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Abstract
Mesh quality directly affects the accuracy and efficiency of numerical simulation. Mesh quality evaluation aims to evaluate 
the suitability of the mesh generated in CAE pre-processing for numerical simulation. Recent work has introduced deep neural 
networks for mesh quality evaluation. However, these methods treat the mesh quality evaluation task as a multi-classification 
problem, resulting in serious correlations among different quality categories, which makes it difficult to learn the boundaries 
of different categories. In this paper, we propose a topology-guided graph neural network, MTGNet, which treats the mesh 
quality evaluation task as a multi-label task. Specifically, we first decomposed the categories in traditional multi-classification 
problems and obtained three completely orthogonal mesh quality labels, namely orthogonality, smoothness and, distribution. 
Then, MTGNet introduces a topology-guided feature representation for structured mesh data, which can generate multiple 
blocks of element-based graphs through the mesh topology. In order to better fuse features in different blocks, MTGNet also 
introduces an attention-based block graph pooling (ABGPool) method. Experimental results on the NACA-Market dataset 
demonstrate MTGNet shows superior or at least comparable performance to the state-of-the-art (SOTA) approaches.

Keywords Mesh quality evaluation · Structured mesh · Multi-label classification · Graph neural network · Deep learning 
application

1 Introduction

Mesh generation and quality evaluation are the backbone 
of accurate and efficient numerical simulations [1, 2]. In 
the American Institute of Aeronautics and Astronautics 
(AIAA)’s research report, titled “CFD Vision 2030 Road 
Map: Progress and Perspectives” [3], mesh generation is 
listed as one of the six important research areas in the future. 
The development of Computational Aided Engineering 

(CAE) has revolutionized the pre-processing process of 
mesh generation and provides support for various simu-
lation tasks [4–6]. The quality of generated mesh largely 
determines the reliability and accuracy of numerical simu-
lation results. The critical task of mesh quality evaluation 
has attracted widespread attention, especially in the field of 
computational fluid dynamics (CFD).

Mesh quality evaluation, despite its seemingly simple 
nature, is marked by a lack of consensus among research-
ers regarding the most appropriate and effective metrics to 
use [7]. This divergence in opinions and practices can be 
attributed primarily to the absence of a universally accepted 
guiding framework or standardized set of criteria for the 
development and implementation of mesh quality metrics. 
Since it is difficult to define an evaluation function that takes 
the entire mesh as input, mesh quality evaluation typically 
utilizes element-based mesh quality metrics. These metrics 
are vital for evaluating the suitability and efficiency of mesh, 
particularly in computational simulations where mesh accu-
racy directly impacts the overall results. Li et al. [8] pro-
vided a detailed overview of mesh quality metrics, especially 
focusing on those relevant to mesh. In 2D mesh, the main 
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metrics of interest to researchers are shape and size, which 
are important to ensure that the mesh accurately represents 
the physical domain [9] it is intended to simulate. At the 
same time, the mesh quality also affects the convergence of 
numerical calculations.

However, the traditional mesh quality evaluation method 
in CFD is characterized by a reliance on existing quality 
metrics that may not uniformly guarantee the generation of 
high-quality mesh. This limitation mainly stems from the 
fact that these metrics are often derived with a specific focus 
on a particular mesh type or simulation scenario. Conse-
quently, when applied to diverse mesh configurations, the 
same metrics can yield varied and sometimes contradictory 
results. This illustrates that existing mesh quality metrics are 
highly subjective and make it difficult to evaluate the quality 
of a mesh cell from a comprehensive perspective.

With the rapid development of graphics processing units 
(GPU) and the volume of big data, the application scenar-
ios of deep learning have gradually begun to develop in the 
fields of computer graphics [10, 11] and Computer-Aided 
Design (CAD) [12, 13]. Convolutional Neural Networks 
(CNNs) [14] are the representative achievement of deep 
learning models. The sharing of convolution kernel param-
eters within the hidden layer and the sparsity of inter-layer 
connections enable the convolutional neural network to learn 
grid-like topology features, such as image [15, 16], video 
[17, 18] and audio [19], with a small amount of calculation. 
This results in stable effects and no additional feature engi-
neering requirements on the data. Chen et al. [20] introduced 
a novel paradigm in the realm of structured mesh quality 
evaluation. They proposed GridNet, a model predicated on 
the principles of CNNs. Concurrently, they contributed to 
the field by proposing the NACA-Market, a structured mesh 
dataset designed to facilitate research and application in this 
domain. Liu et al. [21] proposed Gridformer, an automatic 
mesh quality evaluation model based on Transformer [22]. 
This methodology sets the task of mesh quality evaluation as 
an image classification challenge. Gridformer is particularly 

noteworthy for its selection of three pivotal features that 
exert a substantial impact on mesh quality.

