
Vol.:(0123456789)

Engineering with Computers
https://doi.org/10.1007/s00366-024-01951-x

ORIGINAL ARTICLE

A parallel acceleration GPU algorithm for large deformation of thin
shell structures based on peridynamics

Zheng Guojun1 · Li Runjin1 · Shen Guozhe1 · Zhang Xiangkui2

Received: 7 December 2023 / Accepted: 25 January 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Loaded shell structures may deform, rotate, and crack, leading to fracture. The traditional finite element method describes
material internal forces through differential equations, posing challenges in handling discontinuities and complicating fracture
problem resolution. Peridynamics (PD), employing integral equations, presents advantages for fracture analysis. However,
as a non-local theory, PD requires discretizing materials into nodes and establishing interactions through bonds, leading to
reduce computational efficiency. This study introduces a GPU-based parallel PD algorithm for large deformation problems
in shell structures within the compute unified device architecture (CUDA) framework. The algorithm incorporates element
mapping and bond mapping for high parallelism. The algorithm optimizes data structures and GPU memory usage for effi-
cient parallel computing. The parallel computing capabilities of GPU expedite crack analysis simulations, greatly reducing
the time required to address large deformation problems. Experimental tests confirm the algorithm’s accuracy, efficiency,
and value for engineering applications, demonstrating its potential to advance fracture analysis in shell structures.

Keywords Peridynamics · CUDA · Parallel computation · Crack analysis

1 Introduction

Shell structures are highly valued for their lightweight
nature, streamlined manufacturing processes, and robust
compressive strength, rendering them indispensable in
various industries such as automotive, marine, and aero-
space [1, 2]. However, despite these advantages, real-world

applications often expose these structures to failure due
to noticeable displacement, significant rotation, and con-
strained elastic strain behaviors. Consequently, there is an
urgent need for reliable numerical simulation methods that
can effectively analyze substantial deformations and frac-
tures in thin plate bending. Nevertheless, the computational
time required to address large deformation problems in plate
and shell structures is excessively long. Therefore, expedit-
ing the solution algorithm to efficiently handle such issues
holds practical engineering significance.

Numerical simulation studies on large deformations of
plate and shell structures have traditionally relied on classi-
cal continuous mechanics (CCM). This theory utilizes par-
tial differential equations to represent material deformation,
which presents challenges when simulating crack growth
through numerical methods based on CCM. Within the finite
element method (FEM) framework, material properties are
applicable only when the analyzed model exhibits a spatially
continuous and twice differentiable displacement domain.
Consequently, defining spatial derivatives at discontinuities
becomes impossible, necessitating additional techniques
for constructing fracture models. Although meshless tech-
nology and extended FEM (XFEM) can simulate cracks
within the CCM framework, approximating discontinuous

Li Runjin, Shen Guozhe, and Zhang Xiangkui have contributed
equally to this work.

 * Zhang Xiangkui
 zhangxk@dlut.edu.cn

 Zheng Guojun
 gj_zheng@dlut.edu.cn

 Li Runjin
 lrj199803@mail.dlut.edu.cn

 Shen Guozhe
 sgz@dlut.edu.cn

1 School of Mechanics and Aerospace Engineering, Dalian
University of Technology, Dalian 116024, Liaoning, China

2 Industrial Equipment Monitoring and Control Engineering
Research Center of Ministry of Education and the School
of Control Science and Engineering, Dalian University
of Technology, Dalian, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-024-01951-x&domain=pdf

 Engineering with Computers

displacement domains requires incorporating auxiliary con-
ditions. Furthermore, these approaches still lack automatic
simulation of deformation from loading to damage [3, 4].

In this context, Silling introduced the peridynamic (PD)
theory [5], a non-local theory. Unlike the FEM, the PD
model characterizes the material behavior of a node within
the structure through an integral equation that describes the
displacement in its surroundings. By avoiding spatial deriv-
atives, PD theory maintains its applicability even across
discontinuity surfaces. Consequently, it is well-suited for
scenarios involving discontinuities within the displacement
domain, such as crack initiation, propagation, and prolifera-
tion [6, 7].

According to the PD theory, nodes interact with their
adjacent counterparts through bonds [8]. In computational
simulations, materials are discretized into nodes that encap-
sulate information such as coordinates, volume, and density.
Moreover, within the PD framework, relationships between
nodes and their neighboring counterparts are established
[9]. When numerical methods are employed for solving
these computations, a smaller incremental step size is often
required to ensure numerical stability and precision, result-
ing in a significant number of iterative steps. Compared to
FEMs, PD theory entails higher computational and storage
costs, posing challenges for addressing large-scale prob-
lems. Simulating large-scale problems using PD requires
substantial computing resources. Therefore, minimizing the
computational expenses associated with PD models is cru-
cial for promoting their widespread application and further
advancement.

Enhancing the efficiency of solving large-scale PD prob-
lems has consistently remained a primary focal point for
researchers. Greta proposed a hybrid discretization and
multi-grid method within the multi-adaptive framework
[10], which enables variable-size grid characteristics in
PD models by coupling grids of different sizes. Fine grids
are exclusively utilized in critical regions and boundaries,
while coarser grids are employed for discretization purposes
in other areas. This approach allows for tracking critical
regions and updating grid coupling schemes based on time
evolution, thereby effectively enhancing the efficiency of
solving PD models. Arman et al. introduced a hybrid mesh-
less discretization method within an adaptive framework
[11]. It adopts a standard scheme with higher computational
costs but greater accuracy in local critical regions of PD
models, while employing an efficient meshless scheme in
other areas. The meshless region is dynamically switched
to the standard scheme region according to computational
requirements. Consequently, the portion discretized by the
standard scheme evolves over time and follows the crack/
damage form, ultimately resulting in an efficiently optimized
pure PD model that maximizes computing resources.

The autonomous nature of PD element data enables each
PD problem to be processed independently by a process-
ing element, eliminating the need for data exchange with
other PD elements. According to Amdahl’s law [12], the effi-
ciency of algorithm parallelization increases with a higher
proportion of content that can be parallelized in the overall
algorithm “f” and a larger number of processing cores “n”.
The maximum parallel acceleration ratio can be achieved
as the value of “f” approaches 1 and “n” tends to infinity,
leading to optimal efficiency in parallel acceleration. When
utilized a fixed value for “n” on the same computing device,
a larger “f” value will result in enhanced parallel accelera-
tion efficiency. In the context of solving PD problems, PD
element calculation serves as the core of the algorithm and
demonstrates data independence, rendering it highly suitable
for parallel processing. Consequently, when addressing PD
problems, efficient parallel solving can be achieved by fully
exploiting data independence.

With the rapid advancement of computing technology,
significant improvements in central processing unit (CPU)
performance have been observed over the past few decades.
However, the bottleneck of single-core CPU performance
and the emergence of multi-core CPUs, along with power-
ful parallel computing technologies, have become promi-
nent research focuses. In this context, graphics processing
units (GPUs) have garnered considerable attention due to
their impressive computational power and high memory
bandwidth. The ability of GPUs to process extensive
amounts of data and computing tasks simultaneously con-
tributes to enhanced computing efficiency and speed. This
parallel computing power arises from hundreds of process-
ing units within GPUs that enable concurrent execution
of multiple tasks. Consequently, GPUs have demonstrated
exceptional performance in scientific computing. Com-
pute unified device architecture (CUDA), introduced by
NVIDIA in 2007, is a parallel computing architecture that
empowers developers to harness formidable GPU comput-
ing power for general-purpose computation. The availabil-
ity of CUDA facilitates utilization of parallel computing
capabilities leading to substantially improved computa-
tional efficiency when tackling complex mathematical
models and algorithms.

CUDA has been effectively employed in the field of com-
putational mechanics, demonstrating its practicality and
usefulness. Notably, Liu utilized CUDA to simulate fluid
dynamic problems in a 2D square column [13]. Furthermore,
Wang successfully incorporated CUDA-based parallel com-
puting in the calculation of three-dimensional elastic static
boundary elements [14]. These studies illustrate the practical
application of CUDA in enhancing computations within the
domain of computational mechanics.

Considering the autonomous nature of PD element data
and the absence of data exchange requirements, leveraging

Engineering with Computers

the parallel computing capabilities of GPUs enables the
decomposition of intricate computational tasks into multiple
independent subtasks based on elements. The utilization of
the abundant processing elements within GPUs facilitates
efficient execution of parallel processing. The primary aim
of this study is to investigate tailored parallel solutions for
addressing large-scale PD deformation problems on the GPU
platform.

