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Abstract

Mesh quality directly affects the accuracy and efficiency of numerical simulation. Mesh quality evaluation aims to evaluate
the suitability of the mesh generated in CAE pre-processing for numerical simulation. Recent work has introduced deep neural
networks for mesh quality evaluation. However, these methods treat the mesh quality evaluation task as a multi-classification
problem, resulting in serious correlations among different quality categories, which makes it difficult to learn the boundaries
of different categories. In this paper, we propose a topology-guided graph neural network, MTGNet, which treats the mesh
quality evaluation task as a multi-label task. Specifically, we first decomposed the categories in traditional multi-classification
problems and obtained three completely orthogonal mesh quality labels, namely orthogonality, smoothness and, distribution.
Then, MTGNet introduces a topology-guided feature representation for structured mesh data, which can generate multiple
blocks of element-based graphs through the mesh topology. In order to better fuse features in different blocks, MTGNet also
introduces an attention-based block graph pooling (ABGPool) method. Experimental results on the NACA-Market dataset
demonstrate MTGNet shows superior or at least comparable performance to the state-of-the-art (SOTA) approaches.

Keywords Mesh quality evaluation - Structured mesh - Multi-label classification - Graph neural network - Deep learning

application

1 Introduction

Mesh generation and quality evaluation are the backbone
of accurate and efficient numerical simulations [1, 2]. In
the American Institute of Aeronautics and Astronautics
(AIAA)’s research report, titled “CFD Vision 2030 Road
Map: Progress and Perspectives” [3], mesh generation is
listed as one of the six important research areas in the future.
The development of Computational Aided Engineering
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(CAE) has revolutionized the pre-processing process of
mesh generation and provides support for various simu-
lation tasks [4—6]. The quality of generated mesh largely
determines the reliability and accuracy of numerical simu-
lation results. The critical task of mesh quality evaluation
has attracted widespread attention, especially in the field of
computational fluid dynamics (CFD).

Mesh quality evaluation, despite its seemingly simple
nature, is marked by a lack of consensus among research-
ers regarding the most appropriate and effective metrics to
use [7]. This divergence in opinions and practices can be
attributed primarily to the absence of a universally accepted
guiding framework or standardized set of criteria for the
development and implementation of mesh quality metrics.
Since it is difficult to define an evaluation function that takes
the entire mesh as input, mesh quality evaluation typically
utilizes element-based mesh quality metrics. These metrics
are vital for evaluating the suitability and efficiency of mesh,
particularly in computational simulations where mesh accu-
racy directly impacts the overall results. Li et al. [8] pro-
vided a detailed overview of mesh quality metrics, especially
focusing on those relevant to mesh. In 2D mesh, the main
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metrics of interest to researchers are shape and size, which
are important to ensure that the mesh accurately represents
the physical domain [9] it is intended to simulate. At the
same time, the mesh quality also affects the convergence of
numerical calculations.

However, the traditional mesh quality evaluation method
in CFD is characterized by a reliance on existing quality
metrics that may not uniformly guarantee the generation of
high-quality mesh. This limitation mainly stems from the
fact that these metrics are often derived with a specific focus
on a particular mesh type or simulation scenario. Conse-
quently, when applied to diverse mesh configurations, the
same metrics can yield varied and sometimes contradictory
results. This illustrates that existing mesh quality metrics are
highly subjective and make it difficult to evaluate the quality
of a mesh cell from a comprehensive perspective.

With the rapid development of graphics processing units
(GPU) and the volume of big data, the application scenar-
ios of deep learning have gradually begun to develop in the
fields of computer graphics [10, 11] and Computer-Aided
Design (CAD) [12, 13]. Convolutional Neural Networks
(CNNs) [14] are the representative achievement of deep
learning models. The sharing of convolution kernel param-
eters within the hidden layer and the sparsity of inter-layer
connections enable the convolutional neural network to learn
grid-like topology features, such as image [15, 16], video
[17, 18] and audio [19], with a small amount of calculation.
This results in stable effects and no additional feature engi-
neering requirements on the data. Chen et al. [20] introduced
a novel paradigm in the realm of structured mesh quality
evaluation. They proposed GridNet, a model predicated on
the principles of CNNs. Concurrently, they contributed to
the field by proposing the NACA-Market, a structured mesh
dataset designed to facilitate research and application in this
domain. Liu et al. [21] proposed Gridformer, an automatic
mesh quality evaluation model based on Transformer [22].
This methodology sets the task of mesh quality evaluation as
an image classification challenge. Gridformer is particularly

Fig.1 Schematic diagram

of multi-classification and
multi-label problems. Where a
is a multi-classification Venn
diagram, b is a multi-label 3D
space representation. N-SD
represents mesh data with poor
smoothness and distribution,
and N-O represents mesh data
with poor orthogonality. In (a),
if the mesh data does not belong
to any category in the set, then
its label is “All good”

(a)
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noteworthy for its selection of three pivotal features that
exert a substantial impact on mesh quality.