The mesh quality evaluation networks based on deep 
learning proposed by existing research have performed well. 
However, existing research treats the mesh quality evalua-
tion task as a multi-classification problem [20, 21, 34, 35, 
44]. We experimentally found that correlations exist between 
each category. Taking the NACA-Market dataset constructed 
by Chen et al. [20] as an example, this dataset adopts three 
mesh evaluation metrics, namely orthogonality, smooth-
ness, and distribution. Each metric uses two categories to 
form a category, so there are eight categories in total. This 
means that the output mesh quality evaluation result is an 
8D vector. In Fig. 1a, we can see that N-OSD has a strong 
correlation with N-OS, N-OD, N-SD, N-S, N-D, and N-O, 
which seriously affects the boundaries between different 
categories of data. To solve this problem, we decompose 
the eight categories and change the mesh quality evaluation 
task to a multi-label problem, which means that the result is 
a 3D vector. Without changing the original categories, the 
3D vector labels that we obtain are a completely orthogonal 
space (Fig. 1b), allowing the network to learn the boundaries 
of different categories well.

In this paper, we present a topology-guided graph neural 
network for multi-label mesh quality evaluation. To the best 
of our knowledge, our proposed method is the first to employ 
multi-label graph neural network for the task of mesh quality 
evaluation. The key contributions are as follows:

• We propose MTGNet, a multi-label mesh quality evalu-
ation network based on graph attention mechanism. 
MTGNet utilizes an attention-based block graph pool-
ing (ABGPool) to extract mesh quality features in a 
reasonable way, namely orthogonality, smoothness and 
distribution, which allows the network to better learn the 
boundaries among different labels.

• We design a topology-guided input representation of 
structured mesh. Based on the complex topology in the 

Fig. 1  Schematic diagram 
of multi-classification and 
multi-label problems. Where a 
is a multi-classification Venn 
diagram, b is a multi-label 3D 
space representation. N-SD 
represents mesh data with poor 
smoothness and distribution, 
and N-O represents mesh data 
with poor orthogonality. In (a), 
if the mesh data does not belong 
to any category in the set, then 
its label is “All good”
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structured mesh, the mesh data is divided into multiple 
blocks, and then the mesh cells are regarded as graph 
nodes to provide input for the graph neural network. This 
representation can provide more property information 
about the mesh shape.

• We evaluate MTGNet on the mesh benchmark dataset 
NACA-Market. Experimental results demonstrate the 
superior performance of MTGNet compared to SOTA 
methods. By introducing a multi-label perspective, 
MTGNet can provide a more reliable mesh quality evalu-
ation result during numerical simulations.

2  Related work

According to mesh topology, mesh can be divided into 
unstructured mesh and structured mesh. In this paper, 
we focus on structured mesh because it is more efficient 
in numerical computation, but the difficulty of generating 
structured mesh leads many researchers to prefer unstruc-
tured mesh. The difficulty of structured mesh generation 
lies in ensuring that the generated mesh is consistent with 
the boundary and maintains orthogonality, which may 
cause singular points. Singular points negatively impact 
the results and stability of numerical simulations. Mean-
while, another factor hindering the development of auto-
mated structured mesh generation is the difficulty in achiev-
ing intelligent mesh quality evaluation, because traditional 
mesh quality evaluation often requires the involvement of 
professionals, making the task time-consuming and highly 
experience-dependent.

Traditional mesh quality metrics are often evaluated from 
one aspect of the structured mesh. The area ratio evaluates 
the quality of mesh elements by comparing their areas to a 
reference or ideal area. The area ratio of a structured mesh 
is measured as:

where Area(Q) is the area of mesh Q. Qthis refers to the struc-
tured mesh being calculated, and Qup , Qdown , Qleft , and Qright 
refer to the adjacent mesh on the upper, lower, left, and right 
sides of the structured mesh respectively. If there is no mesh 
in a certain direction, its area is 0. NQthis

 is the number of Qthis 
adjacent structured mesh.

Knupp [23] provided explicit formulas for partial quality 
measures of quadrilateral mesh and, for each measure type, 
listed the basic abstract properties of that type. A structured 

(1)farea = max
[
R,

1

R

]

(2)

R =
Area(Qup) + Area(Qleft) + Area(Qdown) + Area(Qright)

NQthis
∗ Area(Qthis)

mesh has four valences. Suppose the coordinates of the four 
nodes be (xp, yp), p = 0, 1, 2, 3 . By calculating the Jacobian 
matrix of each node, we can get the following matrix:

So the shape quality metric for structured mesh is:

where �k
11

 is the square of the length of the side connecting 
nodes k and k + 1 , �k

22
 is the square of the length of the side 

connecting nodes k and k + 3 , �p = det (Bp).
The skewness metric aims to evaluate mesh distortions 

which arise from large or small angles. Unlike shape, the 
skewness is insensitive to length. So the skewness for struc-
tured mesh is:

Xie et al. [24] introduced an approach to evaluate mesh 
quality, shifting the focus from traditional element-based 
indicators to a mapping-based method. This method repre-
sents a novel perspective in mesh quality evaluation, empha-
sizing the relationship between the initial (or undeformed) 
mesh and the deformed mesh. This approach is particularly 
relevant in scenarios where the mesh undergoes deforma-
tion, either due to external forces or as part of the simulation 
process.

