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Abstract
We present a numerical framework for solving partial differential equations within an isogeometric context using T-splines
in two and three space dimensions. Within this paper, we explain the data structures used for the implementation of deal.t
(deal.IIwith T-splines) andmain differences when usingdeal.t in contrast todeal.II. The authors present numerical
experiments with error-based refinement (2D) and a priori refinement (3D) for scalar-valued problems. A full tutorial is given
in the appendix. Since the new framework is based on deal.II, T-splines may be applied to various different PDEs.

Keywords deal.II · T-splines · Isogeometric analysis · Finite element method · Adaptive mesh refinement

1 Introduction

This paper presents a new framework to solve partial differ-
ential equations (PDEs) using adaptive isogeometric analysis
(IGA) based on T-splines, called deal.t. This package
includes two and three-dimensional T-splines as explained
in [1], and can be used to solve different PDEs of order two
numerically with various (possibly mixed) boundary condi-
tions on single patch domains.

IGA is the idea of directly using the shape functions from
CAx modelling of physical domains as ansatz functions for
the Finite Element Method (FEM). There are numerous soft-
ware libraries available involving FEM-based solvers, e.g.
FEniCS, see [2, 3], and deal.II, see [4], and libraries
specifically designed for IGA-based FEM like e.g. G+Smo,
see [5, 6], PetIGA, see [7]. However, the only publicly
available implementations of T-splines for PDE discretiza-
tions currently known to the authors can be found in the
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Matlab package igafem, see [8], and the Python package
tIGAr, see [9]. tIGAr uses a T-spline plugin for the com-
mercial CAD software Rhinoceros 3D in order to run its
calculations via T-splines. The underlying plugin has been
discontinued from support and does not guarantee analysis-
suitable T-splines.

IGA has been outlined in [10] where predominantly
non-uniform rational B-splines (NURBS) were used as a
tool to solve PDEs. Different concepts of refinement for
NURBShavebeen introduced, i.e. h-refinement throughknot
insertion, p-refinement through order elevation, which are
described in detail in [11], and k-refinement which simulta-
neously increases order and continuity.

However, local refinement techniques had already been
introduced forB-splines, see e.g.hierarchical B-splines (HB-
splines) in [12, 13], from which truncation methods of basis
functions were developed in [14] (THB-splines) to further
improve local refinement and properties of basis functions. T-
splines have been introduced as an alternative to HB-splines
in [15] for CAD as a strategy to directly refine the con-
trol mesh. They have been introduced as a mathematical
tool in [16] and applied with promising results in [17], but
it was eventually noticed that linear independence of basis
functions is not always guaranteed, see [18]. Properties to
guarantee linear independence have been introduced in [19]
which introduced analysis suitability and analysis suitable
(AS) T-splines. As an alternative to T-splines, locally refined
(LR) B-splines were introduced in [20]. A first refinement
algorithm for LR B-splines was introduced in [21] which
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showed promising results. However, linear independence is
an issue for LR B-splines as well.

As T-splines were introduced, definitions were restricted
to the two-dimensional case with degree three in both direc-
tions, and later AS T-splines of arbitrary degrees have been
introduced in [22]. T-splines in arbitrary dimensions but odd
polynomial degrees have been introduced in [23, 24] with
proper refinement algorithms to retain analysis-suitability
after refinement. Lastly, T-splines in arbitrary dimensions
and arbitrary polynomial degrees were recently introduced
in our previous work, see [1], allowing us to finally use T-
splines in a framework for FEM, with arbitrary degree and
local mesh refinement in three dimensions.

Recent advances in IGA can be found e.g. in [25], where
a thorough comprehension of adaptive IGA is given for hier-
archical splines with some applications. These results also
include boundary element methods for an adaptive frame-
work.

This paper is structured as follows. In Sect. 2, we discuss
the prerequisites needed for the main parts. This includes
notation and the definition of T-junctions in higher dimen-
sions. We also briefly explain the concept of (geometric)
analysis-suitability and AS T-splines with some examples.
For a detailed guide throughAST-splines, we refer the reader
to our previous work [1]. Section 2.2 is dedicated to the local
refinement procedure explained in [23] and used in deal.t.

Further, we discuss in Sect. 3 possible meshes to serve as
a base for implementing T-splines, with focus on the index
mesh and the parametric mesh. We explain how both mesh
classes are connected and how refinement on the paramet-
ric mesh affects the index mesh. Pseudocodes are given for
relevant algorithms.

Section4 explainsmaindifferenceswhenusingdeal.II
with deal.t compared to usual deal.II applications. It
explains how to set up a proper triangulation, i.e. mesh, and
the differences in assembly loops. deal.t is suited with a
residual error estimator for Poisson-like problems, which is
also explained in detail in Sect. 4.1. A full tutorial for readers
unfamiliar with deal.II is given in Appendix C.

Numerical benchmark tests are discussed in Sect. 5. We
consider two model problems based on a standard Poisson
problem with Neumann and Dirichlet boundary conditions.
The first problem is the result of the example given in
AppendixC for various polynomial degrees, which is consid-
ered a pure benchmark test without singularities. The second
problem is defined on the L-shape domain, given a solution
with a corner singularity. A demonstration of mesh refine-
ment in 3D is given in Fig. 2.

deal.t is based on the open source software deal.II
and made available at [26], where the results of this work can
be reproduced.

2 Prerequisites

In this section, we introduce the required mathematical nota-
tion. For details, see [1].

For any x ∈ R we will denote by �x� the rounding of x to
its next integer n ∈ N with n ≥ x . Analogously, we denote
by �x� the rounding of x to its next integer n ∈ Nwith n ≤ x .

Weconsider a box-shaped indexdomain̂� =×d
k=1(0, Nk),

with Nk ∈ N, for k = 1, . . . , d, and an associated para-
metric domain � = ×d

k=1(ξ
(k)
0 , ξ

(k)
Nk

), with pk-open knot

vectors �(k) = {ξ (k)
0 , . . . , ξ

(k)
Nk

}, for polynomial degrees

pk ∈ N. Let ̂T = T(̂�) be a mesh of ̂�, consisting of
open axis-parallel boxes. We suppose that ̂� is constructed
via symmetric bisection from an initial tensor-product mesh
with integer vertices, which is described in detail in [1, Algo-
rithm 2.1]. Consequently, we suppose that for each vertex
V = {V1} × · · · × {Vd} in the index mesh, the components
are of the formVk = ak ·2−bk , with ak, bk ∈ N, k = 1, . . . , d.
Therefore, all indices used below are from the set

N
(2) := { n

2b
| n, b ∈ N}. (1)

In Sect. 3 we will see that the implementation is given on
the parametricmeshT = T(�), however, relevant definitions
are done on the indexmesĥT. Throughout this paper, we will
distinguish between the parametric mesh/elements Q ∈ T

and index mesh/elementŝQ ∈ ̂T with a hat in index domain
notations which is dropped on the parametric domain.Where
necessary, we introduce arguments to indicate which mesh
we consider in this case.

For k = 1, . . . , d, we denote the k-dimensional mesh
entities of̂T by H(k)(̂T), e.g. by H(0)(̂T) the set of vertices,
resp. nodes, by H(1)(̂T) the set of one-dimensional edges
without start and end point, and so on. The union of all d-
dimensional element boundaries

Sk =
⋃

Q∈H(d)(̂T)

∂Q (2)

is called the skeleton of̂T.
For an index set κ = {κ1, . . . , κ�} ⊂ {1, . . . , d} and a

d-dimensional element Q = Q1 × · · · × Qd ∈ H(d)(̂T) we
denote the (d − �)-dimensional, κ-orthogonal interfaces by
H(κ)(Q), e.g.

H(κ)(Q) :=
{

E =
d×

k=1

Ek
∣

∣

∣

E j ⊂ ∂Q j for j ∈ κ,

E j = Q j for j /∈ κ

}

, (3)

For polynomial degrees p = (p1, . . . , pd) ∈ N
d , we split

the index domain ̂� into an active region ARp and a frame
region FRp, with
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ARp :=
d×

k=1

[

⌊ pk+1
2

⌋

, Nk − ⌊ pk+1
2

⌋

]

(4)

FRp := 

̂� \ ARp. (5)

We continue to explain what a T-junction in higher dimen-
sions is.

Definition 1 (T-junctions)Wecall an interfaceT ∈ H(d−2)(̂T)

with T � ∂̂� a T-junction if it is in the boundary of a cell
Q = Q1 × · · · × Qd ∈ T without being connected to any of
its vertices, T ⊂ ∂Q, T ∩ ∂Q1 × · · · × ∂Qd = ∅. We then
call Q the associated cell of T and write Q = ascell(T). Since
T = T1 × · · · × Td ∈ H(d−2)(̂T), there are two unique and
distinct directions i, j ∈ {1, . . . , d} such that Ti ,T j are sin-
gletons, T ∈ H({i, j})(̂T), Ti � Qi and T j � ∂Q j . We call i
the orthogonal direction and j the pointing direction of T,
and write odir(T) = i , pdir(T) = j .

From [1] we have uniqueness of the associated cell for each
T-junction.

Before we jump into definitions of anchors and index vec-
tors, we first define a criterion for meshes that may be taken
into consideration for further computations.

Definition 2 (Admissible meshes) We define the slice

Sk(n) := {(x1, . . . , xd) ∈̂T | xk = n}, (6)

for k = 1, . . . , d and n = 0, . . . , Nk , and the k-th frame
region

FR(k)
p := {

x ∈ ̂� | xk ∈ [0, � pk+1
2 �]∪ [Nk − � pk+1

2 �, Nk
]}

.

(7)

A T-mesĥT is called admissible, if for k = 1, . . . , d, there is
no T-junction T with odir(T) = k or pdir(T) = k in the k-th
frame region, and

Sk(n) ⊆ Sk for
n ∈

[

0,
⌊ pk+1

2

⌋

]

∩ N and

n ∈
[

Nk − ⌊ pk+1
2

⌋

, Nk

]

∩ N.
(8)

For the rest of this paper, the index mesĥT is assumed to
be admissible whenever used.

2.1 Multivariate T-splines and analysis-suitability

Anchors are a subset of mesh entities that have a one-to-one
correspondence to the set of T-splines. For higher dimen-
sion and arbitrary degree p = (p1, . . . , pd), they have been
introduced in [1] as

Ap := {A ∈ H(κ)(̂T) | A ⊂ ARp}. (9)

with κ = {� ∈ {1, . . . , d} | p� odd }. We associate to
each anchor and each axis direction k = 1, . . . , d a non-
decreasing knot vector of pk + 2 indices from N

(2). In
[22, 27, 28], these index vectors (in 2D) are constructed
via ray-tracing the anchor through the mesh along the k-
th direction and choosing the pk + 2 consecutive indices
centered around the k-th component Ak of A. This is gener-
alized in [1] to arbitrary dimensions, i.e. for any mesh entity
E = E1 × · · · × Ed and k ∈ {1, . . . , d}, we define the pro-
jection Pk,n(E) = E|Ek={n} of E on the slice Sk(n), and the
global knot vector

Ik(E) :=
(

n ∈ N
(2) | Pk,n(E) ⊂ Skk

)

, (10)

with entries in ascending order. The local knot vector vk(A)

for an anchor A = A1 × · · · × Ad is given by the pk + 2
consecutive indices �0, . . . , �pk+1 ∈ Ik(A), such that �k =
inf Ak for k = � pk+1

2 �. If pk is odd, the singletonAk contains
the middle entry of vk(A), and if pk is even, the two middle
entries of vk(A) are the boundary values of Ak .

An example is given in Fig. 1. Depicted is the construc-
tion principle using ray-tracing to generate the corresponding
local index vectors. ForA(1) on the top, we obtain v1(A(1)) =
(m̄ − 2, m̄ − 1, m̄, m̄ + 1, m̄ + 2). In contrast, for A(2), the
projection P1,m̄+3(A(2)) �⊂ Sk onto the slice at (m̄+3) is not
a part of the skeleton of the mesh. The same applies to the
index m̄+1, which yields v1(A(1)) = (m̄−2, m̄−1, m̄, m̄+
2, m̄ + 4). Note that p1 is odd and that A

(1)
1 = {m̄} = A(2)

1 is
the middle element of the respective local index vectors.