The mesh quality evaluation networks based on deep
learning proposed by existing research have performed well.
However, existing research treats the mesh quality evalua-
tion task as a multi-classification problem [20, 21, 34, 35,
44]. We experimentally found that correlations exist between
each category. Taking the NACA-Market dataset constructed
by Chen et al. [20] as an example, this dataset adopts three
mesh evaluation metrics, namely orthogonality, smooth-
ness, and distribution. Each metric uses two categories to
form a category, so there are eight categories in total. This
means that the output mesh quality evaluation result is an
8D vector. In Fig. 1a, we can see that N-OSD has a strong
correlation with N-OS, N-OD, N-SD, N-S, N-D, and N-O,
which seriously affects the boundaries between different
categories of data. To solve this problem, we decompose
the eight categories and change the mesh quality evaluation
task to a multi-label problem, which means that the result is
a 3D vector. Without changing the original categories, the
3D vector labels that we obtain are a completely orthogonal
space (Fig. 1b), allowing the network to learn the boundaries
of different categories well.

In this paper, we present a topology-guided graph neural
network for multi-label mesh quality evaluation. To the best
of our knowledge, our proposed method is the first to employ
multi-label graph neural network for the task of mesh quality
evaluation. The key contributions are as follows:

e We propose MTGNet, a multi-label mesh quality evalu-
ation network based on graph attention mechanism.
MTGNet utilizes an attention-based block graph pool-
ing (ABGPool) to extract mesh quality features in a
reasonable way, namely orthogonality, smoothness and
distribution, which allows the network to better learn the
boundaries among different labels.

e We design a topology-guided input representation of
structured mesh. Based on the complex topology in the
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structured mesh, the mesh data is divided into multiple
blocks, and then the mesh cells are regarded as graph
nodes to provide input for the graph neural network. This
representation can provide more property information
about the mesh shape.

¢ We evaluate MTGNet on the mesh benchmark dataset
NACA-Market. Experimental results demonstrate the
superior performance of MTGNet compared to SOTA
methods. By introducing a multi-label perspective,
MTGNet can provide a more reliable mesh quality evalu-
ation result during numerical simulations.

2 Related work

According to mesh topology, mesh can be divided into
unstructured mesh and structured mesh. In this paper,
we focus on structured mesh because it is more efficient
in numerical computation, but the difficulty of generating
structured mesh leads many researchers to prefer unstruc-
tured mesh. The difficulty of structured mesh generation
lies in ensuring that the generated mesh is consistent with
the boundary and maintains orthogonality, which may
cause singular points. Singular points negatively impact
the results and stability of numerical simulations. Mean-
while, another factor hindering the development of auto-
mated structured mesh generation is the difficulty in achiev-
ing intelligent mesh quality evaluation, because traditional
mesh quality evaluation often requires the involvement of
professionals, making the task time-consuming and highly
experience-dependent.

Traditional mesh quality metrics are often evaluated from
one aspect of the structured mesh. The area ratio evaluates
the quality of mesh elements by comparing their areas to a
reference or ideal area. The area ratio of a structured mesh
is measured as:

Fuea = max|R, 2] M

R Area(QMp) + Area(Q,Eﬁ) + Area(Q ;,,n) + Area(Q,ight)
Ny, * Area(Q,;s)

@
where Area(Q) is the area of mesh Q. Q,,,;; refers to the struc-
tured mesh being calculated, and Q,,,, Qo> Qrefi> a0d O,
refer to the adjacent mesh on the upper, lower, left, and right
sides of the structured mesh respectively. If there is no mesh
in a certain direction, its area is 0. N, is the number of Q0
adjacent structured mesh.

Knupp [23] provided explicit formulas for partial quality
measures of quadrilateral mesh and, for each measure type,
listed the basic abstract properties of that type. A structured

mesh has four valences. Suppose the coordinates of the four
nodes be (x,,y,),p =0, 1,2,3. By calculating the Jacobian
matrix of each node, we can get the following matrix:

Xprl =Xp  Xpy3z T X

B = P 14 14 14 (3)
yp+l _yp yp+3 _yp

So the shape quality metric for structured mesh is:

8
o (A +24)/8, @

where /1’1‘1 is the square of the length of the side connecting
nodes k and k + 1, /1];2 is the square of the length of the side
connecting nodes k and k + 3, , = det (B,).

The skewness metric aims to evaluate mesh distortions
which arise from large or small angles. Unlike shape, the
skewness is insensitive to length. So the skewness for struc-

tured mesh is:

fshape -

4
S (VA )15, ®

Xie et al. [24] introduced an approach to evaluate mesh
quality, shifting the focus from traditional element-based
indicators to a mapping-based method. This method repre-
sents a novel perspective in mesh quality evaluation, empha-
sizing the relationship between the initial (or undeformed)
mesh and the deformed mesh. This approach is particularly
relevant in scenarios where the mesh undergoes deforma-
tion, either due to external forces or as part of the simulation
process.

