetric due to nonuniform spatial discretization.

The degree of interaction between the material points 
in each family is specified by a nondimensional weight 
function, w(|�|) , which can vary from point to point. 
The weight function is usually chosen as Gaussian as 
w(|�|) = e−4|�|2∕�2 . This weight function and the interac-
tion domain are shown Fig. 23.

(20)

f (� + �) = f (�) + �1
�f (�)
�x1

+ �2
�f (�)
�x2

+ 1
2!
�21

�2f (�)
�x21

+ 1
2!
�22

�2f (�)
�x22

+ �1�2
�2f (�)
�x1�x2

+,

(21)

∫
��

f (� + �) gp1p22 (�)dV

= ∫
��

f (�) gp1p22 (�)dV+�f (�)
�x1

∫
��

�1g
p1p2
2 (�)dV +

�f (�)
�x2

∫
��

�2g
p1p2
2 (�)dV

+1
2
�f 2(�)
�x21

∫
��

�21g
p1p2
2 (�)dV + 1

2
�f 2(�)
�x22

∫
��

�22g
p1p2
2 (�)dV +

�2f (�)
�x1�x2

∫
��

�1�2g
p1p2
2 (�)dV ,

The interactions become more local with decreasing 
family size. Thus, the family size and shape are important 
parameters. Each point occupies an infinitesimally small 
entity such as volume, area or a distance. The PD functions 
are constructed such that they are orthogonal to each term 
in the TSE as

with (n1, n2, p, q = 0, 1, 2) and �ij is the Kronecker delta sym-
bol. Enforcing the orthogonality conditions in the TSE leads 
to the nonlocal PD representation of the function itself and 
its derivatives as

The PD functions can be constructed as a linear combi-
nation of polynomial basis functions

where ap1p2q1q2
 are the unknown coefficients, wq1q2

(|�|) are the 
influence functions, and �1 and �2 are the components of 
the vector � . Assuming wq1q2

(|�|) = w(|�|) and incorporat-
ing the PD functions into the orthogonality equation lead to 
a system of algebraic equations for the determination of the 
coefficients as

After determining the coefficients ap1p2q1q2
 via � = �−1� , 

the PD functions gp1p2
2

(�) can be constructed. The detailed 
derivations and the associated computer programs can be 
found in [42]. The PDDO is nonlocal; however, in the limit 
as the horizon size approaches zero, it recovers the local 
differentiation as proven by Silling and Lehoucq [43]. The 
peridynamic model defines the nonlocality length scale 
using � . On the contrary, classical theories lack param-
eters to encapsulate nonlocal interactions. The PD model 
recovers the local solution when the horizon approaches 
zero. It's important to note that this convergence may not 
necessarily be uniform. Silling and Lehoucq [43] have 
further illustrated that if the motion is not twice continu-
ously differentiable or if the PD constitutive model lacks 
continuous differentiability, the convergence to a classical 

(22)
1

n1!n2!
∫
��

�
n1
1
�
n2
2
g
p1p2
2

(�)dV = �n1p1
�n2p2

(23a)f (�) = ∫
��

f (� + �)g00
2
(�)dV ,

(23b)
{

�f (�)

�x

�f (�)

�y

}
= ∫

��

f (� + �)
{
g10
2
(�) g01

2
(�)

}
dV ,

(23c)

{
�
2f (�)

�x2
�
2f (�)

�y2
�
2f (�)

�x�y

}
= ∫

��

f (� + �)
{
g20
2
(�) g02

2
(�) g11

2
(�)

}
dV .

(24)

gp1p22 = ap1p200 w00(|�|) + ap1p210 w10(|�|)�1 + ap1p201 w01(|�|)�2 + ap1p220 w20(|�|)�21
+ap1p202 w02(|�|)�22 + ap1p211 w11(|�|)�1�2,

(25)�� = �,
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model is not guaranteed in the scenario of a small horizon. 
In such a situation, while PD equations remain valid for 
any positive horizon, the properties of convergence at a 
zero-horizon limit are indeterminate.

Appendix 2: Recovery results for Stefan 
condition

See Tables 1 and 2.

Appendix 3: Data generation

The solutions for the vertical moving boundary with a 
sinusoidal perturbation and the circular moving bound-
ary with irregularity are obtained by using the existing 
software [32] and [31], respectively. Both methods replace 
the original set of Fisher–KPP equations with a level set 
formulation and solve the system using the finite differ-
ence method. For the vertical moving boundary with a 
sinusoidal perturbation, the initial position of the moving 
boundary is set at x = 6 with a sinusoidal perturbation of 
amplitude � = 0.1 and wavelength p = 2 . We consider all 
snapshots from the simulations. For testing, we employ 
201 discretization points in each direction, including 201 
grid points for the moving boundary for testing.

Appendix 4: Fréchet distances

The Fréchet distance metric can be used to measure the 
similarity between parametric curves [45]. In this study, we 
use the discrete Fréchet distance to compare the recovered 

Table 1  Identified models and corresponding confidence intervals for 
Stefan condition with a vertical moving boundary having a sinusoidal 
perturbation

Model Confidence Interval

Ground truth �Γ
n

�t
= −0.5u

x
n

−

Clean data �Γ
n

�t
= −0.514u

x
n

[0.514, 0.515]

Identified model (1% noise) �Γ
n

�t
= −0.504u

x
n

[0.316, 0.617]

Identified model (5% noise) �Γ
n

�t
= −0.387u

x
n

[−0.054, 0.732]

Table 2  Identified models and corresponding confidence intervals for 
Stefan condition with a circular moving boundary having irregularity

Model Confidence Interval

Ground truth �Γ
n

�t
= −0.1u

x
n

−

Clean data �Γ
n

�t
= −0.086u

x
n

[0.064, 0.105]

Identified model (1% noise) �Γ
n

�t
= −0.105u

x
n

[0.037, 0.166]

Identified model (5% noise) �Γ
n

�t
= −0.106u

x
n

[0.048, 0.204]

(a)                                                                 (b)
Fig. 24  Fréchet distances between the ground truth and recovered moving boundary curves: a vertical moving boundary with a sinusoidal per-
turbation, b circular moving boundary with irregularity
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and ground truth moving boundary curves by utilizing the 
existing software [46]. The curve coordinates are interpo-
lated linearly using consistent arc lengths by considering a 
fixed set of points. We consider 100 points for the sinusoidal 
perturbation case and 300 points for the irregularity case to 
capture the irregular curve with better accuracy. We then 
calculate the discrete Fréchet distance between the ground 
truth and predicted curves using the recovered coefficients.

Figure 24 illustrates the discrepancy and error accumu-
lation between the ground truth and predicted curves. In 
the first case shown in Fig. 24a, where time intervals are 
smaller and the moving boundary curve is easier to predict, 
we observe a gradually increasing error for the recovered 
cases. However, for the circular moving boundary, the time 
intervals are larger, and the curve is more complex. This 
complexity causes the shape of the curve to change rapidly 
at the beginning of the simulation, leading to a greater dis-
tance between the predicted and ground truth curves from 
the first timestep. As the simulation progresses, the Stefan 
condition smooths out the irregularities, resulting in the pre-
dicted curve approaching the ground truth. Nevertheless, in 
the case of clean data, the distance between the smoothed 
curves increases over time, which explains the increasing 
Fréchet distance between the predicted and ground truth 
curves.

The discontinuities observed in Fig. 24b could be due 
to the large timesteps used in the simulation or might be 
numerical artifacts from the interpolation process. However, 
these discontinuities still effectively illustrate the trend of 
error accumulation and the similarity between the predicted 
and ground truth curves.
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