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Abstract
Structural reliability analysis poses significant challenges in engineering practices, leading to the development of vari-
ous state-of-the-art approximation methods. Active learning methods, known for their superior performance, have been 
extensively investigated to estimate the failure probability. This paper aims to develop an efficient and accurate adaptive 
Kriging-based method for structural reliability analysis by proposing a novel learning function allocation scheme and a hybrid 
convergence criterion. Specifically, the novel learning function allocation scheme is introduced to address the challenge 
of no single learning function universally outperforms others across various engineering contexts. Six learning functions, 
including EFF, H, REIF, LIF, FNEIF, and KO, constitute a portfolio of alternatives in the learning function allocation scheme. 
The hybrid convergence criterion, combining the error-based stopping criterion with a stabilization convergence criterion, 
is proposed to terminate the active learning process at an appropriate stage. Moreover, an importance sampling algorithm is 
leveraged to enable the proposed method with the capability to deal with rare failure events. The efficiency and accuracy of 
the proposed method are demonstrated through four numerical examples and one engineering case.

Keywords Structural reliability analysis · Learning function allocation scheme · Active learning · Hybrid convergence 
criterion

1 Introduction

Structural reliability analysis is crucial in the design and 
assessment of various engineering structures. Uncertainties 
arising from material properties, operation conditions, and 
cognitive deficiencies are prevalent in engineering prac-
tice [1–3], which can be represented as the random vec-
tor X = [X1, X2, …, Xn]. The primary objective of structural 

reliability analysis is to quantify the effects of these uncer-
tainties by calculating the failure probability associated with 
the performance function. Given the joint probability density 
function (JPDF) fX(x) , the analytical expression for estimat-
ing the failure probability is defined as a multi-dimensional 
integral:

where g(x) represents the performance function, also known 
as the limit-state function. The failure domain of the sys-
tem is denoted as g(x) ≤ 0 , while g(x) > 0 denotes the safe 
domain.

The difficulty in directly integrating Eq. (1) over a spe-
cific random space has led to the development of various 
reliability analysis methods [4–7]. These methods are 
typically classified into three categories. The first category 
includes approximate  analytical methods such as the first-
order reliability method (FORM) [8] and the second-order 
reliability method (SORM) [9]. These methods express 
the performance function mathematically as a linear or 

(1)Pf = Prob
[
g(x) ≤ 0

]
= ∫

g(x)≤0 fX(x)dx
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quadratic Taylor expansion at the most probable failure point 
(MPP)10. However, applying these methods to highly com-
plex and non-linear performance functions in engineering 
applications may be inappropriate. To address this issue, 
simulation methods–the second category–offer an advanced 
alternative. Monte Carlo simulation (MCS) is renowned for 
its simplicity, robustness, and unbiasedness. However, MCS 
is computationally impractical for problems with low failure 
probabilities; for instance, if the failure probability is  10−k, 
the required number of samples reaches  10k+2. Different 
variance-reduction methods, such as importance sampling 
(IS) [11], directional simulation (DS) [12], subset simula-
tion (SS) [13], line sampling (LS) [14], and asymptotic sam-
pling (AS) [15], have been developed to mitigate this issue. 
Despite their computational efficiency, these advanced sim-
ulation methods remain costly when dealing with implicit 
performance functions, such as those defined by complex 
finite element models.

In recent decades, surrogate-based methods have emerged 
to significantly reduce computational burdens in structural 
reliability analysis. Commonly used surrogate methods 
include response surface method (RSM) [16, 17], support 
vector machine (SVM) [18–20], polynomial chaos expansion 
(PCE) [21–23], Kriging model [24–26], and artificial neu-
ral networks (ANN) [27, 28]. Surrogate methods construct 
an easy-to-evaluated proxy to predict the region near the 
limit state surface (LSS) using the Design of Experiments 
(DoE) containing informative samples. However, improper 
DoE size can lead to overfitting or underfitting, incurring 
additional computational costs or deteriorating the fail-
ure probability evaluation, respectively. With advances in 
machine learning, adaptive Kriging-based learning methods 
have gained extensive attention. The Kriging model offers 
superior performance by providing a mean prediction and 
quantifying the estimation variance. Starting from the initial 
DoE, the Kriging model is adaptively refined using informa-
tive samples identified by the learning function during the 
enrichment process, with convergence criteria employed to 
terminate the active learning process at the appropriate step. 
The value of the coefficient of variation for the failure prob-
ability is used as an index for augmenting the size of the 
candidate sample pool, leading to a reliable estimation of 
failure probability.

The adaptive Kriging Monte Carlo simulation (AK-MCS) 
[29] and the efficient global reliability analysis (EGRA) [30] 
are two of the pioneering works in surrogate-based active 
learning methods. For low failure probabilities, integrating 
adaptive Kriging with advanced simulation methods has led 
to algorithms such as AK-IS [31], AK-SS [32], AK-DRIS 
[33], Meta-IS-AK [34], Meta-DIS-AK [35], IDGN-IS 
[36], and BAL-LS-LP [37]. Building upon these methods, 
research on active learning functions and convergence cri-
teria has advanced significantly over the last decade. On the 

one hand, apart from the well-known learning functions such 
as the U function [29] and EFF function [30], other effective 
learning functions have been developed by leveraging differ-
ent angles. Specifically, Shi et al. [38] developed the Folded 
Normal based Expected Improvement Function (FNEIF) to 
well determine the points in the vicinity of the LSS. Khor-
ramian and Oudah [39] introduced the Kriging occurrence 
(KO) and weighted KO (WKO) learning functions to evalu-
ate the occurrence probability of the Kriging prediction in 
a prescribed region. Peng et al. [40] proposed the sample-
based expected uncertainty reduction (SERU) learning 
function to appraise the uncertainty in estimating the fail-
ure probability when a new sample is selected. Using the 
quasi-posterior variance in Bayesian active learning, Dang 
et al. [41] presented a novel learning function, known as the 
panelized quasi posterior variance contribution (PQPVC), 
which can be employed in parallel computing with the multi-
point strategy. Other learning functions, such as H [42], LIF 
[43], REIF [44], PAEFF [45], FELF [46], and IEAK [47], 
have also been proposed to identify new informative sam-
ples. On the other hand, as an essential component in active 
learning, the convergence criterion aims to terminate the 
active learning process based on appropriate principles. A 
prescribed threshold for the learning function is commonly 
defined as the convergence criterion. For instance, Echard 
et al. [29] employed min U ≥ 2 as the convergence criterion, 
indicating that the probability of mistaking the sign of the 
Kriging prediction is less than 2.3%. However, this type of 
convergence criterion may lead to the generation of unneces-
sary functional calls. To address this issue, the stabilization 
level of a specific indicator has been used as an alterna-
tive termination criterion, e.g., Hong et al. [48] proposed a 
convergence criterion by detecting the stabilization of the 
predicted failure probability. Considering the relative error 
of the estimated failure probability, Wang and Shafieezadeh 
[49, 50] developed an error-based stopping criterion (ESC), 
which was further improved in [51, 52] to enhance compu-
tational efficiency. More recently, Dang et al. [37, 53] intro-
duced a novel convergence criterion based on the coefficient 
of variation of the posterior failure probability in a Bayes-
ian active learning framework. It is anticipated that further 
advancements in learning functions and convergence criteria 
will emerge, enhancing the performance of surrogate-based 
active learning methods.

Although previous studies have significantly advanced 
active learning methods for structural reliability analysis, 
no single learning function universally outperforms oth-
ers across different engineering problems without specific 
prior information [54]. Hence, identifying the most suitable 
function in the active learning process remains challenging. 
Inspired by the greedy algorithm in reinforcement learning 
[55], this paper proposes an innovative allocation scheme 
to select the learning function from a portfolio of functions. 
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The informative sample identified by the chosen function 
should be near the LSS and at a certain distance from the 
existing DoE. Additionally, the JPDF is another influential 
factor in the active learning process and may need to be 
considered in formulating the learning function. Therefore, 
the reward in the proposed allocation scheme will be formu-
lated considering these desirable features to more effectively 
identify informative samples. Moreover, a novel hybrid con-
vergence criterion, incorporating both error and stabilization 
of the estimated failure probability, is tailored to terminate 
the active learning process at an appropriate stage. Specifi-
cally, the coefficient of variation of the reliability index is 
used as the stabilization indicator, while the error-based 
stopping criterion quantifies the accuracy level of the esti-
mation. Furthermore, the FORM-based IS method [31] will 
be leveraged to enable the proposed method to deal with rare 
failure events more efficiently. These advancements contrib-
ute to the establishment of an adaptive Kriging method that 
is applicable to problems of varying complexities.