Considering the distinctive modeling attributes of the
PD model, we have developed a parallel computing method
within the CUDA framework to effectively handle extensive
deformations in PD plate and shell structures. This approach
leverages the architectural advantages of GPUs and assigns
each element's computation to a separate thread on the GPU,
enabling efficient and simultaneous multi-threaded parallel
computing. To validate our proposed algorithm, we con-
ducted a comparative analysis against results obtained from
a CPU-based algorithm. Furthermore, we evaluated the
acceleration performance of our algorithm by comparing
its resolution time and acceleration ratio with those achieved
by the CPU-based method. The experimental findings une-
quivocally demonstrate that leveraging parallel resolution
on GPU platforms significantly enhances computational
efficiency for large-scale PD deformation problems. Conse-
quently, this strategy emerges as a viable solution for con-
ducting extensive PD simulations.

2 A brief overview of peridynamic theory

As shown in Fig. 1, the local coordinate system of the micro-
beam bond is denoted as o-xyz, and node xi and its adjacent
node xj are located in the PD domain H(xi) with a radius of
δ. The displacements of any node on the bond centerline are
defined as u�

1
(x),u�

2
(x) , and u�

3
(x).

The generalized strain vector at any position on the
microbeam can be defined as

where �x,�y,�z and �x represent the axial strain, y and z direc-
tion curvature, and torsion angle per element length of the
microbeam, respectively.

The corresponding generalized stress increment can be
expressed as

where FPD
x

 , MPD
y

 , MPD
z

 , and TPD
x

 are the axial stress, y-axis
and z-axis bending moment, and element length torque of
the microbeam key, respectively, and �PD is the micromodu-
lus parameter matrix.

The above-generalized strain is decomposed into an
incremental decomposition, and the displacement com-
ponent of any node on the microbeam key at the time t + �t
can be defined as

where u′
1
,u′

2
,u′

3
 , and �′

1
 are the displacement components at

the time t , and �u′
1
,�u′

2
,�u′

3
 , and ��′

1
 are the incremental dis-

placement components from t to t + �t.
The generalized strain at any position on the microbeam

bond at the time t + �t is

where � is the generalized strain of the microbeam bond at
the time t .� � is the increment of generalized strain from t
to t + �t , which can be defined as

where ��x , ��y , ��z and ��x respectively represent the
axial strain, y and z direction curvature, and torsion angle
increment per element length of the microbeam bond,
respectively.

(1)� =
[
�x �y �z �x

]T
,

(2)
�x =

�u�
1

�x
+

1

2

(
�u�

1

�x

)2

+
1

2

(
�u�

2

�x

)2

+
1

2

(
�u�

3

�x

)2

,

�y=
�2u�

3

�x2
, �z=

�2u�
2

�x2
,�x =

���
1

�x
.

(3)�PD =
{
FPD
x

MPD
y

MPD
z

TPD
x

}T
= �PD�,

(4)�PD =

⎡⎢⎢⎢⎣

cax 0 0 0

0 cby 0 0

0 0 cbz 0

0 0 0 ctor

⎤⎥⎥⎥⎦
.

(5)
u�1 = u�

1
+ �u�

1
, u�2 = u�

2
+ �u�

2
, u�3 = u�

3
+ �u�

3
, ��1 = ��

1
+ ���

1
.

(6)� = � + ��,

(7)�� =
[
��x ��y ��z ��x

]T
,

Fig. 1 PD shell model

 Engineering with Computers

The generalized strain increment in the above equa-
tion can also be divided into linear and nonlinear strain
increments.

where

The corresponding generalized stress increment can be
expressed as

where �FPD
x

 , �MPD
y

 , �MPD
z

 , and �TPD
x

 are the axial stress,
bending moment in the y-axis and z-axis directions, and
torque increment per element length of the microbeam key,
respectively.

In CCM theory, according to the incremental virtual work
equation, the increase of virtual strain energy density in a
small incremental step is

where t represents the element thickness.
Similarly, in the framework of PD theory, the increase of

virtual strain energy density in the same incremental step is

(8)

��x =
��u�

1

�x
+

1

2

(
��u�

1

�x

)2

+
1

2

(
��u�

2

�x

)2

+
1

2

(
��u�

3

�x

)2

,

��y=
�2�u�

3

�x2
,��z=

�2�u�
2

�x2
,��x =

����
1

�x
.

(9)�� = ��L + ��N ,

(10)

��L =
{

��u�
1

�x

�2�u�
3

�x2

�2�u�
2

�x2

����
1

�x

}T

,

��N =

{
1

2

(
��u�

1

�x

)2

+
1

2

(
��u�

2

�x

)2

+
1

2

(
��u�

3

�x

)2

0 0 0

}T

.

(11)��PD =
{
�FPD

x
�MPD

y
�MPD

z
�TPD

x

}T
= �PD��,

(12)

�WL
CCM

(
xi
)
=

1

t
�
(
��T

L

)
�
(
��L

)
,

�WR
CCM

(
xi
)
=

1

t
�
(
��T

L

)
� =

1

t
�
(
��T

L

) n∑
k=0

�(��)k,

�WS
CCM

(
xi
)
=

1

t
�
(
��T

N

)
� =

1

t
�
(
��T

N

) n∑
k=0

�(��)k,

�WN
CCM

(
xi
)
=

1

t

{
�
(
��T

L

)
�
(
��N

)
+ �

(
��T

N

)
�
(
��L

)

+�
(
��T

N

)
�
(
��N

)
}

.

The factor of ½ in Eq. 13 can be attributed to the fact
that each bond endpoint of a bond “owns” only half the
energy in the bond [15].

The generalized strain increment transformation matrix
�� of microbeam keys and nonlinear shell elements is

where

where χ is the shape parameter, and α represents the angle
between the coordinate system of microbeam keys and that
of elements.

Let the virtual strain energy density increment under
the PD theory in Eq. (13) be equal to that under the CCM
theory in Eq. (12), and the PD micromodulus parameter
can be obtained as follows:

The adaptive mesh refinement method dynamically
adjusts the mesh size based on the solution accuracy
requirements, resulting in fewer mesh elements and saving
computational resources. This is particularly crucial for
large-scale computing problems as it significantly reduces
computation time and memory requirements, thereby
improving both computational efficiency and solution

(13)

�WL
PD

�
xi
�
=

t

2
�
�
��T

L

�
�PD

�
��L

�
∫

2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WR
PD

�
xi
�
=

t

2
�
�
��T

L

� n�
k=0

�PD(��)k ∫
2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WS
PD

�
xi
�
=

t

2
�
�
��T

N

� n�
k=0

�PD(��)k ∫
2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WN
PD

�
xi
�
=

t

2

⎧⎪⎨⎪⎩

�
�
��T

L

�
�PD

�
��N

�
+

�
�
��T

N

�
�PD

�
��L

�
+

�
�
��T

N

�
�PD

�
��N

�
⎫⎪⎬⎪⎭
∫

2�

0 ∫
�

0 ∫
1

0

�2d�d�d�.

(14)�� = ����,

(15)

�� =

⎡
⎢⎢⎢⎢⎢⎣

�p1 �

� �b1

�p1 �

� �b2

⎤
⎥⎥⎥⎥⎥⎦

.

�p1 =
�
(cos �)2 (sin �)2 sin � cos �

�

�b1 =
�
(cos �)2 (sin �)2 sin � cos �

�

�p2 =
6(1 − 2�)

�

�
− sin � cos � sin � cos � (cos �)2 −

1

2

�

�b2 =
�
− sin � cos � sin � cos � (cos �)2 −

1

2

�

(16)
cax =

6E

�t�3(1 − v)
, cby =

Et

2��3(1 − v)
,

cbz =
E(1 − 3v)

6�t�(1 − v2)
, ctor =

Et(1 − 3v)

2��3(1 − v2)
.

Engineering with Computers

accuracy [16]. By coupling the flexible meshless method
with PD, the proposed method effectively handles non-
local effects in complex geometries, large deformations, or
dynamic boundary conditions [17]. Lubinea introduced a
deformation strategy that combines non-local theory with
local continuous medium mechanics to ensure both accu-
racy and computational efficiency [18]. In this study, we
adopt Lubineau’s coupling strategy due to its relative sim-
plicity of implementation while also planning to explore
other methods in future research.

As shown in Fig. 2, the PD-CCM coupling model is com-
posed of three subdomains: the pure CCM model Ω1 , the
pure PD model Ω2 , and the coupling domain Ωm.

For any node xi on the shell neutral layer, the virtual strain
energy density increment at node xi when it is located in the
pure CCM model domain Ω1 is

The virtual strain energy density increment at node xi
when it is located in the pure PD model domain Ω2 is

(17)

�WCCM(xi) =
1

2
�
(
��T

)
�(��)

= �WL

CCM
(xi) + �WR

CCM
(xi) + �WS

CCM
(xi) + �WN

CCM
(xi).