On the lower part of Fig. 1, we get as before v1(A(1)) =
(m1−2,m1−1,m1,m2,m2+1,m2+2). However, the pro-
jection of A(2) onto the slice at m2 is not part of the skeleton,
which yields v1(A(2)) = (m1 − 2,m1 − 1,m1,m2 + 1,m2 +
2,m2 + 3). Note that p1 is even and that A

(1)
1 = (m1,m2) is

the middle section of the local index vector v1(A(1)).
Using anchors and their local index vectors, we can define

a multivariate T-spline associated to an anchor.

Definition 3 (T-spline)For pk ∈ N,wedenote byTvk (A) : � →
R the univariate B-spline function of degree pk that is
returned by the Cox-deBoor recursion with knot vector
ξvk(A) = (ξ

(k)
�0

, . . . , ξ
(k)
�pk+1

), see e.g. [11]. We assume that

ξ
(k)
�0

< ξ
(k)
�pk+1

is always fulfilled. The T-spline function asso-

ciated with the anchor A is defined as

TA(ζ1, . . . , ζd) :=
d
∏

k=1

Tvk (A)(ζk), for (ζ1, . . . , ζd) ∈ �,

(11)

and the corresponding T-spline space is given by ST,p(�) =
span{TA | A ∈ Ap}. The index support of TA will be denoted

by supp
̂� TA = ×d

k=1 conv vk(A), where conv vk(A) =
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Fig. 1 Demonstration for the
construction of local index
vectors v1( · ) of marked anchors
for polynomial degrees
p = (3, 2, 2) (top) and
p = (4, 1, 2) (bottom)

conv(�0, . . . , �pk+1) = [�0, �pk+1] is the closed interval
from the first to the last entry of vk(A).

For the concept of analysis-suitability, we use a geometric
concept based on the concepts from [22, 27, 28]. Note that
there are different versions of analysis-suitability, see [1] for
details.

Definition 4 (Geometric analysis-suitability) Let T be a T-
junction with Q = ascell(T), i = odir(T) and j = pdir(T).
We then define local knot vectors as follows.

1. For k = j , we define vj (T) = (�0, . . . , �p j ) as the vector
of (p j + 1) consecutive indices from I j (T), such that

{�p j /2} = T j , if p j is even,

��p j /2� = inf Q j ,

��p j /2� = supQ j ,

}

if p j is odd.
(12)

2. For k = i , the local knot vector is the singleton vi (T) =
Ti .

3. For k /∈ {i, j} we define vk(T) = (�0, . . . , �pk+1+ck ),
where ck = pk mod 2, as the vector of (pk + 2 + ck)
consecutive indices from Ik(T), such that

Tk = (��pk/2�, ��pk/2�+1). (13)

This means that the local knot vector has pk +3 elements
if pk is odd and pk + 2 if pk is even, and Tk is centred

within these elements, cf.@ the definition of local knot
vectors for anchors.

We then call

GTJi (T) :=
d×

k=1

conv(vk(T)) (14)

the geometric T-junction extension (GTJ) of T, and we say
that it is an i-orthogonal extension in j-direction. Note, that
GTJi (T) �⊂ Ski .

A mesh T is strongly geometrically analysis-suitable
(SGAS), if for any two T-junctions T1,T2 with orthogonal
directions i1 = odir(T1) �= odir(T2) = i2 there is

GTJi1(T1) ∩ GTJi2(T2) = ∅. (15)

We call T weakly geometrically analysis-suitable (WGAS),
if (15) holds for any two T-junctions T1,T2 with orthogo-
nal directions odir(T1) �= odir(T2) and pointing directions
pdir(T1) �= pdir(T2).

We will omit the dependency of the orthogonal direc-
tion when it is clear from the context, e.g. write GTJ(T) ≡
GTJi (T), for odir(T) = i .

It was proven in [1] that SGAS is sufficient for linear inde-
pendence of the generated spline space, which makes them
suitable for application in a finite element setting.
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2.2 Local refinement procedure

Algorithm 1 Coarse neighborhood algorithm from the deal.t imple-
mentation

1get_coarse_neighborhood(T, M){
2N = {}
3for (Q1 : M){
4N = N ∪ {Q1}
5es = size(Q) // edge sizes from (16)
6bdry = es ◦ (p+3/2) // hadamard -product

from (20)
7for (Q2 : T) {
8if (�(Q2)!=�(Q1) − 1 | | Q2∈ N )
9continue;
10

11// Compute distance between cells
from (19)

12dist = Dist(Q1,Q2)

13

14// Check if it is in the open
environment from (21). If so , it
also belongs to the neighborhood.

15if (dist < bdry)
16N = N ∪ {Q2}
17}
18}
19return N;
20}// get_coarse_neighborhood

Algorithm2 Mesh refinement for marked cellsM of a parametric mesh
T.

1refine_mesh(T, M){
2// Find coarse neighborhood of marked cells

from Algorithm
1

3N = get_coarse_neighborhood(T, M)
4M = M ∪ N
5n_cells_nh = 0;
6// run recursion for coarse neighborhood
7while (N.size() != n_cells_nh){
8n_cells_nh = N.size()
9N = get_coarse_neighborhood(T, M)
10}
11

12for (Q : M){
13T = T \ {Q} ∪ {subdivQ}
14}
15return T = T
16} // refine_mesh

We now continue to explain the refinement strategy for a
given T-mesh, intended to be applied in an adaptive Galerkin
scheme with the steps solve, estimate, mark and refine as
follows.

SOLVE → ESTIMATE → MARK → REFINE

In Sect. 3 we will explain in detail how the parametric
mesh T = T(�) and the index mesh ̂T are connected and
what we have to consider during the implementation. To this
extent, we will thus only explain the refinement process on
the parametric mesh T. The definitions below strictly follow
[23, 24].

As for the index mesh, we consider a box-shaped para-
metric mesh � consisting of axis-aligned open boxes that
are generated via symmetric box bisections from an initial
tensor-product structure. Note that a tensor-product structure
is strongly geometric analysis-suitable due to the absence of

T-junctions. We denote the initial tensor-product mesh by
T(0) and every consecutive mesh by T(n), n = 1, . . .

Let Q ∈ T(n) be some cell. We define its level by the index
m ≤ n, s.t. Q is an element of the m-th uniform refinement
of T(0), and write �(Q) = m. Its vector-valued size is defined
to be the component-wise length of its edges, i.e.

size(Q) := (

supQi − inf Qi
)d
i=1. (16)

The level-dependent subdivision of a cell Q ∈ T(n) is defined
by the k�(Q)-orthogonal bisection of Q where k�(Q) = 1 +
(�(Q) mod d), denoted by subdiv(Q, k�(Q)).

For a point z ∈ �, we define the vector-valued distance
between z and Q as

Dist(Q, z) := abs
(

mid(Q) − z
) ∈ R

d (17)

with abs(z) := (|z1|, . . . , |zd |
) ∈ R

d , (18)

andmid(Q) is defined as the midpoint of Q. For two cells Q(1)

and Q(2), we define its distance as the vector-valued distance
of its cells.

Dist(Q(1),Q(2)) := abs
(

mid(Q(1)) − mid(Q(2))
)

. (19)

For two vectors x, y ∈ �, we denote by x ◦ y the component-
wise product, i.e.

x ◦ y := (x1y1, . . . , xd yd). (20)

With these definitions, we define the open environment U (Q)

of a cell Q ∈ T(n) by

U (Q) := {z ∈ R
d | Dist(Q, z) < size(Q) ◦ (p + 3

2 )}, (21)

and its coarse neighbourhood N(T(n),Q) of a cell Q ∈ T(n)

in the mesh T(n) by

N(T(n),Q) :=
{

Q′ ∈ T(n)
∣

∣

Q′ ∩U (Q) �= ∅

�(Q′) = �(Q) − 1

}

. (22)

Let M ⊂ T(n) be a set of elements marked for refinement.
Its closure is then defined recursively via

1. SetN(0)(T(n),M) := ⋃

Q∈MN(T(n),Q) andM(0) = M,
2. for j = 1, 2, . . . , define

M( j) := N( j−1)(T(n),M),

3. break recursion ifM( j) = M( j−1),
4. define closure(T(n),M) := M( j).
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Fig. 2 Cross-sections of a 3D L-Shape domain at different refinement levels. Dashed, blue lines indicate the next level after marking cells adjacent
to the thick, dashed, red line L = {0} × {0} × [−1, 1]. The levels given are 3 and 4 (top left), 5 and 6 (top right), 7 and 8 (bottom left), and 9 and
10 (bottom right)

Note that this recursion will terminate in the worst case
if N( j)(T(n),M) = T(n). We then define the refined mesh
T(n+1) by

T(n+1) :=T(n) \ closure(T(n),M)

∪
⋃

Q∈closure(T(n),M)

subdiv(Q). (23)

From [23] we know that if T(n) is analysis-suitable,T(n+1)

is also analysis-suitable. Note that the analysis-suitability
used in [23] is abstract and thus different from the intro-
duced geometric analysis-suitability above. However, in [1]
it was shown that the geometric one yields also the abstract
one. Thus, we only use geometric analysis-suitability to find
Bézier elements. A C++-style pseudocode for the construc-
tion of the coarse neighbourhood is given in Algorithm 1.
Note that this algorithm has to be called recursively in order
to get the complete coarse neighbourhood, see Algorithm 2.

An example is given in Fig. 2, where the 3D L-shape
domain is considered. Cells that are adjacent to the red line
L = {0} × {0} × [−1, 1] are marked for refinement in each
iteration. Given a problem on the whole 3D L-Shape domain
that is symmetric along the diagonal

D = {(x, y, z) ∈ R
3 | x = y, x, y ≥ 0,−1 ≤ z ≤ 1} (24)

this half domain is sufficient for computations. For simplic-
ity, we have depicted only a 3D view of a cross-section along
the diagonal D. The blue dashed lines denote the next level
of refinement. This example thus also demonstrates the def-
inition of the coarse neighbourhood from Algorithm 1.

After refinement, the T-splines, resp. local knot vectors
have to be updated. It was shown in [1] that under certain
assumptions, local knot vectorsmay be inherited from parent
anchors. The result reads as follows.

Lemma 1 Let̂T ∈ WGAS be the associated index mesh to the
parametric mesh T. Assume that each cell̂Q ∈ ̂T has active
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Fig. 3 An overview of possible mesh types that can be used for an
implementation. This implementation is focused on the highlighted
mesh types, i.e. the parametric mesh together with the parametric bezier
mesh

neighbours in at least three distinct directions for d ≥ 3 and
two distinct directions if d = 2, i.e. the neighbouring cells
are in the active region. Define for an arbitrary cell Q ∈ T

the subdivided parametric mesh

T′ = T \ {Q} ∪ subdiv(Q, k�(Q)) (25)

together with its subdivided index mesh ̂T′ ∈ WGAS. Then
for every new index anchor A′ ∈ Ap(̂T

′)\Ap(̂T) there exists
an old anchor A ∈ Ap(̂T) with v�(A′) = v�(A), � �= k�(Q).

The assumption from Lemma 1 is always fulfilled if the
polynomial degree is greater than one. If the polynomial
degree is one in some direction k, uniform refinement steps
may be performed until direction k is refined to ensure this
assumption.

3 Data structures

There are several possible meshes to take into consider-
ation for an implementation, see Fig. 3. Firstly, there is the
index mesh T(̂�) where theoretical definitions are done, see
Sect. 2. However, if we base computations on the index mesh
alone, this will lead to integrals over empty domains, as some
distinct indices can lead to knots that coincide. This is no
problem per se, but it will practically cause loop iterations
within the program, that essentially do nothing. This should
be avoided.

Another possible solution is the mesh in the physical
domain T(�). This is indeed already done in another soft-
ware project, called G+Smo, see [5], available at [29] with an
overview of existing modules in [6], where other isogeomet-
ric concepts are already fully implemented, e.g. (hierarchical)
NURBS, (hierarchical) LR-Splines, etc. However, an imple-

mentation of T-Splines in neither 2D nor 3D within the
G+Smo library is unknown to the authors extent.

