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Abstract
We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid 
spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. 
These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regu-
larization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the 
isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration 
on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many 
evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The 
result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. 
Numerical experiments are performed which show the feasibility and the performance of the approach.

Keywords  Boundary integral equation · Isogeometric analysis · Helmholtz equation · Scattering problem

1  Introduction

Acoustic wave scattering appears in many places in 
engineering practice. This includes, for instance, the 
modeling of sonar and other methods of acoustic location, 
as well as outdoor noise propagation and control, especially 
stemming from automobiles, railways or aircrafts. Since 
an analytical solution of scattering problems is in general 
impossible, numerical approaches are called for the 
approximate solution.

Most acoustic scattering problems may be formulated in 
the frequency domain by employing the Helmholtz equation. 

Assume that an acoustic wave encounters an impenetrable, 
bounded obstacle 𝛺 ⊂ ℝ

3 , having a Lipschitz smooth 
boundary � ∶= �� , and, as a consequence, gets scattered. 
Given the incident plane wave uinc(x) = ei�⟨d,x⟩ with known 
wavenumber � and direction d , where ‖d‖2 = 1 , the goal is 
to compute the scattered wave us . The physical model behind 
this is as follows. The total wave u = uinc + us satisfies the 
exterior Helmholtz equation

The boundary condition at the scatterer’s surface depends on 
its physical properties. If the scatterer constitutes a sound-
soft obstacle, then the acoustic pressure vanishes at �  and 
we have the homogeneous Dirichlet condition

Whereas, if the scatterer constitutes a sound-hard obstacle, 
then the pressure gradient vanishes at �  in normal direction 
and we have the homogeneous Neumann condition

The behavior towards infinity is imposed by the Sommerfeld 
radiation condition

(1)Δu + �2u = 0 in ℝ3 ⧵�.

(2)u = 0 on � .

(3)
�u
�n

= 0 on � .
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It implies the asymptotic expansion

as ‖x‖2 → ∞ . Herein, the function

is called the far-field pattern, which is always analytic in 
accordance with [6, Chapter 6].

To avoid the discretization of the unbounded exterior 
domain ℝ3 ⧵� , one can exploit the integral equation formal-
ism to compute the numerical solution of acoustic scattering 
problems. Then, one arrives at a boundary integral equation 
only defined on the boundary �  . We will employ here the 
methodology of isogeometric analysis (IGA) to discretize 
this boundary integral equation. IGA has been introduced 
in [22] in order to incorporate simulation techniques into 
the design workflow of industrial development. The goal is 
thus to unify the CAD representation of the scatterer with 
the boundary element discretization of the integral equation 
in terms of non-uniform rational B-splines (NURBS). We 
refer the reader to [8, 9, 13, 25, 29, 31, 34] and the refer-
ences therein for details of the isogeometric boundary ele-
ment method.

While a reformulation of the scattering problem by means 
of a boundary integral equation replaces the problem posed 
in the unbounded domain by a problem posed on the scat-
terer’s closed boundary, the underlying boundary integral 
operator and potential evaluation are non-local operators. 
This yields densely populated system matrices of the under-
lying linear systems of equations. Moreover, the potential 
evaluation also behaves like a dense matrix. Thus, in case of 
discretizations with many degrees of freedom and/or many 
potential evaluation points, the naive approach becomes 
computationally prohibitive. The fast multipole method 
(FMM) [19] aims to overcome these drawbacks by means 
of nested local low-rank approximations. While usually 
the kernel function under consideration is approximated in 
space, in the isogeomtric context it is preferable to follow 
the approach of [20] and to interpolate the kernel function 
on the reference domain to which we refer to as the isogeo-
metric embedded FMM [13, 14]. Especially, this reduces the 
complexity from O(p6) to O(p4) in the FMM interpolation 
degree p.