(18)
�WPD

(
xi

)
=

t

4 ∫ℏ(xi) ∫
xj

xi

�
(
��T

)
�PD(��)dxdVxj

= �WL
PD

(xi) + �WR
PD

(xi) + �WS
PD

(xi) + �WN
PD

(xi).

The virtual strain energy density increment at node xi
when it is located in the coupling domain Ωm is

where �(x) is the coupling scalar function, and �WL
Hb

(
xi
)
 ,

�WR
Hb

(
xi
)
 , �WS

Hb

(
xi
)
 , and �WN

Hb

(
xi
)
 are respectively repre-

sented as

Due to the equality of the virtual strain energy density
increment at node xi,

Substituting Eq. (12) into Eq. (17), and then substitut-
ing Eqs. (17) and (20) into Eq. (21),

Considering the coupling function �(x) as a linear scalar
function, Eq. (22) can be simplified as

For the coupling domain Ωm , the material parameters
for different regions can be obtained according to the
principle of strain energy density conservation. With the
material parameters delineated for various regions, the
stiffness matrix and structural reaction vector of different
regions can be derived. Subsequently, the stiffness matrix
and structural reaction vector of the entire structure can
be determined. Finally, the global equilibrium equation for
each incremental step can be systematically established.

(19)

�WHb

(
xi

)
=

1

2
�
(
��T

)
�Hb(��)

+
t

4 ∫ℏ(xi)
∫

xj

xi

�(x)�
(
��T

)
�PD(��)dxdVxj

= �WL
Hb

(
xi

)
+ �WR

Hb

(
xi

)
+ �WS

Hb

(
xi

)
+ �WN

Hb

(
xi

)
.

(20)

�WL

Hb

�
xi

�
=
1

t
�
�
��T

L

�
�Hb

�
��L

�
+ ∫

ℏ(xi)

1

2 ∫
xj

xi

�(x)�
�
��T

L

�
�PD

�
��L

�
dxdVxj

,

�WR

Hb

�
xi

�
=
1

t
�
�
��T

L

� n�
k=0

�Hb(��)k + ∫
ℏ(xi)

1

2 ∫
xj

xi

�(x)�
�
��T

L

�
�PD

n�
k=0

(��)kdxdVxj
,

�WS

Hb

�
xi

�
=
1

t
�
�
��T

N

� n�
k=0

�Hb(��)k + ∫
ℏ(xi)

1

2 ∫
xj

xi

�(x)�
�
��T

N

�
�PD

n�
k=0

(��)kdxdVxj
,

�WN

Hb

�
xi

�
=
1

t

⎡⎢⎢⎢⎣

�
�
��T

L

�
�Hb

�
��N

�
+

�
�
��T

N

�
�Hb

�
��L

�
+

�
�
��T

N

�
�Hb

�
��N

�

⎤⎥⎥⎥⎦
+ ∫

ℏ(xi)

1

2 ∫
xj

xi

�(x)

⎡⎢⎢⎢⎣

�
�
��T

L

�
�PD

�
��N

�
+

�
�
��T

N

�
�PD

�
��L

�
+

�
�
��T

N

�
�PD

�
��N

�

⎤⎥⎥⎥⎦
dxdVxj

.

(21)�WCCM(xi) = �WPD

(
xi
)
= �WHb

(
xi
)
.

(22)�Hb = � −
t

2 ∫ℏ(xi)
∫

xj

xi

�(x)�T
�
�PD��dxdVxj

.

(23)�Hb = � −
t

2 ∫ℏ(xi)
�
�
(
xi
)
+ �

(
xj
)

2
�T
�
�PD��dVxj

.

Fig. 2 Coupling model of the PD-CCM shell and coupling scalar
function

 Engineering with Computers

In this study, the fracture criterion based on the idea of
strain energy is used to simulate the damage and fracture
of shell structures. As shown in Fig. 3, in the 2D case, the
fracture energy can be determined by the energy released
by all bonds on the fracture surface of the element frac-
ture. The integral equation of the fracture energy Gc under
the 2D condition can then be defined as

where t is the thickness of the shell,Δ�c is the critical
micropotential energy of each microbeam bond in each
incremental step, expressed as

Assuming that uniform deformation occurs in the PD
domain of node xi , then (25) can be simplified as

By substituting Eq. (26) into the fracture energy integral
Eq. (24), the following can be obtained:

Finally, the energy fracture criterion of microbeam bonds
[19] can be expressed as

(24)Gc = 2t

n∑
k=1

∫
�

0 ∫
�

z ∫
cos−1 (z∕ �)

0

��c�d�d�dz.

(25)��c =
1

2 ∫
xj

xi

��T�PD��dx + ∫
xj

xi

��T�PDdx,

(26)��c =
1

2
��T�PD��� + ��T�PD�.

(27)Gc =
t�4

2

n∑
k=1

(
1

2
��T�PD�� + ��T�PD

)
.

(28)�bond =

n∑
k=1

(
1

2
��T�PD�� + ��T�PD

)
=

2Gc

t�4
.

The motion equation of node x can be formulated within
the framework of PD theory

where �(�i) represents the mass density at node �i,�̈�(𝐱i, t)
denotes the acceleration vector at node � during time t ,H�i

denotes the neighborhood of node �i , which refers to the set
comprising all nodes that interact with it.�ij and �ji are force
density functions governing node interactions dependent on
relative displacement and position,dV�j

 is the volume inte-
gral over all nodes in the neighborhood, and �(�i, t) refers to
external force density acting upon node �i.

The volume V�i
 of material node �i is multiplied on both

sides of Eq. (29),

where �(�i) is the mass matrix of the material node,�(�i, t)
and �(�i, t) are the external force and internal force vectors
of the material node �i respectively, and there is

The overall equation of motion for the object can be derived
by aggregating the equations of motion for all constituent
particles.

where � is the overall mass matrix of all material nodes,�̈�(t)
is the overall acceleration vector of all material nodes at time
t ,�(t) and �(t) are the overall external force and internal
force vectors at time t , respectively.

To solve the total motion Eq. (32) of the object, the time
course is discretized into multiple discrete time points, as
depicted in Fig. 4. Each pair of consecutive time points is
separated by a specific time step, where t − �tn−1,t , and t + �t
correspond to times n − 1,n , and n + 1 , respectively. The time
step from n − 1 to n is denoted as �tn−1 and referred to as the

(29)�(𝐱i)�̈�(𝐱i, t) = ∫H𝐱i

[𝐟ij − 𝐟ji]dV𝐱j
+ 𝐛(𝐱i, t),

(30)𝐦(𝐱i)�̈�(𝐱i, t) = 𝐩(𝐱i, t) − 𝐫(𝐱i, t),

(31)

�(�i, t) = V�i
�(�i, t),

�(�i, t) = −V�i ∫H�i

[�ij − �ji]dV�j
.

(32)𝐌�̈�(t) = 𝐏(t) − 𝐑(t),

Fig. 3 Schematic diagram of the fracture surface

Fig. 4 Time node after discretization

Engineering with Computers

‘ n − 1 ’ incremental step; similarly, the time step from n to
n + 1 is denoted as �tn and termed the ‘ n ’ incremental step.

For the static calculation example presented in this paper,
we have employed the implicit solving algorithm. By sub-
stituting �̈�(t) = 𝟎 into Eq. (32), we obtain the discretized
equation.

The incremental method, similar to the traditional FEM, is
employed for solving the aforementioned nonlinear equation
group. The equilibrium equation of the nth incremental step
can be derived as follows:

where �L,�S , and �N are respectively derived from the lin-
ear stiffness matrix, initial stress matrix, and nonlinear stiff-
ness matrix for the three zones; m represents the total num-
ber of elements; �e denotes the conversion matrix between
the local coordinate system and global coordinate system of
each plate element; and �e is the element selection matrix
composed of 0 s and 1 s for efficient mapping of global dis-
placement to element displacement.

The linearization method is commonly employed for itera-
tive solutions of the aforementioned nonlinear equations.
In this study, we adopt an incremental iteration approach to
achieve linearization solving. Specifically, during each small
incremental step, the linearization process can be effectively
accomplished by disregarding the influence of geometric non-
linear matrix.

The large displacement stiffness matrix �N should be
excluded when solving the nonlinear system (34).

The iterative method is employed to solve (34), which can
be expressed in the form of iteration as follows:

where superscript k denotes the kth iteration step in the cur-
rent incremental step, and ��k

n
 denotes the incremental dis-

placement of the kth iteration step in the current incremental
step. If the increment of external force in the nth incremental
step is ��n and remains unchanged in the iteration solution
of the incremental step, then:

When the nth incremental step starts to iterate, the initial
value is defined as

(33)�n − �n = �.