The incorporation of machine learning techniques [25, 
26] represents an evolution beyond traditional mesh quality 
metrics. Chetouani [27] introduced a paradigm-shifting 3D 
mesh quality metric founded on the principles of feature 
fusion. This metric employs a Support Vector Regression 
(SVR) model [28] to quantitatively evaluate the quality of 
3D mesh. The SVR model is trained, integrating predefined 
mesh quality metrics alongside geometric attributes to 
yield predictive quality scores. Sprave et al. [29] employed 
an innovative methodology, wherein they extract low-level 
attributes via the neighborhood graph of the mesh. This pro-
cess involves an analysis of each mesh element, focusing 
on the aggregation and evaluation of neighborhood quality 
indices to determine the overall quality of the mesh. The 
development of reinforcement learning techniques has also 
brought innovation to the field. Tong et al. [30] proposed 
a framework called “SRL-assisted AFM”, combined with 
reinforcement learning, to introduce different mesh qual-
ity metrics as reward functions in the process of generating 
quadrilateral meshes. This method generates quadrilateral 
meshes with low aspect ratios, high Jacobian, unbalanced 

(3)Bp =

[
xp+1 − xp xp+3 − xp
yp+1 − yp yp+3 − yp

]

(4)fshape =
8∑3

n=0

�
�k
11
+ �k

22

�
∕�p

(5)
fskewness =

4

∑3

n=0

��
�k
11
�k
22

�
∕�p
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seeds, low EP numbers with sharp features, conformal 
boundaries, and boundary layers.

With the further development of research on mesh quality 
evaluation based on deep learning, researchers have discov-
ered that mesh data is a kind of natural graph data, which 
can be processed by Graph Neural Networks (GNNs) [31, 
32]. The core idea of GNNs is to aggregate the neighbor 
information of the node through the message-passing mech-
anism [33] and update the feature representation of the node. 
This process typically involves multiple iterations to capture 
more distant information in the graph. Eventually, the feature 
representation of each node contains information about its 
neighbors and further nodes. Based on this idea, Wang et al. 
[34] propose GMeshNet, a graph neural network to evalu-
ate the quality of structured mesh, which converts the mesh 
quality evaluation task into a graph classification task. They 
also design a sparse-implemented algorithm to transform the 
structured mesh data into graph data. GMeshNet achieves 
SOTA performance on the NACA-Market dataset (10,240 
meshes). In our previous work [35], we propose a structured 
mesh quality evaluation nerual network based on dynamic 
graph attention, MQENet. We also design two improved 
mesh preprocessing algorithms, the point-based graph and 
the element-based graph, to convert mesh to graph more 
effectively. MQENet achieves SOTA results on ten subsets 
of the NACA-Market dataset (1024 meshes).

Despite these advances, a limitation still exists in the 
machine learning techniques employed. These methods often 
exhibit constrained generalization capacity, which becomes 
particularly evident when encountering data distributions 
that depart from those present in the training dataset. Exist-
ing mesh quality evaluation methods based on deep learning 

are usually regarded as a multi-classification problem, mak-
ing it challenging to discern and accurately evaluate the 
quality of the mesh.

3  Method

3.1  Overview

To extract mesh quality features from structured mesh, we 
design a topology-guided graph neural network for multi-
label mesh quality evaluation. The architecture of MTGNet 
is shown in Fig. 2. For input structured mesh data, we first 
process the mesh using a topology-guided input representa-
tion that results in a 6D feature based on mesh elements. 
The feature is then divided into blocks based on topology, 
and each block is represented as a graph. GATv2 [36] and 
SAGPool [37] are utilized for graph convolution layer and 
graph pooling layer respectively. We propose an Attention-
based Block Graph Pooling (ABGPool) layer to fuse features 
in different blocks. Finally, a Multi-Layer Perceptron (MLP) 
is used to classify the mesh quality. Unlike other studies, the 
output of MTGNet is a 3D label vector instead of an eight-
category vector.

The final result consists of three mesh quality labels: 
orthogonality, smoothness and, distribution. As defined by 
Chen et al. [20], the orthogonality metric means that the 
mesh element should be as orthogonal as possible. The 
smoothness metric means that the change of the mesh ele-
ment in the model should be a smooth transition rather than 
a sudden transition. The distribution metric means that the 
need to use dense mesh elements in critical areas (e.g., 

Fig. 2  The architecture of MTGNet. MTGNet first generates element-
based graphs from the structured mesh data and divides the mesh 
data into different blocks through topology-guided input representa-
tion. Then, the graph neural network is used to perceive and extract 
different features in the graph. Finally, MTGNet fuses features in dif-

ferent blocks through ABGPool to obtain a quality label for the input 
structured mesh. For input mesh data, red mesh elements represent 
high quality and blue mesh elements represent low quality. Different 
mesh quality metrics detect low-quality mesh elements in different 
areas. (Color figure Online)
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where there are large variations in flow field parameters or 
geometric curvature).

Unlike multi-classification networks, the output of multi-
label networks is not a one-hot vector, and each index on the 
multi-label vector is evaluated independently. At the same 
time, since the final result is changed to a multi-label vec-
tor, this means that the network structure and the way of 
extracting features are very different from that of a multi-
classification network.