The isogeometric embedded FMM has been developed 
in [13, 14] and was made accessible to the public by 

(4)lim
r→∞

r

�
�us
�r

− i�us

�
= 0, where r ∶= ‖x‖2.

us(x) =
ei�‖x‖2

‖x‖2

�
u∞

�
x

‖x‖2

�
+O

�
1

‖x‖2

��

u∞ ∶ 𝕊
1 ∶= {x̂ ∈ ℝ

d ∶ ‖x̂‖2 = 1} → ℂ

the software C++ library Bembel.1 [10, 11]. Bembel 
combines a Galerkin discretization with the fast multipole 
method to accelerate the computation of the far-field while 
reducing memory requirements. It has for example been 
applied successfully to engineering problems arising from 
electromagnetics [15, 23] or from acoustics [16]. It has also 
been used in other applications, for example, to optimize 
periodic structures [21], in uncertainty quantification [12, 
16], in the coupling of FEM and BEM [17], or in the partial 
element equivalent circuit (PEEC) method [33].

The contribution of this article is to present an isogeomet-
ric, frequency stable algorithm for the solution of acoustic 
obstacle scattering problems with essentially linear com-
plexity in the number of boundary elements and potential 
evaluation points. To this end, we use combined field inte-
gral equations to obtain frequency robust boundary integral 
formulations of sound-soft and sound-hard acoustic scatter-
ing problems. We demonstrate that the required hypersin-
gular operator of the Helmholtz equation indeed fits into 
the framework of the isogeometric embedded FMM when 
discretized by means of the Galerkin scheme. This allows the 
efficient compression of the combined field integral equa-
tions by the isogeometric embedded FMM and thus their 
efficient solution. To overcome the non-locality of the poten-
tial evaluation, we apply an additional FMM to the poten-
tial evaluation operator to achieve an overall linearly scaling 
algorithm. Although we restrict ourselves to the sound-soft 
and sound-hard cases, the presented concepts are also suit-
able to treat penetrable obstacles, i.e. objects described by a 
different diffractive index to the free space.

The rest of this article is structured as follows. In Sect. 2, 
we introduce the frequency stable boundary integral equa-
tions which are employed to solve either sound-hard or 
sound-soft scattering problems. Section 3 recapitulates the 
basic concepts from isogeometric analysis and introduces 
the discretization spaces that will be used later on. In Sect. 4, 
we discuss the discretization of the required boundary inte-
gral operators. In particular, we address the regularization 
of the hypersingular operator. Moreover, we comment on the 
isogeometric fast multipole method for the fast assembly of 
the operators and the potential evaluation. The numerical 
experiments are presented in Sect. 5, where we first validate 
the implementation in case of the (smooth) torus and then 
consider a turbine blade geometry which consists of 120 
patches. Finally, concluding remarks are stated in Sect. 6.

2 � Boundary integral equation method

In order to solve the boundary value problem (1)–(4), we 
shall employ a suitable reformulation by boundary integral 
equations. To this end, we introduce the acoustic single layer 
operator1  www.​bembel.​eu.

http://www.bembel.eu
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the acoustic double layer operator

its adjoint

as well as the acoustic hypersingular operator

Here, nx and ny denote the outward pointing normal vec-
tors at the surface points x, y ∈ �  , respectively, while G(⋅, ⋅) 
denotes the fundamental solution for the Helmholtz equa-
tion. In three spatial dimensions, the latter is given by

Although the Helmholtz problem (1)–(4) is uniquely solv-
able, the respective boundary integral formulation might not 
if �2 is an eigenvalue for the Laplacian inside the scatterer � . 
In order to avoid such spurious modes, we employ combined 
field integral equations in the following. Then, for some real 
� ≠ 0 , the solution of the boundary integral equation

gives rise to the scattered wave in accordance with

in case of sound-soft scattering problems. In case of sound-
hard obstacles, we will solve the integral equation

Having solved (8), the scattered wave is computed by

V ∶H−1∕2(� ) → H1∕2(� ),

(V�)(x) ∶= ∫�

G(x, y)�(y)d�
y
,

K ∶L2(� ) → L2(� ),

(K�)(x) ∶= ∫�

�G(x, y)

�n
y

�(y)d�
y
,

K
⋆ ∶L2(𝛤 ) → L2(𝛤 ),

(K⋆𝜌)(x) ∶= ∫𝛤

𝜕G(x, y)

𝜕n
x

𝜌(y)d𝜎
y
,

(5)
W ∶H1∕2(� ) → H−1∕2(� ),

(W�)(x) ∶= −
1

�n
x
∫�

�G(x, y)

�n
y

�(y)d�
y
.