The incorporation of machine learning techniques [25,
26] represents an evolution beyond traditional mesh quality
metrics. Chetouani [27] introduced a paradigm-shifting 3D
mesh quality metric founded on the principles of feature
fusion. This metric employs a Support Vector Regression
(SVR) model [28] to quantitatively evaluate the quality of
3D mesh. The SVR model is trained, integrating predefined
mesh quality metrics alongside geometric attributes to
yield predictive quality scores. Sprave et al. [29] employed
an innovative methodology, wherein they extract low-level
attributes via the neighborhood graph of the mesh. This pro-
cess involves an analysis of each mesh element, focusing
on the aggregation and evaluation of neighborhood quality
indices to determine the overall quality of the mesh. The
development of reinforcement learning techniques has also
brought innovation to the field. Tong et al. [30] proposed
a framework called “SRL-assisted AFM”, combined with
reinforcement learning, to introduce different mesh qual-
ity metrics as reward functions in the process of generating
quadrilateral meshes. This method generates quadrilateral
meshes with low aspect ratios, high Jacobian, unbalanced

fskewness -
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seeds, low EP numbers with sharp features, conformal
boundaries, and boundary layers.

With the further development of research on mesh quality
evaluation based on deep learning, researchers have discov-
ered that mesh data is a kind of natural graph data, which
can be processed by Graph Neural Networks (GNNs) [31,
32]. The core idea of GNNs is to aggregate the neighbor
information of the node through the message-passing mech-
anism [33] and update the feature representation of the node.
This process typically involves multiple iterations to capture
more distant information in the graph. Eventually, the feature
representation of each node contains information about its
neighbors and further nodes. Based on this idea, Wang et al.
[34] propose GMeshNet, a graph neural network to evalu-
ate the quality of structured mesh, which converts the mesh
quality evaluation task into a graph classification task. They
also design a sparse-implemented algorithm to transform the
structured mesh data into graph data. GMeshNet achieves
SOTA performance on the NACA-Market dataset (10,240
meshes). In our previous work [35], we propose a structured
mesh quality evaluation nerual network based on dynamic
graph attention, MQENet. We also design two improved
mesh preprocessing algorithms, the point-based graph and
the element-based graph, to convert mesh to graph more
effectively. MQENet achieves SOTA results on ten subsets
of the NACA-Market dataset (1024 meshes).

Despite these advances, a limitation still exists in the
machine learning techniques employed. These methods often
exhibit constrained generalization capacity, which becomes
particularly evident when encountering data distributions
that depart from those present in the training dataset. Exist-
ing mesh quality evaluation methods based on deep learning

Mesh data

H Topology-

Bad orthogonality | guided
i input

representation

All good

Fig.2 The architecture of MTGNet. MTGNet first generates element-
based graphs from the structured mesh data and divides the mesh
data into different blocks through topology-guided input representa-
tion. Then, the graph neural network is used to perceive and extract
different features in the graph. Finally, MTGNet fuses features in dif-
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are usually regarded as a multi-classification problem, mak-
ing it challenging to discern and accurately evaluate the
quality of the mesh.

3 Method
3.1 Overview

To extract mesh quality features from structured mesh, we
design a topology-guided graph neural network for multi-
label mesh quality evaluation. The architecture of MTGNet
is shown in Fig. 2. For input structured mesh data, we first
process the mesh using a topology-guided input representa-
tion that results in a 6D feature based on mesh elements.
The feature is then divided into blocks based on topology,
and each block is represented as a graph. GATv2 [36] and
SAGPool [37] are utilized for graph convolution layer and
graph pooling layer respectively. We propose an Attention-
based Block Graph Pooling (ABGPool) layer to fuse features
in different blocks. Finally, a Multi-Layer Perceptron (MLP)
is used to classify the mesh quality. Unlike other studies, the
output of MTGNet is a 3D label vector instead of an eight-
category vector.

The final result consists of three mesh quality labels:
orthogonality, smoothness and, distribution. As defined by
Chen et al. [20], the orthogonality metric means that the
mesh element should be as orthogonal as possible. The
smoothness metric means that the change of the mesh ele-
ment in the model should be a smooth transition rather than
a sudden transition. The distribution metric means that the
need to use dense mesh elements in critical areas (e.g.,

Graph data

Mesh quality labe
GNN q Y

Orthogonality

Smoothness

Distribution

ferent blocks through ABGPool to obtain a quality label for the input
structured mesh. For input mesh data, red mesh elements represent
high quality and blue mesh elements represent low quality. Different
mesh quality metrics detect low-quality mesh elements in different
areas. (Color figure Online)
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where there are large variations in flow field parameters or
geometric curvature).

Unlike multi-classification networks, the output of multi-
label networks is not a one-hot vector, and each index on the
multi-label vector is evaluated independently. At the same
time, since the final result is changed to a multi-label vec-
tor, this means that the network structure and the way of
extracting features are very different from that of a multi-
classification network.

