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Abstract
In recent years, architected materials and structures have gained significant popularity due to their ability to reach enhanced 
performance for use in multifunctional and multidisciplinary applications. Among numerous options investigated, archi-
tected structures based on Triply Periodic Minimal Surfaces (TPMS) have gained increasing attention because they exhibit 
exceptional properties in multiple disciplines simultaneously. However, because of the complexities involved in the geometry 
representation and mechanical response of these structures, physics-based modeling for this problem class engenders a set 
of challenges. In this paper we address some of these challenges by developing a first-of-its-kind Isogeometric Analysis 
(IGA)-based geometry modeling and simulation framework for architected materials and structures. We focus on sheet 
TPMS-based structures, for which we first develop an IGA-suitable geometry modeling pipeline and then evaluate their 
mechanical performance in crushing simulations employing Isogeometric shells based on the Kirchhoff–Love (KL) theory.

Keywords  Architected materials and structures · Isogeometric analysis (IGA) · Triply periodic minimal surfaces (TPMS) · 
Non-uniform rational B-splines (NURBS) · Kirchhoff–Love shells · Protective structures

1  Introduction

Two-dimensional slices through material-property space 
yield material-property charts or so-called “Ashby charts” 
[1]. Each chart has material properties as two axes and is 
populated with engineering materials. The remaining white 
spaces, if accessible, drive scientists to design and produce 
novel materials with a desired combination of properties. 
The traditional approaches create new metal alloys, poly-
mers, and compositions of glass and ceramics by way of 
chemistry. Taking one step further, Ashby and Bréchet pro-
posed developing hybrid materials by combining two or 
more materials such that their properties are superposed. 
As a successor of hybrid materials, the term “architected 
materials” places an emphasis on the control over the 
material architecture. Architected materials and structures 
are designed using a special and preferably optimal com-
binations of materials and open spaces, i.e., architectural 

features. Such new materials are configured to reach 
enhanced performance for use in multifunctional and mul-
tidisciplinary applications resulting in breakthrough devel-
opments in solving key societal challenges [2].

To showcase the state-of-the-art in architected materials 
and structures, silicon-coated tetragonal microlattices are 
designed with programmable patterns in response to elec-
trochemical lithiation through cooperative beam buckling 
caused by artificial defects [3]. This is a vivid exemplar of 
leveraging microstructural instabilities [4] to control macro-
scopic performance and achieve novel functionality. Aside 
from a multitude of studies on mechanical properties such as 
stiffness and strength, insights into damage tolerance capa-
bilities and recoverability are provided. The notion of frac-
ture toughness is extended first to octet-truss lattices [5] and 
then to truss-based metamaterials [6]. This opens the way to 
fracture behavior characterization for architected materials 
and structures. Excellent resilience is revealed in the hier-
archical architected metamaterials with recoverability up to 
98% after compression, where non-axially oriented beams 
play a major role [7]. At the nanoscale, the diffusion of point 
defects in single-crystalline nanowires [8] and thin-shell 
nanolattices [9] results in a similar property defined as ane-
lasticity, where the structures gradually recover from defor-
mation after unloading. Recently, architected metamaterials 
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inspired by the art of origami also displayed remarkable 
shape recoverability, mainly at the microscale [10].

Among numerous architected materials, those based 
on triply periodic minimal surfaces (TPMS) [11] exhibit 
a favorable integration of properties and the resulting per-
formance merits. To name a few, TPMS-based structures 
can serve as heat exchangers and temperature controllers 
owing to the highly smooth surfaces and large surface area 
to volume ratio [12]. For similar reasons, they are also good 
candidates for catalysts and reactors in chemical industries 
[13]. In addition to the aforementioned properties, TPMS-
based structures are highly interconnected. As such, they 
have successfully been used as tissue engineering scaffolds 
and medical implants since they provide enough space for 
efficient transport of nutrients and waste for cell growth [14]. 
More relevant to the present work, the response of TPMS-
based structures to extreme loading conditions justify their 
use as energy and impact absorbers [15]. In particular, unlike 
in truss-based lattice structures, the smooth geometry of 
TPMS avoids stress concentrations and exhibits a more 
ductile response allowing the structure to mitigate extreme 
loading through significant continuous plastic deformation.