G(x, y) =
ei�‖x−y‖2

4�‖x − y‖2
.

(6)
(
1

2
+K

⋆ − i𝜂V

)
𝜕u
𝜕n

=
𝜕uinc
𝜕n

− i𝜂uinc

(7)us(x) = ∫�

G(x, y)
�u(y)

�n
y

d�
y

(8)
(
1

2
−K + i�W

)
u = uinc − i�

�uinc
�n

.

(9)us(x) = ∫�

�G(x, y)

�n
y

u(y)d�
y
.

Notice that the boundary integral equations (6) and (8) are 
always uniquely solvable, independent of the wavenumber 
� , see [5, 6, 24].

3 � Isogeometric analysis

3.1 � B‑splines

We shall give a brief introduction to the basic concepts of 
isogeometric analysis, starting with the definition of the 
B-spline basis, followed by the description of the scat-
terer by using NURBS. To this end, let � be either ℝ or ℂ . 
The original definitions (or equivalent notions) and proofs, 
as well as basic algorithms, can be found in most of the 
standard spline and isogeometric literature [7, 22, 27, 28, 
32].

Definition 1  Let 0 ≤ p ≤ k . We define a p-open knot vector 
as a set

where k denotes the number of control points. The associ-
ated basis functions are given by {bp

j
}k−1
j=0

 for p = 0 as

and for p > 0 via the recursive relationship

see Fig. 1. A spline is then defined as a function

where {pj}k−1j=0
⊂ � denotes the set of control points. If one 

sets {pj}k−1j=0
⊂ ℝ

d , then f will be called a spline curve.

Having the spline functions at hand, we can introduce 
the spline spaces which serve as fundament for the 
definition of the ansatz and test spaces of the boundary 
element method. To keep the notation lightweight, we will 
ignore in the definition the dependence on the underlying 
field, which is either ℝ or ℂ.

� =
[
�0 = ⋯ = �p
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=0

≤ ⋯

⋯ ≤ �k = ⋯ = �k+p
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=1

]
∈ [0, 1]k+p+1,

b0
j
(x) =

{
1, if 𝜉j ≤ x < 𝜉j+1,
0, otherwise,

b
p

j
(x) =

x − �j

�j+p − �j
b
p−1

j
(x) +

�j+p+1 − x

�j+p+1 − �j+1
b
p−1

j+1
(x),

f (x) =
∑

0≤j<k
pjb

p

j
(x),
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Definition 2  Let � be a p-open knot vector containing 
k + p + 1 elements. We define the spline space Sp(�) as the 
space spanned by {bp

j
}k−1
j=0

.

Finally, we should consider the relation between the 
spline spaces and the underlying mesh relative to a certain 
mesh size.

Definition 3  For a knot vector �, we define the mesh size h 
to be the maximal distance

between neighboring knots. We call a knot vector quasi uni-
form, when there exists a constant � ≥ 1 such that for all j 
the ratio hj ⋅ h−1j+1 satisfies �−1 ≤ hj ⋅ h

−1
j+1

≤ �.

B-splines on higher dimensional domains are con-
structed through simple tensor product relationships for 
pj1,…j�

∈ �
d via

(10)h ∶=
k+p−1
max
j=0

hj, where hj ∶= �j+1 − �j,

which allows tensor product spline spaces to be defined as

Throughout this article, we will reserve the letter h for the 
mesh size (10). All knot vectors will be assumed to be quasi 
uniform, such that the usual spline theory is applicable [1, 
27, 28].