3.2 Topology-guided input representation

Structured mesh usually contain a large number of nodes and
cells, so the generated graph data also have a large number of
nodes. This fact causes the neighborhood explosion problem
[38] in the graph neural network during the training process.
At the same time, studies by Wang et al. [34] and our previ-
ous work [35] have demonstrated that models trained using
node-based structured mesh representation perform poorly
(this is why we did not use node-based mesh representation
in Sect. 4 experiment). To this end, we propose a topology-
guided input representation method for structured mesh.

According to the theory of Xiao et al. [39], the topol-
ogy of the structured mesh are composed of singular points
and streamlines formed by the cross-field, as show in Fig. 3.
Among them, singular points and streamlines are defined
as follows:

e Singular point. Given a vector-field v/(x, y) over the mesh
domain Q and a point p € Q, p is a singular point when
it satisfies v,(p) = 0.

e Streamline. Given a cross-field v.(p)(c = 0, 1,2, 3) over
the mesh domain Q, suppose y(s) € Q is a paramet-
ric curve. y(s) is a streamline of v.(p) when it satisfies
Vs € [0, 1], Fow (s) X v,(w(s)) = 0.

We extract singular points P and streamlines ¥ from struc-
tured mesh domain €2, and uses singular points as vertices and
streamlines as boundaries to divide the mesh data into multiple

Fig.3 A 2D airfoil structured mesh. The red points are singular
points and the blue lines are streamlines

blocks. Our method can accelerate the processing speed of
graph neural network on mesh quality evaluation task.

GNN s are deep learning models used for processing graph
data. This paper takes structured mesh data in different blocks
as input, so how to convert mesh data into graph data is a
challenging task.

A graph is pair of G = (V,E), where V = {v,|li € N, } is
the set of vertices from mesh nodes, N, is the number of the
vertices and E = {e;lle; = (v;,v)), (v, v)) € V?} is the set of
edges from connections between mesh nodes. For an undi-
rected graph, e;; is identical to e;;. A graph corresponding to a
mesh consists of its own nodes and elements.

There are two existing algorithms for converting struc-
tured mesh data into graph data, namely, graph representa-
tion based on mesh nodes and graph representation based on
mesh elements. In graph representation based on mesh nodes,
the individual mesh nodes (the points where mesh lines inter-
sect) are treated as nodes of the graph. This approach directly
maps each mesh node to a graph node. The edges of the graph
correspond to the edges of the mesh. In other words, if two
mesh nodes are connected by an edge in the mesh, their cor-
responding graph nodes are also connected by an edge in the
graph representation. The graph representation based on mesh
elements treats mesh cells (faces) as nodes of the graph, and
the edges of the graph are based on the connection strength
between the two cells.

To further reduce the nodes in the graph generated from
structured mesh data, we use the graph representation based
on mesh elements. First, the feature matrix X € RY* and the
adjacency matrix of mesh nodes A, € R*** based on node
are obtained from the raw mesh file, where N is the number
of mesh elements and fis the number of feature. Through the
coordinates of the mesh nodes, we can calculate which mesh
nodes are shared, thereby obtaining the adjacency matrix of
the mesh nodes. In order to better obtain the adjacency rela-
tionship of each node on the mesh, we calculate the nodes on
each mesh element independently. Then, we suppose there is
an element management matrix M, where M = [m;;] € RN
and m; = 1if node i in element j, otherwise my; = 0. Finally,
we can obtain the strength matrix between two mesh elements:

S=MTA M (6)

If two structured mesh share one edge, the strength is 6.
So the adjacency matrix of mesh elements A is

19

3.3 Dynamic attention graph convolution layer

if Sy = 6
otherwise

(N

We utilize GATV2 as the graph convolution layer in MTG-
Net. The advantage of GATV2 is its ability to assign dynamic

@ Springer
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attention scores to distinct nodes, in contrast to GAT’s static
attention mechanism [40], which assigns uniform attention
scores across all nodes. This dynamic approach of GATv2 is
suitable for situations where discerning between nodes based
on their individual attributes. In the task of structured mesh
quality evaluation, this capability becomes vital.

GAT uses the score function a : R x R? - R to score
every edge (n;,n;), which calculates the importance of the
features of the neighbor 7, to the graph node n;:

a(ni’ l’l]) = U(bT - cat [Wl’l,-, Wn]]) (8)

where b € R*', w € R?*¢ are learnable parameters through
training, cat [ -, -] denotes vector concatenation, d is the num-
ber of features in each graph node and o represents an activa-
tion function.

GAT’s static attention mechanism presents a notable lim-
itation, particularly evident in its inability to differentiate
effectively between the qualities of various structured mesh.
This uniformity in attention allocation potentially hinders
GAT’s capacity to accurately represent and fit the nuances
that exist in the training data.