3.2  Topology‑guided input representation

Structured mesh usually contain a large number of nodes and 
cells, so the generated graph data also have a large number of 
nodes. This fact causes the neighborhood explosion problem 
[38] in the graph neural network during the training process. 
At the same time, studies by Wang et al. [34] and our previ-
ous work [35] have demonstrated that models trained using 
node-based structured mesh representation perform poorly 
(this is why we did not use node-based mesh representation 
in Sect. 4 experiment). To this end, we propose a topology-
guided input representation method for structured mesh.

According to the theory of Xiao et al. [39], the topol-
ogy of the structured mesh are composed of singular points 
and streamlines formed by the cross-field, as show in Fig. 3. 
Among them, singular points and streamlines are defined 
as follows:

• Singular point. Given a vector-field vf (x, y) over the mesh 
domain Ω and a point p ∈ Ω , p is a singular point when 
it satisfies vf (p) = 0.

• Streamline. Given a cross-field vc(p)(c = 0, 1, 2, 3) over 
the mesh domain Ω , suppose �(s) ∈ Ω is a paramet-
ric curve. �(s) is a streamline of vc(p) when it satisfies 
∀s ∈ [0, 1],∃��(s) × vi(�(s)) = 0.

We extract singular points P and streamlines Ψ from struc-
tured mesh domain Ω , and uses singular points as vertices and 
streamlines as boundaries to divide the mesh data into multiple 

blocks. Our method can accelerate the processing speed of 
graph neural network on mesh quality evaluation task.

GNNs are deep learning models used for processing graph 
data. This paper takes structured mesh data in different blocks 
as input, so how to convert mesh data into graph data is a 
challenging task.

A graph is pair of G = (V ,E) , where V = {vi‖i ∈ Nv} is 
the set of vertices from mesh nodes, Nv is the number of the 
vertices and E = {eij‖eij = (vi, vj), (vi, vj) ∈ V2} is the set of 
edges from connections between mesh nodes. For an undi-
rected graph, eij is identical to eji . A graph corresponding to a 
mesh consists of its own nodes and elements.

There are two existing algorithms for converting struc-
tured mesh data into graph data, namely, graph representa-
tion based on mesh nodes and graph representation based on 
mesh elements. In graph representation based on mesh nodes, 
the individual mesh nodes (the points where mesh lines inter-
sect) are treated as nodes of the graph. This approach directly 
maps each mesh node to a graph node. The edges of the graph 
correspond to the edges of the mesh. In other words, if two 
mesh nodes are connected by an edge in the mesh, their cor-
responding graph nodes are also connected by an edge in the 
graph representation. The graph representation based on mesh 
elements treats mesh cells (faces) as nodes of the graph, and 
the edges of the graph are based on the connection strength 
between the two cells.

To further reduce the nodes in the graph generated from 
structured mesh data, we use the graph representation based 
on mesh elements. First, the feature matrix X ∈ ℝ

N×f  and the 
adjacency matrix of mesh nodes Aq ∈ ℝ

4N×4N based on node 
are obtained from the raw mesh file, where N is the number 
of mesh elements and f is the number of feature. Through the 
coordinates of the mesh nodes, we can calculate which mesh 
nodes are shared, thereby obtaining the adjacency matrix of 
the mesh nodes. In order to better obtain the adjacency rela-
tionship of each node on the mesh, we calculate the nodes on 
each mesh element independently. Then, we suppose there is 
an element management matrix M, where M = [mij] ∈ ℝ

4N×N , 
and mij = 1 if node i in element j, otherwise mij = 0 . Finally, 
we can obtain the strength matrix between two mesh elements:

If two structured mesh share one edge, the strength is 6. 
So the adjacency matrix of mesh elements A is

3.3  Dynamic attention graph convolution layer

We utilize GATv2 as the graph convolution layer in MTG-
Net. The advantage of GATv2 is its ability to assign dynamic 

(6)S = MTAqM

(7)Aij =

{
1, if Sij = 6

0, otherwise

Fig. 3  A 2D airfoil structured mesh. The red points are singular 
points and the blue lines are streamlines
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attention scores to distinct nodes, in contrast to GAT’s static 
attention mechanism [40], which assigns uniform attention 
scores across all nodes. This dynamic approach of GATv2 is 
suitable for situations where discerning between nodes based 
on their individual attributes. In the task of structured mesh 
quality evaluation, this capability becomes vital.

GAT uses the score function � ∶ ℝ
d ×ℝ

d
→ ℝ to score 

every edge (ni, nj) , which calculates the importance of the 
features of the neighbor nj to the graph node ni:

where b ∈ ℝ
2d� ,w ∈ ℝ

d�×d are learnable parameters through 
training, cat [⋅, ⋅] denotes vector concatenation, d is the num-
ber of features in each graph node and � represents an activa-
tion function.

GAT’s static attention mechanism presents a notable lim-
itation, particularly evident in its inability to differentiate 
effectively between the qualities of various structured mesh. 
This uniformity in attention allocation potentially hinders 
GAT’s capacity to accurately represent and fit the nuances 
that exist in the training data.