The remainder of the paper is structured as follows: Sec-
tion 2 provides a detailed overview of the proposed method. 
Section 3 illustrates the implementation procedures. Sec-
tion 4 validates the efficiency, accuracy, and robustness of 
the proposed method through four numerical examples and 
one engineering problem. Section 5 discusses the efficacy 
of the critical components of the proposed method. Finally, 
conclusions are drawn in Section 6.

2  The proposed method

With its inherent ability to provide predictions based on 
Gaussian processes, Kriging is a widely used surrogate mod-
eling technique in engineering applications. For the sake of 
completeness, the basic theory of Kriging is introduced in 
Appendix A. This section presents a novel adaptive Kriging-
based method that combines an active learning function allo-
cation scheme with a hybrid convergence criterion. Key con-
tributions and novelties of this study include an innovative 
learning function allocation scheme, inspired by reinforce-
ment learning principles to address the multi-armed bandit 
(MAB) problem [55]. This scheme automatically identifies 
the optimal learning function from a portfolio of functions, 
enhancing the selection process and ensuring the identifica-
tion of the most informative samples near the LSS and at 
an appropriate distance from the existing DoE. Additionally, 
a hybrid convergence criterion that integrates an error-based 
stopping criterion (ESC) with a new stabilization conver-
gence criterion is proposed, ensuring that the active learning 
process is terminated at an appropriate stage, balancing both 
the stabilization and accuracy of the estimated failure prob-
ability. Furthermore, the FORM-based importance sampling 

(IS) method is leveraged to efficiently handle rare failure 
events. It is noted that other more advanced IS methods can 
also be integrated with the proposed method. In the sequel, 
the three key ingredients of the proposed method will be 
introduced.

2.1  Learning function allocation scheme

As an essential component for enriching the DoE, the 
active learning function has gained extensive attention over 
the past decade. However, no single learning function is 
conclusively accredited as the optimal choice for diverse 
engineering problems. One learning function may perform 
better in certain aspects while underperforming in others. 
To simultaneously exploit the merits and mitigate the defi-
ciencies of various learning functions, this study proposes 
a novel learning function allocation scheme inspired by the 
greedy algorithm, a classical approach to solving the MAB 
problem in reinforcement learning. Specifically, consider 
N independent slot machines, each with its reward rj (i.e., 
j = 1, 2, ..., N) when the arm of the slot machine is pulled. 
The intrinsic property of the greedy algorithm is to seek 
the best slot machine that possesses the largest cumulative 
reward Rj(t) over t rounds. In structural reliability analy-
sis, the slot machine is considered analogous to the learn-
ing function, while the corresponding reward indicates the 
potential to enhance the performance of the current Kriging 
model. Accordingly, the learning function that contributes 
the most to the development of the Kriging model at the cur-
rent stage is chosen, and the DoE is enlarged based on the 
new identified sample by this learning function.

In this work, six representative learning functions (i.e., 
EFF, H, REIF, LIF, FNEIF, and KO) are considered the port-
folio in this learning function allocation scheme. Inspired by 
the U learning function, it is noted that the informative sam-
ples tend to be situated near the LSS and exhibit consider-
able uncertainties. In structural reliability analysis, the fitting 
degree of the LSS is a significant concern in determining 
the accuracy of the evaluated failure probability. Therefore, 
a normalized reward indicator based on the Kriging predic-
tion, as expressed in Eq. (2), is applied to enhance the prob-
ability of samples proximate to the LSS. An exponential 
form is adopted to avoid over-weighting when the Kriging 
prediction equals 0.

where �̂j(t) is the Kriging prediction at the jth candidate 
sample xj(t) on the current round t, and �̂max(t) is the maxi-
mum one among the six Kriging predictions. The value of 
the reward r∗

j1
(t) is large when the discrepancy between the 

(2)r∗
j1
(t) = exp

(
−
||||

�̂j(t)

�̂max(t)

||||
)
, j = 1, 2, ..., 6
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Kriging prediction and the LSS is approximately 0, and vice 
versa.

Based on the spatial correlation and stationarity in Krig-
ing, it is recognized that the uncertainty of regions denoted 
by the estimated variance is large when increasing the dis-
tance from these regions to the DoE. Furthermore, incorpo-
rating the influence of the distance can control the density of 
sampling points in the DoE and eliminate the local cluster-
ing. A widely used metric called the Euclidean distance is 
employed to determine the distance as follows:

where d̂j(t) is the distance between  xj(t) and the existing 
DoE on the current round t, and xi

D
(t) is the ith sample 

within the existing DoE. In this study, a normalized Euclid-
ean distance with an exponential form in Eq. (4) is integrated 
as an indicator for the learning function reward. The sample 
with a large distance possesses a high probability of being 
added to the DoE.

(3)

d̂j(t) = exp

(√(
xj(t) − xi

D
(t)
)T(

xj(t) − xi
D
(t)
))

, i = 1, 2, ...

(4)r∗
j2
(t) = exp

(
d̂j(t)−d̂min(t)

d̂max(t)−d̂min(t)

)
, j = 1, 2, ..., 6

where d̂min(t) and d̂max(t) denote the minimum and maximum 
Euclidean distance, respectively.

The JPDF is another critical factor influencing the selec-
tion of informative samples. To investigate the impact of 
integrating JPDF into the learning function for the failure 
probability estimation, the performance function from 
Example 2 in Section 4 is used. The results for the rare 
failure event (Case 2 in Table 2) and the non-rare failure 
event (Case 1 in Table 2) are illustrated in Figs. 1 and 2, 
respectively. Scenario 1 presents the results obtained without 
integrating the JPDF, while Scenario 2 shows the results 
with the JPDF incorporated. It is observed that for the rare 
failure event, both scenarios exhibit acceptable accuracy, 
but Scenario 1 achieves higher accuracy than Scenario 2. In 
addition, Scenario 2 requires 10 more functional calls than 
Scenario 1, indicating that incorporating the JPDF increases 
computational burdens and slightly reduces accuracy for rare 
failure events. Conversely, for non-rare failure events, one 
can see that incorporating the JPDF accelerates the conver-
gence rate of the algorithm while maintaining accuracy. This 
phenomenon could be attributed to the fact that the intro-
duction of the JPDF into the learning function will partially 
prioritize points with large JPDF values, which is beneficial 
for non-rare failure events. However, for rare failure events, 

Fig. 1  Reliability analysis 
results with different scenarios 
for rare failure events

Fig. 2  Reliability analysis 
results with different scenarios 
for non-rare failure events
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points in the tail region of the JPDF are favored, thus the use 
of the JPDF will introduce adverse effects on the learning 
process. Therefore, it is recommended to consider the influ-
ence of the JPDF only for non-rare failure events.

Accordingly, the expression for the individual learning 
function reward r∗

j
(t) at round t, which incorporates the Krig-

ing prediction, the distance metric, and the JPDF, is intro-
duced as follows:

where fX(t) denotes the JPDF of the jth candidate sample 
xj(t) at round t. In this study, once the estimated failure prob-
ability falls below a threshold (e.g., P∗

f
 = 5 ×  10–5) three 

consecutive iterations, the problem will be automatically 
categorized as a rare failure event.

Similar to the greedy algorithm, the learning function 
allocation scheme prioritizes the function with the maximal 
cumulative reward over t rounds. However, notable discrep-
ancies in the predicted individual rewards for these learn-
ing functions may arise during the initial stages of Kriging 

(5)

r∗
j
(t) =

{
r∗
j1
(t) ∙ r∗

j2
(t) ∙ fX(t), for non − rare failure events

r∗
j1
(t) ∙ r∗

j2
(t), for rare failure events

construction. This means that the cumulative rewards for 
one or two particular learning functions may become exces-
sively large due to their superior contribution to establish-
ing the Kriging model. Consequently, other potentially more 
suitable learning functions may struggle to be selected in 
subsequent iterations. Therefore, normalizing the individual 
reward to the maximum, as shown in Eq. (6), is an efficient 
strategy to mitigate this issue.

In the end, the new sample xnew(t) identified by the learn-
ing function with the highest cumulative reward at the cur-
rent round, as defined in Eq. (7), is iteratively added to the 
DoE. The detailed procedures of the active learning func-
tion allocation scheme are summarized in Algorithm 1. It is 
worth noting that this allocation scheme is not limited to six 
learning functions. It also possesses the flexibility to include 
or exclude additional learning functions from the portfolio 
as required.