3.2 � Isogeometric representation of the scatterer

We assume that the boundary �  of the scatterer is closed and 
Lipschitz continuous. For the remainder of this article, we 
assume that it is given patchwise as � =

⋃n

j=1
�j , i.e. that it 

is induced by C∞-diffeomorphisms

(11)

f (x1,… , x𝓁)

=

k1−1∑

j1=0

⋯

k𝓁−1∑

j𝓁=0

pj1,…,j𝓁
⋅ b

p1
j1
(x1)⋯ b

p𝓁
j𝓁
(x𝓁),

Sp1,…,p�
(�1,… ,��).

Fig. 1   B-spline bases for p = 0, 1, 2 and open knot vectors with interior knots 1/3 and 2/3
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This regularity is required for the parametric fast multipole 
method employed later on.

In the spirit of isogeometric analysis, these mappings are 
given by NURBS mappings, i.e. by

with control points cj1,j2 ∈ ℝ
3 and weights wi1,i2

> 0 . We will 
moreover require that, for any interface D = �j ∩ �i ≠ � , the 
NURBS mappings coincide, i.e. that, up to rotation of the 
reference domain, one finds Fj(⋅, 1) ≡ Fi(⋅, 0).

3.3 � Ansatz and test spaces

The mappings of (12) give rise to the transformations

which can be utilized to define discrete spaces patchwise, 
by mapping the space of tensor product B-splines as in (11) 
with

to the geometry. Here, the variable m denotes the level of 
uniform refinement. For the purposes of discretizing V , K , 
and K⋆ , the global function space on �  defined by

as commonly done in the isogeometric literature, see e.g. [3, 
4], is sufficient. Note that the spline space �2

p,m
(� ) is of 

dimension n ⋅ (2m + p)2 , where n denotes the number of 
patches involved in the description of the geometry. For the 
purposes of discretizing W , we also require the space

see, e.g., also [3, 4]. Note that that �0
p,m

(𝛤 ) ⊂ �
2
p,m

(𝛤 ) con-
sists of globally continuous B-splines whereas �2

p,m
(� ) is 

discontinuous across patch boundaries.

(12)Fj ∶ �𝛺 = [0, 1]2 → 𝛤j ⊂ ℝ
3.

Fj(x, y) ∶=

k1−1�

j1=0

k2−1�

j2=0

cj1,j2b
p1
j1
(x)b

p2
j2
(y)wj1,j2

∑k1−1

i1=0

∑k2−1

i2=0
b
p1
i1
(x)b

p2
i2
(y)wi1,i2

�j(f ) ∶= f◦Fj,

�p,m ∶=
[
0,… , 0
⏟⏟⏟
p+1 times

, 1∕2m,… , (2m − 1)∕2m, 1,… , 1
⏟⏟⏟
p+1 times

]

�
2

p,m
(� ) ∶=

{
f ∈ H−1∕2(� ) ∶ f|�j

≡ �−1
j
(g)

for some g ∈ Sp,p(�p,m,�p,m)
}
,

(13)
�
0

p,m
(� ) ∶=

{
f ∈ H1∕2(� ) ∶ f|�j

≡ �−1
j
(g)

for some g ∈ Sp,p(�p,m,�p,m)
}
,

4 � Discretization

4.1 � Galerkin method

With the boundary integral equations and a collection of 
spline spaces available, we are now in the position to dis-
cretize (6) and (8). We consider a Galerkin discretization 
in the L2(� )-duality product with the spline spaces �2

p,m
(� ) 

and �0
p,m

(� ) as ansatz and test spaces. Thus, the discrete 
variational formulation for (6) reads

with the Galerkin approximation th ≈ �u∕�n . Choosing a 
basis �2

p,m
(� ) = span{�2,1,… ,�2,N} leads to the system of 

linear equations

with

and t being the coefficient vector of th.
The discrete variational formulation for (8) reads