In order to improve the performance of the graph convo-
lution layer, we can move parameter bT out of the non-linear 
result before performing the operation:

For any two mesh elements in the graph, we can get the 
dynamic attention score � , as shown in Fig. 4. Meanwhile, 
Layer Normalization (LayerNorm) [41] and the activation 
function are performed. Layer Normalization plays a vital 
role in stabilizing the training process by normalizing the 
input across each layer of the network, effectively reducing 
internal covariate shift and leading to more efficient training 
dynamics. The activation function, on the other hand, intro-
duces a non-linear aspect to the network, essential for per-
ceiving the complex, non-linear relationships in mesh data. 
The feature matrix X� ∈ ℝ

N×n input to the PSAP layer is:

where A ∈ ℝ
N×N is the element-based adjacency matrix 

from structured mesh. N is the number of the graph nodes, 
m is the number of input features and n is the number of 
output features.

(8)�(ni, nj) = �(bT ⋅ cat [wni,wnj])

(9)�(ni, nj) = bT�(w ⋅ cat [ni, nj])

(10)X� = Dynamic (�( LayerNorm (X)),A)

The dynamic attention mechanism of GATv2 is not just 
an incremental improvement but a critical enhancement that 
addresses a fundamental shortcoming of its predecessor, 
thereby enabling more nuanced and accurate modeling in 
applications such as structured mesh quality evaluation.

3.4  Attention‑based block graph pooling layer

The application of graph pooling techniques to mesh quality 
evaluation tasks faces with significant challenges, primarily 
due to the computational complexity associated with these 
techniques. A key aspect of this complexity arises from the 
necessity to compute a distribution matrix for node clustering 
within the graph. The computational and spatial complexity 
of this distribution matrix calculation is directly proportional 
to the number of nodes and edges in the graph [36]. Given that 
mesh data often comprise a substantial quantity of nodes and 
elements, this complexity makes many graph pooling methods 
impractical for tasks related to mesh quality evaluation.

Self-Attention Pooling (SAGPool) is an implementation of 
hierarchical pooling. Its idea is to adaptively learn the impor-
tance of nodes from the graph through graph convolution, 
and then use the TopK mechanism [42] to discard nodes. The 
advantage of SAGPool is that it can simultaneously consider 
node features and graph topology, and also has reasonable 
complexity and end-to-end representation learning. SAGPool 
keeps the number of parameters consistent during training and 
does not need to consider the size of the input graph. This 
is very suitable for structured mesh data with different mesh 
numbers. However, SAGPool was proposed to solve the pool-
ing problem of single graph data, and there is no solution to 
fuse multiple graphs. Thus, we propose ABGPool, a pooling 
method based on SAGPool, to pool the graph data.

SAGPool adaptively learns the importance of nodes from 
the graph through graph convolution, and then uses an atten-
tion-based fusion mask to fuse features from each block. Spe-
cifically, aggregation operations are used to assign an impor-
tance score to each node.

where Di ∈ ℝ
N×N is the degree matrix of Ai in the ith block 

and Watt ∈ ℝ
n×1 represents the weight parameter.

(11)Zi = �

⎛⎜⎜⎝
D

−
1

2
i

AiD
−
1

2
i

X�
i
Watt

⎞⎟⎟⎠

Fig. 4  The calculation proce-
dure of attention scores in graph 
data
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As shown in Fig. 5, ABGPool uses an attention-based 
feature fusion method to combine the resulting mesh quality 
features in different blocks, thereby enhancing the feature 
representation ability of the pooled graph. This method is 
the design of a learnable fusion weight matrix, denoted as 
W. This matrix is not static; rather, it is optimized through 
the learning process of the network. The network is trained 
to discern and assign appropriate weights to the features 
by minimizing the feature fusion loss, represented as Lfus . 
This loss function serves as a guide, directing the network 
towards a more effective combination of features. Once the 
optimal weights are determined, the features in each block 
are combined using a weighted averaging method. By allow-
ing the network to learn and optimize the weights for fea-
ture fusion, we ensure that the final feature representation is 
suited to the characteristics of the mesh data. The following 
equations show this feature fusion method:

The pooling operation can be performed according to the 
importance score and the topology of the graph. Based on 
the score calculated by Eq. 12, only ⌈kN⌉ nodes are reserved:

where � ∈ (0, 1] is the pooling ratio.
Repeatedly stacking SAGPool, as shown in Fig. 1, can 

perform graph pooling, and finally use a PSAPool to fuse 
features from each block. The final feature matrix and adja-
cency matrix are obtained by

ABGPool can effectively extract and fuse features in each 
block and avoid the neighbor explosion problem caused by 
the massive nodes in mesh data. This is crucial for tasks that 

(12)Z =

n∑
i=1

Wi ⊗ Zi,

n∑
i=1

Wi = 1

(13)idx = top-rank (Z, ⌈�N⌉), Z mask = Zidx

(14)Xf = X�
[idx,∶]

⊙ Z mask , Af = A[idx,idx]

require high computational efficiency and accuracy, such as 
mesh quality evaluation.