(6)rj(t) =
r∗
j
(t)

r∗
max

(t)

(7)Rj(t) =
∑t

i=1
rj(i), i = 1, 2, .., t

Algorithm 1  Active learning function allocation scheme

2.2  Hybrid convergence criterion

In structural reliability analysis, an effective convergence cri-
terion is crucial for terminating the active learning process 
efficiently and accurately. The development of convergence 
criterion generally encompasses three different aspects: the 
threshold of the learning function, the accuracy of the failure 
probability, and the stabilization of a prescribed indicator. 
Relying solely on the learning function’s prescribed value 
for convergence can be conservative, leading to additional 
calls to the performance function. To address this issue, an 
error-based stopping criterion (ESC) has been introduced in 
[49, 50], which quantifies the accuracy of the failure prob-
ability. The relative error �r of the failure probability is math-
ematically expressed as follows:

where Pf  serves as the benchmark for the failure probability, 
evaluated through the crude MCS. P̂f  represents the pre-
dicted failure probability derived from the Kriging model, 
NMCS denotes the number of candidate points in MCS, Nf  is 
the number of points in the failure domain identified by the 
actual performance function, and N̂f  is defined as the number 
of points within the failure domain predicted by the Kriging 
model. Accordingly, the ESC is given as follows:

(8)�r =
||||
Pf−P̂f

Pf

|||| ≈
||||
PMCS
f

−P̂MCS
f

PMCS
f

|||| =
||||||

Nf

NMCS
−

N̂f

NMCS
Nf

NMCS

||||||
=
||||1 −

N̂f

Nf

||||

(9)

�r ≤ max

(|||||

(
N̂f

N̂f−N̂
u
sf

− 1

)|||||
,
|||||

(
N̂f

N̂f+N̂
u
fs

− 1

)|||||

)
= �max ≤ �1
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where �1 is a predefined threshold, N̂fs
 represents the number 

of samples in the failure domain �f that are erroneously 
classified as samples in the safe domain by the Kriging 
model. Conversely, N̂sf  denotes the number of samples in 
safe domain �s that are incorrectly identified in the failure 
domain by the Kriging model. N̂u

sf
 and N̂u

fs
 are the upper 

bounds of N̂sf  and N̂fs , respectively. In this study, the boot-
strap confidence estimation method presented in [51] is 
utilized.

The ESC has been demonstrated to be effective and robust 
in active learning [49–51], but it may introduce unnecessary 
functional calls, particularly when the failure probability has 
stabilized but the ESC is not yet satisfied [1]. To mitigate this 
issue, we propose a hybrid convergence criterion that inte-
grates the ESC with a stabilization convergence criterion. 
In engineering practice, the reliability index � is commonly 
used to describe the reliability of structures under various 
uncertainties. Therefore, the coefficient of variation cv of 
the reliability index over the last m iterations is employed to 
quantitatively measure the stability of the estimated result. 
The proposed stabilization convergence criterion is math-
ematically expressed as follows:

where ��̂  and ��̂  are defined as the mean value and the 
standard deviation of the reliability index over the last m 
iterations, respectively, and cth denotes the threshold of the 
criterion. The analytical expressions of ��̂  and ��̂  are given 
as follows:

where n� represents the n� th iteration step with n� ≥ m , 
and �̂(i) presents the ith value of the estimated reliability 
index. Based on the authors’ numerical experience, setting 
m = 10 can achieve a good trade-off between accuracy and 
efficiency.

Therefore, one of the convergence criteria in the pro-
posed method is formulated by incorporating the ESC 
in Eq. (9) and the stabilization convergence criterion in 
Eq. (10) as follows:

(10)cv =
�
�̂

�
�̂

≤ cth

(11)��̂ =
1

m

∑n�

i=n�−m+1
�̂(i)

(12)��̂ =

�
1

m

∑n�

i=n�−m+1

�
�̂(i) − ��̂

�2

(13)

⎧⎪⎨⎪⎩

max

������

�
N̂f

N̂f−N̂
u
fs

− 1

������
,
�����

�
N̂f

N̂f+N̂
u
sf

− 1

������

�
= �max ≤ �2

cv ≤ cth

where the threshold �2 in Eq. (13) is set larger than �1 in 
Eq. (9) to ensure that the active learning process is both 
effective and efficient by allowing for an appropriate ter-
mination when the stabilization convergence criterion is 
achieved, thus saving computational resources while main-
taining the desired level of accuracy. In other words, the 
proposed hybrid convergence criterion consists of two inde-
pendent criteria, i.e., the original ESC in Eq. (9) and the 
criterion defined in Eq. (13), and the active learning process 
will be terminated when either of them is satisfied.

2.3  Importance sampling for rare failure events

For the adaptive Kriging-based learning method with 
MCS, it is indicated that a recommended sample size for 
problems with a failure probability of  10−k is at least  10k+2, 
contributing to prohibitively computational burdens when 
dealing with rare failure events (e.g., when the failure 
probability is smaller than  10–5). To address this issue, two 
prominent variance-reduction techniques, denoted as IS 
and SS, are commonly integrated into the adaptive Krig-
ing-based learning method as efficient and accurate esti-
mation algorithms in structural reliability analysis. In this 
study, the IS technique is implemented for rare failure 
events. Furthermore, a threshold distinguishing rare and 
non-rare failure events is set as P∗

f
 = 5 ×  10–5. Once the 

estimated failure probability falls below the threshold 
three consecutive times, this problem is automatically cat-
egorized as a rare failure event, and the IS technique is 
activated. Given an IS density function hX(x) , the failure 
probability can be reformulated as:

where IF(x) is the indicator function (i.e., IF(x) = 1 when 
g(x) ≤ 0 and IF(x) = 0 otherwise), and Eh(∙) is the expecta-
tion operator with respect to the hX(x) . By generating NIS 
independent samples from the hX(x) , the failure probability 
can be evaluated as follows:

In contrast to the crude MCS, the IS technique enhances 
the likelihood of samples falling into the failure domain, 
thereby substantially accelerating the convergence speed. 
However, determining the optimal IS density function, i.e., 
hopt(x) = IF(x)fX(x)∕Pf  , is challenging due to the unknown 
failure probability Pf  . An essential module of the IS tech-
nique is to ascertain the IS density function hX(x) , which 
controls the accuracy and efficiency of the adaptive Krig-
ing-based learning methods. In this work, the FORM-based 

(14)
Pf = ∫ IF(x)fX(x)dx = ∫ IF(x)

fX(x)

hX(x)
hX(x)dx = Eh

[
IF(x)f X(x)

hX(x)

]

(15)Pf ≈ P̂f =
1

NIS

NIS∑
i=1

fX(xi)
hX(xi)

IF
�
xi
�
, i = 1, 2,… ,NIS
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importance sampling method [31] is adopted to approximate 
the optimal IS density function hopt(x) . It is noted that other 
more advanced IS methods can also be integrated with the 
proposed method. Initially, the MPP is defined by the FORM 
method. Subsequently, the IS density function hX(x) is mod-
eled as a normal distribution centered at the approximative 
MPP. The standard deviation is set to 0.1 in this paper, but 
alternative values can be selected to tighten or broaden the 
conditioning [5]. Additionally, to exploit the computational 
resources, the samples whose responses are evaluated by the 
true performance function using the FORM method can be 
added to the initial DoE. For the IS technique, the variance 
and associated coefficient of variation of the failure prob-
ability can be calculated as follows:

3  The implementation procedures

The proposed method starts with a small number of the 
DoE and progressively refines the Kriging model through 
the iterative DoE enrichment. In this work, a novel learning 
function allocation scheme is proposed to enrich the DoE, 
and a hybrid convergence criterion is introduced to stop the 
updating process at an appropriate stage. The overall imple-
mentation procedures of the proposed method are briefly 
outlined as follows:

Step 1: Initialize the parameters used in the proposed 
method.

Step 2: Generate the candidate sample pool S using the 
Sobol sequence. The initial size of the S is set as N = 1 ×  105.

Step 3: Generate the initial DoE using Latin hypercube 
sampling (LHS). Unless specified otherwise, the initial DoE 
size N0 is taken as N0 = max{12, 2n + 2} , where n denotes 
the dimensionality of the input variables.

Step 4: Calibrate the Kriging model. Utilize the DACE 
toolbox [56] to establish the Kriging model based on the 
DoE.

Step 5: Determine whether it is a rare failure event. Once 
the estimated failure probability P̂f  falls below the thresh-
old three consecutive times, the problem is automatically 
categorized as a rare failure event, and then the individual 
reward can be determined according to Eq. (5). The default 

(16)VarIS ≈
1

NIS

�
1

NIS

∑NIS

i=1

�
IF
�
xi
� fX(xi)
hX(xi)

�2

−
�
P̂f

�2
�

(17)CoV
P̂f

=

√
VarIS

P̂f

configuration designates each problem as a non-rare failure 
event.