(34)

���n = �n+1 − �n

� =

m∑
e=1

(�e)T(�e)T(�L +�S +�N)�
e�e

(35)�N = �

(36)�k
n
��

k

n
= �k

n
− �k

n

(37)�k
n
= �n+1 = �n + ��n

The structural reaction vector, linear stiffness matrix and
initial stress matrix after k iterations are as follows:

where �L is the shape matrix, describing the relationship
between ��L and ��k

n
,� is the material parameter matrix,a

is the element area,�n is the stress-related matrix, and � is
the shape matrix related to nonlinear terms.

By substituting Eqs. (37) and (39) into Eq. (36), the incre-
mental displacement can be determined at the current itera-
tion step:

The increments of generalized strain and generalized
stress at any position within the element are as follows:

According to the linearization assumption in the incre-
mental step, the kth iteration step allows for accumulation of
generalized stress through implementation of the co-rotation
method [20]

According to the results of displacement and stress, assess
the convergence. If not achieved, substitute Eq. (42) into
Eq. (39) and continue iterative calculation using Eq. (40)
until convergence is reached. Once converged, update the
displacement and stress values and proceed with calculating
the next incremental step.

where l is the number of convergence steps.
In this paper, we employ the explicit central difference

method to calculate and solve the dynamic crack propagation

(38)�0= �, ��n= �, ��0
n
= �, �0

n
= �n, �

0
n
= �n+1, �

0
n
= �n.

(39)

(�)k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T
L
�k−1
n

da

)e

�e,

(�L)
k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T
L
��Lda

)e

�e�e,

(�S)
k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T�k−1
n

�da

)e

�e�e.

(40)
��

k

n
=
(
�k

n

)−1
(�k

n
− �k

n
)

��k
n
= ��k−1

n
+ ��

k

n

(41)
��k

n
= (�L + �N)(��

k
n
)e

��k
n
= ���k

n

(42)�k
n
= �0

n
+ ��k

n

(43)

�n+1 = �n + ��n = �n +

l∑
k=0

��k
n

�n+1 = �n + ��n = �n +

l∑
k=0

��k
n

 Engineering with Computers

problem. We perform time discretization of Eq. (31) and
obtain the total motion equation as follows:

where n represents the state at time t , and the states at other
times are depicted in Fig. 4. The physical quantities before
and at time t are known. To streamline the derivation pro-
cess, we set the time step as �tn−1 = �tn = �t and express
the velocity and acceleration in the difference scheme as
follows:

Reformulate Eq. (44) by substituting Eq. (45), enabling the
solution for

the displacement at time t + �tn can be obtained

the increment in displacement is as follows:

By substituting Eq. (48) into Eq. (41) and performing a
single calculation step, the desired result can be obtained

Subsequently, Eq. (42) is utilized to derive the accumula-
tion value as follows:

by substituting �
n+1

 into the first equation of Eq. (39), we
can obtain the total structural reaction vector �n+1 at the next
moment, which can then be substituted into Eq. (46) for a
new iteration round.

At the initial moment, i.e., when n = 0, it is typically
assumed that �0 = �̇0 = � , as depicted in Eq. (45).

The substitution of Eq. (51) into Eq. (46) yields.

(44)𝐌�̈�n = 𝐏n+1 − 𝐑n,

(45)
�̇�n =

�̇�
n+

1

2

+ �̇�
n−

1

2

2
,

�̈�n =

�̇�
n+

1

2

− �̇�
n−

1

2

𝛥t
.

(46)�̇
n+

1

2

= �̇
n−

1

2

+�−1
(
�n+1 − �n

)
𝛥t,

(47)�n+1 = �n + �̇
n+

1

2

𝛥t,

(48)𝛥�n = �n+1 − �n = �̇
n+

1

2

𝛥t.

(49)
��

n
= (�L + �N)(��n)

e = (�L + �N)�
e��n,

��
n
= ���

n
.

(50)�
n+1

= �
n
+ ��

n
,

(51)�̇
−
1

2

= −�̇ 1

2

.

(52)�̇ 1

2

=
𝛥t

2
�−1�0.

Thus,

The subsequent moment, starting from n ≥ 1 , involves
repeating the iterative steps (46) and (47). During this
process, it is essential to continuously update the node
displacement and broken key information. In case of a
broken key, it should be removed and the internal force of
the node recalculated until meeting the requirements of
the iterative step.

3 Numerical implementation of PD
algorithm in CUDA

In the CUDA programming model, the CPU assumes the
role of the ‘host,’ while the GPU is referred to as the
‘device.’ The collaborative functioning between the host
and device is orchestrated in a manner where primary
execution responsibility lies with the host for application
code. In scenarios involving computationally intensive
tasks, these tasks are delegated by the host to the device
[21]. Termed as ‘kernels,’ these tasks are concurrently
executed by thousands of threads. These threads are
organized into thread blocks, which further form a grid
structure. This hierarchical arrangement enables CUDA to
efficiently manage and schedule a large number of paral-
lel threads.

In the PD theory, nodes and elements constitute the
fundamental framework of the model, serving as essential
entities for calculation and analysis. Nodes typically repre-
sent discrete particles within the material, while elements
connect these nodes to establish a network for transmitting
forces and information. A notable characteristic of this
theoretical framework lies in the independence between
data associated with nodes and elements. This independ-
ence is not only evident in their respective attributes (such
as position, displacement, and force) but also manifests
during their calculation process. Specifically, each node
or element can operate autonomously without waiting
for or relying on results from other components. Such an
approach significantly reduces computational complexity
and dependence while enhancing computational efficiency.
Moreover, it endows the model with greater flexibility and
reliability when addressing complex problems.

Leveraging this attribute, the algorithm assigns each
thread to an individual element or node, thereby facilitat-
ing parallel acceleration through the GPU component of
the CUDA architecture. Given that each thread can inde-
pendently perform computations, a significant number of

(53)�1 = �̇ 1

2

𝛥t.

Engineering with Computers

threads can be concurrently scheduled for execution on the
GPU, resulting in efficient GPU acceleration. The numeri-
cal solutions are illustrated in Figs. 5 and 6.

3.1 Data transmission optimization

The transfer of data poses a notable bottleneck in GPU paral-
lel computing. To optimize this process, various methods,
such as asynchronous transfer (e.g., cudamecpyAsync) and
CUDA stream operations [22], have been implemented.
However, these techniques do not completely eradicate the
intrinsic challenge of multiple data transfers, and the opti-
mization effectiveness may diminish as the iteration count
grows excessively large.

When solving PD problems, it is crucial to regularly
update the data generated by calculations. The iterative com-
putation process involved in transferring all data back to the
CPU is highly time-consuming. However, it is unnecessary
to transfer all data; only the final results for write opera-
tions need to be transmitted. Therefore, a highly efficient
strategy entails performing computations on the GPU side
and transmitting solely the final results to the CPU. This

approach significantly reduces data transfer frequency and
enhances parallel computation efficiency. Therefore, we opt
to store and update these data directly on the GPU, neces-
sitating careful consideration of the type of GPU memory
employed. The GPU’s memory architecture encompasses
various types such as global memory, registers, local mem-
ory, shared memory, constant memory and texture memory;
each possesses unique roles and characteristics. Although
registers offer fast access speeds, their capacity is limited
and closely tied to thread lifecycles; thus they are unsuit-
able for long-term data storage. Local memory boasts faster
access speeds than global memory but has a relatively small
capacity and a lifecycle confined to thread execution periods
and thread block synchronization—making it ineffective in
mitigating performance losses caused by multiple data trans-
fers. Constant memory offers certain advantages in terms
of availability but suffers from limited capacity while only
supporting read operations—rendering it inadequate for our
specific application requirements. Texture memory excels
at providing efficient access modes but entails complexity
in setup and usage along with reliance on specific APIs and
hardware support; simultaneously its size and access modes

Fig. 5 Flowchart of implicit
solution

 Engineering with Computers

are also restricted—increasing complexity and limitations
in use cases.

In contrast, global memory offers significant advantages
by facilitating inter-thread data sharing and ensuring a con-
sistent lifecycle aligned with the GPU device cycle, thereby
enabling prolonged retention within the GPU alongside
modifications. Consequently, global memory becomes an
indispensable asset for mitigating performance overheads
resulting from frequent transfers.

In this study, we leverage global memory for data storage,
eliminating frequent data transfers between the CPU and
GPU. This approach enhances computing performance, as
illustrated in Fig. 7.

The specific implementation ideas are outlined as follows:

1. Import the model on the CPU side and initialize the data.
2. Allocate memory on the GPU side to store the data

required for calculations.
3. Transfer node and element data to the GPU.
4. Conduct iterative computations on the GPU.
5. Modify certain node data on the CPU.
6. Transfer the modified data to the GPU.
7. Upon completion of the iteration, input the results to the

host and generate the output.

The proposed method requires only one full data trans-
mission from the host to the device, with minimal node
data transmitted after each iteration. This strategy greatly
improves acceleration performance compared with tech-
niques demanding complete data transmission during each
iteration.