3.5  Graph readout operation

In the architecture of MTGNet, an approach is employed to 
extract and interpret graph data, addressing the challenges 
posed by the variability of node positions within the graph. 
This process involves enhancing the completeness of the 
graph data through a combination of global readout opera-
tions (Fig. 1).

Specifically, the graph data is enriched by concatenat-
ing two distinct global readout operations: the global aver-
age readout and the global maximum readout. The global 
average readout operation computes the mean of features 
across all nodes, providing a generalized representation of 
the graph’s overall characteristics. In contrast, the global 
maximum readout focuses on capturing the most prominent 
features across the nodes, thereby highlighting the most sig-
nificant aspects of the graph’s structure.

Given the complexity of accurately representing each 
node due to their differing positions in the graph, MTG-
Net introduces the Jumping Knowledge Network (JK-net) 
[43] into its framework. JK-net is good at obtaining precise 
representations at various levels, enabling the network to 
effectively capture and integrate information from different 
neighborhood ranges for each node. This leads to a more 
structure-aware representation of the graph, taking into 
account the diverse local contexts of individual nodes.

4  Experiments

In this section, we evaluate MTGNet on the mesh benchmark 
dataset NACA-Market. The datasets, implementation details 
and experimental results are introduced.

Fig. 5  The procedure of 
attention-based block graph 
pooling layer
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4.1  Datasets

The current landscape of benchmark datasets for struc-
tured mesh evaluation tasks is notably limited, with only 
a few datasets available, such as NACA-Market and Air-
foilSet [44]. Among these, NACA-Market stands out as a 
publicly accessible dataset, making it a valuable resource 
for research and development in mesh quality evalua-
tion. This dataset focuses on the NACA0012 airfoil and 
provides the basis for mesh quality evaluation networks. 
NACA-Market has a total of 10,240 2D structured mesh 
divided into eight categories. However, in Sect. 3.2 of this 
paper, we changed the annotation method of this dataset 
to multi-label, resulting in three labels. This dataset has a 
total of 10 sizes of airfoil structured mesh, with each size 
including 1024 structured meshes. In the experiments, we 
separately use the entire dataset of NACA-Market and its 
subsets to train MTGNet and evaluate its performance.

4.2  Implementation details

During the training process, we set the division ratio of 
the training data, validation data and test data to 80%, 
10%, 10%, and shuffle the data to ensure the distribution. 
We set the batch size to 32 and the pooling ratio for all 
pooling layers to 0.7. The number of input features, output 
features, network layers and hidden layer units to 6, 3, 8 
and 8, respectively. We select AMS-Grad [45] with an 
initial learning rate of 1e−2 as the optimizer, and dynami-
cally decrease the learning rate according to the training 
situation. In order to satisfy the final multi-label output, 
the final activation function of the MLP layer is Sigmoid. 
Furthermore, we use binary cross-entropy loss as the loss 
function and add L2 regularization with 1e−4 weight 
decay. The experiments are carried out on an NVIDIA 
RTX A6000-48G. Part of the visualization of the mesh 
data are completed in the MeshLink platform [46].

4.3  Evaluation metric

Since we treat the mesh quality evaluation task as a multi-
label problem, accuracy can no longer be used to evaluate 
network performance. In this paper, we choose F1-score 
as the evaluation metric of neural network. The calculation 
formula of macro-F1-score is as follows:

(15)F1 =
2TP

2TP + FN + FP

where TP represents the number of true positive examples, 
FP represents the number of false positive examples, and FN 
represents the number of false negative examples.

In addition, the F1-score is also divided into micro-F1 
and macro-F1 . Micro-F1 first calculates the TP, FP, and FN 
of all categories, then sums up to obtain the overall TPall , 
FPall , and FNall . By calculating the overall precision and 
recall, we can finally calculate the micro-F1 value. The char-
acteristic of this calculation method is that the calculated F1 
value is susceptible to the influence of a class with a large 
number of samples. Macro-F1 first calculates the F1 of all 
classes, then directly calculates the arithmetic mean of all F1 
to obtain the macro-F1 value. This method treats all classes 
equally, regardless of the importance of different classes. 
Therefore, macro-F1 is susceptible to sample classes cor-
responding to high Precision or high Recall. Based on the 
characteristics of micro-F1 and macro-F1, we found that the 
macro-F1-score is more suitable for multi-label mesh quality 
evaluation tasks.

To establish the superiority of MTGNet over exist-
ing solutions, comparative experiments were conducted 
against GMeshNet [34] and GridNet [20], which are the 
SOTA methods on the whole NACA-Market datasets. The 
performance evaluation focused on two key metrics: recall 
and F1-score. As shown in Table 1, the comparison reveals 
specific areas where MTGNet outperforms GMeshNet 
and GridNet on the whole NACA-Market dataset (10,240 
meshes). In terms of recall for orthogonality and smooth-
ness metrics, MTGNet achieves 99.94% and 98.32% respec-
tively, better than the recall rates of GMeshNet and GridNet. 
For the distribution metric, MTGNet is slightly lower than 
GridNet. We believe that compared to GNNs, the receptive 
field of CNNs is smaller, which allows GridNet to better 
capture the local features of distribution in structured mesh. 
The F1-score of MTGNet reaches an impressive 99.47%, 
significantly outperforming GMeshNet and GridNet. More 
importantly, MTGNet divides the structured mesh data to 
reduce the depth and width of the neural network, thereby 
reducing the cost of the network.