In order to improve the performance of the graph convo-
lution layer, we can move parameter b7 out of the non-linear
result before performing the operation:

a(n;, nj) = bTa(w - cat [n,, nj]) )

For any two mesh elements in the graph, we can get the
dynamic attention score a, as shown in Fig. 4. Meanwhile,
Layer Normalization (LayerNorm) [41] and the activation
function are performed. Layer Normalization plays a vital
role in stabilizing the training process by normalizing the
input across each layer of the network, effectively reducing
internal covariate shift and leading to more efficient training
dynamics. The activation function, on the other hand, intro-
duces a non-linear aspect to the network, essential for per-
ceiving the complex, non-linear relationships in mesh data.
The feature matrix X’ € RY*" input to the PSAP layer is:

X' = Dynamic (¢( LayerNorm (X)), A) (10)

where A € RV is the element-based adjacency matrix
from structured mesh. N is the number of the graph nodes,
m is the number of input features and » is the number of
output features.

Fig.4 The calculation proce-
dure of attention scores in graph
data
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The dynamic attention mechanism of GATV2 is not just
an incremental improvement but a critical enhancement that
addresses a fundamental shortcoming of its predecessor,
thereby enabling more nuanced and accurate modeling in
applications such as structured mesh quality evaluation.

3.4 Attention-based block graph pooling layer

The application of graph pooling techniques to mesh quality
evaluation tasks faces with significant challenges, primarily
due to the computational complexity associated with these
techniques. A key aspect of this complexity arises from the
necessity to compute a distribution matrix for node clustering
within the graph. The computational and spatial complexity
of this distribution matrix calculation is directly proportional
to the number of nodes and edges in the graph [36]. Given that
mesh data often comprise a substantial quantity of nodes and
elements, this complexity makes many graph pooling methods
impractical for tasks related to mesh quality evaluation.

Self-Attention Pooling (SAGPool) is an implementation of
hierarchical pooling. Its idea is to adaptively learn the impor-
tance of nodes from the graph through graph convolution,
and then use the TopK mechanism [42] to discard nodes. The
advantage of SAGPool is that it can simultaneously consider
node features and graph topology, and also has reasonable
complexity and end-to-end representation learning. SAGPool
keeps the number of parameters consistent during training and
does not need to consider the size of the input graph. This
is very suitable for structured mesh data with different mesh
numbers. However, SAGPool was proposed to solve the pool-
ing problem of single graph data, and there is no solution to
fuse multiple graphs. Thus, we propose ABGPool, a pooling
method based on SAGPool, to pool the graph data.

SAGPool adaptively learns the importance of nodes from
the graph through graph convolution, and then uses an atten-
tion-based fusion mask to fuse features from each block. Spe-
cifically, aggregation operations are used to assign an impor-
tance score to each node.

11
Z,=o|D.2AD, 2 X!W,, (11)

where D; € R¥¥is the degree matrix of A; in the ith block

and W,,, € R"™! represents the weight parameter.




Engineering with Computers

As shown in Fig. 5, ABGPool uses an attention-based
feature fusion method to combine the resulting mesh quality
features in different blocks, thereby enhancing the feature
representation ability of the pooled graph. This method is
the design of a learnable fusion weight matrix, denoted as
W. This matrix is not static; rather, it is optimized through
the learning process of the network. The network is trained
to discern and assign appropriate weights to the features
by minimizing the feature fusion loss, represented as Ly,,.
This loss function serves as a guide, directing the network
towards a more effective combination of features. Once the
optimal weights are determined, the features in each block
are combined using a weighted averaging method. By allow-
ing the network to learn and optimize the weights for fea-
ture fusion, we ensure that the final feature representation is
suited to the characteristics of the mesh data. The following
equations show this feature fusion method:

Z=YW,®%Z, Yy W=1 (12)
i=1 i=1

The pooling operation can be performed according to the
importance score and the topology of the graph. Based on
the score calculated by Eq. 12, only [kN]nodes are reserved:

idx = top-rank (Z, [4N1), Z usc = Ziax (13)

where € (0, 1]is the pooling ratio.

Repeatedly stacking SAGPool, as shown in Fig. 1, can
perform graph pooling, and finally use a PSAPool to fuse
features from each block. The final feature matrix and adja-
cency matrix are obtained by

_ v
Xy =X

tide:] © Zmask >+ Ar = Afignian

14

ABGPool can effectively extract and fuse features in each
block and avoid the neighbor explosion problem caused by
the massive nodes in mesh data. This is crucial for tasks that

Fig.5 The procedure of
attention-based block graph
pooling layer

Input graphs L,

{ Block feature fusion

require high computational efficiency and accuracy, such as
mesh quality evaluation.

3.5 Graph readout operation

In the architecture of MTGNet, an approach is employed to
extract and interpret graph data, addressing the challenges
posed by the variability of node positions within the graph.
This process involves enhancing the completeness of the
graph data through a combination of global readout opera-
tions (Fig. 1).

Specifically, the graph data is enriched by concatenat-
ing two distinct global readout operations: the global aver-
age readout and the global maximum readout. The global
average readout operation computes the mean of features
across all nodes, providing a generalized representation of
the graph’s overall characteristics. In contrast, the global
maximum readout focuses on capturing the most prominent
features across the nodes, thereby highlighting the most sig-
nificant aspects of the graph’s structure.