A standard finite element code is already given by the
deal.II library, see [4], or FEniCS, see [30] and libraries
derived thereof, e.g. [31]. We have opted to base our imple-
mentations on the deal.II library (version 9.3 [32]), as
it features a larger group of researchers together with some
important base implementations, the most important being
an implementation of Bernstein polynomials which are used
for Bézier extraction. We aim to keep integration as simple
as possible during the implementation, which is the case if
elements of a considered mesh are axis-aligned. Doing so
ensures integral variables to be independent of each other,
i.e. we integrate over d dimensional boxes. This is either
achieved on the index domain or the parametric domain and
as the index domain is already disregarded the implemen-
tation works fully on the parametric domain. However, as
explained in [28, Proposition 7.6], we have to use the Bézier
mesh B(�) of the parametric domain to be able to integrate
a fixed number of splines on a specific cell.

For the implementation we thus consider the associated
parametric domain � from the underlying index domain
̂�. For the mesh ̂T, we also consider the associated para-
metric mesh T, where knot repetitions are ignored; i.e. if
̂E ∈ H(k)(̂T) is an arbitrary k-dimensional element of ̂T,
then its associated parametric element E is an element of the
parametric mesh T, if and only if for all directions j there is

ξ
( j)
inf̂E j

= ξ
( j)
sup̂E j

⇐⇒ inf̂E j = sup̂E j . (26)

In other words, no direction j may collapse to a single point,
if the direction j was an interval in the index mesh.

Anchors are mapped together with its knot repetitions,
i.e. if ̂A ∈ Ap(̂�) is an anchor of the index domain, then the
anchor on the parametric domain is given by

A :=
d×
j=1

[

ξ
( j)
inf ̂A j

, ξ
( j)
sup̂A j

]

. (27)

Consider the following example. Let d = 2 and �1 =
{0, 0, 1, 1}, p1 = 1, and �2 = {0, 0, 0, 1, 1, 1}, p2 =
2. The indices are given by I1 = {0, 1, 2, 3} and I2 =
{0, 1, 2, 3, 4, 5} and the set of index anchors are the hori-
zontal lines of the index mesh constructed by I1 × I2 within
the active region. Choose ̂A = {1} × (2, 3), then its para-
metric anchor is given by A = {0} × [0, 1]. However, if we
consider the parametric anchor from ̂A = {1} × (1, 2), we
obtain A = {0} × {0}. This demonstrates that anchors on the
parametric mesh do not follow a certain rule, as is the case
for the index mesh.
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Fig. 4 The data structure on the
index mesh (left) is compressed
for the data structure on the
parametric domain (right) to
disregard empty parametric cells

Fig. 5 Mapping behaviour of
index anchors to parametric
anchors. We again consider the
example given in Fig. 4

Further, local index vectors vk(̂A) for an index anchor ̂A
are linked one-to-one to its parametric anchor A, i.e.

vk(A) := (

ξ
(k)
� | � ∈ vk(̂A)

)

. (28)

Local index vectors for T-junctions ̂T are mapped in a
similar way. However, if in some direction j �= pdir(̂T), j �=
odir(̂T) the interval ̂T j collapses to a point, the T-junction
is not considered for the parametric mesh. This case will be
addressed in Sect. 3.3.

3.1 Parametric mesh

The implementation is solely on the parametric mesh T,
where knot repetitions are ignored for the construction of
cells. However, they are essential for the construction of T-
junction extensions and have to be available. For this, we
store an arraymof that stores themultiplicity of each face, i.e.
mof[id] returns the multiplicity of face Fid ∈ H(d−1)(̂T).
This can later be used to define terminating conditions for the
construction of T-junction extensions. Note that per deal.II
standards, faces of cells are indexed consecutively for the
global mesh.

From [1] we have a dual-compatible set of T-Splines,
hence [28, Proposition 7.6] gives us an upper bound for the
amount of T-Splines on each element. The upper bound ismet
exactly, if cells along T-junction extensions are subdivided
accordingly. On each such element we can then compute
the Bézier representation of each T-Spline, i.e. let TT(�)

be the mesh described above, then there exists for each cell
Q ∈ TT(�) operators CQ, s.t. the set of T-Splines T with
support on Q are given by a linear combination of Bernstein
polynomials B on the reference element [0, 1]d ,

T = CT
QB, (29)

see also [33, 34] for a detailed description ofBézier extraction
of NURBS, resp. T-Splines.

The values of the Bézier splines on the reference elements
can be computed preemptively. To use this in our program-
ming, we need the arrays

1. bezier_elements that stores every (active) cell that
is intersecting some T-junction extension.

2. extraction_operators that stores the extraction
operators used in (29). Each extraction operator CQ is
further represented as a matrix.

3. IEN_array that returns a set of indices for a specific
cell Q. The returned indices correspond to indices of the
globally indexed T-splines.

The extraction operators are computed based on the algo-
rithm described in [34], however, some minor changes had
to be done. The altered code can be found asMATLAB adap-
tion in Appendix A, Algorithm 5.

In detail, for every T-Spline T, we use its 1D knot vectors
to compute 1D extraction operator rows c jQ from Algorithm
5 for a given cell Q with suppT∩ Q �= ∅, and use the tensor
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Fig. 6 Relative placement of the barycentre of each anchor given by
the example from Fig. 5. Each red dot corresponds to an anchor on the
index domain, resp. a T-Spline on the parametric domain

structure to generate the full extraction operator row cQ for
T, s.t.

T = cQB, with cQ =
d
⊗

j=1

c jQ. (30)

To work with boundary indicators, an array
boundary_dofs is stored that returns for a given bound-
ary index a set of splines that have support on that boundary.

An example for the data structure used is given in Fig. 4.
The example on the right displays the quantities that are
stored, except for extraction operators and the IEN_array.
In this example we consider polynomial degrees p1 = 3
and p2 = 2, the frame region of the index mesh on the
left is highlighted by diagonal lines and consists of the outer-
most cells. Cells in the active region with knot repetitions are
highlighted in green. Only the parametric mesh on the right,
together with the multiplicities of each face, is stored. The
numbers in the circles on the lines indicate the multiplicity
of that line (face). These values are stored in the aforemen-
tioned mof-array. Further, note that the T-junction extension
from T = {6} × {5} yields only a single cell in the paramet-
ric mesh due to knot repetitions. Since the implementation
is on the parametric mesh, this example also demonstrates
that not every cell in the active region of the index mesh will
be exclusively marked for refinement, albeit no theoretical
restrictions forbid it. For example, it is theoretically allowed
to refine Q = (2, 3) × (3, 4) in any direction, but since it is
practically non-existent in the parametric mesh, it will never
be marked for refinement on its own.

3.2 T-Splines

A T-Spline TA is a function defined by its parametric anchor
A, resp. the correspondingknot vectors.Hence, they are inter-
nally described by a d-dimensional array of arrayskv, where
kv[k] corresponds to the k-th index vector. Note that we
do not have to calculate the knot vectors for each T-Spline;

Fig. 7 Effect of subdividing a parametric cell on its corresponding
index cells. On the left we have a cell Q marked for refinement, where
each face has the multiplicity stated in the nodes on the faces. The type
of refinement is indicated by the red line

from Lemma 1 we know that knot vectors are inherited by
bisection. We stress again the fact that the initial mesh is a
tensor-product mesh of the given knots. In addition to its knot
vectors we also store its associated anchor A as a pair of two
points in the parametric mesh. They describe the bounding
box for the anchor and can be used to obtain information
about the global position of this T-Spline, e.g. we can easily
access information whether or not the T-Spline is located at a
specific face. The example from Fig. 4 is continued in Fig. 5
to demonstrate how index anchors and parametric anchors
correspond to each other. In this example, index anchors are
given as vertical lines of the mesh and are marked here by
dots on these lines. When they are brought to the paramet-
ric domain on the right, some anchors collapse to a single
point, and some anchors may coincide in their parametric
representation. This is denoted by concentric circles in the
parametric mesh on the right, where the number of circles
denote the amount of parametric anchors on that entity. Note
that we can not give a well-defined order of anchors, as some
parametric anchors coincide.

Hence,wedefine thebarycenter of theT-Spline associated
to the parametric anchor A by

(PA)k := 1

pk + 2

∑

ξ∈vk (A)

ξ. (31)

The barycenters of each T-spline can be used to define a
global order. Hence, a T-Spline also stores its barycenter.
The example from Figs. 4 and 5 is continued in Fig. 6 to
demonstrate the placement of barycenters throughout a given
2Dmesh. This information can be used to order the T-splines
in the mesh, e.g. in a lexicographic way, see (57).
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Wehave chosen to store the needed control points used for
the isogeometric mapping directly within the T-Splines data
structure. This way, we do not need to worry about indexing
errors between T-Splines and control points. It should be
mentioned that in fact the weighted control points are stored,
i.e. if P is a control point with weight ω ∈ (0, 1), then the
control point saved is Pω = (ωP, ω).

3.3 T-junctions

Since the implementationworks on the parametricmesh, sub-
dividing a (parametric) cell Q in direction k with a face of
multiplicity greater than one, will also result in a subdivi-
sion of all related index cells corresponding to that face. In
detail, consider Q ∈ T from its associated index cell̂Q ∈ ̂T
with a subdivision along direction k′ with a face F ⊂ ∂Q,
F ∈ H(d−1)(T) ∩ H(k)(T), that is k-orthogonal, k �= k′, and
has multiplicitym = mof[id]> 1, where id is the global
index of the given face. Since the multiplicity is greater than
one, there exists multiple cellŝQ(i), i = 1, . . . ,m − 1 on the
index mesĥT that are associated to F, i.e. (26) reads

inf̂Q(i)
k �= sup̂Q(i)

k �⇒ ξ
(k)

inf̂Q(i)
k

= ξ
(k)

sup̂Q(i)
k

= Fk, (32)

for all i = 1, . . . ,m − 1. The subdivision of cell Q along
direction k then also subdivides the above face F into two
children F(1) and F(2) with multiplicity m. Each child then
has new multiple cells from the index mesĥQ(c,i), c = 1, 2,
i = 1, . . . ,m − 1. Now, since F(1) and F(2) originate from
the same face F there is a common interface T = ∂F(1) ∩
∂F(2) and in particular inf F(1)

k′ = supF(2)
k′ or vice versa. This

yields common faces for the index cellŝQ(c,i), i.e. inf̂Q(1,i)
k′ =

sup̂Q(2,i)
k′ or vice versa for all i = 1, . . . ,m. However, this

is equivalent to subdividing cells Q(i) along direction k′ and
obtaining the children Q(c,i), c = 1, 2, i = 1, . . . ,m−1. See
also Fig. 7.

The example depicted shows the effect of subdividing a
2D parametric cell Q (left) on its corresponding index mesh
counterparts (right). As in the previous examples, for the
parametric mesh the numbers in circles denote the multiplic-
ity of the corresponding line (face). From this setup, we can
infer the that there is a cell ̂Q in the index mesh that will
be mapped to the parametric mesh. Consider now its third
face, i.e. the face on the top of the cell with multiplicity two.
From the multiplicity we infer a knot repetition of two in the
parametric domain, hence there are two indices in the index
mesh. This yields a cell ̂Q′ above the corresponding index cell
̂Qwhose corresponding parametric “cell” has empty volume.
From themultiplicity of face 1, i.e. the right line, we infer two
consecutive index cells that collapse to a single line by the
same arguments. Repeating these arguments for the remain-
ing two faces, we obtain the corresponding index region on

the right of Fig. 7. The cells found above are highlighted in
green. The subdivision of Q yields a subdivision of its faces,
and from the corresponding index cells we also get a subdivi-
sion of these cells. To stress the fact that only corresponding
cells are subdivided in the index mesh, we have displayed a
slightly larger region in the index mesh highlighted by diag-
onal lines.

Thus, the refinement of the parametric mesh ensures that
every generated T-junction on the index level is mapped
according to condition (26).

T-junctions are not stored internally, instead we only store
the cells that intersect the T-junction extensions asmentioned
in Sect. 3.1. However, to find these cells, we first have to
detect T-junctions. Since the mesh is generated from a tensor
product structure on the coarsest level using symmetric box
subdivisions, we can find associated cells of T-junctions T
by iterating the faces F ⊂ ∂Q of a cell and check whether or
not it has children. From the associated cell Q and a face F of
the cell, we can then use the definition of local knot vectors
for T-junctions to find all cells that intersect the T-junction
extension.