Table 1  Performance comparison of MTGNet and other methods on 
the whole NACA-Market dataset.

The significance of bold in the table indicates that the value is the 
maximum value in its row.

Mesh property Network

MTGNet(%) GMeshNet(%) GridNet(%)

Orthogonality 99.94 99.81 96.95
Smoothness 98.32 88.16 93.46
Distribution 99.73 99.21 99.92
F1 99.47 90.79 –
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Due to the difficulty of structured mesh generation, it 
is challenging to form relevant structured mesh datasets. 
Therefore, it is necessary to test the ability of neural net-
works on small mesh datasets to provide solutions for struc-
tured mesh quality evaluation of more models in the future. 
In this paper, we test the generalization ability of different 
models on small datasets using the subsets of the NACA-
Market dataset (1024 meshes). We choose MQENet [35] and 
GMeshNet [34], two SOTA methods for small mesh data-
sets, as comparison methods. We first train several networks 
separately on small structured mesh datasets. As shown in 
Table 2, the comparison reveals specific areas where MTG-
Net outperforms MQENet and GMeshNet in the subsets of 
the NACA-Market dataset. In terms of recall for all three 
metrics, MTGNet achieves 88.06%, 89.94%, and 86.24% 
respectively, better than the recall of MQENet and GMesh-
Net. The F1-score of MTGNet, standing at 88.93%, signifi-
cantly outperforms MQENet and GMeshNet. We can see 
that MTGNet can achieve satisfactory F1-score and recall 
when the size of the dataset changes, demonstrating MTG-
Net’s ability to adapt and generalize to datasets of different 
sizes.

It is worth noting that MQENet, GMeshNet, and GridNet 
all evaluate the input mesh directly. This is the reason why 
MTGNet is superior to these SOTA methods. After topol-
ogy-guided input representation, our network can capture 
those blocks that contribute the most to the mesh quality. 
This makes it easier for the neural network to focus on the 
effective features in the graph. Finally, through the feature 
fusion module in ABGPool, most of the effective features 
can be utilized as the basis for the final mesh quality evalua-
tion, thereby obtaining more reasonable mesh quality evalu-
ation results.

In order to prove that our proposed MTGNet has improved 
efficiency, we measured the model parameters of different 
neural networks after training on the whole NACA-Market, 
as shown in Fig. 6. We selected ResNet [47], Efficientnet 
[48], VIT [49], T2T-VIT [50], GridNet, Gridformer [21], and 
GMeshNet for comparison. It can be seen that MTGNet has 
the smallest model parameters, which means that the time 

required for structured mesh quality evaluation is reduced. 
This is because MTGNet adopts a topology-guided input 
representation that decomposes structured mesh data into 
multiple blocks. For small structured mesh data, we only 
need to design a small graph neural network to effectively 
extract the mesh quality features. Other methods directly 
input the entire structured mesh data into the neural network, 
making it difficult for small neural networks to extract deep-
level mesh quality features.

We also illustrate the superiority of MTGNet by com-
paring it with traditional metrics. In our research, we pay 
special attention to structured mesh data similar to that 
described in Fig. 7, which belongs to the labels of bad dis-
tribution, good orthogonality and smoothness. However, 
traditional metrics incorrectly classified this mesh as “All 
good”. This misclassification highlights the limitations of 
traditional mesh quality metrics, which can overlook signifi-
cant deficiencies when other metrics perform satisfactorily. 
In contrast, our proposed MTGNet demonstrates its ability 
to accurately detect such defects by leveraging the topology-
guided input representation method, GATv2, and ABGPool, 
which can effectively identify hidden patterns in structured 
meshes that traditional evaluation methods cannot identify.

4.4  Ablation studies

In this section, to illustrate the effectiveness of MTGNet, this 
paper performs ablation studies from two aspects: hyper-
parameters and network structure. Since training the network 
on the whole dataset is time-consuming, we perform abla-
tion studies on a subset (1024 meshes) of the NACA-Market 
dataset.

4.4.1  Analysis of hyper‑parameters

In this part, we analyze the impact of different hyper-param-
eters on MTGNet. Choosing appropriate hyper-parameters 
can improve the efficiency and accuracy of neural networks. 
We discuss two factors, network depth and pooling ratio. 
The experimental results are shown in Table 3.

The pooling ratio in the graph pooling layer dictates 
the proportion of nodes to be retained in each layer during 
the pooling process. A higher pooling ratio, such as 0.9, 
implies that a larger proportion of nodes are kept during 
the pooling process. The observations from the network 
performance at this ratio indicate that retaining more fea-
tures tends to yield better results. This is likely because 
more information about the mesh is preserved, allowing 
the network to make more informed and accurate predic-
tions. Conversely, a lower pooling ratio, like 0.3, means 
that a smaller fraction of nodes is retained after each pool-
ing operation. The poorer performance at this ratio sug-
gests that discarding a significant number of nodes can 

Table 2  Performance comparison of MTGNet and other methods on 
the subsets of the NACA-Market dataset.