Given the complexity of accurately representing each
node due to their differing positions in the graph, MTG-
Net introduces the Jumping Knowledge Network (JK-net)
[43] into its framework. JK-net is good at obtaining precise
representations at various levels, enabling the network to
effectively capture and integrate information from different
neighborhood ranges for each node. This leads to a more
structure-aware representation of the graph, taking into
account the diverse local contexts of individual nodes.

4 Experiments

In this section, we evaluate MTGNet on the mesh benchmark
dataset NACA-Market. The datasets, implementation details
and experimental results are introduced.

Output graph
TopK

. ). Masking
selection e
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4.1 Datasets

The current landscape of benchmark datasets for struc-
tured mesh evaluation tasks is notably limited, with only
a few datasets available, such as NACA-Market and Air-
foilSet [44]. Among these, NACA-Market stands out as a
publicly accessible dataset, making it a valuable resource
for research and development in mesh quality evalua-
tion. This dataset focuses on the NACA0012 airfoil and
provides the basis for mesh quality evaluation networks.
NACA-Market has a total of 10,240 2D structured mesh
divided into eight categories. However, in Sect. 3.2 of this
paper, we changed the annotation method of this dataset
to multi-label, resulting in three labels. This dataset has a
total of 10 sizes of airfoil structured mesh, with each size
including 1024 structured meshes. In the experiments, we
separately use the entire dataset of NACA-Market and its
subsets to train MTGNet and evaluate its performance.

4.2 Implementation details

During the training process, we set the division ratio of
the training data, validation data and test data to 80%,
10%, 10%, and shuffle the data to ensure the distribution.
We set the batch size to 32 and the pooling ratio for all
pooling layers to 0.7. The number of input features, output
features, network layers and hidden layer units to 6, 3, 8
and 8, respectively. We select AMS-Grad [45] with an
initial learning rate of 1le—2 as the optimizer, and dynami-
cally decrease the learning rate according to the training
situation. In order to satisfy the final multi-label output,
the final activation function of the MLP layer is Sigmoid.
Furthermore, we use binary cross-entropy loss as the loss
function and add L2 regularization with le—4 weight
decay. The experiments are carried out on an NVIDIA
RTX A6000-48G. Part of the visualization of the mesh
data are completed in the MeshLink platform [46].

4.3 Evaluation metric

Since we treat the mesh quality evaluation task as a multi-
label problem, accuracy can no longer be used to evaluate
network performance. In this paper, we choose F1-score
as the evaluation metric of neural network. The calculation
formula of macro-F1-score is as follows:

2TP

Fl = ————
2TP+ FN + FP

as)
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where TP represents the number of true positive examples,
FP represents the number of false positive examples, and FN
represents the number of false negative examples.

In addition, the F1-score is also divided into micro-F1
and macro-F1 . Micro-F1 first calculates the TP, FP, and FN
of all categories, then sums up to obtain the overall 7P,
FP,,, and FN_,. By calculating the overall precision and
recall, we can finally calculate the micro-F1 value. The char-
acteristic of this calculation method is that the calculated F1
value is susceptible to the influence of a class with a large
number of samples. Macro-F1 first calculates the F1 of all
classes, then directly calculates the arithmetic mean of all F1
to obtain the macro-F1 value. This method treats all classes
equally, regardless of the importance of different classes.
Therefore, macro-F1 is susceptible to sample classes cor-
responding to high Precision or high Recall. Based on the
characteristics of micro-F1 and macro-F1, we found that the
macro-F1-score is more suitable for multi-label mesh quality
evaluation tasks.

To establish the superiority of MTGNet over exist-
ing solutions, comparative experiments were conducted
against GMeshNet [34] and GridNet [20], which are the
SOTA methods on the whole NACA-Market datasets. The
performance evaluation focused on two key metrics: recall
and F1-score. As shown in Table 1, the comparison reveals
specific areas where MTGNet outperforms GMeshNet
and GridNet on the whole NACA-Market dataset (10,240
meshes). In terms of recall for orthogonality and smooth-
ness metrics, MTGNet achieves 99.94% and 98.32% respec-
tively, better than the recall rates of GMeshNet and GridNet.
For the distribution metric, MTGNet is slightly lower than
GridNet. We believe that compared to GNNSs, the receptive
field of CNNs is smaller, which allows GridNet to better
capture the local features of distribution in structured mesh.
The F1-score of MTGNet reaches an impressive 99.47%,
significantly outperforming GMeshNet and GridNet. More
importantly, MTGNet divides the structured mesh data to
reduce the depth and width of the neural network, thereby
reducing the cost of the network.

Table 1 Performance comparison of MTGNet and other methods on
the whole NACA-Market dataset.