with the Galerkin approximation gh ≈ u|� . Choosing a basis 
�
0
p,m

(� ) = span{�0,1,… ,�0,M} leads to the linear system of 
equations

Find th ∈ �
2

p,m
(𝛤 ) such that

1

2
⟨th, vh⟩𝛤 + ⟨K⋆th, vh⟩𝛤 − i𝜂⟨Vth, vh⟩𝛤

=
�𝜕uinc

𝜕n
− i𝜂uinc, vh

�

𝛤

for all vh ∈ �
2

p,m
(𝛤 ),

(14)
(
1

2
M2 +K⋆

2
− i𝜂V2

)
t = u2

M2 =
�
⟨𝜓2,j,𝜓2,i⟩𝛤

�N
i,j=1

,

K⋆
2
=
�
⟨K⋆𝜓2,j,𝜓2,i⟩𝛤

�N
i,j=1

,

V2 =
�
⟨V𝜓2,j,𝜓2,i⟩𝛤

�N
i,j=1

,

u2 =
��𝜕uinc

𝜕n
− i𝜂uinc,𝜓2,i

�

𝛤

�N
i=0

,

Find gh ∈ �
0

p,m
(� ) such that

1

2
⟨gh, vh⟩� − ⟨Kgh, vh⟩� + i�⟨Wgh, vh⟩�

=
�
uinc − i�

�uinc
�n

, vh

�

�

for all vh ∈ �
0

p,m
(� ),

(15)
(
1

2
M0 −K0 + i�W0

)
g = v0
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with

and g being the coefficient vector of gh.
It is well known that the matrices V2 , K0 , K

⋆
2
 , and W0 are 

dense, which makes the assembly and storage of these matri-
ces as well as the solution of the corresponding linear sys-
tems of equations computationally prohibitively expensive 
for higher resolution of the ansatz spaces, i.e., large M or N. 
This is why we shall apply the multipole method presented in 
Subsection 4.4.

4.2 � Reformulation on the reference domain

Due to the isogeometric representations of the geometry, the 
bilinear forms for the computation of the matrix entries can 
entirely be pulled back to the reference domain [20]. To this 
end, let A with

be one of the operators V , K , or K⋆ and �, � ∶ � → ℂ be 
functions of sufficient regularity. Defining the surface meas-
ure of a mapping Fj for x̂ = (x, y) ∈ [0, 1]2 as

the bilinear forms for the matrix entries can be recast as

with the pull-back of the kernel function and the ansatz and 
test functions

M0 =
�
⟨�0,j,�0,i⟩�

�M
i,j=1

,

K0 =
�
⟨K�0,j,�0,i⟩�

�M
i,j=1

,

W0 =
�
⟨W�0,j,�0,i⟩�

�M
i,j=1

,

v0 =

��
uinc − i�

�uinc
�n

,�0,i

�

�

�M

i=0

,

(16)(A�)(x) = ∫�

k(x, y)�(y)d�
y
, x ∈ � ,

aj(x̂) ∶=
‖‖𝜕xFj(x̂) × 𝜕yFj(x̂)

‖‖2,

⟨�, �⟩� =
n
∑

j=1
⟨�, �⟩�j

=
n
∑

i,j=1
∫�i

∫�j

k(x, y)�(x)�(y)d�yd�x

=
n
∑

i,j=1
∫[0,1]2 ∫[0,1]2

k
(

Fj(x̂),Fi(ŷ)
)

× �
(

Fj(x̂)
)

�
(

Fi(ŷ)
)

aj(x̂)ai(ŷ)d ŷd x̂

=
n
∑

i,j=1
∫[0,1]2 ∫[0,1]2

kj,i(x̂, ŷ)�j(x̂)�i(ŷ)d ŷd x̂,

Applying a similar reasoning to the right-hand side yields

Due to the additional derivative, the hypersingular operator 
W requires a special treatment which we will elaborate next.