The objective of the present research is to develop a mod-
eling framework for architected materials and structures 
focusing on sheet TPMS-based designs and applications 
involving protective structures that can mitigate the effect 
of extreme loading. Sheet TPMS structures are obtained by 
offsetting the TPMS in the surface-normal direction with a 
given thickness value. As such, they can be idealized and 
modeled as shell structures [16]. To handle the geometric 
complexity and advanced nature of the mechanics involved, 
we propose to develop the framework based on Isogeomet-
ric Analysis (IGA) [17, 18]. The key strength of IGA is the 
inherently tight integration between design and physics-
based modeling, which enables efficient simulation-based 
design of TPMS structures for a desired set of performance 
characteristics, before these are handed off to manufacturing 
(typically through additive manufacturing techniques) for 
further experimental testing or for production. Because we 
focus on sheet TPMS structures, we additionally leverage 
recent developments in IGA-based shells [19, 20]. In the 
past decade the IGA shell technology was shown to surpass 
traditional Finite Element (FE)-based [21, 22] approaches 
in terms of per-degree-of-freedom accuracy and robustness 
in modeling large-deformation inelastic behavior with self-
contact. These characteristics of IGA-based shells make 
them ideal candidates for the present application.

The remainder of the manuscript is structured as follows. 
In Sect. 2, we develop an IGA-suitable modeling framework 
for sheet TPMS structures, where the shell surfaces are rep-
resented using Non-Uniform Rational B-Splines (NURBS) 
[23]. A short description of the IGA-based Kirchhoff–Love 
(KL) shell formulation is presented in Sect. 3. Numerical 

simulations of sheet Primitive TPMS-based structures sub-
jected to compressive loading are shown in Sect. 4, includ-
ing mesh refinement studies for unit cells and experimental 
validation for lattices. In Sect. 5, we draw conclusions and 
outline future research directions.

2 � IGA‑based framework for sheet TPMS 
structures

In this section, we present in detail a pipeline for generating 
IGA-suitable geometric models of sheet TPMS structures. 
The resulting models may be used directly in IGA-based 
shell analysis described in the later sections of this paper.

2.1 � TPMS

Originating from soap-film phenomena, minimal surfaces 
minimize their total surface area under some constraints, 
which is mathematically equivalent to having zero mean 
curvature. A TPMS is defined as a minimal surface that 
is periodic in three independent directions. The three-fold 
periodicity is used to generate lattices through the repeti-
tion of unit cells. Furthermore, a TPMS is an isosurface and 
thus can be represented by an implicit equation of the form 
f (x, y, z) = C . Table 1 presents the mathematical descrip-
tions of three common types of TPMS, Primitive (P), Gyroid 
(G) and Diamond (D), where x, y, z are the spatial coordi-
nates, wx , wy , wz are the ratios of 2� and the side lengths of 
the bounding cell in their respective directions, and C on the 
right side of each equation is a level constant that controls 
the pore size. The resulting unit-cell and 4 × 4 × 4-lattice 
shapes are also shown to illustrate the effect of choosing dif-
ferent f(x, y, z). In the present work we will focus on a TPMS 
of Primitive type, which was first described in Schwarz [24] 
and then named by Schoen in his seminal technical note 
[11]. Earlier work on this type of TPMS laid the foundations 
for the modeling procedures of sheet Primitive TPMS-based 
structures, as will be discussed in what follows.