Mesh property Network

MTGNet(%) GMeshNet(%) GridNet(%)
Orthogonality 99.94 99.81 96.95
Smoothness 98.32 88.16 93.46
Distribution 99.73 99.21 99.92
F1 99.47 90.79 -

The significance of bold in the table indicates that the value is the
maximum value in its row.
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Due to the difficulty of structured mesh generation, it
is challenging to form relevant structured mesh datasets.
Therefore, it is necessary to test the ability of neural net-
works on small mesh datasets to provide solutions for struc-
tured mesh quality evaluation of more models in the future.
In this paper, we test the generalization ability of different
models on small datasets using the subsets of the NACA-
Market dataset (1024 meshes). We choose MQENet [35] and
GMeshNet [34], two SOTA methods for small mesh data-
sets, as comparison methods. We first train several networks
separately on small structured mesh datasets. As shown in
Table 2, the comparison reveals specific areas where MTG-
Net outperforms MQENet and GMeshNet in the subsets of
the NACA-Market dataset. In terms of recall for all three
metrics, MTGNet achieves 88.06%, 89.94%, and 86.24%
respectively, better than the recall of MQENet and GMesh-
Net. The F1-score of MTGNet, standing at 88.93%, signifi-
cantly outperforms MQENet and GMeshNet. We can see
that MTGNet can achieve satisfactory F1-score and recall
when the size of the dataset changes, demonstrating MTG-
Net’s ability to adapt and generalize to datasets of different
sizes.

It is worth noting that MQENet, GMeshNet, and GridNet
all evaluate the input mesh directly. This is the reason why
MTGNet is superior to these SOTA methods. After topol-
ogy-guided input representation, our network can capture
those blocks that contribute the most to the mesh quality.
This makes it easier for the neural network to focus on the
effective features in the graph. Finally, through the feature
fusion module in ABGPool, most of the effective features
can be utilized as the basis for the final mesh quality evalua-
tion, thereby obtaining more reasonable mesh quality evalu-
ation results.

In order to prove that our proposed MTGNet has improved
efficiency, we measured the model parameters of different
neural networks after training on the whole NACA-Market,
as shown in Fig. 6. We selected ResNet [47], Efficientnet
[48], VIT [49], T2T-VIT [50], GridNet, Gridformer [21], and
GMeshNet for comparison. It can be seen that MTGNet has
the smallest model parameters, which means that the time

Table 2 Performance comparison of MTGNet and other methods on
the subsets of the NACA-Market dataset.

Mesh property  Network

MTGNet (%) MQENet (%)  GMeshNet (%)
Orthogonality 88.06 82.96 80.73
Smoothness 89.94 81.64 78.57
Distribution 86.24 82.48 82.69
F1 88.93 82.36 84.90

The significance of bold in the table indicates that the value is the
maximum value in its row.

required for structured mesh quality evaluation is reduced.
This is because MTGNet adopts a topology-guided input
representation that decomposes structured mesh data into
multiple blocks. For small structured mesh data, we only
need to design a small graph neural network to effectively
extract the mesh quality features. Other methods directly
input the entire structured mesh data into the neural network,
making it difficult for small neural networks to extract deep-
level mesh quality features.

We also illustrate the superiority of MTGNet by com-
paring it with traditional metrics. In our research, we pay
special attention to structured mesh data similar to that
described in Fig. 7, which belongs to the labels of bad dis-
tribution, good orthogonality and smoothness. However,
traditional metrics incorrectly classified this mesh as “All
good”. This misclassification highlights the limitations of
traditional mesh quality metrics, which can overlook signifi-
cant deficiencies when other metrics perform satisfactorily.
In contrast, our proposed MTGNet demonstrates its ability
to accurately detect such defects by leveraging the topology-
guided input representation method, GATv2, and ABGPool,
which can effectively identify hidden patterns in structured
meshes that traditional evaluation methods cannot identify.

4.4 Ablation studies

In this section, to illustrate the effectiveness of MTGNet, this
paper performs ablation studies from two aspects: hyper-
parameters and network structure. Since training the network
on the whole dataset is time-consuming, we perform abla-
tion studies on a subset (1024 meshes) of the NACA-Market
dataset.

4.4.1 Analysis of hyper-parameters

In this part, we analyze the impact of different hyper-param-
eters on MTGNet. Choosing appropriate hyper-parameters
can improve the efficiency and accuracy of neural networks.
We discuss two factors, network depth and pooling ratio.
The experimental results are shown in Table 3.