Fig. 6 Flowchart of the explicit
solution

Fig. 7 Flow chart of data transmission

Engineering with Computers

3.2 Parallel solution

In the context of large-scale problems, the computational
cost associated with generating neighborhood data for PD
elements in a serial manner significantly escalates, thereby
diminishing the algorithm’s computational efficiency. Nota-
bly, the process of creating neighborhood data for distinct
PD elements is independent and repeatable, demonstrating
high parallelism [23]. Leveraging this insight, aligning each
PD element with a GPU thread enables parallel construc-
tion of neighborhood data. As depicted in Fig. 8, each ele-
ment or node’s computational task can be mapped to a GPU
thread using this parallelization strategy. This approach
substantially reduces computation time and enhances the
algorithm’s computational efficiency.

The detailed invocation process of threads can be
described as follows:

Initially, a unique thread index, referred to as ‘tid’,
needs to be generated. The computation formula for tid
is given by tid = blockIdx.x * blockDim.x + threadIdx.x.
In this equation, blockIdx.x represents the index of the
thread block, blockDim.x signifies the number of threads
within each dimension of the thread block, and threadIdx.x
denotes the index of the thread within its respective thread
block. Consequently, the distinct index tid for each thread
is derived from a combination of blockIdx.x, blockDim.x,
and threadIdx.x.

Consequently, each thread independently computes
the corresponding element data for its assigned thread ID
(i.e., tid). This parallel process enables efficient and rapid

processing of large datasets by allowing every thread to
autonomously execute its computational task.

In the figure, δ represents the radius of the PD domain.
Once the PD domain is established, each PD element within
this domain is assigned a thread for calculation, thus achiev-
ing a high degree of parallelization.

3.2.1 Parallelism of implicit solutions

In the resolution of implicit PD problems, a crucial step
involves aggregating single stiffness matrices into a global
stiffness matrix. However, conventional parallel strategies,
such as assigning a thread to each stiffness matrix, may
lead to concurrent access by multiple threads to the same
node during assembly, resulting in computational errors.
Although generating single element stiffness matrices in
parallel on the GPU and subsequently transferring them to
the CPU for sequential assembly can provide acceleration
benefits for small-scale problems, this approach becomes
significantly limiting for large-scale problems due to the
overhead associated with assembling and transmitting the
global stiffness matrix.

To address this issue, this study employs an atomic opera-
tion scheme. Atomic operations in CUDA allow a thread to
complete the read–write process of a specific storage ele-
ment without interference from other threads. By leveraging
atomic operations, this study achieves the parallel assem-
bly of the global stiffness matrix on the GPU, eliminating
the need for multiple transmissions between the CPU and
GPU. Although atomic operations entail a performance loss,
the resulting accelerated performance compensates for this
drawback.

In the implicit solution of large PD deformation prob-
lems, after assembling the global stiffness matrix, con-
straints and forced displacements should be imposed on the
system. Given that only a small portion of node data needs
modification for imposing constraints and forced displace-
ments, transmitting the entire node array between the CPU
and GPU would lead to significant time loss. Hence, this
study adopts an indexing method to identify and transmit
only the required data for the modified nodes, effectively
reducing data transmission overhead.

Upon applying constraints and displacements, a load vec-
tor must be generated. Considering that the forces acting
on each node are independent, each node can be mapped to
a thread on the GPU, enabling parallel computation of the
resultant forces for each node. Once accomplished, a linear
system of equations, denoted as Kd = F, emerges, where K
signifies the global stiffness matrix, F represents the load
vector, and d denotes the displacement vector to be solved.
This system of linear equations can be resolved using the
preprocessed conjugate gradient method (PCG).

Fig. 8 Assigning threads to PD elements

 Engineering with Computers

The implicit solution of large deformation problems
differs from other PD problems in that during the implicit
solution, the displacement solution of the linear equation
system obtained by each iteration step must be evaluated
for convergence. If it does not converge, it must be resolved
within this iteration step until the convergence condition is
met, and then the current iteration step can be bypassed.
This characteristic necessitates solving multiple linear equa-
tions at each iteration step when resolving large deformation
problems, resulting in substantial time costs. The flow chart
of the implicit solution of large deformation problems is
depicted in Fig. 9.

The resolution of linear equations represents the most
time-consuming phase within the overall problem-solving
procedure. This is primarily attributed to the extensive
numerical computations and matrix operations involved,
which exhibit considerable computational complexity and
volume. Therefore, solving these equations becomes notably

time-intensive owing to the significant demands posed by
the resolution of linear equations.

Despite the admirable performance of the CPU in pro-
cessing large sets of linear equations, its computational
speed and efficiency encounter limitations as the scale of
the problem increases. GPU acceleration technology lever-
ages the parallel computing capabilities of GPUs to boost
computational efficiency. It achieves this by dividing the
computing tasks into multiple subtasks and executing them
concurrently on the GPU. When addressing the solution of
linear equations, GPU acceleration technology parallelizes
numerous matrix operations and numerical calculations
integral to the computation, thereby significantly reducing
computation time.

Owing to the limited graphics memory capacity of the
GPU, storing the entire stiffness matrix in GPU memory is
impractical. To address this challenge, this study employs a
compression technique to transform the total stiffness matrix
into a sparse matrix format and stores it using the row-first
compression compressed sparse row (CSR) method [24].
To facilitate a comprehensive understanding of the CSR
storage matrix, we illustrate the mapping relation between
full memory and CSR sparse memory with an example, as
shown in Fig. 10. The relevant parameters in the CSR, such
as the Row and Col indices, are detailed in Table 1. The inte-
gration of the global stiffness matrix stored in sparse format
can be conducted efficiently, considerably reducing memory
consumption and solving time. This approach enables the
resolution of problems with increased degrees of freedom
through GPU acceleration.

The cuSPARSE library in CUDA comprises a set of basic
linear algebra subroutines for sparse matrices, which can
notably accelerate the calculation of sparse matrices [25,
26]. The cuBLAS library implements the basic linear alge-
bra subroutine (BLAS) in the NVIDIA® CUDATM runtime,
enabling users to fully utilize the computing resources of the
 NVIDIA® CUDATM GPU [27]. Consequently, the solvers
used in this study are based on the cuSPARSE and cuB-
LAS libraries to ensure optimal efficiency in solving linear
equations.

Fig. 9 Flowchart of implicit solution for large deformation Fig. 10 Example of thick matrix to CSR sparse matrix

Engineering with Computers

3.2.2 Parallelism of explicit solutions

The conventional serial solving method incurs substantial
time costs when calculating the links associated with PD
bonds [28]. As illustrated in Fig. 11, once the size of the
PD domain is established and element I is identified, any
element within the same domain as element I (e.g., element
J) determines the range of the PD domain. A PD bond ξij is
formed between node i of element I and node j of element J,
thereby linking these elements. Serial computation for bond
force calculation results in considerable time expenditure.
However, bond force calculation exhibits high parallelism,
and the independent computation of each bond facilitates
GPU parallel acceleration. The computation of each bond
can be delegated to an individual concurrent thread on the
GPU to accomplish this task.

Upon completion of the bond force calculation, it must be
distributed to each node. Analogous to the assembly of the
global stiffness matrix, common nodes exist in the parallel

distribution process. To circumvent the issue of multiple
threads reading and writing the same node, atomic opera-
tions are necessary. The method employed for explicit solv-
ing is the central difference method, and the steps are as
follows:

(1) The node acceleration is obtained by calculating the
derivative of the node velocity.

(2) Multiply the node acceleration by the preset time step
to obtain the node velocity.

(3) Multiply the node velocity by the time step to obtain
the current iteration step displacement.

(4) Add the current iteration step displacement to the node
displacement.

(5) Update the node coordinates.

In the resolution of the central difference method, the
data between nodes are independent, enabling solution
acceleration by allocating a thread to each node for parallel
computation. Prior to the next incremental step, the frac-
ture information of the PD bonds must be updated. Given
that the key state is independent, a thread can be allocated
to each PD element to achieve GPU parallel acceleration
and update the bond fracture state [29].