2.2 � Minimal patch

We introduce a concept of a “minimal patch” which is part of 
the Primitive TPMS unit cell that will be represented using 
a single NURBS patch in the IGA model. The full unit cell 
is then constructed by rotation and mirroring operations and 
connecting the minimal patches, represented with NURBS, 
using C0 continuity. In order to identify the minimal patch, 
we first determine the so-called “fundamental patch”. A 
fundamental patch is the smallest part of the unit-cell sur-
face from which the full unit-cell surface can be constructed 
through rotation and mirroring operations.
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Figure 1a–e illustrate a procedure of finding the minimal 
patch. Taking advantage of cubic symmetry [25], the unit 
cell with its bounding cell (see Fig. 1a) is decomposed into 
eight sub-cells as shown in Fig. 1b. Figure 1c zooms on 
a bounding sub-cell facing the reader and shows a piece 
of the surface that is fully contained in it. At this stage, a 
“kaleidoscopic cell” is introduced, which is defined as a con-
vex polyhedron enclosing the fundamental patch via planar 
boundaries [26]. In the case of Primitive TPMS, the kaleido-
scopic cell arizes from further subdivision of the bounding 
sub-cell in Fig. 1c into six quadrirectangular tetrahedra as 
illustrated in Fig. 1d. One such tetrahedron enclosing the 
fundamental patch is shown in Fig. 1e. In principle, the fun-
damental patch may be taken as the minimal patch in order 
to construct the NURBS surface of the unit cell. However, 

in order to minimize the number of NURBS patches and 
C0-continuous interfaces between them, two fundamental 
patches are combined to define the minimal patch as shown 
in Fig. 1f. This construction results in 24, as opposed to 
48, minimal patches per unit cell and a dramatic reduction 
in the number of C0-continuous interfaces, which improves 
efficiency of the computations and quality of the results.

2.3 � Implementation of the modeling framework

Here we outline a framework and its implementation for the 
generation of IGA-suitable models of sheet TPMS struc-
tures. Following the approach in [27], we propose a solu-
tion that tightly integrates a Computer Aided Design (CAD) 
software Rhinoceros® (often abbreviated as “Rhino”) [28] 

Table 1   Three common types 
of TPMS

Type Name Mathematical expression Unit cell 4 × 4 × 4 lattice

P Primitive

fP(x, y, z)

= cos (wxx)

+ cos (wyy)

+ cos (wzz)

= C

G Gyroid

fG(x, y, z)

= sin (wxx) cos (wyy)

+ sin (wyy) cos (wzz)

+ sin (wzz) cos (wxx)

= C

D Diamond

fD(x, y, z)

= cos (wxx) cos (wyy) cos (wzz)

− sin (wxx) sin (wyy) sin (wzz)

= C

Fig. 1   a–e Sequence of 
bounding-cell subdivisions 
leading to the fundamental 
patch; f Minimal patch obtained 
by combining two fundamental 
patches
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and a graphical programming design tool Grasshopper® 
[29]. Rhino provides the modeler with a rich array of func-
tions that are used to generate complex, multi-patch NURBS 
surfaces, while Grasshopper enables visual programming 
in terms of components with predefined functionality and 
wire connections between the components as conduits of 
input and output data. The five main steps of the geometry 
modeling framework are outlined in Fig. 2, while the Grass-
hopper components used in each step and grouped inside 
purple rectangles are shown in Fig. 3. Labels for each of 
the five steps and the Grasshopper components are provided 
in boldface font in the figures. The solid and dashed wires 
between the components indicate input and output relations.

In the first step, a mathematical expression of the Primi-
tive TPMS is explicitly included in the yellow “Panel” 
component, while the component “Center Box” defines the 
bounding cell (see Fig. 3). It is important that the bound-
ing cell is consistent with the arguments of the implicit 
equation for the TPMS surface. The “level constant” 

controlling the pore size and “target count” regulating 
the density of interpolation points are the two remaining 
inputs of the Python script that extracts a grid of interpola-
tion points of the minimal patch. In the present case, the 
half-side lengths are set to 4 mm in each direction, the 
default xy plane is set as the base, and the level constant 
is set to zero. The resulting minimal patch expressed as a 
grid of spatial points is shown in Fig. 4a. The bounding 
cell is also part of the output as it will be used in the later 
steps.

Next, the Python script takes as inputs the interpolation 
points, the bounding cell, and the polynomial degrees in the 
parametric (i.e., u and v) directions and creates a NURBS 
surface of the minimal patch. Figure 4b shows the NURBS 
surface resulting from the grid of interpolation points in 
Fig. 4a. The algorithm titled “NurbsSurface.CreateThrough-
Points”, which is internal to Rhino, is employed to generate 
the NURBS surface from point data. The accuracy of the 
surface fitting algorithm is discussed in Sect. 4.