Algorithm 3 Bezier cell collection algorithm in 2D for a given T-
junctionT its associated cellQ = ascell(T) and the face number face_no
of T on Q, i.e. T ⊂ Fface_no ⊂ ∂Q

1bezier_cells_2D(T, Q, face_no)){
2// Get the index of opposite face
3ofn = opposite_face_no(
4Q, face_no);
5// The pointing direction is
6// defined by floor(ofn/2)
7dir = floor(ofn/2);
8// Get the corresponding face
9F = face(Q, ofn);
10// Define the maximum number of
11// indices to use for the
12// T-junction extension from the
13// definition
14N = floor (( pdir + 1)/2);
15count = 0, i = 0;
16Q = {}
17while (count < N
18&& !has_children(Q)) {
19// In each iteration ,
20// increase count
21count += mof[F];
22// Add the current cell
23// to the list
24Q = Q ∪ {Q};
25// Get the new cell
26Q = neighbor(Q, ofn);
27// Get the new face
28F = face(Q, ofn);
29}
30return Q;
31}

How to exactly find the Bézier cells is given in Algo-
rithm 3 and 4, for the dimensions 2 and 3 respectively. Each
algorithm finds the Bézier cells Q, i.e. the cells cut by the
T-junction extension, of a T-junction T with its associated
cell Q = ascell(T). The input face_no refers to the cor-
responding index, s.t. T ⊂ Fface_no ⊂ ∂Q. Further, both
algorithms use neighbouring relations between cells. This is
a functionality made available by the deal.II library. In
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general, neighbour(Q, f) returns the cell on the opposite
side of face f. Note that the neighbour may be an in-active
cell, i.e. it may already be refined. For the readers unfamil-
iar with deal.II internal data structures and conventions,
we have briefly explained enumeration of entities and neigh-
bours in Appendix B.

The algorithm for d = 2 is relatively simple, as we
just have to find cells along a single direction, that is the
pointing direction. We distinguish between positive and neg-
ative directions ± pdir(T) = ±k, where we traverse the
neighbours in positive direction, if Tk ⊂ inf ascell(T)k ,
and in negative direction, if Tk ⊂ sup ascell(T). And since
face_no yields the face of Q on which the T-junction lies,
we simply have to search the neighbours in the opposite direc-
tion.

If the new neighbour Q′ = neighbor(Q,ofn) in that
direction is already refined, the refinement algorithm pro-
vided by [23] guarantees that this cells refinement direction
is not orthogonal to the pointing direction of T, i.e. in 2D
it is refined by a k′-orthogonal subdivision, k′ = odir(T). If
the next neighbour neighbor(Q,ofn) is again not refined,
then the next neighbour is an associated cell of a new T-
junction T′ from which we run the algorithm again. Thus,
the algorithm for T may stop at Q′.

Algorithm 4 Bezier cell collection algorithm in 3D for a given T-
junctionT its associated cellQ = ascell(T) and the face number face_no
of T on Q, i.e. T ⊂ Fface_no ⊂ ∂Q

1 bezier_cells_3D(T, Q1, face_no)){
2 // Define necessary quantities as
3 // before from Algorithm 3
4 ofn = opposite_face_no(
5 Q1, face_no);
6 pdir = floor(ofn/2);
7 rdir = i ∈ {1, 2, 3} \ {pdir(T), odir(T)}
8 F1 = face(Q, ofn);
9 Np = ppdir + 1;
10 Nr = prdir + 3;
11 pcount = 0, rcount = 0;
12 i = 0;
13

14 // find rmin and rmax according
15 // to (33) by traversing the
16 // grid in rdir similar
17 // to Algorithm 3
18 rmin = min vrdir(T);
19 rmax = max vrdir(T);
20 Q = {};
21 while (pcount < floor(Np/2)
22 && !has_children(Q1)) {
23 pcount += mof[F];
24 Q2 = Q1;
25 F2 = face(Q2, rdir);
26 while (rcount < floor(Nr/2) &&
27 F2rdir >= rmin &&
28 !has_children(Q2)) {
29 rcount += mof[F2];
30 Q = Q ∪ {Q2};
31 Q2 = neighbor(Q2, rdir);
32 F2 = face(Q2, rdir);
33 }
34

35 Q2 = neighbor(Q1, ++rdir);
36 F2 = face(Q2, rdir);
37 while (rcount < Nr &&
38 F2rdir−1 <= rmax &&
39 !has_children(Q2)) {
40 // Proceed as previous

41 // while loop
42 }
43 Q1 = neighbor(Q1, ofn);
44 F1 = face(Q1, ofn);
45 }
46 return Q;
47 }

The 3D case is very similar, however, we have to extend
the T-junction in two directions now. We denote the second
direction to traverse neighbours with rdir in Algorithm 4.
For every step inofn, defined as in 2D,we traverse the neigh-
bours in positive and negative direction. Since the T-junction
extension is defined by the index vectors at the position of
the T-junction, we have to ensure that these limits are given
while traversing all neighbours. The quantities are denoted
by rmin, resp. rmax, and are defined as

rmin = min vrdir(T) and rmax = max vrdir(T), (33)

for the parametric knot vectors

vk(T) := {ξ (k)
� | � ∈ vk(̂T)}, (34)

where ̂T ∈ T(̂�) is the associated T-junction in the index
domain.

4 Differences between deal.II and
deal.t

In this section we will discuss main differences when using
a deal.t based finite element solver versus a standard
deal.ii technique. A full Tutorial for readers unfamiliar
with deal.II is given in Appendix C.

As the |TS_Triangulation| class inherits from deal.IIs
|Triangulation|, we can use every function of the base class
for the derived class. However, some functions have been
overwritten to fit either the data structures explained in
Sect. 3, or enforce special behaviour. For example the |

create_triangulation| usually generates a grid from a list
of vertices and a list of cell data. It has been overwritten to
take the data used for the isoparametric mapping instead, i.e.
a list of knot vectors, a list of polynomial degrees, and a list of
weighted control points. The function header is then declared
as
template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: create_triangulation(
const std::vector <

std::vector <double >
>& knot_vectors ,
const std::vector <

unsigned int
>& degree ,
const std::vector <

Point <spacedim+1>
>& wcps

);
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We also provide an object |IPF_Data| that essentially stores
these data types and allows us to overload the definition of
|create_triangulation| with
template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: create_triangulation(
const IPF_Data <dim , spacedim >& data

);

These two functions are then called respectively within the
constructor of TS_Triangulation.Wehighly recommendusing
the constructor based on |IPF_Data| as it allows creating the
correct grid within a single line, see also the example in
Appendix C.

Further, remember that the implementationdiffers between
the parametric mesh T and the parametric Bézier mesh B.
The former is used for refinement and the latter for assembly
routines. To switch between these types of meshes we have
provided the functions
template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: refine_bezier_elements ();

template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: coarsen_bezier_elements ();

that find all relevant Bézier elements using Algorithm 3 in
2D, resp. Algorithm 4 in 3D, and refines them via a symmet-
ric, level-dependent box bisection, resp. coarsens the refined
Bézier elements.

Since finite elements are defined globally and not on the
reference cell, we have to provide information to applications
about which T-spline, resp. DoF, is at the boundary. This
information can be obtained with
template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: set_boundary_dofs ();

template <int dim , int spacedim >
std::map <

types :: boundary_id ,
std::vector < types :: global_dof_index >
> TS_Triangulation <dim , spacedim >
:: get_boundary_dofs ();

where the former function computes the object returned by
the latter. We advise to directly call set_boundary_dofs after
each refinement.

The rest of this chapter explains main differences when
assembling vectors, matrices, (estimated) errors, etc., manip-
ulating the mesh, and other miscellaneous functions such as
output routines to print e.g. the grid.

4.1 Assembly

Similar to deal.IIs FEValues object to define finite ele-
ment values on a cell, deal.T provides an object of the type
TSValues thatmimics the behaviour of the deal.II original
function. Note that it does not inherit from the original. T-
spline values on a cell are computed using Bézier extraction,

as explained in Sect. 3.2. During construction of a TSValues
object, we store tables of Bernstein-values on quadrature
points on the reference element [0, 1]d , d = 2, 3. The con-
structor takes as input a reference to the used triangulation,
to retrieve the necessary data, i.e. control points and extrac-
tion operators, a list of integers to determine the amount of
points used for Gaussian quadrature and a deal.II object
UpdateFlags, see Appendix C for a short description of this
object, or [4] for a detailed explanation. In summary, we get
TSValues(

const TS_TriangulationBase <dim , spacedim >*
tria ,

const unsigned int
n_gauss_points ,

const UpdateFlags flags
);

Note that we allow different polynomial degrees in every
direction, i.e. an-isotropic polynomials can be used for appli-
cations.

Similarly, deal.t provides an object TSFaceValues, that
represents finite element values on faces. Its syntax and con-
struction is as above.

Similar to the deal.II equivalents, these functions are
suited with appropriate reinit() methods, in order to reini-
tialize finite element values on given cells, resp. faces.

Thus, applications with deal.t are very similar to
deal.II, i.e. we get approximately the following lines
// Define TS_Triangulation <dim , spacedim > tria
// Define UpdateFlags flags
// somewhere
TSValues <dim , spacedim > ts_values(

&tria ,
{/* list of gauss points */},
flags

);
TSFaceValues <dim , spacedim > face_values(

&tria ,
{/* list of gauss points */},
flags

);
// ...
for (const auto& cell :

tria.active_cell_iterators ()){
ts_values.reinit(cell);
// assembly code for interior
for (unsigned int f = 0;

f < GeometryInfo <dim >::
faces_per_cell;

f++){
face_values.reinit(cell , f);
// assembly code for boundary

}
}

Note, that deal.t does not provide a deal.II equivalent
to the DoFHandler object. In standard deal.II applications
this object does all the work of handling the information
about DoFs at each vertex, line, quad, etc. This information
is processed already within the TS_Triangulation implemen-
tation. An object TS_DoFHandler is already planned out for
future implementations. This will enable further deal.II
functionality that require an object DoFHandler.

For error estimations we have suited the TS_Triangulation

with an internal error estimator for scalar Poisson-like prob-
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lems, i.e. find u : R
d → R, s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−∇ · (σ∇u) = f , in �

∂u
∂n = gNi , on �N

i ⊂ ∂�,

u = gDj , on �D
j ⊂ ∂�,

(35)

where σ : R
d → R, f : R

d → R, gNi : R
d → R, i =

1, . . . , n, gDj : R
d → R, j = 1, . . . ,m, n,m ∈ N are given.

The error estimator used is given by a standard residual error
estimator, i.e. ηT : T → R given the Galerkin solution uh is
defined by

ηT(Q) :=
(

h2Q‖∇ · (σ∇uh) + f ‖2Q

+
∑

E⊂∂Q
E∈H(d−1)(T)

hE‖RE(uh)‖2E
)

1
2
,

(36)

where hQ is the diameter of Q given by

hQ = max
i=1,...,d

(supQi − inf Qi ) (37)

E is a face of Q, hE is the diameter of E, i.e.

hE = max
i �=k

(supEi − inf Ei ), (38)

where k is the index s.t. E is a singleton. The edge residual
RE is given by

RE(uh) :=

⎧

⎪

⎨

⎪

⎩

1
2 �

∂uh
∂n �E, if E ∈ � \ ∂�,

gi − ∂uh
∂n if E ∈ �N

i ,

0 if E ∈ �D
j ,

(39)

where n is a normal to the face E = Q ∩ Q′ and �•�E =
•|Q − •|Q′ denotes the jump along the face E.

The general syntax of the implemented error estimator is
given by

template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: poisson_residual_error_estimate(
const std::vector < unsigned int >&

n_gauss_points ,
const Function <spacedim >*

rhs_fcn ,
const Function <spacedim >*

sigma ,
const std::map <types :: boundary_id ,

Function <spacedim >* >&
neumann_bc ,

const Vector <double >&
solution ,

std::map < cell_iterator ,
double >&

residuals
);

Corresponding overloads are given for σ = 1 and/or n =
0, i.e. no Neumann boundary conditions, by dropping the
respective arguments.