4 Numerical example

In Sect. 4.1, the accuracy of the PD algorithm is veri-
fied by comparing the results of the GPU algorithm with
the traditional finite element CPU algorithm. The implicit

Table 1 Relevant parameters of the CSR matrix

Argument Parameter meaning

Matrix A sparse matrix of m rows and n columns
NNZ Number of non-zero elements of a matrix
Val Stores data of length NNZ, which holds all non-zero numbers of the matrix in rows first
Row Stores an array of integers of length m + 1, the first m element of which records i = 0. m − 1 is the index of the first non-

zero element in row i, whereas the value of the last element is NNZ
Col Stores an array of integers of length NNZ that contains the column index of the corresponding element in the array Val

Fig. 11 Formation of PD bonds between PD elements

Table 2 Hardware configuration information for CPU and GPU

HOST CPU 12th Gen Intel(R) Core(TM) i7-12700 (with
12 cores, 4.9 GHz, 20 threads)

RAM 128 GB, DDR4
DEVICE GPU NVIDIA GeForce RTX 3060 (3584 CORES)

RAM 12 GB, GDDR6

 Engineering with Computers

algorithm adopts a single plate, whereas the explicit
algorithm adopts a Y-shaped prefabricated crack plate.
In Sect. 4.2, the efficiency of the parallel algorithm will

be verified. After ensuring accuracy, the time taken to
solve the PD large deformation problem using the GPU
algorithm and CPU algorithm is compared, and the accel-
eration ratio is obtained to verify its acceleration effect.
Table 2 provides the configuration information of the CPU
and GPU in the calculation.

4.1 Precision verification of parallel solving
algorithm

4.1.1 Precision verification of parallel implicit solution
algorithm

The calculation example used in this section involves a sin-
gle plate employed solely to test the accuracy of the parallel
implicit solving algorithm. The model settings are shown Fig. 12 Model of single tie plate

Fig. 13 Comparison of displacement results between GPU parallel
algorithm and CPU algorithm, a, c, e shows the displacement results
in X-direction, Y-direction and Z-direction for GPU parallel algo-

rithm, b, d, f shows the displacement results in X-direction, Y-direc-
tion, and Z-direction for CPU algorithm

Engineering with Computers

in Fig. 12. The length of the plate is L = 90 mm, the width
is W = 30 mm, and the thickness is h = 0.8 mm. The elastic
modulus of the plate is E = 210 GPa, the Poisson’s ratio is
v = 0.33, and the density is 2440 kg/m3 . The left end is fixed,
and the uniform load acting on the right boundary of the
model is P = 1 MPa. The grid size is Δx = 1 mm, and the PD
domain size is set to δ = 3Δx.

The displacement results of the GPU parallel algorithm
are compared with those of the CPU algorithm to verify
the accuracy of the GPU parallel algorithm. The com-
parison of displacement results for the two algorithms is
shown in Fig. 13.

By comparing the displacement results of each iteration
step of the GPU parallel algorithm and CPU algorithm, we
observe that the results of the two algorithms are essen-
tially the same. This observation confirms the accuracy of
the GPU parallel algorithm, demonstrating its suitability
for accelerating the solution of large-scale problems.

4.1.2 Precision verification of parallel explicit solution
algorithm

In this section, the example used is a Y-shaped prefabri-
cated cracked plate, which is widely used to evaluate the
accuracy of crack propagation simulation algorithms. The
initial crack plate model and PD region setting are shown
in Fig. 14. The length of the plate is L = 100 mm, the width
is W = 40 mm, and the thickness is h = 1 mm. There is an
initial prefabricated crack at L/2, with the crack length a0
= 50 mm. The elastic modulus of the plate is E = 72 GPa,
the Poisson’s ratio is v = 0.33, the density is 2440 kg/m3 ,
and the critical energy release rate is Gc = 135 J/m2 . The
uniform load acting on the upper and lower boundaries of
the model is P = 12 MPa. For the crack propagation region,
a grid discretization with a mesh size of Δx = 0.5 mm is
used, and the PD domain size is set to δ = 3Δx.

The crack propagation paths calculated by GPU at
different time steps were compared with the calculation
results by CPU, as shown in Fig. 15.

The calculation results of the GPU are basically con-
sistent with those of the CPU, and the crack propagation
path of the GPU parallel algorithm is consistent with that
of the CPU algorithm. This finding verifies the accuracy
of the GPU parallel explicit algorithm and can be used to
accelerate the solution of large-scale problems.

4.2 Speedup verification of the parallel solution
algorithm

4.2.1 Speedup verification of the parallel implicit solution
algorithm

In this section, the parallel implicit algorithm is tested for
its acceleration performance using a model of a uniformly

Fig. 14 Y-shaped prefabricated cracked plate

Fig. 15 Crack extension paths of Y-shaped prefabricated cracked
plate at different time steps, a computed results at GPU side, b com-
puted results at CPU side

Fig. 16 Uniform pressure modeling of thin plates

 Engineering with Computers

pressed thin plate. The model settings are illustrated in
Fig. 16. The plate has a length of L = 90 mm, a width of
W = 30 mm, and a thickness of h = 0.8 mm. The elastic
modulus of the plate is E = 210 GPa, the Poisson’s ratio is
v = 0.33, and the density is 2440 kg/m3 . A fixed constraint
is applied at the left end. The surface uniformly distributed

load acting on the model surface is P = 1 MPa. The total
number of elements is 10,800. The grid size is Δx = 0.5 mm,
and the PD domain size is set to δ = 3Δx.

The incremental step is set to 100 steps, and the maxi-
mum iteration times of a single incremental step are set to
100. The GPU parallel algorithm and CPU algorithm are
used for solving, respectively. The displacement result of
the GPU parallel algorithm is shown in Fig. 17.

By comparing the displacement results of the two algo-
rithms, the displacement of any incremental step is basi-
cally the same in the solving process. Thus, the acceleration
performance of the GPU parallel algorithm can be verified.
The model with PD elements accounting for 50% of the total
number of elements is selected to test the time of each link
of an iteration step of the GPU parallel algorithm and the
CPU algorithm, as shown in Table 3.

Table 3 indicates that when solving large deformation
implicit problems, the solving time of linear equations in the
iterative step is remarkably high. Although assembling the
global stiffness matrix requires some time, each incremen-
tal step only requires assembling the global stiffness matrix
once. However, due to the existence of convergence condi-
tions for displacement results, the solving of linear equations
often needs to be repeated many times, and the current incre-
mental step can only be completed when the displacement
solution satisfying the displacement convergence conditions
is obtained. Therefore, the solving time of the linear equa-
tions can be approximated to the total calculation time, and
the acceleration ratio of the PCG parallel solution on the
GPU and the UMF solution on the CPU can be calculated
using the total calculation time.

Fig. 17 The displacement result of GPU parallel algorithm

Table 3 Time of each session of one iteration step of the two algo-
rithms, in (s)

Assemble the
global stiffness
matrix

Impose
constraints

Solving
linear equa-
tions

Updating
stress and
strain

CPU 11.16 0.03 1228.65 0.74
GPU 4.23 0.01 163.82 0.16

Fig. 18 Total computation time
of GPU parallel algorithm and
CPU algorithm with different
PD element ratios

50 60 70 80 90 100
0.00

70.00

140.00

210.00

280.00

350.00

420.00

7.38

8.02

8.44

8.69

9.40

9.79

C
o
m
p
u
ti
n
g
ti
m
e

h

PD element ratio %

GPU computing time

CPU computing time

Speedup

50 60 70 80 90 100

7.50

8.00

8.50

9.00

9.50

7.00

10.00

S
p
ee
d
u
p

Engineering with Computers

The total calculation time of the GPU parallel algorithm
and the CPU algorithm under different proportions of PD
elements is shown in Fig. 18.

With the increase of the PD element ratio, the CPU
computing time increases, whereas the GPU computing
time also increases, but not significantly compared with
the CPU. Therefore, the speedup ratio (CPU computing
time/GPU computing time) shows an upward trend, and
the acceleration effect of the GPU parallel algorithm can
reach 7.4–9.8 times, demonstrating excellent acceleration
performance.

To further prove that the GPU parallel algorithm has a
good acceleration effect on large-scale problems, this sec-
tion refines the model grid with a 50% PD element ratio and
tests the acceleration effect of the GPU parallel algorithm
with the same PD element ratio under different grid sizes,
as shown in Table 4.

Table 4 only provides statistics for the time of solving
linear equations once under different grid sizes. Referring to
Table 3, the time of solving linear equations can be approxi-
mately equal to the time of one iteration step t, whereas
the total solving time of implicit large deformation T = n × t,
where n is the total number of iterative steps. Therefore, the
ratio of CPU to GPU for solving linear equations once is
the acceleration ratio of the GPU parallel algorithm to the
CPU algorithm.

According to Table 4, with the increase in the number
of elements, the acceleration ratio also increases. When the
number of elements is 270,000, the number of rows of the
stiffness matrix is 27 × 4 × 6 = 6.48 million, achieving a 10
times acceleration effect when dealing with a million-order
matrix. This demonstrates superior acceleration performance
compared with the CPU.