Fig. 2   Five main steps of the 
IGA-suitable geometry mod-
eling framework

Fig. 3   Grasshopper components and connections implementing the IGA-suitable geometry modeling framework
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A series of mirror operations gathered in the Python 
script of the third step are applied to the NURBS surface of 
the minimal patch, generating 24 untrimmed and conform-
ing patches of the TPMS unit cell. The component “Brep 
Join” merges the patches into a multi-patch NURBS surface, 
which is shown in Fig. 4c. As the next step, a number of unit 
cells is specified in each periodic direction, which is imple-
mented through the component “Box Array”. The output is 
followed by a second “Brep Join” component to merge the 
unit cells into a single surface. Figure 4d shows the resulting 
NURBS model of the sheet TPMS structure assuming four 
unit cells in each direction.

In the final step, the mesh files are formatted consist-
ent with the data structure of the IGA-based KL shell code 
used for the computations. A brief review of the KL shell 
formulation employed is provided in Sect. 3. The compo-
nent “Deconstruct Brep” deconstructs the NURBS model 
into faces, edges and vertices. The faces (i.e., surfaces) and 
edges (i.e., curves) are used as inputs of the Python script. 
Another component “Brep Topology” has two additional 
outputs: surface-to-surface and surface-to-curve adjacency. 
It is important to note that this information is inaccessible 
without the use of two “Brep Join” components in the pre-
vious steps. This adjacency data is needed to construct the 

so-called penalty curves used to carry out the integrals to 
enforce rotational continuity between the adjacent patches 
in the KL shell formulation. The yellow “Panel” compo-
nent points to the folder where two types of mesh files are 
be written, one for the patches and another for the penalty 
coupling curves. The mesh files contain the usual data for 
IGA-based computations including polynomial degrees, 
knot vectors and control points (coordinates and weights). 
The penalty curve mesh files also include the indices of 
two adjacent patches. Figure 4e shows the file layout for 
our 4 × 4 × 4 lattice structure with 1536 mesh files for the 
patches and 2880 mesh files for the penalty coupling curves.

2.4 � Advantages and extensions

The proposed IGA-based model generation framework 
summarized in Fig. 3 presents a tight integration between 
design and simulation and gives the following advantages 
over more traditional FEM-based procedures. First, the 
analysis-suitable models are generated exclusively using the 
Rhino-Grasshopper framework, without the need to bring 
in additional software and to deal with time consuming and 
error prone data formatting. Second, the modeling process is 
flexible enough to fit different targets. For example, a variety 

Fig. 4   Output of each step of 
the IGA-suitable geometry 
modeling framework
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of TPMS types may be specified by simply retyping the 
analytical expression of the implicit function f (x, y, z) = C . 
Third, model revisions may be achieved anytime during the 
geometry construction process, i.e., on the fly, which reflects 
the stability of spline interpolation and robustness of algo-
rithmic implementation. Above all, convenient parametric 
control of the sheet TPMS structure geometry is achieved 
at very little cost.

The framework also enables tight control over NURBS 
mesh design. The number of NURBS control points for a 
minimal patch is controlled by the target count, which is an 
input parameter. The polynomial order of the NURBS mesh 
is also a simple input parameter. As a result, a sequence of 
unit cell models with an increasing number of control points 
per minimal patch is easily constructed using the framework 
developed. This makes it relatively straightforward to carry 
out mesh refinement/convergence studies and to assess the 
effect of mesh resolution on the quantities of interest in 
the simulations for a unit cell, before focusing on the more 
expensive lattice-level calculations.

The framework developed allows several extensions that 
we plan to pursue in the future work. We anticipate the same 
level of parametric control over the architectures of other 
TPMS-based structures, including geometrically and/or 
functionally graded designs as well as lattices with custom-
izable external shapes, all of which are of significance in a 
variety of engineering and science applications [30]. For 
example, Fig. 5 shows a sheet Primitive TPMS lattice cut 
into a cylindrical shape using Boolean operations.