4.3 � Regularization of the Helmholtz hypersingular 
operator

The hypersingular operator W from (5) does not have a well 
defined integral operator representation as in (16). Instead, it 
is common knowledge that the operator can be replaced by a 
regularized one in case of a Galerkin discretization. Namely, 
for the computation of the matrix entries, the representation

i, j = 1,… ,M , can be used, see e.g. [26]. Therein, curl��0,i 
denotes the surface curl which maps a scalar valued func-
tion on the surface into a vector field in the tangential space 
of �  . On any given patch �j , the isogeometric representa-
tions of the boundary of the scatterer allow for its explicit 
representation

for all x = Fj(x̂) ∈ 𝛤j , x̂ ∈ [0, 1]2 , see [14] for example for 
the precise derivation. This amounts to the following expres-
sion of the hypersingular operator in closed form

where the pull-back of the kernel kj,i is given by

(17)

kj,i(x̂, ŷ) = aj(x̂)ai(ŷ)k
(
Fj(x̂),Fi(ŷ)

)
,

𝜇j(x̂) = 𝜄j(𝜇)(x̂),

𝜈i(ŷ) = 𝜄i(𝜈)(ŷ).

⟨g, �⟩� =
n
∑

i=1
∫[0,1]2

g
(

Fi(x̂)
)

�i(x̂)ai(x̂)d x̂.

⟨�0,j,�0,i⟩� = ⟨curl��0,j, curl��0,i⟩�

− �2
∫� ∫�

G(x, y)⟨nx, ny⟩ℝ3�0,j(x)�0,i(y)d�yd�x,

(18)
curl𝛤𝜓0,i(x) =

1

ai(x̂)

(
𝜕x̂1 𝜄j(𝜓0,i)(x̂)𝜕x̂2Fj(x̂)

− 𝜕x̂2 𝜄j(𝜓0,i)(x̂)𝜕x̂1Fj(x̂)
)

(19)

⟨�0,k,�0,�⟩� =
n
∑

i,j=1
∫[0,1]2 ∫[0,1]2

kj,i(x̂, ŷ)

×
(

∇x̂�j(�0,k)(x̂)⊺Kj,i(x̂, ŷ)−1∇ŷ�i(�0,�)(ŷ)

− �2
⟨nx, ny⟩ℝ3 �j(�0,k)(x̂)�i(�0,�)(ŷ)

)

dŷdx̂,

kj,i(x̂, ŷ) = k
(
Fj(x̂),Fi(ŷ)

)
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and Kj,i denotes the first fundamental tensor of differential 
geometry,

Compared to the Laplace case, see [14], we note the occur-
rence of a second term in the regularized representation (19). 
However, this additional term behaves similar to the single 
layer operator and thus poses no further challenges for the 
implementation.

For the numerical evaluation of the first term in (19), 
recall that an ansatz function �0,j|�i

 on the patch �i is given 
by 𝜓0,j = 𝜄−1

i
(𝜓̂) for some 𝜓̂ ∈ Sp,p(𝛯p,m,𝛯p,m) , see (13). 

There therefore holds

Thus, for each basis function 𝜑⊗ 𝜓 ∈ Sp,p(𝛯p,m,𝛯p,m) , one 
has only to provide its derivatives 𝜑′ ⊗𝜓 and 𝜑⊗ 𝜓 ′ . These 
derivatives, however, are readily available in implementa-
tions and they belong to the spline spaces

where � ′
p,m

 denotes the truncation of �p,m , i.e., the knot vec-
tor �p,m without its first and last knot.

4.4 � Fast multipole method

The black-box fast multipole method, see [18], relies on a 
degenerate kernel approximation of the integral kernel under 
consideration. Such an approximation is available in the ker-
nel’s far-field, which means that the supports of the trial 
and test functions have to be sufficiently distant from each 
other—they are admissible.

One arrives at an efficient algorithm, if one subdivides the 
set of trial functions hierarchically into so-called clusters. 
Then, the kernel interaction of two clusters is computed by 
using the degenerate kernel approximation if the clusters are 
admissible. This means a huge matrix block in the system 
matrix is replaced by a low-rank matrix. If the clusters are 
not admissible, then one subdivides them and considers the 
interactions of the respective children. That way, the assem-
bly of the Galerkin matrix can be performed in essentially 
linear complexity, given that the parametrization of each 
patch is smooth.