Note that if there is at leastC1-continuity along some face
E, the jump along this face is zero. The implemented error
estimator uses the mof-array, described in Sect. 3, to detect
C0-faces and only computes jumps at those faces. A face
E ∈ H(k)(T) ⊂ H(d−1)(T) has C0-continuity if mof[F] =
p f . This follows from the definition of B-splines.

4.2 Manipulation of themesh

Wehave provided different functionality tomodify themesh.
We have overwritten the base class function
execute_coarsening_and_refinement() to perform the refine-
ments of the mesh and execute knot insertion from the
subdivided cells. For more information on knot insertion see
e.g. [11, 35]. It also computes the coarse neighbourhood of
marked cells, as explained in Sect. 2.2. Note that despite
the name, we have not yet implemented a proper coarsening
algorithm for T-splines, since there is no coarsening algo-
rithm given for T-splines to the authors extent.

We have also overwritten the base class function
refine_global(int t) that refines the mesh globally t-times
using a simple for loop of declaring the appropriate refine-
ment flags on a cell and then executing the refinement.

For local refinement, the user has to provide a list of cells
to be marked for refinement. Internally, upon initialization of
a |TS_Triangulation|, we store an offset |off| for refinement
that ensures that the first refinement is along the longest edge.
E.g. if the mesh is given by the cell Q = [0, 1] × [0, 2] ×
[0, 1

2 ] then the cell is longest in the second dimension and
the first refinement will be carried out by a 2-orthogonal
subdivision to obtain Q1 = [0, 1] × [0, 1] × [0, 1

2 ] and Q2 =
[0, 1]×[1, 2]×[0, 1

2 ]. Using this offset, the level-dependent
subdivision of a cell Q ∈ T becomes the k�(Q)-orthogonal
bisection of Q where k�(Q) = 1 + (

(�(Q) + off) mod d
)

.
The user may handle this offset on his own and set the

refinement flags manually, however, we also provide a func-
tion that considers this. To let the class handle the refinement
flags, we use
template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: set_refine_flags(
const std::vector <

TriaActiveIterator <
:: CellAccessor <dim , dim >

>
> &mark

);

where we provide a list of cells to be flagged for refinement.
Another important part of isogeometric grid manipulation

is degree elevation, see again [11, 35] for details. Degree ele-
vation in this implementation is only allowed at the coarsest
level and can be obtained with
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template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: degree_elevate(
const unsigned int d,
const unsigned int t

);

template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: degree_elevate_global(
const unsigned int t

);

where the former elevates the degree of all T-splines by t in
direction d and the latter elevates the degree in every direction
by t.

4.3 Miscellaneous functions

It may be of interest to print different results of the grid to
some files. One possibility from deal.II is to use a GridOut

object to print the grid, e.g. to a .svg file. However, this
will only print the underlying parametric mesh and not the
mapped parametric mesh, which is of more significance for
results.

We have provided functions to print quadrature points in
the physical domain, grid lines, vertices, and the T-spline
functions to ".dat" files.

To print the isoparametric mapping and or the respective
T-splines used, we simply use

template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: printIPF(
const std:: string& out_name ,
const unsigned int precision = 4,
bool print_splines = true ,
bool print_IPF = false

);

wherewe provide a std::string as output file, and a precision

that determines howmany decimals are being saved. A suffix
"_IPF_2d.dat" or "_IPF_3d.dat" is added to the name for the
isoparametric mapping, depending on the space dimension.
The suffix "_splines.dat" is added to the name of the T-spline
file. Note that corresponding folders and sub-folders have to
exist. Note further that this function assumes that we are on
the parametric Bézier mesh and have already calculated the
Bernstein tables with setup_tables.

To obtain the grid lines in the physical domain, we use

template <int dim , int spacedim >
void TS_Triangulation <dim , spacedim >

:: print_IPF_wireframe(
const std:: string& out_name ,
const unsigned int precision = 4,
const unsigned int n_intervals = 11

);

where a suffix "_parametric_grid.dat" is added to thedeclared
output name. The new input n_intervals determines the
amount of sub-intervals an existing edge is partitioned for
the output. Choose a low number if the physical mesh con-

Fig. 8 Depiction of the physical domain used for demonstration along
its parametric counterpart which is actually implemented

sists of straight lines only, see e.g. Figure2 and choose a
higher number if the mesh has curved parts, see Fig. 8.

To obtain the grid lines in the parametric domain, we use
print_grid(...) with the same arguments as before. A suffix
"_grid.dat" is added to the declared output name.

To obtain the corresponding grid lines of the Bézier mesh,
rerun the above functions on the Bézier mesh, preferably
with a different name to ensure the previous outputs are not
overwritten. Alternatively, for the parametric Bézier mesh,
there is a function print_bezier_grid().

4.4 Limitations

As mentioned before, one big limitation is the restriction of
scalar-valued problems.

Note that the algorithm provided by [23] allows q-graded
refinement, i.e. the k-orthogonal subdivision of a cell Q into
q equal parts. However, by deal.II limitations this is
not possible since multi-level hanging nodes are not imple-
mented.

Further, note that the refinement we carry out within our
implementation is anisotropic. There is currently no support
for a parallel triangulation when using anisotropic refine-
ments. This, however, does not restrict us from using parallel
computations as assembly loops may be divided along pro-
cessors or threads. It just means that the subdivision of a
TS_Triangulation may not be carried out on multiple proces-
sors or threads.

The way we designed the TSValues and TSFaceValues

objects uses a lot of space to store the necessary T-spline
value tables. This can be reduced by further adapting
deal.II behaviour, i.e. by reinitializing the tables of a
TSValues object on each cell instead of assigning each cell
a new object of that type.

5 Experiments

In this section we consider a few examples to use deal.t.
Each subsection gives the corresponding problem to be
solved, explains the data used for the geometric mapping,
and gives an example after some refinement steps. Where

123



Engineering with Computers

Fig. 9 Physical mesh from Sect. 5.1 after different refinement levels. On the left is the physical mesh with red dashed lines indicating Bézier
extensions. On the right is the physical Bézier mesh after 15 refinement levels

necessary for Neumann boundary conditions, the geomet-
ric mapping is explicitly stated. Lastly, results are given for
various polynomial degrees.

Note that every considered problemuses isotropic polyno-
mial degrees, i.e. px = py(= pz). However, it is technically
possible to use anisotropic polynomials. Further, the geomet-
ric mapping is given at a base level, and higher polynomial
degrees are obtained by order elevation, see [11], and where
necessary global refinements are employed to obtain a finer
initial mesh.

Further, the resulting linear systems Khuh = Fh are
solved using CG-iterations and a diagonal preconditioner.
On level l > 0 a relative accuracy of el−1 · 10−4 for the
iterative solver was chosen, and for level l = 0, the relative
accuracy was defined as 10−4.

5.1 Poisson’s equation on a squished domain

We consider

⎧

⎪

⎨

⎪

⎩

−
u = f (x, y), in �

∂u
∂n (x, y) = g(x, y), on �N ,

u(x, y) = 0, on �D,

(40)

where the right-hand-side function f and the boundary func-
tion g are defined using the exact solution

u(x, y) = 1

5π2 sin(2πx) cos(π y). (41)

The physical domain is defined using the data �x =
{0, 0, 0, 1, 1, 1} = �y , p = 2, and controls

Pw =
⎡

⎣

0.0 0.2 1.0 0.0 0.2 1.0 0.0 0.2 1.0
0.0 0.5 0.0 0.5 0.5 0.5 1.0 0.5 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

⎤

⎦ . (42)

The resulting domain is depicted in Fig. 8 together with its
boundaries �N and �D . This data yields the isoparametric
mapping

�(x, y) =
[

0.4x + 0.6x2

(x − x2)(1 − 2y) + y

]

(43)

from which we can define the normal vectors to the bound-
ary �N as orthogonal vectors to the tangents ∂x�(x, 0) and
∂x�(x, 1), since

�N =
⋃

i=0,1

{�(x, i) | x ∈ [0, 1]}. (44)

For error estimation, we use the standard residual error
estimator η(Q) on a cellQ given in Sect. 4.1.We use a quantile
marking strategy by refining the

Nr = �α#T� (45)

cellswith thehighest errors,whereα = 0.0075.The resulting
meshes are depicted in Fig. 9. On the left we see the physical
mesh for polynomial degree p = 3 after 8 refinement levels.
Red dashed lines indicate Bézier extensions and hence the
Bézier mesh. On the right, we see the same domain after 15
refinement levels.

We have computed the numerical solution for T-spline
degrees p = 3, . . . , 7 and given the H1-errors to the exact
solution over the degrees of freedom in Fig. 10. Additionally,
the H1-error using a standard finite element method with
p = 1 is given. We have performed refinements, until we
reached an error smaller than 10−8. Note, that in FEM, each
new cell yields (p + 1)d new basis functions. Using IGA-
FEM with T-splines on the other hand, a bisection of a cell
yields (p + 1)d−1 additional basis functions, assuming the
same polynomial degree in every direction. Thus, for a full
refinement of a cell, i.e. the cell is bisected once in each

123



Engineering with Computers

Fig. 10 H1-Errors of the problem from Sect. 5.1 with various poly-
nomial degrees. The reference lines are given in matching colours and
markers as dashed lines

direction, we obtain (d > 1)

(p + 1)d−1
d−1
∑

i=0

2i = (p + 1)d−1(2d − 1) (46)

additional basis functions. Since for fixed d > 1, the term
2d − 1 is constant in p, the number of new basis functions
added to the system grows by one order slower.

Note that we consider this example as a benchmark for our
implementation. It does not involve any sort of singularities.
It is just a short demonstration of deal.t to show its usage
as explained in Appendix C and demonstrates how to set
Neumann boundary conditions for a manufactured problem
on curved domains.

Asymptotically, we obtain optimal convergence rates, as
shown in Fig. 10. Note that the resulting linear systems are
relatively small compared to systems derived from standard
FEM. In fact, the considered example goes as high as around
105 DoFs for the p = 3 case. The other polynomial degrees
are below 104 DoFs. As mentioned in the introduction, for a
fair comparison we opted to use a CG-solver with a diagonal
preconditioner to solve the linear systems. However, consid-
ering the size of the problems, it is more reasonable to use a
direct method for T-splines.

This also becomes clear, when considering iteration num-
bers for the iterative method in Fig. 11. The reason lies in
the nature of IGA-FEM, since the basis functions span mul-
tiple cells of a triangulation, especially for higher degrees.
This results in mass- and stiffness-matrices with low sparsity
compared to standard FEM.

As a last note on this subsection, let us explain the pro-
cedure for solving this problem using standard FEM. In this
case, we have to define a mapping to get the new vertices of
the triangulation after refinement, in order to reduce the dis-
cretization error at the smooth boundary �N . This mapping
is know as �. A new vertex after (isotropic) subdivision is

Fig. 11 CG-iteration numbers over degrees of freedom for the Problem
considered in Sect. 5.1

Fig. 12 Depiction of the physical domain used for the L-Shape domain
along with its parametric counterpart

then given as

Pnew = �−1( 1
2�(P0) + 1

2�(P1)
)

, (47)

where P0, and P1 are two neighbored vertices of a common
cell. This includes knowledge of the inverse, �−1, which in
this case is given by

�−1
1 (x̂, ŷ) = (

√
15x̂ + 1 − 1)

3
(48)

�−1
2 (x̂, ŷ) = 9ŷ − 5(

√
15x̂ + 1 − 3x̂ − 1)

30x̂ − 10
√
15x̂ + 1 + 19

. (49)

There are also other methods to get an approximation of the
boundary vertices, e.g. by assigning certain types of man-
ifolds to it. However, the above method guarantees exact
boundary vertices.

5.2 L-Shape domain

We consider again problem (40) on the L-Shape domain
�L = [−1, 1]2 \ (−1, 0)2. For this setting, we have
f (x, y) = 0 and the boundary function g is defined from
the exact solution

u(r , ϕ) = r
2
3 sin

( 2ϕ+π
3

)

, (50)
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Fig. 13 Employing symmetry
on the domain from Fig. 12, we
obtain the complete domain

given in polar coordinates. The solution is symmetric along
the diagonal y = x , hence we only give a parametrization of
half the L-Shape domain by knot vectors�x = {0, 0, 1, 1} =
�y , degrees p = 1, and control points

Pw =
[−1.0 +0.0 −1.0 +1.0
+0.0 +0.0 +1.0 +1.0

]

. (51)

The resulting mapping is depicted in Fig. 12. Note that
we did not set boundary conditions along the line y = x . An
intermediatemesh at level 21 and polynomial degree p = 2 is
given in Fig. 13, where symmetry is already employed. Com-
putations began after three initial global refinement steps,
yielding eight elements as initial mesh. In general, the ini-
tial mesh for computations for any considered polynomial
degree p was globally refined Np = � 3p

2 � times to obtain
2Np elements before local refinements and error estimations
took part.