4.2.2 Speedup verification of the parallel explicit solution
algorithm

To validate the acceleration performance of the parallel
explicit algorithm, this section investigates the progressive
damage process of a square low-carbon steel plate with a
preset crack under lateral load. The specific experimental
process for this problem can be found in the literature [30].
As shown in Fig. 19, the length, width, and thickness of the

steel plate are L = 203 mm, L = 203 mm, and h = 0.8 mm,
respectively. The steel plate has an initial preset crack at
X = L/2, with a crack length of a_0 = 30 mm. The elastic
modulus of the low-carbon steel plate is E = 210 GPa, the
Poisson’s ratio is v = 0.33, the density is 7.85 t/m3 , and the
critical energy release rate is Gc = 255 kN/m . The left and
right ends of the steel plate are fixed and constrained, and
an incremental load F is applied at both ends of the crack.

For the crack propagation region, the grid size of
Δx = 1.75 mm is initially used for grid discretization, and the
PD domain size is set as δ = 3Δx, with a total of 13,456 ele-
ments in the model. The explicit central difference method
is employed to calculate the crack propagation process with
gradually increasing load, and the time step is set to 0.1 μs,
which is sufficient to meet the stability conditions of numeri-
cal integration. After 50,000 incremental steps, the load is
gradually increased to 1800 N, and the quasi-static results of
the crack propagation process are obtained. The calculation
results of the GPU parallel algorithm is shown in Fig. 20.

During solving, the calculation time is statistically
recorded, as shown in Fig. 21, which captures the calcula-
tion time of the GPU parallel algorithm and the CPU algo-
rithm under different PD ratios. With the increase in the PD

Table 4 GPU computation time vs. CPU computation time for differ-
ent grid sizes at 50% PD element ratio, in (s)

Grid size (mm) Degrees of
freedom

GPU
computing
time

CPU
computing
time

Speedup

0.5 259,200 163 1229 7.54
0.25 1,036,800 347 3148 9.07
0.1 6,480,000 11,329 115,293 10.18

Fig. 19 Model of a square mild steel plate with preset cracks

Fig. 20 Crack expansion path results for mild steel plate calculated by
GPU parallel algorithm

 Engineering with Computers

element ratio, CPU calculation time increases, whereas GPU
calculation time also increases, but the increase is not large
compared with the CPU. Therefore, the speedup ratio (CPU
calculation time/GPU calculation time) shows an increasing
trend, and the speedup ratio is positively correlated with the
PD element ratio.

At the same time, this section compares the computing
time of the links that take up a large proportion of time, as
shown in Fig. 22. The time-consuming links in the explicit
solution of the GPU parallel algorithm and the CPU algo-
rithm are stress and strain update and structural reaction cal-
culation, but the GPU computing time is much lower than
that of CPU computing time. With the increase in the num-
ber of PD elements, the acceleration ratio of the two links
also increases, which proves that the GPU parallel algorithm
has the acceleration performance that the CPU algorithm
cannot reach.

The model grid is further refined, and the GPU comput-
ing time and CPU computing time of different grid sizes at
the ratio of 100% PD elements are statistically analyzed, as
shown in Table 5.

With the gradual refinement of the grid and the increase
in the number of PD elements, the calculation time of both
GPU and CPU also increases. However, the GPU parallel
algorithm outperforms the CPU algorithm in processing
PD elements, leading to an increasing speedup ratio. As the
grid of the model becomes more refined, incorporating more
PD elements, the speedup ratio grows larger, highlighting
the superior acceleration performance of the GPU parallel
algorithm.

Scalability is a crucial performance metric for evalu-
ating GPU algorithms, which can be classified into two
main types: weak scalability and strong scalability. Weak
scalability refers to the algorithm's ability to maintain effi-
ciency as the problem scale increases, while strong scal-
ability implies that the algorithm’s efficiency improves
with increasing problem scale. From a theoretical perspec-
tive, the non-local characteristics of PD method neces-
sitate each node to consider interactions with other nodes
within a specific range during calculations. Consequently,
as degrees of freedom increase, the computational work-
load often exhibits super linear growth trends. With an
increasing number of nodes, each node will require more
adjacent nodes for interactive calculations accordingly. In
a two-dimensional space with uniformly distributed nodes
and constant interaction range, the number of adjacent
nodes needed by each node for interactive calculations
is proportional to the square root of node density (this
arises from considering that area in two-dimensional space
is proportional to radius squared and number of nodes is
proportional to area). However, since each node needs to
interact with multiple other nodes, overall computational
workload will approach or exceed the square of degrees
of freedom. To verify GPU algorithm’s scalability effec-
tively, we expanded data scale and computing time based
on square proportionality with degrees of freedom when
conducting comparative analysis under different grid sizes;
subsequently comparing this expanded computing time
with actual time required by smaller grids as shown in
Table 6.

Fig. 21 GPU computation time
vs. CPU computation time for
different PD element ratios

5.62

5.94
5.89

6.4

6.74

7.02

50 60 70 80 90 100

0.00

15.00k

30.00k

45.00k

60.00k

75.00k

C
o
m
p
u
ti
n
g
ti
m
e

s)

PD element ratio %

GPU computing time

CPU computing time

Speedup

5.00

5.50

6.00

6.50

7.00

7.50

S
p
ee
d
u
p

Engineering with Computers

The analysis results indicate that the GPU algorithm
exhibits robust scalability, with its efficiency gradually
improving as the data size increases. Furthermore, optimi-
zation of data transfer and reduction in scheduling overhead

effectively mitigate their impact on algorithm acceleration
performance during large-scale data processing.

Fig. 22 Comparison of compu-
tation time for the more time-
consuming parts of the explicit
solving process

(a) Time comparison of stress-strain updating links

(b) Time comparison of structural reaction force calculation sessions

8.80

9.64

9.91

10.08

10.26

10.70

50 60 70 80 90 100

0.00

5.00k

10.00k

15.00k

20.00k

25.00k

C
o
m

p
u
ti

n
g

ti
m

e(
s)

PD element ratio %

GPU computing time

CPU computing time

Speedup

8.50

9.00

9.50

10.00

10.50

11.00

S
p
ee

d
u
p

3.33

3.91

4.19
4.26

4.67

4.84

50 60 70 80 90 100

0.00

7.00k

14.00k

21.00k

28.00k

35.00k

42.00k

C
o
m

p
u
ti

n
g

ti
m

e
s

PD element ratio %

GPU computing time

CPU computing time

Speedup

3.00

3.30

3.60

3.90

4.20

4.50

4.80

5.10

S
p
ee

d
u

p

 Engineering with Computers

4.2.3 Numerical example of hexagonal prism

The model used in this section is a hexagonal prism model
with a prism length of L = 304.8 mm, a bottom side length
of 65.33 mm, and a thickness of h = 3.048 mm. The elastic
modulus of the plate is E = 193 GPa, the Poisson’s ratio is
v = 0.33, the density is 7980 kg/m3 , and the critical energy
release rate is Gc = 150 kN/m . The upper and lower bottom
surfaces are fixedly constrained, and the uniform load acting
on the model cylinder is P = 1 MPa. The schematic diagram
of the model is shown in Fig. 23. The total number of ele-
ments is 19,052, and the grid size is Δx = 2.5 mm. The PD
domain size is set to δ = 3Δx. The GPU calculation time
is 4492 s, and the CPU calculation time is 33,102 s. The
comparison result of the GPU parallel algorithm is shown
in Fig. 24.

The model, with 100% PD elements, undergoes refine-
ment by gridding. Table 7 presents the comparison of calcu-
lation time and acceleration ratio under different grid sizes.
Post-gridding, the acceleration ratio increases with the grow-
ing number of elements, indicating a positive correlation
between acceleration performance and the number of ele-
ments. A higher element count results in better acceleration
performance for the GPU parallel algorithm.

4.2.4 Numerical example of prefabricated cracked cylinder

The model used in this section is a cylinder with a prefabri-
cated crack, with a height of H = 600 mm, a bottom diameter
of 200 mm, and a thickness of h = 3.048 mm. The elastic
modulus of the plate is E = 65 GPa, the Poisson’s ratio is
v = 0.33, the density is 7850 kg/m3 , and the critical energy
release rate is Gc = 150 kN/m . The upper and lower bottom
surfaces are fixed, the prefabricated crack is applied at H/2,

and the cylindrical surface is applied with a horizontal uni-
form load, as shown in [31], and the schematic of the model
is shown in Fig. 25. The total number of elements is 18,621,
the grid size is Δx = 4.5 mm, and the PD domain size is
set to δ = 3Δx. The result of the GPU parallel algorithm is
shown in Fig. 26.