Step 6: Select the new sample xnew to enrich the DoE. 
The allocation scheme in Algorithm 1 is used to identify the 
new sample, and the corresponding response is computed by 
the performance function.

Step 7: Evaluate the hybrid convergence criterion. Upon 
satisfaction of any of the convergence criteria in Eq. (9) and 
Eq. (13), terminate the active learning process and proceed 
to Step 8. If not, augment the DoE with the new sample, 
i.e., D = D ∪ xnew . Repeat Steps 4–7 until the convergence 
criterion is satisfied.

Step 8: Calculate the coefficient of variation of the failure 
probability. The sample size N in the candidate sample pool 
S must be sufficient. If the value of the coefficient of varia-
tion exceeds 0.05, the sample size should be enlarged (e.g., 
Δ N =  105), then repeat Steps 4–8 until the requirement is 
satisfied. Otherwise, proceed to Step 9.

Step 9: End of the algorithm with the final failure prob-
ability estimation.

4  Numerical examples

This section evaluates the accuracy, efficiency, and robust-
ness of the proposed method through four numerical 
examples and one practical engineering case. Section 4.1 
begins with a series system of four branches. In this case, 
a parameter analysis is performed to investigate the effects 
of different thresholds �1, cth, and �2 in the hybrid conver-
gence criterion. Subsequently, Section 4.2 examines the 
dynamic response of a nonlinear oscillator, focusing on 
varying magnitudes of the failure probability to elucidate 
the method’s performance. Section 4.3 introduces two 
high-dimensional mathematical problems, and Section 4.4 
addresses a modified Rastrigin function characterized by 
non-convex and scattered gaps in failure domains. Finally, 
a practical engineering scenario of a single tower cable-
stayed bridge is investigated to evaluate the applicabil-
ity of the proposed method. These examples cover a wide 
range of characteristics pertinent to structural reliability 
analysis, including multiple failure regions, low failure 
probabilities, high nonlinearity, high dimensionality, and 
finite element modelling.

To quantitatively assess accuracy and efficiency, three 
major metrics are examined: (1) The relative error �

P̂f
 com-

(18)CoV�Pf
=

√
1−�Pf

N�Pf

< 0.05
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paring the failure probability P̂MCS
f

 obtained via MCS with 
P̂f  from different methods; (2) The CPU time, with all 
results of structural reliability analysis conducted on a 
computer equipped with an InterI CITM) i-7-9700 CPU 
Processor @ 3.00 GHz with 32.0 RAM; (3) The number 
Ncall of functional calls. Additionally, the reliability index 
� , in conjunction with the failure probability P̂f  , serves as 
a direct measure of the reliability for each example. The 
results in each example are averaged over 50 independent 
runs to consider the randomness in each simulation. The 
results obtained by the proposed method are compared 
with  those  der ived f rom MCS,  AKMCS + U, 
AKMCS + EFF, adaptive Kriging-based MCS methods 
with U and EFF learning functions under the hybrid con-
vergence criter ion (referred to as HCC + U and 
HCC + EFF), and other state-of-the-art methods whenever 
possible.

4.1  Example 1: A series system with four branches

The first example involves a series system with four 
branches, commonly used as a benchmark to assess the 
performance of structural reliability analysis methods [29, 
57–59]. The performance function of this system is given 
as follows:

where x1 and x2 are two independent input variables fol-
lowing the standard normal distribution. A comprehensive 
parameter analysis is conducted to determine the appro-
priate values of the thresholds �1, cth, and �2 in the hybrid 

(19)g
�
x1, x2

�
= min

⎧
⎪⎪⎨⎪⎪⎩

3 + 0.1 ×
�
x1 − x2

�2
−

x1+x2√
2

3 + 0.1 ×
�
x1 − x2

�2
+

x1+x2√
2

(x1−x2)+
6√
2

−(x1−x2)+
6√
2

convergence criterion. Subsequently, the performance of the 
proposed method in structural reliability analysis is evalu-
ated in comparison with other active learning algorithms.

4.1.1  Effects of the thresholds in the hybrid convergence 
criterion

In the proposed method, determining appropriate thresholds 
in the hybrid convergence criterion is crucial to balancing 
efficiency, accuracy, and robustness. Small threshold values 
may increase computational costs, while large values may 
cause premature termination of the algorithm. Therefore, a 
parameter analysis is conducted to quantitatively assess the 
performance of different thresholds.

To begin with, the influence of different ranges for �1 
and �2 is investigated under a fixed value of cth = 0.001. The 
results of structural reliability analysis under various thresh-
old combinations are shown in Fig. 3, averaged over 100 

Fig. 3  Effects of different 
thresholds �1 and �2 in the 
hybrid convergence criterion

Fig. 4  Effects of different thresholds cth in the hybrid convergence 
criterion
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independent runs to consider the randomness. It is observed 
that the performance of the convergence criterion is particu-
larly susceptible to �1, as specified in Eq. (9). An optimal 
trade-off between accuracy and efficiency is illustrated in 
a prescribed range of �1 ∈ [0.005, 0.01], without apparent 
change pattern when the value of �2 varies from 0.1 to 0.5. 
As �1 decreases, the number of functional calls increases. 
In addition, half of the algorithm terminations are governed 
by Eq. (9) when �1 is set to 0.01. Values larger or smaller 
than this prescribed threshold can jeopardize the balance, 

contributing to the convergence criterion being predomi-
nantly influenced by either Eq. (9) or Eq. (13). Therefore, 
for an ideal balance of accuracy and efficiency, �1 = 0.01 and 
�2 = 0.3 are recommended.

With �1 = 0.01 and �2 = 0.3, the results under different 
values of cth are illustrated in Fig. 4. It is observed that 
cth = 0.001 emerges as an explicit value distinguishing dif-
ferent dispersion tendencies. Specifically, when cth exceeds 
0.001, a significant tendency of dispersion from the refer-
ence result is observed, with a maximum relative error of 
2.59%. On the contrary, the dispersion remains stable for 
cth values smaller than 0.001. Based on these observations, 
a constraint of cth ∈ [0.0001, 0.001] is suggested. Within 
the specified interval, the number of functional calls and 
the CPU time decrease as cth increases. To hold a judicious 
equilibrium among accuracy, efficiency, and robustness, cth 
is set to 0.001. Therefore, the recommended thresholds for 
the hybrid convergence criterion are �1 = 0.01, cth = 0.001, 
and �2 = 0.3.

4.1.2  Comparisons with other advanced methods

This subsection evaluates the performance of the pro-
posed method against several state-of-the-art methods, 
e.g., AKMCS + U [29], AKMCS + EFF [30], PRBFM [57], 
ALK-iRPl2 [58], and ALK-PBA [59]. The results are sum-
marized in Table 1. Additionally, results from HCC + U 
and HCC + EFF are included to validate the efficacy of the 
hybrid convergence criterion. The reference result, obtained 

Table 1  Results of structural reliability analysis for Example 1

a Denotes that the results are taken from [29]
b Denotes that the results are taken from [57]
c Denotes that the results are taken from [58]
d Denotes that the results are taken from [59]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU (s)

MCSa 4.416 ×  10–3 
(1.5%)

2.618 1 ×  106 – –

AK-MCS +  Ua 4.416 ×  10–3 2.618 126.0 0.00 –
AK-MCS +  EFFa 4.412 ×  10–3 2.619 124.0 0.09 –
HCC + U 4.311 ×  10–3 2.627 42.5 2.38 31.0
HCC + EFF 4.434 ×  10–3 2.617 49.5 0.41 37.2
PRBFMb 4.300 ×  10–3 2.627 41.0 2.63 –
ALK-iRPl2c 4.341 ×  10–3 2.624 45.5 2.62 –
ALK-PBAd 4.450 ×  10–3 2.616 55.0 0.77 –
Proposed method 4.410 ×  10–3 2.619 41.7 0.14 38.6

Fig. 5  The converged Kriging 
model in an independent run 
of the proposed algorithm for 
Example 1
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using MCS with a sample size of 1 ×  106, yields a failure 
probability of 4.416 ×  10–3 and a coefficient of variation of 
1.5% [29].

All methods demonstrate an acceptable level of preci-
sion in evaluating the failure probability, with relative errors 
consistently smaller than 3.00%. The comparative analysis 
reveals that HCC + U and HCC + EFF exhibit noteworthy 
enhancements in computational efficiency compared to 
AK-MCS + U and AKMCS + EFF, marked by a reduction 
in functional calls of approximately 65%. This underscores 
the efficacy of the hybrid convergence criterion in reducing 

computational costs. In addition, a trade-off between com-
putational efficiency and accuracy is observed, as evidenced 
by a marginal loss of precision in HCC + U and HCC + EFF. 
Despite requiring more functional calls, HCC + U and 
HCC + EFF exhibit lower CPU time compared to the pro-
posed method. This is attributed to the additional compu-
tational expenses caused by the estimation of the learning 
function allocation scheme. However, improvements in CPU 
time are deemed negligible in engineering scenarios char-
acterized by implicit and intricate numerical simulations, 
such as finite element models, which may consume hours 
of computation for each simulation.