The marking strategy used for refinement is again the
same as in Sect. 5.1. The results for polynomial degrees
p = 3, . . . , 7 are given in Fig. 14. Note that in contrast to
Sect. 5.1, we refined until we reached 41 (half-)levels, yield-
ing 20 full refinement steps.

Note that the reference lines correspond toO(h p+1), thus
the results exceed optimal convergence. Note also that we
beat the optimal convergence rates by up to three magni-
tudes, e.g. the result for p = 6 behaves asymptotically as
O(h9). This is most likely due to some symmetry effects of
the considered PDE.

Fig. 14 H1 errors of the problem from Sect. 5.2 with various poly-
nomial degrees. The reference lines are given in matching colours and
markers as dashed lines

For comparisonwehave solved this problemwith standard
Qp elements for the same polynomial degrees on the whole
domain. The results are depicted in Fig. 15. There, we have
not run a proper number of global refinements, which can be
seen in the plots as well, by a sudden drop of the error. The
super-convergent effects mentioned before can be seen here
as well. This may be subject to Gaussian quadrature rules
used in this example. For simplicity’s sake, we have omitted
the reference lines in this plot.

To get an idea about the condition number of the matrix,
we take a look at the quotient

k pi /k pi+1

N p
i /N p

i+1

, (52)
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Fig. 15 H1 errors of the problem from Sect. 5.2 with various polyno-
mial degrees using standard Qp elements. Reference lines are omitted
for simplicity

Fig. 16 CG iterations for the problem described in Sect. 5.2 using T-
splines

where k pi and N p
i are the iteration numbers, resp. number of

DoFs of the CG-iteration for the basis functions of degree p
at level i > 0. Take e.g. p = 4, and i = 4. From Fig. 16 we
infer

k pi /k pi+1

N p
i /N p

i+1

= 87/95

325/389
≈ 1.0961. (53)

In fact, we can see that

k pi /k pi+1

N p
i /N p

i+1

∼ 1, (54)

for all p = 3, . . . , 7, and i . This yields

κ(Kp,h) ∼ O(N 2
p), (55)

for the condition number κ(Kp,h) of the stiffnessmatrix from
polynomial degree p.

We finish this subsection with a comparison of DoFs
between the two approaches. Note that the data from Fig. 15

Table 1 Number of DoFs needed to obtain an H1 error smaller then
5 · 10−4

p 3 4 5 6 7

IGA-DoFs 515 659 1057 1803 2681

FEM-DoFs 2278 1950 2762 3645 4870

was computed on a full parametrization of the L-shape, with
three initial quads. In Table 1 we see a direct comparison of
theDoFs needed to obtain an error smaller than 5·10−4. Note
that T-splines need less DoFs for each polynomial degree.

6 Outlook

We have successfully implemented and demonstrated a
framework to use isogeometric analysis within deal.II.
Standard error estimators are given in the implementation
for different Poisson-like problems, see (35). During applica-
tions, themain difficulty for the user is the correct application
of Neumann boundary data for the error estimator. In the
presented examples, it was necessary to use the explicit defi-
nition of the geometric mapping to define the normals on the
boundary. This will be automated in future extensions.

We only considered scalar elliptic PDEs in this work,
however, in the next step the focus will also shift to vector
valued problems, e.g. for linear elasticity. Once this is done,
deal.II allows us to extend the results to almost arbitrary
PDEs of order two.

Further, note that the considered problems are defined on
single patch domains. We will also focus on an implemen-
tation of multiple patched domains to apply T-splines with
deal.t in a real-world setting with vector valued prob-
lems. The source-code is available at [26] with instructions
to reconstruct the given examples.

A Bézier extraction algorithm of TSplines

The code stated in Algorithm 5 is a direct application of
the algorithm provided by [34] with two corrections. The
function below computes the extraction operator rows used
for a single B-Spline over each knot-interval and inserts
additionally some interior knots provided by knot_in.
The function compute_extended_kv() returns the
extended knot vector of a given local knot vector by adding
the first and last knots until multiplicity p is reached, e.g.
compute_extended_kv([0 0 1 2]) returns Ubar
= [0 0 0 1 2 2 2], nf = 1 for one insertion at the
front, and ne = 2 for two insertions at the end.

Originally, the special case for the multiplicity of a knot
(mult == p) has not been handled, see Algorithm 65 and fol-
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lowing, as well as properly initializing the new extraction
operator row, see Algorithm 36. The code can also be found
online at [36].

Algorithm 5 Bezier extraction of B-Splines with knot insertions
1 function [C, nf] = bezier_extraction( xi ,

knot_in)
2

3 % Ensure the knot vector is non -
4 % decreasing:
5 xi = sort(xi);
6 p = length(xi) - 2;
7 m = length(knot_in);
8 [Ubar , nf , ne] = compute_extended_kv(xi);
9 a = p+1;
10 b = a+1;
11 C = zeros(1, p+1);
12 C(1, nf+1) = 1;
13 mbar = ne + 2 + nf + m;
14 si = 1;
15 nb = 1;
16 while (b < mbar)
17 % Initialize extraction operator
18 C(end+1, :) = zeros(1, p+1);
19 add = 0;
20 % Check if additional knot needs
21 % to be inserted:
22 if (si <= m && Ubar(b) >= knot_in(si))
23 mult = 0;
24 add = 1;
25

26 Ubar = [Ubar (1:b-1) knot_in(si) Ubar(b:
end)];

27 si = si+1;
28 else
29 i = b;
30 while (b < mbar && Ubar(b+1) == Ubar(b)

)
31 b = b + 1;
32 end
33 mult = b - i + 1;
34 end % if ( si )
35 % Initialize extraction row
36 C(end , nf + 2 - nb + (si -1) - mult - add) =

1;
37 if (mult < p)
38 numer = Ubar(b) - Ubar(a);
39 alphas = zeros(1, p - mult);
40 for j = p:-1:mult+1
41 alphas(j - mult) = numer / (Ubar(a

+ j + add) - Ubar(a));
42 end % for ( j )
43 r = p - mult;
44 %Update Matrix coefficients:
45 for j = 1 : r
46 save = r - j + 1;
47 s = mult + j;
48 for k = p+1 : -1 :s+1
49 alpha = alphas(k - s);
50 C(nb , k) = alpha * C(nb , k) +

(1 - alpha)*C(nb, k-1);
51 end % for ( k )
52

53 if b < mbar
54 % Update overlapping
55 % coefficients
56 C(nb + 1, save) = C(nb , p + 1);
57 end % if ( b )
58 end % for ( j )
59 % Update coefficients for
60 % next iteration
61 if (b < mbar)
62 a = b;
63 b = b + 1;
64 end % if ( b )
65 else
66 % Special case: mult = p
67 % => There are only two
68 & elements given by the
69 % right -most , resp. left -most ,

70 % bezier splines
71 C(nb + 1, 1) = 1;
72 a = b;
73 b = b+1;
74 end
75 % Advance to next element
76 nb = nb + 1;
77 end

B Important deal.II data structures

To fully understand parts of Algorithm 3 and 4 it is impor-
tant to learn deal.II internal indexing of quads, lines, and
vertices of a cell. For a fixed cell Q the vertices Vi are num-
bered in lexicographic ordering, i.e.

Vi < V j : ⇐⇒ (56)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Vi,d < V j,d , if Vi,d �= V j,d , else

Vi,d−1 < V j,d , if Vi,d−1 �= V j,d−1, else

...

Vi,1 < V j,1.

(57)

Its faces Fi are ordered according to its outward-pointing
normals, i.e.

Fi < F j : ⇐⇒ nQ(Fi ) < nQ(F j ), (58)

where nQ(F) is the outward pointing normal of face F from
cell Q, e.g. for a 2D reference cell we get the normal vectors
−e1,+e1,−e2,+e2 (in that order).

This defines the ordering of vertices, lines in 2D, andquads
in 3D. The order of lines in 3D is as follows. From a cellQ, we
first enumerate the lines of the face F = Q1 × Q2 × {inf Q3}
using 2D line ordering, resp. (58). Then we enumerate the
lines of face F = Q1 × Q2 × {supQ3} using 2D line order-
ing, and finally the lines in z-direction are enumerated in
lexicographic ordering.

A visual explanation is given in Fig. 17.
Further, Algorithm 3 and 4 use neighbor relations between

cells. A neighbor neighbor(Q,face_no) of a cell Q at
face Fface_no is defined to have at maximum the level of
refinement as the cell itself, i.e.

level(Q) ≥ level(neighbor(Q,face_no)). (59)

Let Q1 and Q2 be two adjacent cells, with distinct refinement
levels. If Q1 is coarser than Q2 and we ask for its neigh-
bor on the other side of the common face F = ∂Q1 ∩ ∂Q2,
then parent(Q2) with the same refinement level of Q1 is
returned; if the parent of Q2 has a higher refinement, the par-
ent of the parent is returned, and so on. On the other hand, if
we ask for the neighbor of Q2 at face F, simply Q1 is returned,
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Fig. 17 deal.II internal enumeration of quads, lines, and vertices of
a 2D cell (left) and a 3d cell (middle and right). Numbers in rectangles
correspond to the index of the vertex at that position, numbers in cir-
cles correspond to the index of the lines at that position, and numbers

in diamonds correspond to the index of the quad at that position. The
numbering for the 3D cell has been split into two parts, which show the
cell interior (middle) and the cell exterior (right)

Fig. 18 deal.II neighbour relations of cells in 2D. All relevant cells
are marked, Q(�)

i corresponds to the i-th cell on level �. Explained are

the neighbour relations of the adjacent cells Q(2)
4 and Q(0)

3 , and Q(1)
3 and

Q(0)
3 , respectively

inwhich case neighbor and cell have different refinement lev-
els.

A detailed example is given in Fig. 18. Consider first the
two (active) adjacent cells Q(0)

3 and Q(2)
4 . Obviously, for the

first neighbor of Q(2)
4 we get Q(0)

3 , i.e.

neighbor(Q(2)
4 , 1) = Q(0)

3 . (60)

However, on the other side of face 0 fromQ(0)
3 are two distinct

cells, and it is arbitrary to return either as zeroth neighbor.
Instead of returning either of the children of Q(1)

2 , the parent

with refinement level 0 is returned, that is the parent Q(0)
2 of

the parent Q(1)
2 of the cell Q(2)

4 , and hence we get

neighbor(Q(0)
3 , 0) = Q(1)

2 . (61)

Similar arguments for Q(1)
3 and Q(0)

3 lead to

neighbor(Q(0)
3 , 2) = Q(1)

3 . (62)

C A tutorial for deal.t

We demonstrate the usage with the example from Sect. 5.1.
Since all deal.II and deal.t functions and classes

are in a namespace dealii, resp. dealt we firstly import the
respective namespaces into our program. with the following
lines
using namespace dealii;
using namespace dealt;

We define a new class for each new application. Further
classes are introduced to resemble abstract mathemati-
cal functions. This incorporates deal.IIs Function<dim,

spacedim> object that resembles an abstract base class from
which every (mathematical) function should be derived from.
Since this object is an abstract class, every derived class needs
to define its own functions to calculate values, derivatives,
etc.

The following subsections give the source code for the
application to the above problemwith sufficient explanations
between relevant lines. Each source code is numbered within
its own block, i.e. a functionmay be split in two ormore parts,
but the whole function is numbered consecutively line-by-
line.