The significance of bold in the table indicates that the value is the 
maximum value in its row.

Mesh property Network

MTGNet (%) MQENet (%) GMeshNet (%)

Orthogonality 88.06 82.96 80.73
Smoothness 89.94 81.64 78.57
Distribution 86.24 82.48 82.69
F1 88.93 82.36 84.90
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lead to a loss of critical information, which adversely 
affects the accuracy of the network. While a lower pooling 
ratio contributes to reducing the size and computational 
complexity of the neural network, it comes at the cost of 
diminished accuracy due to insufficient feature represen-
tation. However, we find that when the pooling ratio is 
0.7, MTGNet can achieve performance that is quite close 
to that with a pooling ratio of 0.9. This means we can 
sacrifice a small amount of performance in exchange for 
improving the efficiency of the network.

The other important hyper-parameter is the network 
depth. We can see that when the pooling ratio is 0.5 and 
0.9, the network performs better as the network depth 
increases. This means that deeper networks can better 
learn the boundaries between different categories. How-
ever, when the pooling ratio is 0.3 and 0.7, a too-deep 
network degrade the performance of the network. We 
believe that small pooling ratios coupled with deep net-
work layers cause some of the critical quality features in 
structured mesh data to be discarded (because the size of 
the final graph is too small). And when the pooling ratio 
is more appropriate, too deep network layers make the 
model over-fit the distribution on the training set, lead-
ing to a decrease in accuracy on the validation and test 

Fig. 6  Parameters of different 
neural networks on the NACA-
Market

Fig. 7  Visualization of classification result on NACA-Market with 
traditional metrics. This mesh is classified as “all good” according to 
traditional metrics and actually the distribution is bad

Table 3  F1 for different hyper-parameters

Pooling ratio Network depth

4 (%) 8 (%) 16 (%)

0.3 82.89 83.85 83.03
0.5 84.18 86.56 87.29
0.7 86.01 88.93 88.18
0.9 86.98 89.50 89.63
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sets. When the number of network layers is 8, it not only 
ensures the performance of the network, but also improves 
the efficiency of the network.

4.4.2  Analysis of network structure

In addition to the influence of hyper-parameters on the 
MTGNet, the network selection of the network structure is 
also important. The core parts of GNNs are composed of 
graph convolution layers and graph pooling layers. So here 
we choose some classic graph convolution methods and 
graph pooling methods to compare with the methods we 
use (GATv2 and SAGPool), namely GCN [51], GraphConv 
[52], GAT [40], and TopK [42]. Experimental results of 
different networks are shown in Table 4. From the results, 
we can see that our network performs better than other 
networks on NACA-Market datasets.

The use of GATv2 in the task of structured mesh quality 
evaluation provides a significant enhancement over other 
graph convolutional layers, particularly due to its dynamic 
attention mechanism. This feature of GATv2 plays a cru-
cial role in enhancing the representation of hidden fea-
tures within structured mesh and enables more effective 
classification of mesh with different quality labels. At the 
same time, we can see that the static attention mechanism 
performs better than the network that does not use any 
attention mechanism.

In terms of pooling layer, TopK samples a subset of 
basic nodes by manipulating a trainable projection vector. 
ABGPool further applies self-attention and graph convolu-
tion to improve TopK. From the experimental results, we 
can see that the network using ABGPool performs bet-
ter. This is because ABGPool introduces a self-attention 
mechanism, which allows ABGPool to more effectively 
filter out graph nodes that meet the specified tasks. This 
shows that, whether in the graph convolution layer or the 
graph pooling layer, deploying the attention mechanism is 
crucial for the mesh quality evaluation task.

5  Conclusions

In this paper, we introduce MTGNet, a novel topology-
guided graph neural network designed for multi-label mesh 
quality evaluation. MTGNet distinctly contrasts with other 
methodologies by conceptualizing mesh quality evaluation 
as a multi-label problem, thus allowing for a more objec-
tive and comprehensive analysis of mesh quality. MTG-
Net, which includes innovative elements like the topology-
guided input representation and attention-based block graph 
pooling, demonstrates superior performance in evaluating 
structured mesh quality. The experiments conducted on the 
NACA-Market dataset show the effectiveness of MTGNet, 
with its ability to outperform existing SOTA methods in 
terms of accuracy and computational efficiency.

In the future, our proposed neural network can be fur-
ther explored and developed for more computer graphics 
and computer-aided design related tasks. In addition, we 
will conduct an in-depth study of the application of feature 
representation methods and GNNs in the quality evaluation 
tasks of 3D structured mesh. For 2D unstructured mesh, we 
can also convert it into graph data and then use MTGNet 
for mesh quality evaluation. However, there are no exist-
ing mesh quality benchmark datasets for unstructured mesh. 
Since MTGNet is a data-driven and supervised model, it is 
difficult to perform the unstructured mesh quality evalua-
tion task without datasets. In the future, we will consider 
constructing related datasets for unstructured mesh. We 
believe that MTGNet will also have excellent performance 
on unstructured mesh.
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