The pooling ratio in the graph pooling layer dictates
the proportion of nodes to be retained in each layer during
the pooling process. A higher pooling ratio, such as 0.9,
implies that a larger proportion of nodes are kept during
the pooling process. The observations from the network
performance at this ratio indicate that retaining more fea-
tures tends to yield better results. This is likely because
more information about the mesh is preserved, allowing
the network to make more informed and accurate predic-
tions. Conversely, a lower pooling ratio, like 0.3, means
that a smaller fraction of nodes is retained after each pool-
ing operation. The poorer performance at this ratio sug-
gests that discarding a significant number of nodes can

@ Springer
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Fig. 6 Parameters of different
neural networks on the NACA-
Market
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Fig.7 Visualization of classification result on NACA-Market with
traditional metrics. This mesh is classified as “all good” according to
traditional metrics and actually the distribution is bad

Table 3 F1 for different hyper-parameters

Pooling ratio Network depth

4 (%) 8 (%) 16 (%)
0.3 82.89 83.85 83.03
0.5 84.18 86.56 87.29
0.7 86.01 88.93 88.18
0.9 86.98 89.50 89.63

@ Springer

86.86

ViT-B T2T-ViT-t-24 GridNet Gridformer GMeshNet MTGNet(ours)

lead to a loss of critical information, which adversely
affects the accuracy of the network. While a lower pooling
ratio contributes to reducing the size and computational
complexity of the neural network, it comes at the cost of
diminished accuracy due to insufficient feature represen-
tation. However, we find that when the pooling ratio is
0.7, MTGNet can achieve performance that is quite close
to that with a pooling ratio of 0.9. This means we can
sacrifice a small amount of performance in exchange for
improving the efficiency of the network.

The other important hyper-parameter is the network
depth. We can see that when the pooling ratio is 0.5 and
0.9, the network performs better as the network depth
increases. This means that deeper networks can better
learn the boundaries between different categories. How-
ever, when the pooling ratio is 0.3 and 0.7, a too-deep
network degrade the performance of the network. We
believe that small pooling ratios coupled with deep net-
work layers cause some of the critical quality features in
structured mesh data to be discarded (because the size of
the final graph is too small). And when the pooling ratio
is more appropriate, too deep network layers make the
model over-fit the distribution on the training set, lead-
ing to a decrease in accuracy on the validation and test
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Table 4 F1-score for different networks

Pooling method Convolution method F1 (%)

TopK+block feature fusion GCN 74.48
GraphConv 78.81
GAT 80.42
GATv2 83.81

ABGPool(Ours) GCN 75.12
GraphConv 79.56
GAT 83.79
GATv2 88.93

sets. When the number of network layers is 8, it not only
ensures the performance of the network, but also improves
the efficiency of the network.

4.4.2 Analysis of network structure

In addition to the influence of hyper-parameters on the
MTGNet, the network selection of the network structure is
also important. The core parts of GNNs are composed of
graph convolution layers and graph pooling layers. So here
we choose some classic graph convolution methods and
graph pooling methods to compare with the methods we
use (GATv2 and SAGPool), namely GCN [51], GraphConv
[52], GAT [40], and TopK [42]. Experimental results of
different networks are shown in Table 4. From the results,
we can see that our network performs better than other
networks on NACA-Market datasets.

The use of GATV2 in the task of structured mesh quality
evaluation provides a significant enhancement over other
graph convolutional layers, particularly due to its dynamic
attention mechanism. This feature of GATv2 plays a cru-
cial role in enhancing the representation of hidden fea-
tures within structured mesh and enables more effective
classification of mesh with different quality labels. At the
same time, we can see that the static attention mechanism
performs better than the network that does not use any
attention mechanism.

In terms of pooling layer, TopK samples a subset of
basic nodes by manipulating a trainable projection vector.
ABGPool further applies self-attention and graph convolu-
tion to improve TopK. From the experimental results, we
can see that the network using ABGPool performs bet-
ter. This is because ABGPool introduces a self-attention
mechanism, which allows ABGPool to more effectively
filter out graph nodes that meet the specified tasks. This
shows that, whether in the graph convolution layer or the
graph pooling layer, deploying the attention mechanism is
crucial for the mesh quality evaluation task.

5 Conclusions

In this paper, we introduce MTGNet, a novel topology-
guided graph neural network designed for multi-label mesh
quality evaluation. MTGNet distinctly contrasts with other
methodologies by conceptualizing mesh quality evaluation
as a multi-label problem, thus allowing for a more objec-
tive and comprehensive analysis of mesh quality. MTG-
Net, which includes innovative elements like the topology-
guided input representation and attention-based block graph
pooling, demonstrates superior performance in evaluating
structured mesh quality. The experiments conducted on the
NACA-Market dataset show the effectiveness of MTGNet,
with its ability to outperform existing SOTA methods in
terms of accuracy and computational efficiency.

In the future, our proposed neural network can be fur-
ther explored and developed for more computer graphics
and computer-aided design related tasks. In addition, we
will conduct an in-depth study of the application of feature
representation methods and GNNs in the quality evaluation
tasks of 3D structured mesh. For 2D unstructured mesh, we
can also convert it into graph data and then use MTGNet
for mesh quality evaluation. However, there are no exist-
ing mesh quality benchmark datasets for unstructured mesh.
Since MTGNet is a data-driven and supervised model, it is
difficult to perform the unstructured mesh quality evalua-
tion task without datasets. In the future, we will consider
constructing related datasets for unstructured mesh. We
believe that MTGNet will also have excellent performance
on unstructured mesh.
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