C.1 Writing a C++ class for each problem

The data for the isogeometric mapping is stored within an
additional object from the deal.t namespace, called |

IPF_Data<int dim, int spacedim>|. It essentially stores only
theprovided (global) knot vectors, the correspondingdegrees,
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as well as the control points. For this purpose, the paramet-
ric dimension dim is two, as well as the physical dimension
spacedim. Further, it is important to store the (parametric)
mesh used for applications. This is the main part of deal.t
and is called |TS_Triangulation<int dim, int spacedim>|

Depending on what the user wishes to accomplish, there
is a variety of additional variables the user may choose to
store. For this demonstration we intend to calculate

1. the stiffness matrix Kh ,
2. the right-hand-side Fh
3. the solution vector uh , s.t. Khuh = Fh ,
4. the exact L2-error ‖u − uh‖L2(�),

5. the exact H1-error ‖u − uh‖H1(�), and
6. the residual error ‖
u + f ‖L2(Q) for each cell Q of the

triangulation.

Since the size of the stiffness matrix is usually large, it is
defined as a dealii::SparseMatrix<double>, which has to be
initialized using a sparsity pattern.

The implementation is encapsuled in a separate names-
pace to avoid ambiguity with similar names along other
namespaces. This is done by

1 namespace Poisson_Neumann {

The right-hand-side function f is stored in a separate class
and derived from deal.II |Function<dim, spacedim>| as
mentioned before, i.e.

2 class Poisson_RHS : public Function <2> {
3 public:
4 Poisson_RHS () : Function <2>(1) {}
5 ~Poisson_RHS () = default;
6

7 virtual double value(
8 const Point <2>& p,
9 const unsigned int component = 0
10 ) const override;
11 };

To compute the exact L2- and H1-errors, we define a class
for the exact solution which is again derived from deal.II
|Function<dim, spacedim>|, but also needs to compute the
gradient. Hence, its header declaration is extended by an
override of the base gradient function.

12 class Poisson_SOL : public Function <2> {
13 public:
14 Poisson_SOL () : Function <2>(1) {}
15 ~Poisson_SOL () = default;
16

17 virtual double value(
18 const Point <2>& p,
19 const unsigned int component = 0
20 ) const override;
21

22 virtual Tensor <1, 2> gradient(
23 const Point <2>& p,
24 const unsigned int component = 0
25 ) const override;
26 };

We further need another object to describe values along
the Neumann boundary �N . This is done by yet another

deal.II inherited function as above similar to Poisson_RHS

, called Poisson_NC that will resemble the boundary values.
The header declarations are the same as in Poisson_RHS with
exchanged names; thus we will not display the code here.We
will also skip the implementations of the values and gradients
for these classes in this subsection.

For the main class, we get from the explanations above
the following member variables.

27 class Poisson_Benchmark
28 {
29 private:
30 unsigned int ref;
31 unsigned int order;
32

33 IPF_Data <2, 2> data;
34

35 TS_Triangulation <2, 2> tria;
36

37 SparsityPattern sparsity_pattern;
38 SparseMatrix <double > system_matrix;
39

40 Vector <double > solution;
41 Vector <double > system_rhs;
42

43 Vector <double > l2_error;
44 Vector <double > h1_error;
45 Vector <double > mesh_size;
46 Vector <double > dofs_per_level;
47

48 std::map <CellId , double > cell_errors;
49

50 Poisson_RHS rhs_fcn;
51 Poisson_SOL sol_fcn;
52 Poisson_NC neumann_bc;

Here, ref determines the amount of refinement steps and
order determines for which (global) degree we want to com-
pute the solution. The remaining variables mesh_size and
dofs_per_level store the smallest cell diameter, resp. the
DoFs at level l. For the diameter we define

hn = min
Q∈T(n)

hQ, (63)

where hQ is the diameter of a cell Q defined in (37).
Next, we need to determine the methods, resp. functions,

we want to employ. Firstly, we need a public constructor for
the class that initializes every necessary variable. It should
take the variables ref, and order and store them for use in the
program. We declare the constructor as

53 // Public functions:
54 public:
55 Poisson_Benchmark(int ref , int order = 0);

To prevent mistakes on the user side, only a single function
is allowed to be called outside the class. That function calls
other functions from this class in the right order. It does not
need any input arguments, as it is supposed to simply start
the program. It is declared as

56 void run();

Every other function is declared private. For a smooth
initialization of the triangulation, we figured it is the best
technique to write a function that returns the correct IPF_Data
<2, 2>, i.e.
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57 IPF_Data <2, 2> get_IPF_data ();

The source for this function is omitted in this paper.
There are a few steps that have to be done after every

refinement:

1. The system to be solved has to be setup to the correct
dimensions,

2. The system has to be assembled,
3. The system has to be solved after assembly,
4. After the system is solved, we have to compute the L2-

and H1-errors,
5. important quantities shall be printed to files
6. additionally, we may be interested in the point-wise error

for each cell,
7. The cells have to be marked and refined for further com-

putations.

These tasks are split into their respective subroutines,
58 void setup_system ();
59 void assemble_system ();
60 void solve ();
61 void compute_h1_error ();
62 void output_system ();
63 void print_error ();
64 void estimate_and_mark ();
65 }; // End of Poisson_Benchmark class
66 } // End of namespace declaration

C.2 Creating the grid

Most of the variables introduced in subsection C.1 can be
initialized before the actual source code is given. This follows
the syntax .A(int a): var(a) and reads in the source code of
the main class as

1 Poisson_Neumann :: Poisson_Benchmark ::
Poisson_Benchmark(int ref , int order) :

2 ref(ref),
3 order(order),
4 data(this ->get_IPF_data ()),
5 tria(data),
6 rhs_fcn (),
7 sol_fcn (),
8 neumann_bc ()
9 {

Note that Algorithm 5 initializes the TS_Triangulation.
Firstly, we increase the initial polynomial degree accord-

ing to the user input across every direction using
10 tria.degree_elevate_global(order);

There is also a function degree_elevate(int d, int times)

that increases the polynomial degree only in a specified direc-
tion. Note that the implementation makes no restrictions on
the polynomial degrees, i.e. anisotropic polynomials are a
possibility.

Next, we will define the boundary indicators using
deal.II internal iterators over faces. From the base class
Triangulation<dim, spacedim>we can use inherited functions

for our derived class TS_Triangulation<dim, spacedim>. Fig-
ure8 shows which parametric boundary is mapped to which
physical boundary. From this, and the definition of �x and
�y we get that the parametric Neumann boundary is given
at faces whose second coordinate is either zero or one. Thus,
the source code for the boundary indicators is

11 for (auto& face : tria.active_face_iterators
()){

12 const Point <2>& c = face ->center ();
13 if (face ->at_boundary () &&
14 (c(1) == 0 | | c(1) == 1 ) )
15 face ->set_boundary_id (1);
16 }

Where an iterator can be thought of as a pointer to some
object resembling an active face. It is dereferenced using the
arrow notation ->. Note that initially every boundary id of
each face is given by zero.

In standard finite element code, boundary DoFs are recog-
nized during assembly, as we define the same finite element
functions for each cell. Using T-Splines this is not possible,
and in fact we have to preemptively determine every spline
that has non-zero values on the boundary. This is done in the
following line

17 tria.set_boundary_dofs ();

where the boundary DoFs are sorted by boundary ids, i.e.
internally within tria we save a container boundary_dofs that
encodes a boundary id to a list of boundary DoF indices.

Since we wish to perform computations on this mesh, we
have to tell the program that it should switch from the para-
metric mesh to the parametric Bézier mesh with a call to

18 tria.refine_bezier_elements ();

At this point, this function essentially just sets a bool which
enables functionality we will use for matrix assembly. How-
ever, later on this will perform one additional refinement
step by subdividing active cells along T-junction extensions.
Since the program is now on the parametric Bézier mesh, it
can compute extraction operators used for Bézier extraction.
This information is computed using

19 tria.compute_extraction_operators ();

After this, we can initialize the other quantities of interest
to the right size as follows

20 l2_error.reinit(ref + 1);
21 h1_error.reinit(ref + 1);
22

23 mesh_size.reinit(ref + 1);
24 dofs_per_level.reinit(ref + 1);
25 } // end of constructor

C.3 System setup

The routine
1 void Poisson_Neumann :: Poisson_Benchmark ::

setup_system (){
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should initialize the right-hand-side vector Fh , the solution
vector uh , and the stiffness matrix Kh to the correct size.
Remember that to this extent the finite element space is {Ti ◦
�−1}i for each T-Spline Ti and that the support of each T-
Spline spans multiple parametric cells. The number of active
splines of the mesh thus sets the dimensions of the system.
Since Fh and uh are simply vectors, they are initialized with

2 system_rhs.reinit(tria.n_active_splines ());
3 solution.reinit(tria.n_active_splines ());

The stiffness matrix has only non-zero entries (i, j), when-
ever supp Ti ∩ supp Tj �= ∅. This information is cell-wise
stored within IEN_array and is returned by

4 const std::map <
5 TriaIterator <:: CellAccessor <2,2>>,
6 std::vector <unsigned int >
7 >& IEN_array =
8 tria.get_IEN_array ();

For a given cell it returns which global DoF has support on
it. There is also an overload of this function that takes a cell

as input, to return the vector of local DoFs on the specified
cell. This will be used in the assembly routine.

Next, the sparsity pattern of the sparse stiffness matrix
has to be defined. From deal.II, a SparsityPattern object
can be reinitialized using a call to reinit(int n, int m, int

nnz), where n corresponds to the rows of the sparse matrix,
m corresponds to the columns of the sparse matrix and nnz

correspond to the maximum number of non-zero support on
each row. Unfortunately, we are lacking a proper estimate on
this quantity, hence we set this number to the maximum, i.e.

9 sparsity_pattern.reinit(
10 tria.n_active_splines (),
11 tria.n_active_splines (),
12 tria.n_active_splines () );

We then have to add information about which entries are
actually non-zero. This is done using add(int i, int j) that
allows to add entries at position (i, j). The complete infor-
mation over all non-zero supports is given by a few nested
for-loops

13 for (const auto& [_, arr] : IEN_array)
14 for (unsigned int i : arr)
15 for (unsigned int j : arr)
16 sparsity_pattern.add(i, j);

Before we use this pattern to initialize the system matrix
Kh , it has to free superfluous space by compressing the data
as much as possible. Only then can it be used to define the
system matrix

17 sparsity_pattern.compress ();
18 system_matrix.reinit(sparsity_pattern);
19 } // end of setup_system

C.4 Matrix assembly and solving

The main part of the implementation is the matrix assembly
in

1 void Poisson_Neumann :: Poisson_Benchmark ::
assemble_system (){

The implementation of T-Splines is based on Bézier extrac-
tion.We can then define tables for the Bernstein polynomials
on the reference cell Q(re f ) = [0, 1]d a-priori and use these
tables to define the values of a specific T-spline on a cell.
Values on the reference cell are computed using Gaussian
quadrature rules. Before we start the computations, we thus
have to generate objects that represents the finite element
values on cells, resp. faces. This is done using the TSValues

and TSFaceValues objects. They mimic the behavior of their
deal.II variants as explained in 4, and are initialized in
the application as

2 std::vector < unsigned int > degrees = tria.
get_degree ();

3 TSValues <2> ts_values(
4 {degrees [0] + 1,
5 degrees [1] + 1},
6 update_values |
7 update_gradients |
8 update_quadrature_points |
9 update_JxW_values);

10 TSFaceValues <2> face_values ({}
11 {degrees [0] + 1,
12 degrees [1] + 1},
13 update_values |
14 update_gradients |
15 update_quadrature_points |
16 update_normal_vectors |
17 update_JxW_values);

Since it is costly, to write into the whole stiffness matrix
Kh , we define a smaller matrix that stores the integral values
for a specific cell together with a smaller right-hand-side
vector.

18 const unsigned int dofs_per_cell = TSValues ::
n_dofs_per_cell ();

19 FullMatrix <double > cell_matrix(dofs_per_cell ,
dofs_per_cell);

20 Vector <double > cell_rhs(dofs_per_cell);

Afterwards we can assemble the stiffness matrix cell-by-
cell using a loop over cell iterators of the triangulation

21 for (const auto& cell : tria.
active_cell_iterators ()){

At the beginning of each iteration, we have to get the corre-
sponding values of T-splines on this cell with

22 ts_values.reinit(cell);

and reset the small cell matrix and rhs with

23 cell_matrix = 0;
24 cell_rhs = 0;

Then we start the quadrature sum with

25 for (const unsigned int q :
26 ts_values.quadrature_point_indices ()){

We initially store

27 double dx = ts_values.JxW(q);
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as it is used in two distinct places. To compute the cell-matrix
at the given quadrature point q, we have to calculate

∑

q

∇Ti (q) · ∇Tj (q)dx (64)

and add that to position i and j of Kh . This will be done later,
instead we store it in the cell matrix using local DoF indices.