For the realization of the multipole method in the pre-
sent context of isogeometric boundary element methods, we 
refer the reader to [13, 14]. A particular advantage of the 
referred compression method is that the isogeometric setting 
allows to perform the compression of the system matrix in 
the reference domain rather than the computational domain. 

Kj,i(x̂, ŷ) =
�
⟨𝜕x̂kFj(x̂), 𝜕x̂lFi(ŷ)⟩ℝ3

�2
k,l=1

∈ ℝ
2×2.

∇x̂𝜄i(𝜓0,i)(x̂) = ∇x̂𝜄i
(
𝜄−1
i
(𝜓̂)

)
(x̂) = ∇x̂𝜓̂(x̂).

�1Sp,p(�p,m,�p,m) = Sp−1,p(�
�
p,m

,�p,m),

�2Sp,p(�p,m,�p,m) = Sp,p−1(�
�
p,m

,� �
p,m

),

This means that we consider the pull-back of the kernel (17) 
instead of the kernel in free space, as originally proposed in 
[20], while the admissibility is still applied in the physical 
space. As a consequence, the rank of the low-rank blocks 
in the number of one-dimensional interpolation points p 
decreases from O(p3) to O(p2) . The compressed matrix is 
finally represented in the H2-matrix format as usual, see [2].

For the potential evaluation, i.e., for evaluating (7) and 
(9), we exploit a similar approximation of the kernel func-
tion. However, this time we perform the low-rank approxi-
mation in physical space, that is, we employ a degenerate 
kernel approximation for the kernel k . Rather than clustering 
elements as before, we directly cluster evaluation and quad-
rature points and realize the potential evaluations by means 
of matrix-vector multiplications. The rank of the low-rank 
blocks is in this case O(p3) . In particular, we may employ a 
matrix-free version, as all blocks are only required once. The 
advantage of this approach becomes immanent if the number 
of potential evaluation points increases proportionally to the 
number of degrees of freedom in the linear system of equa-
tions. In this case, the cost of the proposed potential evalua-
tions scales essentially linearly instead of quadratically.

5 � Numerical experiments

5.1 � Setup

The numerical experiments are performed by using the pub-
licly available C++ library Bembel, see [10, 11]. To this 
end, the previously not available operators (double layer, 
adjoint double layer, and hypersingular operator) were 
implemented. Each of the matrices in the combined field 
integral equations (14) and (15) was computed separately in 
compressed form as H2-matrix by using the fast multipole 
method on the reference domain as described in [11, 14]. 
The compression parameters for the fast multipole method 
were set to the default values ( � = 1.6 , nine interpolation 

Fig. 2   Torus represented by 16 patches and illustration of its 
dimensions
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points per direction), see [11, 14] for more details. The prod-
uct of the matrix sums with vectors was implemented using 
lazy evaluation and the arising linear systems of equations 
(14) and (15) were solved up to relative machine precision 
by means of a restarted GMRES method with a restart after 
30 iterations. Finally, all computations were performed 
in parallel by using the built-in OpenMP-parallelization 
of Bembel on a compute server with 1.3 terabyte RAM 
and four Intel(R) Xeon(R) E7-4850 v2 CPU with twelve 
2.30GHz cores each and hyperthreading disabled.

5.2 � Convergence benchmark

In order to study convergence rates, we consider a torus 
with major radius two and minor radius 0.5 that is 
represented by 16 patches, see Fig. 2 for an illustration. 
On this geometry, we aim at computing the scattered wave 
of a plane incident wave in x direction with wavenumber 
2.5. The scattered wave is then measured on 100 points 
distributed on a sphere with radius 5 around the origin. 
We refer to Fig. 3 for an illustration of the Dirichlet data 
of the total wave (top plot) in case of a sound-hard torus 
and the Neumann data of the total wave (bottom plot) in 
case of a sound-soft torus.