Furthermore, the proposed method offers superior accu-
racy in evaluating the failure probability, while requiring 
fewer functional calls compared to other surrogate-based 
active learning methods. Notably, it surpasses both ALK-
iRPl2 and ALK-PBA in performance while achieving higher 
precision than PRBFM with nearly identical functional calls. 
Therefore, the proposed method exhibits excellent perfor-
mance in balancing accuracy and efficiency.

The converged Kriging model in an independent run is 
illustrated in Fig. 5. One can see that the initial candidate 
samples in the DoE (green hexagrams) are distributed across 
the random space, and the subsequently added samples (blue 
triangles) are uniformly situated in proximity to the LSS 
without forming the local clustering. Through the strate-
gic allocation of those informative samples in the DoE, the 
Kriging model successfully captures the shape of the LSS. 
Despite a minor decrease in fitting precision in areas of low 
probability densities, particularly at the four corners of the 
LSS, the model effectively maintains high accuracy in calcu-
lating the failure probability, which equals 4.400 ×  10–3. This 
result indicates that these regions have negligible impacts on 
the estimation in structural reliability analysis.

Fig. 6  Nonlinear oscillator subjected to a rectangular load pulse

Table 2  Statistical information of the random variables for Example 2

Random variable Distribution Mean Standard 
deviation

m Normal 1 0.05
k1 Normal 1 0.1
k2 Normal 0.1 0.01
r Normal 0.5 0.05
t1 Normal 1 0.2
F1 (Case 1) Normal 1 0.2
F1 (Case 2) Normal 0.6 0.1
F1 (Case 3) Normal 0.45 0.075

Table 3  Results of structural reliability analysis for Case 1 in Example 2

a Denotes that the results are taken from [1]
b Denotes that the results are taken from [33]
c Denotes that the results are taken from [60]
d Denotes that the results are taken from [61]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU (s)

MCS 2.859 ×  10–2 1.902 1 ×  106 – –
AK-MCS + U 2.854 ×  10–2 1.904 129.7 0.19 146.9
AK-MCS + EFF 2.863 ×  10–2 1.903 117.0 0.22 118.0
HCC + U 2.863 ×  10–2 1.901 43.9 0.13 45.9
HCC + EFF 2.887 ×  10–2 1.897 66.8 0.96 92.6
AKSEa 2.862 ×  10–2 1.902 38.6 0.10 36.4
AK-DRISb 2.864 ×  10–2 1.901 43.0 0.17 –
AK-MSSc 2.830 ×  10–2 1.906 85.0 1.01 –
AWL-MCSd 2.826 ×  10–2 1.907 65.0 1.15 –
Proposed method 2.839 ×  10–2 1.905 45.1 0.70 62.6
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4.2  Example 2: Dynamic response of a nonlinear 
oscillator

As depicted in Fig. 6, a single degree of freedom nonlinear 
oscillator is considered in this example. The performance 
function of the system is mathematically expressed as fol-
lows [1, 33, 60, 61]:

where �0 =

√
k1+k2

m
 represents the frequency of this system. 

The statistical information of the random variables is listed 
in Table 2. It is assumed that all random variables are inde-
pendently and normally distributed. In this study, three dif-
ferent distribution parameters of F1 are considered to evalu-
ate the performance of the proposed method with respect to 
different magnitudes of the failure probability, i.e.,  10–2, 
 10–6, and  10–8.

(20)g
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m, k1, k2, r, t1,F1

)
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4.2.1  Structural reliability analysis for Case 1

Taking the results obtained by MCS as the reference, the fail-
ure probability of 2.859 ×  10–2 is obtained with a sample size 
of 1 ×  106. Furthermore, a comparative analysis is conducted 
between the results by AK-MCS + U and AK-MCS + EFF 
and those obtained by HCC + U and HCC + EFF. Addition-
ally, the results of AKSE [1], AK-DRIS [33], AK-MSS [60], 
and AWL-MCS [61] are compared with those produced by 
the proposed method. All results are summarized in Table 3.

For the adaptive Kriging algorithms with U and EFF 
learning functions, there are substantial discrepancies in 
the required functional calls after introducing the hybrid 
convergence criterion. Specifically, for AK-MCS + U and 
HCC + U, the number of functional calls is reduced from 
129.7 to 43.9, accompanied by a significant decrease in CPU 
time. Moreover, the relative error of these two methods is 
consistently smaller than 0.2%, highlighting the efficacy of 
the hybrid convergence criterion in terms of both efficiency 

Table 4  Results of structural reliability analysis for Case 2 in Example 2

a Denotes that the results are taken from [1]
b Denotes that the results are taken from [33]
c Denotes that the results are taken from [62]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU 

(s)

MCS 9.090 ×  10–6 4.286 1.8 ×  108 – –
AK-IS + U 9.005 ×  10–6 4.288 211.5 0.94 953.6
AK-IS + EFF 9.117 ×  10–6 4.285 164.2 0.30 964.1
HCC + U 9.119 ×  10–6 4.285 49.2 0.31 55.0
HCC + EFF 9.007 ×  10–6 4.288 48.7 0.92 45.2
AKSE-ISa 9.032 ×  10–6 4.288 47.2 0.44 269.7
AK-DRISb 9.040 ×  10–6 4.287 48.0 0.56 –
AK-ARBISc 9.090 ×  10–6 4.286 71.0 0 –
Proposed method 9.128 ×  10–6 4.285 47.0 0.41 56.1

Table 5  Results of structural reliability analysis for Case 3 in Example 2

a Denotes that the results are taken from [1]
b Denotes that the results are taken from [62]
c Denotes that the results are taken from [63]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU 

(s)

MCS 1.550 ×  10–8 5.536 9 ×  1010 – –
AK-IS + U 1.540 ×  10–8 5.537 245.0 0.65 956.6
AK-IS + EFF 1.537 ×  10–8 5.537 160.8 0.84 642.9
HCC + U 1.544 ×  10–8 5.536 49.0 0.36 51.6
HCC + EFF 1.528 ×  10–8 5.538 47.9 1.43 55.2
AKSE-ISa 1.520 ×  10–8 5.539 48.4 2.06 278.8
AK-ARBISb 1.560 ×  10–8 5.535 76.0 0.65 –
AK-coupled  SSc 1.530 ×  10–8 5.538 161.8 1.29 –
Proposed method 1.524 ×  10–8 5.539 47.4 1.70 76.6
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and accuracy. Compared with AK-MSS and AWL-MCS, the 
proposed method provides the most accurate estimation of 
the failure probability with the highest efficiency. Further-
more, the results of the proposed method, along with those 
of AKSE and AK-DRIS, closely align with the reference 
result while requiring fewer functional calls, marking them 
as attractive options for structural reliability analysis. How-
ever, it should be noted that AK-DRIS may impose signifi-
cant CPU burdens as it employs the Markov Chain Monte 
Carlo method to generate the candidate sample pool. In sum-
mary, the proposed method achieves an excellent trade-off 
between accuracy and efficiency.

4.2.2  Structural reliability analysis for Case 2 and Case 3

Two cases with different low failure probabilities are 
examined in the subsection to investigate the efficacy and 
applicability of the proposed method in addressing rare 
failure events. In these cases, the simulation method 
switches from MCS to IS once the estimated failure prob-
ability is smaller than the predefined threshold P∗

f
 for three 

consecutive iterations. An additional 15 calls to the per-
formance function are produced by the FORM to 

determine the MPP, after which the IS density function is 
derived as a normal distribution centered on the MPP. 
With total consumptions of 1.8 ×  108 and 9 ×  1010 func-
tional calls, the reference results for Cases 2 and 3 are 
estimated to be 9.090 ×  10–6 and 1.550 ×  10–8, respec-
tively. The results by AKIS + U, AKIS + EFF, HCC + U, 
HCC + EFF, AKSE-IS [1], AK-DRIS [33], AK-ARBIS 
[62], and AK-coupled SS [63] are summarized in Tables 4 
and 5 for comparison.