3 � IGA‑based KL shells

The work on IGA-based shells began with two seminal 
contributions, covering the thin or shear-rigid case [19], 
generally referred to as the KL shell, and the thick or shear-
deformable case [20] generally referred to as the Reiss-
ner–Mindlin (RM) shell. In several subsequent contribu-
tions [31–35] it was demonstrated that IGA gave superior 
robustness for large deformations and accuracy per degree 

of freedom (DoF) compared to more traditional FE-based 
approaches. In addition, a KL shell formulation in terms of 
mid-surface displacement DoFs requires higher continuity 
of the approximation spaces, which makes it especially well 
suited for treatment by IGA. (Alternatively, KL shells were 
formulated in terms of subdivision-surface discretizations in 
[36] and, more recently, using meshfree methods in [37].) In 
the present work, we focus on KL shells.

A general-purpose IGA-based KL shell formulation from 
[38] is employed here for the dynamic analysis of sheet 
TPMS structures undergoing large elasto-plastic deforma-
tions. Motivated by the degenerated solid approach [31, 32, 
39, 40], the formulation makes use of the Updated Lagran-
gian form of the 3D solid governing equations where the 
kinematics is subjected to the constraints of the KL shell 
theory. The assumptions of KL shell kinematics give rise to 
a special form of the velocity gradient operator that is central 
to the discrete weak formulation, which uses a conventional 
Galerkin discretization using NURBS and implicit midpoint 
time integration. Constitutive laws are implemented in terms 
of the Green–Naghdi rate of the Cauchy stress [22]. The 
stress update is carried out in the co-rotational frame where 
the rotation tensor is updated using the algorithm of Flana-
gan and Taylor [41]. The zero through-thickness stress con-
dition is enforced iteratively as part of the stress update step. 
A non-local penalty-based formulation from [42] is used to 
handle contact, including self-contact occurring during the 
lattice crushing simulations.

To account for rotational continuity at patch interfaces, 
a penalty method is employed due to its simplicity and effi-
ciency [43, 44]. Alternatively, one may use a bending-strip 
method [45], a blended-shell formulation that selectively 
introduces rotational DoFs at patch interfaces [32], a mortar 
technique [46, 47], or Nitsche’s method [48, 49] for patch 
coupling. We note that the bending-strip technique was the 
first general-purpose methodology for patch coupling that 
enabled the application of KL shells to geometrically-com-
plex real-life structures.

A traditional J2 elasto-plastic constitutive law with iso-
tropic hardening is employed in the present work to model 
the material behavior of stainless steel 316 L (SS316L). 
In [50], standard tension tests were carried out to charac-
terize the mechanical behavior of the SS316L material, 
which, in turn, was used in [51] to fabricate sheet TPMS 
lattice specimens and carry out quasi-static compressive 
loading experimental tests. The results of these tests will 
be used for the purposes of validating our modeling and 
simulation framework. Based on the mechanical char-
acterization data from [50], we set Young’s modulus to 
190 GPa. A nonlinear isotropic hardening law takes the 
form K(ēp) = 𝜎0

y
+ (𝜎∞

y
− 𝜎0

y
)(1 − e−𝛽ēp) + 𝛼ēp , where K 

is the yield stress and ēp is the effective plastic strain. The 
hardening-law parameters employed in the computations are 

Fig. 5   Primitive TPMS lattice 
with a cylindrical external shape
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summarized in Table 2. Poisson’s ratio is set to 0.3, which is 
a typical value for steels. Experimental tests in [51] indicate 
that while the specimens undergo large plastic deformation, 
no significant material failure is present. As such it is felt 
that using a plasticity model without failure is sufficient for 
the present simulations.

4 � Computational results

In this section, the capabilities of the IGA-suitable geometry 
modeling framework coupled with the KL shell solver are 
demonstrated through a series of large-deformation inelas-
tic calculations of sheet TPMS-based lattice structures sub-
jected to quasi-static compression. We first carry out a mesh 
convergence study of a single Primitive TPMS unit cell to 
assess the resolution requirements for the present applica-
tion. We then carry out the calculations of 4 × 4 × 4 lattices. 
We assess the effect of shell thickness on the mechanical 
response of the lattice structures by considering the unit cells 
with relative density of about 20%, 10% and 5%. Given the 
unit cell dimension of 4 mm, these correspond to shell thick-
ness values of 0.282 mm, 0.128 mm and 0.085 mm taken 
from [51]. All the computations employ C1-continuous quad-
ratic NURBS basis functions at the patch level. Uniformly 
reduced 2 × 2 Gaussian quadrature rule is employed in the 
mid-surface for better efficiency and to alleviate possible 

membrane locking [52]. However, shell thickness appears 
to be in the range where membrane locking is not expected 
to have a significant effect. Three quadrature points through 
the thickness direction are employed, which is important to 
capture plasticity arizing from bending-dominated deforma-
tion in the present application.