28 for (const unsigned int i :
29 ts_values.dof_indices ())
30 for(const unsigned int j :
31 ts_values.dof_indices ())
32 cell_matrix(i,j) +=
33 ts_values.shape_grad(i, q) //

grad T_i(q)
34 * ts_values.shape_grad(j, q) //

grad T_j(q)
35 * dx;

Further, the values to the local right-hand-side have to be
computed using

∑

q

Ti (q) f (�(q))dx, (65)

which is done in a similar loop
36 const Point <2>& mapped_q =
37 ts_values.quadrature_point(q); // Phi(q

)
38 for (const unsigned int i :
39 ts_values.dof_indices ())
40 cell_rhs(i) +=
41 ts_values.shape_value(i, q) // T_i(

q)
42 * rhs_fcn.value(mapped_q) // f(

Phi(q))
43 * dx ;
44 } // for ( q )

and ends the quadrature loop. To get the Neumann values, we
have to check, whether or not the cell is on the boundary and
then check if a face of that cell is at the Neumann boundary.
For this purpose, we have set the boundary indicators during
the creation of the mesh. The code-block for the Neumann
values then becomes similar to the code-block for a cell,
where we calculate

∑

q

g(q)Ti (q)dx (66)

with

g(q) = ∇ f (q) · n(q), (67)

where n(q) is the normal vector at quadrature point q. This
gives

45 if (cell -> at_boundary ()){
46 for (unsigned int f = 0;
47 f < GeometryInfo <2>:: faces_per_cell

;
48 f++){
49 if (cell
50 ->face(f)
51 ->at_boundary ()

52 && cell
53 ->face(f)
54 ->boundary_id () == 1){
55 face_values = reinit(cell ,f);
56 for (const unsigned int q :
57 face_values.quadrature_point_indices ())

{
58 const long double g =
59 sol_fcn.gradient(
60 face_values.quadrature_point(

q)) *
61 face_values.normal_vector(q);
62 for (const unsigned int i :
63 face_values.dof_indices ())
64 cell_rhs(i) +=
65 g * face_values.shape_value(i,

q)
66 * face_values.JxW(q);
67 }
68 } // if ( neumann_bc )
69 } // for ( f )
70 } // if (cell -> at_boundary ())

This almost ends the cell-loop. We still have to add the
computed values to the global system. For this, we need
information about the global indices of the used local
indices. The standard in deal.II is to use a function
copy_local_to_global() that does the trick automatically
together with applying Dirichlet boundary conditions, how-
ever, it assumes background information we cannot provide
at this point. Hence, we have to do it manually. The local cell
information is copied to the global matrix using the IEN_array

as before, with
71 std::vector < unsigned int >

local_dof_indices =
72 tria.get_IEN_array(cell);
73

74 system_matrix.add(local_dof_indices ,
cell_matrix);

75 system_rhs.add(local_dof_indices , cell_rhs)
;

76 } // for ( cell )

To end the matrix assembly, we have to apply Dirichlet
conditions. In this case, we have homogeneous bound-
ary conditions, which simplifies the process. For Dirichlet
boundary DoFs we simply set the corresponding column and
row to 0, add a 1 to the diagonal and set the right-hand-side
to 1:

77 const auto& boundary_dofs =
78 tria.get_boundary_dofs ();
79

80 unsigned int n_global_dofs = tria.
n_active_splines ();

81 for (const auto& dof : boundary_dofs.at(0)){
82 for (unsigned int j = 0; j < n_global_dofs;

j++){
83 system_matrix.set(dof , j, 0);
84 system_matrix.set(j, dof , 0);
85 }
86

87 system_rhs(dof) = 0;
88 system_matrix.set(dof , dof , 1);
89 }
90 } // end assemble_system ()

To solve the system, we use a standard deal.II solver.
We have to define an object SolverControl that defines the
maximum number of iterations and a tolerance and give it
to the constructor of a solver. For this application, we chose
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a CG-solver. The solve() function of the solver takes the
stiffness matrix Kh , the solution vector uh , the right-hand-
side Fh , and a precondition matrix which is chosen to be
the diagonal of Kh , i.e. a Jacobi-type preconditioner. The
complete routine is

1 void Poisson_Neumann :: Poisson_Benchmark ::solve
(){

2 SolverControl solver_control(
3 750 * tria.n_active_splines (),
4 1e-6
5 );
6 SolverCG <Vector <double >> solver(
7 solver_control
8 );
9 PreconditionJacobi <SparseMatrix <double >>

preconditioner;
10 preconditioner.initialize(system_matrix);
11 solver.solve(
12 system_matrix ,
13 solution ,
14 system_rhs ,
15 preconditioner
16 );
17 } // end solve ()

C.5 Error estimation andmarking

The residual error estimation from

1 void Poisson_Neumann :: Poisson_Benchmark ::
estimate_and_mark (){

defines a list of – possibly in-active – cells to be marked for
refinement

2 std::vector <
3 TriaIterator <
4 :: CellAccessor <2, 2>
5 >
6 > mark;

Note that matrix assembly, error calculations and error esti-
mations are performed on the parametric Bézier meshB(�),
while the mesh refinement itself has to be performed on the
parametric mesh T(�). This stems from the definition of
anchors and their knot vectors on the parametric mesh. Finite
element values, however, are given on the parametric Bézier
mesh. If the error estimator detects a parametric Bézier cell
to be refined, instead we save its parent in the temporary list
mark. A special case occurs if there is only a single active
cell. In that case, we simply skip error estimation and save
the single cell

7 if (tria.n_active_cells () == 1) {
8 mark.push_back(tria.begin_active ());
9 } else {

Otherwise, we need to access the local residuals for each cell.
The core implementation of deal.t offers some functions
to calculate the residual errors of Poisson-like problems, see
Sect. 4.1.

For this example, we have σ ≡ 1 with in-homogeneous
Neumann boundary conditions. The list of local residuals is
simply defined by

10 std::map <
11 TriaIterator <
12 :: CellAccessor <2, 2>
13 > , double >
14 local_residuals;

that will later return the residual of a cell iterator cell by
simply calling local_residuals[cell]. Further, the Neumann
data is stored in a similar list, that encodes a boundary id
to a given function. This enables the error computations of
problems with multiple Neumann functions gNi at different
Neumann boundaries �N

i . For our purpose we thus get
15 std::map <
16 types :: boundary_id ,
17 Function <2>* >
18 neumann_data = {{1, &neumann_bc }};

Note that we use a pointer to the different boundary condi-
tions. We then call the corresponding error estimator with

19 const std::vector <unsigned int >& degrees =
tria.get_degree ();

20 tria.poisson_residual_error_estimate(
21 {degrees [0]* degrees [0] + 1,
22 degrees [1]* degrees [1] + 1},
23 &rhs_fcn ,
24 neumann_data ,
25 solution ,
26 local_residuals
27 );

The marking strategy is explained in detail in Sect. 5.1. For
this,wedefine a list of all cells forwhichwehave a local resid-
ual error, i.e. every active cell, then sort the list in descending
order, such that the local residual of cell i is greater than the
local residual of cell j if i<j. We get

28 std::vector <
29 TriaIterator <
30 :: CellAccessor <2, 2>
31 >
32 > cell_list;
33 for (const auto& [c, _] :
34 local_residuals)
35 cell_list.push_back(c);
36

37 std::sort(cell_list.begin (),
38 cell_list.end(),
39 [local_residuals ](
40 const auto& c1,
41 const auto& c2){
42 return local_residuals.at(c1)
43 > local_residuals.at(c2);
44 });

Next, we need a list that tells us which cell of the mesh
was refined to obtain the parametric Bézier mesh. These ele-
ments are stored separately within a TS_Triangulation and
can be obtained by get_bezier_elements(). It returns a std

::vector that stores (in-active) parent cells of refined cells
during refine_bezier_elements(). The total amount of active
parametric cells (without refined Bézier cells) is given by
the number of active cells subtracting the number of Bézier
cells. Before we push a cell into the container of marked ele-
ments, we have to check if its parent has been refined during
the transition from parametric mesh to the parametric Bézier
mesh.
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45 const auto& bezier =
46 tria.get_bezier_elements ();
47 const double percentile = 0.075;
48 const unsigned int n_cells =
49 cell_list.size() - bezier.size();
50 const unsigned int n_mark =
51 std::ceil(n_cells * percentile);
52

53 for (unsigned int i = 0;
54 i < n_cells &&
55 mark.size() < n_mark;
56 i++){
57 if (cell_list[i] -> level () == 0)
58 mark.push_back(cell_list[i]);
59 else if (
60 std::find(bezier.begin (), bezier.end(),

cell_list[i] -> parent()) !=
61 bezier.end()
62 ){
63 mark.push_back(cell_list[i] -> parent()

);
64 } else {
65 mark.push_back(cell_list[i]);
66 }
67 }
68 } // if ( special case )

The next few calls are essential when working with our code.
We can not simply refine themarked cells, since theremay be
parent elements in this list. Further, we already stressed the
fact that refinement is only possible on the parametric mesh.
Hence, we have to coarsen the previously refined Bézier cells
with a call to

69 tria.coarsen_bezier_elements ();

This additionally sets a boolean within TS_Triangulation

that allows further refinements. The user may now decide
whether to set the refinement flags manually, or let the
TS_Triangulation set the refine flags of the cells. We encour-
age the user to use the line

70 tria.set_refine_flags(mark);

As there are some internal processes at the setup of a
TS_Triangulation which the user has to consider when set-
ting refinement flags manually, see section 4.

Now, that cells are marked for refinement, we can perform
refinement. Note that the programwill usually refine not only
themarked cells, but also computes its coarse neighbourhood
from [24] to assure analysis suitability, and hence linear inde-
pendence, of T-Splines, see Sect. 2.2. The refinement process
is then essentially carried out using

71 tria.execute_coarsening_and_refinement ();

where the algorithms described in Sect. 2.2 are used to deter-
mine the next level. Note that, despite the name, coarsening
of cells is not yet implemented—the name for this function
had to be inherited from the base class.

Next, we first use the parametric mesh, to define the list
of boundary DoFs, as in the initialization of this mesh

72 tria.set_boundary_dofs ();

then, we have to switch back to the parametric Bézier mesh
using the opposite function of coarsen_bezier_elements()

73 tria.refine_bezier_elements ();

that essentially performs another refinement step of themesh.
Finally, we have to recompute the extraction operators for the
new T-Splines with

74 tria.compute_extraction_operators ();
75 } // end estimate_and_mark ()

This ends the estimate_and_mark() routine.
The most important function

1 void Poisson_Neumann :: Poisson_Benchmark ::run(){

will then call these functions in the correct order, i.e.
2 while (tria.n_levels () - 1 <
3 ref + 1){
4 this -> setup_system ();
5 this -> assemble_system ();
6 this -> solve ();
7 this -> output_system ();
8 this -> print_error ();
9 this -> compute_h1_error ();

10 this -> estimate_and_mark ();
11 }
12 // Print commands for
13 // h1 -, l2 -error , and
14 // other quantities
15 ...
16 } // end run()

where the function print_error() prints the point-wise error
to some files, output_system() prints the stiffness matrix,
the right-hand-side, the solution, the mapped (Bézier) mesh
wireframe, and the mapped quadrature points on the phys-
ical domain, i.e. the mapping �, to distinct files, and
compute_h1_error() computes the H1 and L2 error of the
solution to another file. We do not use deal.II functions
to output the mesh with a GridOut object, as it again imposes
conditions on the system matrix we cannot provide at this
point, e.g. the dimension of the matrix being nB · nC , where
nB is the number of Bernstein polynomials on the reference
cell and nC is the number of active cells.

The errors computed in print_error() and compute_h1_error

() are computed using a similar technique as for the matrix
assembly in assemble_system() and are hence not given here.
Further, the output commands from output_system are rather
tedious and not considered important, and hence also not
given here.
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