Regarding Case 2, it is noteworthy that the relative error 
values for all investigated methods are less than 1.0%, 
confirming their accuracy. However, the computational 
efficiency is different, particularly for the AK-IS methods 
with U and EFF learning functions, which exhibit higher 
demands in functional calls and CPU time compared to 
HCC + U and HCC + EFF. This underscores the efficacy 
of the hybrid convergence criterion as a reliable means 
to terminate the algorithm. Among the various advanced 

Table 6  Results of structural reliability analysis for Case 1 in Exam-
ple 3

a Denotes that the results are taken from [1]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU (s)

MCS 1.357 ×  10–3 2.999 1 ×  107 – –
AK-MCS + U 1.355 ×  10–3 3.000 175.1 0.13 1045.6
AK-MCS + EFF 1.351 ×  10–3 2.999 137.4 0.41 524.9
HCC + U 1.352 ×  10–3 3.000 49.3 0.36 163.1
HCC + EFF 1.358 ×  10–3 2.998 45.2 0.10 139.6
AKSEa 1.371 ×  10–3 2.995 61.3 1.30 352.4
Proposed method 1.351 ×  10–3 3.000 48.5 0.48 199.5

Table 7  Results of structural reliability analysis for Case 2 in Exam-
ple 3

Methods P̂f �̂ Ncall �
P̂f
(%) CPU 

(s)

MCS 4.439 ×  10–3 2.617 1 ×  106 – –
AK-MCS + U 4.457 ×  10–3 2.615 182.9 0.40 810.7
AK-MCS + EFF 4.453 ×  10–3 2.616 218.9 0.31 837.0
HCC + U 4.531 ×  10–3 2.610 55.6 2.08 147.1
HCC + EFF 4.424 ×  10–3 2.610 65.1 1.91 183.0
AKSE 4.541 ×  10–3 2.609 95.7 2.30 402.6
Proposed method 4.492 ×  10–3 2.613 58.0 1.20 184.4

Table 8  Results of structural reliability analysis for Example 4

a Denotes that the results are taken from [29]
b Denotes that the results are taken from [1]
c Denotes that the results are taken from [65]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU (s)

MCSa 7.308 ×  10–2 1.453 6 ×  104 – –
AK-MCS + U 7.313 ×  10–2 1.453 564.9 0.07 4382.1
AK-MCS + EFF 7.312 ×  10–2 1.453 712.5 0.06 6601.7
HCC + U 6.985 ×  10–2 1.477 301.8 4.42 1802.9
HCC + EFF 7.310 ×  10–2 1.453 600.3 0.03 8349.3
AKSEb 7.365 ×  10–2 1.457 263.5 0.44 805.4
AK-SEUR-MCSc 7.227 ×  10–2 1.459 267.6 0.83 –
Proposed method 7.238 ×  10–2 1.458 276.0 0.96 1817.6

Fig. 7  The converged Kriging model in a random simulation of the 
proposed method for Example 4
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methods evaluated, the proposed method stands out for its 
superior efficiency in achieving the second most accurate 
failure probability estimation. Furthermore, in Case 3, the 
proposed method provides an accurate failure probability 
with the fewest functional calls. Therefore, the efficacy 
and applicability of the proposed method in tackling rare 
failure events are elucidated based on these cases.

4.3  Example 3: high‑dimensional mathematical 
problems

This example considers two high-dimensional mathemati-
cal problems to investigate the performance of the pro-
posed method. Specifically, Case 1 is a linear high-dimen-
sional problem with the following performance function 
[1, 29, 64]:

where xi represents the independent normal random vari-
ables with a mean of � = 1 and a standard deviation of � = 
0.2. Case 2 is a non-linear high-dimensional problem, and 
the corresponding mathematical expression is given by [1]:

where xi denotes the independent random variables follow-
ing the lognormal distribution with a mean of � = 3 and a 
standard deviation of � = 0.8. The dimensionality n of both 
cases is defined as 20. The initial sample size of both cases 
is taken as 12.

The reference results obtained by MCS for these two 
cases are 1.357 ×  10–3 and 4.439 ×  10–3, with sample 
sizes of 1 ×  107 and 1 ×  106, respectively. The results 

(21)g(x) = n + 3�
√
n −

n∑
i=1

xi, i = 1, 2, ..., n

(22)g(x) = �3 + 0.01
n−1∑
i=1

x3
i
− x2

n
, i = 1, 2, ..., n

obtained by the proposed method are compared with those 
by AKMCS + U, AKMCS + EFF, HCC + U, HCC + EFF, 
and AKSE [1]. All results are summarized in Tables 6 
and 7. In Case 1, HCC + U and HCC + EFF estimate 
the failure probability with considerable improvements 
compared to the AK-MCS methods, with reductions of 
71.8% and 67.1% in functional calls, respectively. These 
methods, along with the proposed method, also exhibit 
higher accuracy and efficiency compared to their adaptive 
Kriging counterparts. Similarly, in Case 2, the applica-
tion of the hybrid convergence criterion greatly enhances 
computational efficiency, reducing functional calls by 
approximately 70% for the AK-MCS methods. Therefore, 
the proposed method can effectively balance accuracy and 
efficiency for these two high-dimensional cases. Addition-
ally, it is noted that more functional calls are required in 
Case 2, but the associated CPU time is less than that in 
Case 1. This discrepancy arises because the initial sam-
ple size in Case 1 does not satisfy the requirement of the 
coefficient of variation for the failure probability, thereby 
necessitating an expansion of the candidate sample pool 
and consequently increasing the CPU time.

Fig. 8  A single tower cable-stayed bridge: a side view of the bridge; b the finite element model [1]

Table 9  Statistical information of random variables for Example 5

Random variable Distribution Mean Standard deviation

E1 (Pa) Normal 3.4 ×  1010 3.4 ×  109

E2 (Pa) Normal 2.0 ×  1011 2.0 ×  1010

D1 (kg/m3) Lognormal 2500 500
D2 (kg/m3) Lognormal 7850 785
F1 (kN) Lognormal 80 12
F2 (kN) Lognormal 100 15
F3 (kN) Lognormal 140 21
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4.4  Example 4: A modified Rastrigin function

The fourth example involves a modified Rastrigin function 
characterized by numerous non-convex failure domains and 
represents a highly nonlinear and intricate problem. The per-
formance function is expressed as follows [1, 29, 65]:

where the two input variables x1 and x2 follow independent 
standard normal distributions. The reference failure prob-
ability calculated by MCS is 7.308 ×  10–2 using a sample 
size of 6 ×  104 [29]. Incorporating the identical framework 
of the AK-MCS methods, but terminated by the hybrid con-
vergence criterion, is used to investigate the efficacy of the 
proposed convergence criterion for this problem. The results 
obtained by the proposed method are compared with those 
from AKSE [1] and AK-SEUR-MCS [65], as detailed in 
Table 8.

Traditional AK-MCS methods using U and EFF 
learning functions require substantial computational 
costs, i.e., exceeding 560 functional calls, to accurately 
estimate the failure probability. Integrating the hybrid 
convergence criterion can notably reduce computational 
costs, but the precision is compromised for the U learn-
ing function, which has a relative error of 4.42%. This 
suggests that combining the U learning function with the 
hybrid convergence criterion may not be advisable for 
this problem. In addition, the proposed method exhibits 
a relative error below 1.0% with a consumption of 276.0 
functional calls, presenting comparable performance to 
that of AKSE and AK-SEUR-MCS. Figure 7 depicts the 
final Kriging model in a random simulation of the algo-
rithm with 250 functional calls, leading to the failure 
probability estimation of 7.249 ×  10–2. The fitting perfor-
mance in the inner regions is excellent, albeit undesirable 
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in the outer regions. Nevertheless, the precision of the 
failure probability estimation is high, as the outer regions 
with the extremely small probability density contribute 
negligibly to the failure probability.

4.5  Example 5: A single tower cable‑stayed 
bridge

This example evaluates the performance of the proposed 
method in accurately and efficiently estimating the fail-
ure probability  within a practical engineering scenario, 
i.e., a single tower cable-stayed bridge, as illustrated in 
Fig. 8a [1, 33, 66]. The bridge configuration features 
a total of 12 pairs of parallel steel wire cables and one 
bridge tower consolidated with the beam. The bridge 
spans 160 m (112 m + 48 m), with a tower height of 
66 m. For a realistic assessment of the bridge's structural 
response, a 3D finite element model is constructed using 
ANSYS at a real scale, as depicted in Fig. 8b. This model 
incorporates shell elements for simulating the bridge 
deck, beam elements for modeling the bridge tower, and 
link elements for establishing the cables. Vehicle loads 
are considered concentrated loads. The model involves 
seven independent input variables, including the modulus 
of elasticity of concrete (E1) and steel (E2), the density of 
concrete (D1) and steel (D2), and the corresponding vehi-
cle loads at the front wheels (F1), middle wheels (F2), 
and rear wheels (F3). The statistical properties of these 
input variables are summarized in Table 9. The perfor-
mance function is expressed as a mathematical function 
based on the maximum displacement of the bridge:

where Δlimit , taken as 30 cm, is the allowed displacement 
of the bridge, and Δmax denotes the maximum displace-
ment of the bridge, which is derived from ANSYS.