4.1 � Unit cell computations: mesh refinement study

The 24 patches of a unit cell are labeled as neck, shoulder 
and body patches relative to the load direction as shown in 
Fig. 6a. A mesh refinement study is carried out for a unit 
cell discretized using 9 × 5 , 11 × 6 , 13 × 7 , and 15 × 8 control 
points per minimal patch. Boundary conditions are illus-
trated in Fig. 6b. The top and bottom two rows of control 
points, marked in the figure, are assigned essential boundary 
conditions as follows: The bottom two rows are fixed in all 
three spatial directions; the top two rows are fixed in x- and 
y-directions and a constant downward velocity of 1 m/s is 
applied in the z-direction.

Figure 7 shows the accuracy of the surface approximation 
using a minimal patch with 9 × 5 , 11 × 6 , 13 × 7 , and 15 × 8 
control points. Here, the horizontal axis shows the inverse 
of the normalized mesh size 1∕h̃ and the vertical axis shows 
the L2-norm of the error in the normal vector normalized by 
the square root of the surface area, namely:

The symbol n denotes an exact normal vector calculated 
from the analytical expression of the TPMS and nh denotes 
the normal of the resulting NURBS surface. Despite the fact 

(1)e =

[

∫
A
(n − n

h) ⋅ (n − n
h) dA

]1∕2

(

∫
A
dA

)1∕2
× 100%.

Table 2   Parameters of the nonlinear isotropic hardening law 
employed in the computations

�0
y

�∞
y

� �

450.0 MPa 565.0 MPa 10.7 655.1 MPa

Fig. 6   Patch labels, problem setup and boundary conditions
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that the number of interpolation points matches the number 
of NURBS basis functions for the minimal patch, the rela-
tive error saturates at about 1% . Because the interpolation 
procedure is internal to Rhino, we are not able to pinpoint 
the origins of this error saturation.

Figure  8 shows the nominal stress–strain curves for 
the four meshes and three relative densities. The nominal 
stress is defined as the total reaction force in the z-direction 
summed over the top two rows of control points divided by 
the transverse area of the bounding cell; the nominal strain is 

Fig. 7   Normalized L2-norm of 
the error in the normal vector 
expressed in %

Fig. 8   Nominal stress–strain 
curves for the four meshes and 
three relative densities
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calculated by dividing the compressive displacement by the 
original height of the bounding cell. Taking the case of 20% 
relative density as an example, we illustrate the three typi-
cal regions of the load–displacement curve: elastic region, 
plastic plateau region, and densification region. The elastic 
region, showing essentially linear stress–strain response, is 
very short. Plastic deformation appear shortly after, indi-
cating the start of the plastic plateau region where nominal 
stress stays at a nearly constant value for a wide range of 
strain values. The long plastic plateau manifests the ability 
of the structure to absorb energy through plastic deforma-
tion at constant stress and serves as an important indicator 
in evaluating crashworthiness [53]. The densification region 
that follows is marked by a rise in the nominal stress, which 
is mainly due to self-contact that is activated at high levels 
of compression. For the 10% and 5% relative density cases 
the shape of stress–strain curves is very similar to the 20% 
case. It is also important to note that the stress–strain curves 
are all very similar between the four meshes considered. As 
a result, in what follows, we will use the 9 × 5 mesh of the 
minimal patch for all the lattice-level calculations.