The optimal convergence rates for the potential 
evaluation in case of splines of degree p are O

(
h2p+2

)
 for 

the boundary integral equation (6) which corresponds 
to sound-soft obstacles and O

(
h2p+1

)
 for the boundary 

integral equation (8) which corresponds to sound-hard 
obstacles. Since the obstacle under consideration is 
smooth, we should achieve these convergence rates. Note 
that these rates are twice as high as for the collocation 
method and are known as the super convergence 
of the Galerkin formulation, see  [30] for example. 
Figure 4 validates that we indeed reach the theoretical 
convergence rates, up to the consistency error induced by 
the far-field interpolation of the fast multipole method, 
which causes the stagnation of the error at around 10−6 . 
For a systematic study of this consistency error, we refer 
to [14]. As a reference, we consider here the solutions 
obtained from an indirect formulation using a single 
layer or adjoint double layer ansatz, respectively.

Figure  5 illustrates the scaling of the runtimes of 
the computations. Instead of a quadratic scaling of 
the runtimes, which we would have in the case of a 
traditional boundary element method, one figures out 
that the multipole-accelerated isogeometric boundary 

Fig. 3   The Dirichlet data u (top) of the total wave in case of a sound-
hard torus and the Neumann data �u∕�n (bottom) of the total wave in 
case of a sound-soft torus

Fig. 4   Convergence of the combined field integral equations for various polynomial degrees. The dashed lines illustrate the expected 
convergence rates of O

(
h2p+2

)
 in case of sound-soft obstacles (left) and O

(
h2p+1

)
 in case of sound-hard obstacles (right)
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element method scales essentially linearly as expected. 
This enables large-scale calculations as we will consider 
in the next example.

5.3 � Computational benchmark

As a computational benchmark, we consider a turbine with 
ten blades that is parametrized by 120 patches as illustrated 
in Fig. 6. Thereof, it can be figured out that the turbine has 

a diameter of 5. Again, we compute the scattered wave of a 
plane incident wave in x direction, but with wavenumber 1.0.

We choose cubic B-splines and three refinement levels to 
discretize the Cauchy data u and �u∕�n on the surface geom-
etry. This results in 14,520 degrees of freedom in case of a 
sound-soft turbine and 12,000 degrees of freedom in case 
of a sound-hard turbine, respectively. The overall solution 
time for assembly and solution of the underlying systems of 
linear equations requires only about a few hours.

Fig. 5   Scaling of the combined field integral equations for various polynomial degrees. The dashed lines illustrate log-linear scaling

Fig. 6   Turbine geometry with 
120 patches

Fig. 7   Scattered wave evaluated 
in 3,664,832 points for the 
sound-hard case
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We compute next the scattered wave in a cylinder on 
up to 3,664,832 points, see Fig. 7 for an illustration. To 
demonstrate the efficiency of the fast potential evaluation, we 
compare the scaling of the multipole-accelerated potential 
evaluations with the traditional potential evaluations. 
Figure 8 illustrates that—after a certain warm-up phase 
for only a few potential points—the H2-matrix accelerated 
potential evaluation is indeed superior to the conventional 
one when increasing the number of evaluation points. 
Consequently, the calculation of the scattered wave also in 
free space becomes feasible and very efficient.

6 � Conclusion

In this article, we have discussed an isogeometric, frequency 
stable algorithm for the solution of acoustic obstacle scatter-
ing problems with essentially linear complexity in the num-
ber of boundary elements and potential evaluation points. 
The algorithm itself is based on a boundary reduction of 
the problem by means of combined field integral equations 
which are dealt with isogeometrically. The integral equa-
tions are discretized by the Galerkin method, for which an 
appropriate regularization of the hypersingular operator is 
available such that it fits into the isogeomreic framework. To 
deal with the non-locality of integral equations and potential 
evaluation, we employed two versions of the FMM. For the 
boundary integral equations, all dense system matrices have 
been compressed with the isogeometric embedded FMM. 
For the potential evaluation in space, we employed an FMM 
in space. We have presented convergence benchmarks that 
demonstrate the high accuracy of the isogeometric boundary 
element method. In addition, we have considered a complex 
computational benchmark on a complex geometry, which 
corroborates the feasibility of the approach in the engineer-
ing practice.
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