The reference result calculated by MCS is 6.732 
×  10–2 using a sample size of 1 ×  105 [1]. The results 
obtained from AKMCS + U, AKMCS + EFF, HCC + U, 
HCC + EFF, AKSE [1], and AK-DRIS [33] are summa-
rized in Table 10, along with the results of the proposed 
method. It is observed that the use of the hybrid conver-
gence criterion can greatly enhance the computational 
efficiency, i.e., both the functional calls and CPU time 
are reduced, without significantly compromising the 
accuracy. Moreover, compared with AKSE and AK-
DRIS, the proposed method exhibits a good trade-off 
between accuracy and efficiency in tackling this engi-
neering problem.

(24)g
(
E1,E2,D1,D2,F1,F2,F3
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||Δmax
||

Table 10  Results of structural reliability analysis for Example 5

a Denotes that the results are taken from [1]
b Denotes that the results are taken from [33]

Methods P̂f �̂ Ncall �
P̂f
(%) CPU(s)

MCSa 6.732 ×  10–2 1.496 1 ×  105 – –
AK-MCS + U 6.804 ×  10–2 1.491 190.8 1.07 1826.1
AK-MCS + EFF 6.815 ×  10–2 1.490 177.6 1.23 1750.6
HCC + U 6.799 ×  10–2 1.494 56.3 1.00 155.2
HCC + EFF 6.964 ×  10–2 1.479 91.6 3.44 305.6
AKSEa 6.802 ×  10–2 1.491 57.2 1.04 467.4
AK-DRISb 6.817 ×  10–2 1.490 42.0 1.26 –
Proposed method 6.661 ×  10–2 1.502 53.2 1.05 168.9
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5  In‑depth discussion

According to the five numerical examples discussed in Sec-
tion 4, the excellent performance of the proposed method 
in structural reliability analysis is demonstrated. The pri-
mary contributions of this study are two folds: the learning 
function allocation scheme and the hybrid convergence cri-
terion. Therefore, a comprehensive analysis is essential to 
thoroughly investigate the feasibility and necessity of these 
two key components.

5.1  Comparisons with the single learning function

This study introduces a novel learning function allocation 
scheme, acknowledging that no single learning function 
universally outperforms others across various problems. To 
underscore the importance and feasibility of this scheme, 
the performance of the proposed method (referred to as 
AK) is compared with that of the adaptive Kriging-based 
methods employing the individual learning function (e.g., 
FNEIF, LIF, REIF, H, EFF, and KO). Additionally, to illus-
trate the efficacy of the greedy algorithm, another scenario 

Fig. 9  Results of structural reliability analysis using different learning functions
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(designated as Rand) that randomly selects the best sample 
from the candidates identified by these learning functions 
is involved. All results are illustrated in Fig. 9, along with 
reference results obtained by MCS in each subfigure. For all 
cases, the Rand scenario exhibits satisfactory accuracy, sug-
gesting that the random selection can produce an acceptable 
estimation of the failure probability when the candidates 
are the informative samples selected by the learning func-
tions. However, for some nonlinear and engineering prob-
lems (e.g., Examples 3–5), additional computational bur-
dens are generated compared with the proposed algorithm. 

For instance, the Rand scenario requires approximately 300 
more functional calls than the proposed method in Example 
4, highlighting that the greedy algorithm achieves a more 
effective balance between accuracy and computational effi-
ciency than the random selection.

The proposed allocation scheme is tailored to leverage 
the unique characteristics of each learning function, allow-
ing for the adaptive determination of the most appropriate 
learning function. As illustrated in Fig. 9, the proposed algo-
rithm demonstrates commendable performance in structural 
reliability analysis across diverse problems. The application 

Fig. 10  Results of structural reliability analysis using different convergence criteria
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of the learning function allocation scheme ensures high 
accuracy and efficiency. For instance, in Fig. 9e, learning 
functions REIF, H, and EFF deliver accurate failure prob-
ability estimations, but require considerable computational 
resources (over 600 functional calls), whereas the KO 
learning function achieves lower computational costs at 
the expense of accuracy. By leveraging the properties of 
these learning functions, the results of the proposed method 
matches or even exceeds the performance of each individual 
learning function, providing a failure probability of 7.238 × 
 10–2 using 276.0 functional calls. Therefore, the proposed 
learning function allocation scheme offers a robust alterna-
tive for balancing accuracy and efficiency, demonstrating 
superior performance compared to both the single learning 
function and the random selection scheme.

5.2  Comparisons with different convergence 
criteria

In this study, the performance of the proposed method using 
different convergence criteria is investigated. Specifically, 
the results by the hybrid convergence criterion (Scenario 1), 
the ESC in Eq. (9) (Scenario 2), and the stabilization con-
vergence criterion in Eq. (10) (Scenario 3) are displayed in 
Fig. 10, and the reference result from MCS is shown in each 
subfigure. It is observed that the Scenario 3 in subfigures (d) 
and (e) exhibits low accuracy in estimating the failure prob-
ability, demonstrating that sole reliance on the stabilization 
convergence criterion may lead to premature convergence. 
On the contrary, as depicted in Fig. 10c–f, Scenario 2 exhib-
its high precision in estimating the failure probability, but it 
comes at considerable computational expenses in terms of 
functional calls. This demonstrates that the ESC may require 
additional functional calls when the failure probability esti-
mation has stabilized. However, compared with these two 
convergence criteria, the hybrid convergence criterion can 
achieve an excellent balance between accuracy and effi-
ciency for all the investigated cases.

6  Conclusions

This paper introduces an efficient and accurate Kriging-
based method for structural reliability analysis by incor-
porating a novel learning function allocation scheme and 
a hybrid convergence criterion. Inspired by reinforce-
ment learning, the allocation scheme iteratively deter-
mines the most suitable learning function from a port-
folio of options, thereby enhancing the active learning 
process. The hybrid convergence criterion that integrates 
an error-based stopping criterion (ESC) with a new sta-
bilization convergence criterion ensures the appropriate 

termination of the proposed method. The efficacy of the 
proposed method is investigated through four numeri-
cal examples, characterized by multiple failure regions, 
low failure probabilities, high nonlinearity, and high 
dimensionality, as well as through the analysis of a sin-
gle tower cable-stayed bridge. The results indicate that 
the proposed method successfully balances accuracy and 
efficiency. Additionally, the necessity and feasibility of 
both the allocation scheme and the hybrid convergence 
criterion are discussed. The main conclusions drawn 
from this study are as follows:

(1) The innovative learning function allocation scheme 
addresses the challenge of determining suitable learn-
ing functions for diverse engineering problems effec-
tively, achieving an optimal trade-off between accuracy 
and efficiency.

(2) The hybrid convergence criterion demonstrates excel-
lent performance in terms of efficiency and accuracy, 
significantly reducing unnecessary functional calls 
associated with the ESC and preventing premature of 
the algorithm due to the stabilization convergence cri-
terion.

The integration of the FORM-based importance sample 
(IS) method effectively mitigates issues related to rare failure 
events. However, challenges persist in identifying the MPP 
using FORM in highly nonlinear scenarios and/or with mul-
tiple failure domains, potentially affecting the performance. 
Additionally, while the proposed method shows promising 
results for problems with up to 20 dimensions, its applica-
bility to extremely high-dimensional scenarios, such as those 
exceeding 100 dimensions, remains limited. Therefore, further 
exploration of advanced simulation methods and dimension 
reduction strategies is recommended to enhance the overall 
efficacy of the proposed method.