Figure 9a shows the snapshots of equivalent plastic strain 
at different levels of compression for the thickest case using 
the 9 × 5 mesh for the minimal patch. The neck, shoulder and 
body patches play different roles in the compressive defor-
mation process. The neck patches experience little plasticity 
and deformation until after self-contact activates at about 
50% effective strain. Shoulder and body patches plasticise 
essentially from the start of compression. Body patches 
undergo significant bending deformation and develop high 
equivalent plastic strain. The deformation of shoulder and 
body patches governs the shape of the side boundaries dur-
ing compression. The side boundaries start as approximate 

circles. With more deformation they take on an elliptical 
shape and eventually form lobe structures, which were 
experimentally observed in [54] and illustrated in Figure 9b.

4.2 � Experimental validation

The 4 × 4 × 4 lattice computations were set up and carried 
out using a similar combination of clamping and prescribed 
velocity boundary conditions. Figure 10 shows a final con-
figuration of the 20% relative density case. While the overall 
deformation is reasonable, we note that due to the lack of 
top and bottom restraining plates the deformation of the edge 
cells is abnormal. For this reason, we added the end plates 
to the model, which restrict the vertical motion and better 
mimic the experimental setup. The added end plates have 
0.5 mm thickness and are assumed to be rigid. Compres-
sion of the structure is now driven by introducing additional 
contact between the end plates and TPMS core, which is 
also handled as self-contact. The bottom plate is fixed in all 
directions, while the top plate is fixed in x- and y-directions 
and driven by a constant downward velocity of 1 m/s in the 
z-direction. The top and bottom two rows of control points 
of the TPMS core are also fixed in the x- and y-directions 
to mimic friction between the end plates and test specimen. 
Figure 6c illustrates the setup for a single unit cell, which 
is easily extrapolated to the full lattice case. Note that the 
nominal stress is now calculated from the total z-direction 
contact force on the top plate.

The nominal stress–strain response for the relative densi-
ties of 20%, 10% and 5% is plotted in Fig. 11. Comparison 
with the experimental data from [51] is also provided in the 
plots. The computations are carried out until the compres-
sion level reaches 80% nominal strain. The ability of IGA to 

Fig. 9   a Equivalent plastic strain plotted on the deformed configura-
tion at different levels of compression. Here, � = 20% and the mini-
mal patch is discretized using 9 × 5 control points; b Side boundaries 

with near circular shape in the undeformed configuration develop 
lobe structures in compression. Experimental observations are from 
[54]
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handle such high compression levels without divergence of 
the computations is a testament to its accuracy and robust-
ness for this problem class. In all cases the experimental 
results are captured very well in the computations, including 
for all three regions of interest. The computations appear to 
be capturing even small fluctuations in the stress history, 
which are likely tied to the buckling of individual or groups 
of cells. For the 5% case we ran two cases corresponding to 
the exact and perturbed geometry (labeled as “Perturbed” 
on the corresponding plot), which we will discuss in what 
follows.

Figures 12, 13 and 14 show a sequence of deformed con-
figurations of the TPMS lattice corresponding to the relative 
densities of 20%, 10% and 5%, respectively. The experimen-
tal snapshots of the lattice at the same levels of compression 
are also shown for comparison.

In Fig. 12, deformations of each unit cell are accurately 
captured and form a classical “X” shape if one inspects the 
TPMS core from the side view. The “X” feature is most 
prominent at 40% strain. A visual inspection reveals vari-
ous other deformation patterns of unit cells and shows a 
good correspondence between experiment and simulation. 
Symmetry about the vertical and horizontal axes is well pre-
served both in the model and experimental results. The “X” 
shape is eventually destroyed to accommodate higher levels 
of compression.

Figure 13 presents the results for the � = 10% case. We 
again observe a formation of the “X” shape in both the 
experimental and computational results. However, at about 
40% strain, symmetry about the horizontal axis is broken in 
both simulation and experiment. The experiment predicts 
bucking of the cells closer to the top, while the simulation 
predicts bucking of the cells near the bottom plate. These 
symmetry breaking events manifest themselves in the form 
of fluctuations in the stress–strain curves in Figure 11, both 
in the experimental and computational data.