Appendix A: Basic theory of Kriging

The mathematical expression of the Kriging model is given 
as follows [67]:

where f (x)T =
[
f1(x), f2(x),… , fm(x)

]
 denotes the regression 

functions, and �T = [�1, �2,… , �m] serves as the regression 
coefficients. Z(x) is a zero-mean stationary Gaussian process 
with the covariance function:

(25)g(x) = f (x)T� + Z(x)

(26)CoV
(
Z
(
xi
)
, Z

(
xj
))

= �2R
(
xi, xj;�

)
, i, j = 1, 2,… ,N
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where �2 is the variance of the Gaussian process, xi and 
xj are the points from the DoE with a sample size of N  . 
R(xi, xj;�) is the correlation function determined by hyper-
parameters � =

[
�1, �2,… , �d

]T . This study will adopt the 
Gaussian correlation function with the following mathemati-
cal expression:

where d is the dimensionality of the random variables, �k 
represents the correlation hyper-parameter in the k th dimen-
sion, xk

i
 and xk

j
 are the k th components of the input variables 

xi and xj , respectively.
Given a DoE with N  training points, i .e. , 

X =
[
x1, x2,… , xN

]T with xi ∈ ℝ
d and the corresponding 

responses Y =
[
y1, y2,… , yN

]T  with yi = g
(
xi
)
∈ ℝ , the 

regression coefficients � and the variance �2 of the Gaussian 
process can be estimated as follows:

where F is the matrix with Fij = fj
(
xi
)
, i = 1, 2,… ,N  , 

j = 1, 2,… ,m , and R denotes the correlation matrix pre-
scribed as Rij = R

(
xi, xj;�

)
, i, j = 1, 2,… ,N  . The hyper-

parameters � are determined via the maximum-likelihood 
estimation as follows:

Consequently, the best linear unbiased prediction of the 
response at an unknown point x∗ follows a Gaussian distribu-
tion with mean �ĝ(x

∗) and variance �2

ĝ
(x∗):

where u(x∗) = FTR−1r(x∗) − f (x∗), and r(x∗) represents the 
correlation vector between the prediction point x∗ and those 
in the DoE xi , i = 1, 2,… ,N , e.g., ri = R

(
x∗, xi;�

)
.

(27)R
�
xi, xj;�

�
=
∏d

k=1
exp

�
−�k

���xki − xk
j

���
2
�

(28)�̂ =
(
FTR−1F

)−1
FTR−1Y

(29)�̂2 =
1

N

(
Y − F�̂

)T

R−1
(
Y − F�̂

)

(30)�̂ = arg min
�∈D�

[[
log(detR) + Nlog

(
2��2

)
+ N

]]

(31)�ĝ(x
∗) = f (x∗)T �̂ + r(x∗)TR−1

(
Y − F�̂

)

(32)
�2

ĝ
(x∗) = �̂2

(
1 − rT (x∗)R−1r(x∗) + uT (x∗)

(
FTR−1F

)−1
u(x∗)

)

Appendix B: Brief review of learning 
functions

Selecting an appropriate learning function is essential for 
accurately and efficiently enriching the DoE in structural 
reliability analysis. Leveraging statistical insights from the 
Kriging model, various learning functions have undergone 
extensive developments over the years. This section pro-
vides a brief overview of the six functions in the proposed 
learning function allocation scheme, namely EFF, FNEIF, 
KO, H, LIF, and REIF. In general, the strategy to identify 
a candidate sample in these learning functions is catego-
rized into three fundamental principles. (1) Approxima-
tion to Design Region: Selection of samples that facilitate 
the approximation of the design region, such as the LSS 
or areas characterized by the lower and upper bounds of 
the LSS; (2) Maximum Contribution to Failure Probabil-
ity: Identification of samples that contribute the most to 
mitigating the disparity between the predicted and actual 
failure probability; (3) Maximum Uncertainty or Probabil-
ity in Desired Region: Priority to samples that possess the 
highest uncertainty or probability in the desired region.

(1) EFF
The expected feasibility function (EFF) is introduced 

as an intuitive metric to quantitively measure the degree 
to which the real response is near the LSS or a prescribed 
region. High uncertainties and proximities to these regions 
result in large values of the EFF learning function. Con-
sequently, the sample that maximizes EFF is added to the 
DoE. The specific expression of the EFF is given as [30]:

(2) FNEIF
To quantify the improvement in approximating the LSS 

of the Kriging model, the Folded Normal based Expected 
Improvement Function (FNEIF) is proposed in [38]. The 
sample with the highest value of the FNEIF learning func-
tion is utilized to improve the Kriging model. Leveraging 
the properties of the folded normal distribution, the ana-
lytical expression of FNEIF is derived as follows:

(33)

EFF(x) = �ĝ(x)
[
2Φ

(
−�ĝ(x)

�ĝ(x)

)
− Φ

(
−ϵEFF−�ĝ(x)

�ĝ(x)

)
− Φ

(
ϵEFF−�ĝ(x)

�ĝ(x)

)]
−

�ĝ(x)
[
2ϕ

(
−�ĝ(x)

�ĝ(x)

)
− ϕ

(
−ϵEFF−�ĝ(x)

�ĝ(x)

)
− ϕ

(
ϵEFF−�ĝ(x)

�ĝ(x)

)]
+

�EFF

[
Φ
(

ϵEFF−�ĝ(x)

�ĝ(x)

)
− Φ

(
−ϵEFF−�ĝ(x)

�ĝ(x)

)]
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(3) KO
The KO learning function [39] is proposed to assess 

the probability of the Kriging prediction occurring in the 
desired region. The sample with the highest value of KO, as 
expressed in Eq. (35), is considered the optimal alternative 
to enrich the DoE, thereby enhancing the precision of the 
Kriging model.

(4) H

(34)

FNEIF(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2𝜎f (x)
�
Φ
�

2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

�
− Φ

�
−2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

��
+

𝜇f (x)

⎡⎢⎢⎣
Φ
�

𝜇f (x)−𝜇�g(x)

𝜎�g(x)

�
− Φ

�
−𝜇f (x)−𝜇�g(x)

𝜎�g(x)

�
−

Φ
�

2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

�
+ Φ

�
−2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

�
− 1

⎤⎥⎥⎦
+

𝜎�g(x)
�
𝜙
�

𝜇f (x)+𝜇�g(x)

𝜎�g(x)

�
+ 𝜙

�
𝜇f (x)−𝜇�g(x)

𝜎�g(x)

��
+

𝜇�g(x)
�
Φ
�

𝜇f (x)+𝜇�g(x)

𝜎�g(x)

�
− Φ

�
𝜇f (x)−𝜇�g(x)

𝜎�g(x)

��
, 2𝜎f (x) ≥ 𝜇f (x)

2𝜎f (x)
�
Φ
�

2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

�
− Φ

�
−2𝜎f (x)−𝜇�g(x)

𝜎�g(x)

��
− 𝜇f (x)+

𝜎�g(x)
�
𝜙
�

𝜇f (x)+𝜇�g(x)

𝜎�g(x)

�
+ 𝜙

�
𝜇f (x)−𝜇�g(x)

𝜎�g(x)

��
+

𝜇�g(x)
�
Φ
�

𝜇f (x)+𝜇�g(x)

𝜎�g(x)

�
− Φ

�
𝜇f (x)−𝜇�g(x)

𝜎�g(x)

��
, 2𝜎f (x) < 𝜇f (x)

(35)KO(x) = Φ
(

g(x)+�KO(x)−�ĝ(x)

�ĝ(x)

)
− Φ

(
g(x)−�KO(x)−�ĝ(x)

�ĝ(x)

)

Using information entropy, the H learning function is 
formulated to effectively characterize the uncertainty of the 
Kriging predictions within the region proximate to the LSS. 
In structural reliability analysis, the desired region is spe-
cifically defined as the area fluctuating around the LSS, and 
the sample with the highest H value is selected by the active 

learning process. The analytical expression of the H learning 
function is derived as follows [42]:

(36)

H(x) =

�������

ln
�√

2��ĝ(x) +
1

2

��
Φ
�

ϵH+�ĝ(x)

�ĝ(x)

�
− Φ

�
−ϵH−�ĝ(x)

�ĝ(x)

��
−�

ϵH−�ĝ(x)

2
�
�

ϵH−�ĝ(x)

�ĝ(x)

�
+

ϵH+�ĝ(x)

2
�
�

−ϵH−�ĝ(x)

�ĝ(x)

��
�������

(5) LIF
The LIF learning function, denoted as the least improve-

ment function, is introduced to quantify the reduction in 
uncertainty for the predicted failure probability when a 
new point is added to the DoE. By reducing the difference 
between the predicted and actual failure probability, the 
uncertainty decreases, and the value of LIF increases. Con-
sequently, a sample with the maximum LIF value is iden-
tified as the optimal choice to update the Kriging model. 
Incorporating the statistical information from the Kriging 
model and the JPDF, the specific formula of LIF is given 
as follows [43]:

(6) REIF
The REIF learning function, referred to as the active reli-

ability-based expected improvement function, is proposed to 
facilitate the accurate approximation of the LSS [44]. Within 
the candidate sample pool, the sample that maximizes REIF 
is identified to optimize the fitting precision of the LSS. 
Considering the properties of the folded-normal distribution, 
the expression of REIF is given as follows:
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ĝ
(x) +

∑ n

2

m=1
C2m
n
�n−2m

ĝ
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�ĝ(x0)

tmexp
�
−

t2

2

�
dt

�
, n is uneven

(38)

REIF(x) = E
[
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