As the shell structures get thinner, they are more prone to 
imperfection-sensitive behavior [55]. This is clearly illustrated 
using the � = 5% case shown in Fig. 14. While the overall 

stress values are predicted well in the computations (see 
Fig. 11), the deformation patterns between the experimental 
and computational results are not in such good agreement. 
Manufacturing flaws or possible asymmetries in the testing 
procedures result in the immediate loss of symmetry in the 
experimental results, where the diagonal cells below the hori-
zontal symmetry line collapse first. The simulation results 
without geometry perturbations do not show this behavior. 
Instead, a symmetric deformation pattern is maintained until 
after 40% strain, with minor asymmetries appearing at higher 
levels of compression.

To trigger the experimentally observed instability, an addi-
tional computation was carried out using a 5% reduction in the 
shell thickness for selected cells in the bottom two rows of the 
lattice structure. The resulting stress–strain curve in Fig. 11 is 
labeled “Perturbed”. Despite the geometry perturbation, the 
changes in the stress–strain curve relative to the unperturbed 
geometry are very minor. However, as may be seen in Fig. 14, 
the deformed configuration at 20% strain now successfully 
captures the experimentally observed collapse mode with the 
bottom two layers of unit cells forming one half of the “X” 
shape and with the top two layers of unit cells undergoing 
relatively little deformation. At higher levels of compressive 
deformation also the top rows of cells eventually collapse.

Figure  15 shows the von Mises stress on the final 
deformed configuration of the thinnest shell case. The stress 
is plotted at the shell mid-surface ( �3 = 0 ) where only the 
membrane strains are active. The stress field is quite smooth 
indicating that there is no issue with membrane locking in 
the simulations. This is not surprizing because, as mentioned 
earlier, membrane locking is not expected to occur at this 
level of shell thickness.

5 � Conclusions and future directions

•	 We introduced the concept of a “minimal patch”, which 
is a key building block of unit cells that comprize sheet 
TPMS-based lattice structures. The minimal patch ena-

Fig. 10   Equivalent plastic strain 
plotted on the final configura-
tion of the 4 × 4 × 4 lattice for 
� = 20% and with no restraining 
plates
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bles automated construction of NURBS-based IGA-suit-
able models of these structures.

•	 The IGA-suitable geometry modeling framework is 
implemented using a combination of CAD software 
Rhino and a graphical programming design tool Grass-
hopper. This approach is flexible, intuitive, minimally 
invasive and enables the user to establish parametric 
control over the geometry and mesh resolution of the 
resulting structural models.

•	 IGA KL shells are shown to be a robust and accurate 
computational methodology enabling the assessment 

of load mitigation performance of sheet TPMS-based 
structures. The computational models showed remark-
able accuracy as measured through comparisons with 
experimental data for both the prediction of stress–strain 
responses and the capturing of failure modes of these 
lattice structures.

•	 We note that all the computations ran without any con-
vergence issues, reaching the desired levels of lattice 
compression. This level of robustness is a highly desir-
able attribute for any physics-based simulation frame-
work employed on a large scale.

Fig. 11   Nominal stress–strain 
response of the 4 × 4 × 4 lattices 
with different relative densi-
ties subjected to compressive 
loading
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•	 There are several extensions and improvements that 
would benefit the proposed framework. For example, 
using T-Splines [56, 57] or other unstructured spline 
technology [58–60] will further increase the efficiency 
of both the geometry modeling and simulation parts of 
the framework. Including geometrically and/or function-
ally graded designs as well as lattices with customizable 

external shapes will be of paramount importance for real-
life applications. Here, ideas developed in [61] may be 
employed.

•	 Although the simulations were carried out in a dynamic 
environment, these were done at relatively slow speeds 
for consistency with the quasi-static experimental tests 
carried out in [51]. However, it is of interest to assess the 

Fig. 12   Sequence of deformed configurations of the 4 × 4 × 4 TPMS lattice corresponding to the relative density of 20%. Comparison of experi-
mental and simulation results. Simulation results show equivalent plastic strain distribution

Fig. 13   Sequence of deformed configurations of the 4 × 4 × 4 TPMS lattice corresponding to the relative density of 10%. Comparison of experi-
mental and simulation results. Simulation results show equivalent plastic strain distribution
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behavior of sheet TPMS-based structures at high strain 
rates in order to assess their ability to mitigate damage 
due to impact and shock loading. (See, e.g., [62] for 
recent experimental work on truss-based lattice struc-
tures under high strain-rate loading.)
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