Upon refining the model mesh, the computing time of
both algorithms is statistically analyzed, and the accelera-
tion ratio is recorded. Table 8 presents these results, showing

Table 5 GPU computation time vs. CPU computation time for differ-
ent grid sizes at 100% PD elements, in (s)

Grid size (mm) Degrees of
freedom

GPU
computing
time

CPU
computing
time

Speedup

1.75 322,944 10,619 74,645 7.03
1 989,016 45,743 359,189 7.85
0.75 1,759,920 60,452 497,297 8.23

Table 6 The scalability analysis
of GPU algorithms, in (s)

Grid size (mm) Degrees of freedom Effective GPU
computing time

Theoretical computing
time as task scales

Speedup

1.75 322,944 10,619 10,619 1
1 989,016 45,743 99,594 2.18
0.75 1,759,920 60,452 344,142 5.69

Fig. 23 Schematic diagram of hexagonal prism model

Fig. 24 The GPU algorithm calculation results

Table 7 GPU computation time vs. CPU computation time for differ-
ent grid sizes at 100% PD elements, in (s)

Grid size (mm) Degrees of
freedom

GPU com-
puting time

CPU com-
puting time

Speedup

2.5 456,760 4492 33,102 7.37
1.5 1,256,976 9073 78,329 8.63
1 2,854,800 18,276 173,787 9.51

Engineering with Computers

an enhanced acceleration performance of the GPU paral-
lel algorithm after mesh refinement. The GPU algorithm
exhibits superior acceleration performance as the number of
elements in the model increases, particularly in addressing
large-scale PD plate shell deformation problems.

5 Conclusion

This study introduces an innovative parallel algorithm, lever-
aging GPU capabilities, specifically crafted to address large
deformation challenges in PD shells with notable efficiency.
The algorithm exploits GPU acceleration technology to par-
tition the computational task into numerous subtasks, allow-
ing for concurrent execution on the GPU and resulting in a

substantial improvement in computational efficiency. The
accuracy and superior efficiency of this parallel algorithm
are substantiated by the successful execution of six distinct
examples. Although the algorithm is primarily optimized for
single-GPU usage, we hypothesize that employing multi-
GPU parallel computing would yield more effective results
when tackling large-scale problems. In future research, our
objective is to explore multi-GPU parallel algorithms to fur-
ther enhance the efficiency and scalability of our proposed
solution, making it capable of handling even larger-scale
problems. In addition, we plan to extend the application
of this algorithm to address large deformation challenges
in practical engineering scenarios. This expansion aims to
contribute to the development of more precise and efficient
numerical simulation methodologies within the engineer-
ing domain. In conclusion, the proposed GPU-based paral-
lel algorithm holds significant potential for addressing large
deformation challenges in PD shells, demonstrating both
theoretical relevance and practical applicability.

Acknowledgements This work was supported by Applied
Basic Research Program of Liaoning Province (Grant Nos.
2022JH2/101300224). The support is gratefully acknowledged.

Author contributions Z.G., L.R. and S.Z. wrote the main manuscript
text and Z.X. provides algorithmic framework support. All authors
reviewed the manuscript.

Data availability Data sets generated during the current study are avail-
able from the corresponding author on reasonable request. The calcu-
lated data in this paper can be obtained by solving the corresponding
examples using the algorithm described herein, without the need to
disclose the source code.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this manuscript.

References

 1. Gao YK, Yang X, Jin ZF (2005) Study on method for opti-
mizing car body stiffness. J Tongji Univ (Natural Science)
33(8):1095–1097

 2. Kim CS, Shin JG, Kim EK et al (2016) A study on classification
algorithm of rectangle curved hull plates for plate fabrication. J
Ship Prod Design 32(3):166–173. https:// doi. org/ 10. 5957/ JSPD.
32.3. 140014

 3. Belytschko T, Black T (1999) Elastic crack growth in finite
elements with minimal remeshing. Int J Numer Methods Eng
45(5):601–620. https:// doi. org/ 10. 1002/ (SICI) 1097- 0207(19990
620) 45:5% 3c601:: AID- NME598% 3e3.0. CO;2-S

 4. Krysl P, Belytschko T (1999) The element free Galerkin method
for dynamic propagation of arbitrary 3-D cracks. Int J Numer
Methods Eng 44(6):767–800. https:// doi. org/ 10. 1002/ (SICI) 1097-
0207(19990 228) 44:6% 3c767:: AID- NME524% 3e3.0. CO;2-G

 5. Silling SA (2000) Reformulation of elasticity theory for disconti-
nuities and long-range forces. J Mech Phys Solids 48(1):175–209.
https:// doi. org/ 10. 1016/ S0022- 5096(99) 00029-0

Fig. 25 Schematic diagram of the prefabricated cracked cylinder
model

Fig. 26 The result of GPU parallel algorithm

Table 8 GPU computation time vs. CPU computation time for differ-
ent grid sizes at 100% PD elements, in (s)

Grid size (mm) Degrees of
freedom

GPU
computing
time

CPU
computing
time

Speedup

4.5 446,904 4257 33,274 7.82
3 1,005,528 8447 72,391 8.57
2 2,262,456 14,586 14,178 9.72

https://doi.org/10.5957/JSPD.32.3.140014
https://doi.org/10.5957/JSPD.32.3.140014
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S
https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6%3c767::AID-NME524%3e3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6%3c767::AID-NME524%3e3.0.CO;2-G
https://doi.org/10.1016/S0022-5096(99)00029-0

 Engineering with Computers

 6. Ni T, Zaccariotto M, Zhu QZ et al (2019) Static solution of crack
propagation problems in peridynamics. Comput Methods Appl
Mech Eng 346:126–151. https:// doi. org/ 10. 1016/j. cma. 2018. 11.
028

 7. Huang D, Lu G, Qiao P (2015) An improved peridynamic
approach for quasi-static elastic deformation and brittle fracture
analysis. Int J Mech Sci 94–95:111–122. https:// doi. org/ 10. 1016/j.
ijmec sci. 2015. 02. 018

 8. Liu SS, Hu YL, Yu Y (2016) Parallel computing method of
peridynamic models based on GPU. J Shanghai Jiaotong Univ
50(9):1362–1367+1375. https:// doi. org/ 10. 16183/j. cnki. jsjtu.
2016. 09. 005

 9. Xu J, Askari A, Weckner O, Silling SA (2008) Peridynamic
analysis of impact damage in composite laminates. J Aerosp Eng
21(3):187–194. https:// doi. org/ 10. 1061/ (ASCE) 0893- 1321(2008)
21: 3(187)

 10. Greta O, Arman S, Farshid M, Alexander H et al (2023) Multi-
adaptive spatial discretization of bond-based peridynamics. Int J
Fract 244:1–24. https:// doi. org/ 10. 1007/ s10704- 023- 00709-8

 11. Arman S, Alexander H, Christian JC, Pablo S, Silling A (2022)
A hybrid meshfree discretization to improve the numerical per-
formance of peridynamic models. Comput Methods Appl Mech
Eng 391:114544. https:// doi. org/ 10. 1016/j. cma. 2021. 114544

 12. Hill MD, Marty MR (2008) Amdahl’s law in the multicore era.
Computer 41(7):33–38. https:// doi. org/ 10. 1109/ MC. 2008. 209

 13. Liu Q, Xie W, Qiu LY et al (2014) Graphic processing unit com-
puting of lattice Boltzmann method on a desktop computer. J
Shanghai Jiaotong Univ 48(9):1329–1333. https:// doi. org/ 10.
16183/j. cnki. jsjtu. 2014. 09. 020

 14. Wang YJ, Wang QF, Wang G (2012) CUDA based parallel com-
putation of BEM for 3D elastostatics problems. J Comput Aided
Design Comput Graph 24(1):112–119

 15. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes
and fibers. Int J Non-Linear Mech 40(2):395–409. https:// doi. org/
10. 1016/j. ijnon linmec. 2004. 08. 004

 16. Alexander H, Arman S, Dirk S, Daniel H, Berit Z, Christian JC
(2022) Combining peridynamic and finite element simulations to
capture the corrosion of degradable bone implants and to predict
their residual strength. Int J Mech Sci 220:107143. https:// doi. org/
10. 1016/j. ijmec sci. 2022. 107143

 17. Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A cou-
pled meshless finite point/peridynamic method for 2D dynamic
fracture analysis. Int J Mech Sci 119:419–431. https:// doi. org/ 10.
1016/j. ijmec sci. 2016. 11. 003

 18. Lubineau G, Azdoud Y, Han F et al (2012) A morphing strategy
to couple non-local to local continuum mechanics. J Mech Phys
Solids 60(6):1088–1102. https:// doi. org/ 10. 1016/j. jmps. 2012. 02.
009

 19. Foster JT, Silling SA, Chen W (2011) An energy based failure
criterion for use with peridynamic states. Int J Multiscale Com-
put Eng 9(6):675–687. https:// doi. org/ 10. 1615/ IntJM ultCo mpEng.
20110 02407

 20. Lomboy G, Suthasupradit S, Kim KD et al (2009) Nonlinear for-
mulations of a four-node quasi-conforming shell element. Arch
Comput Methods Eng 16:189–250. https:// doi. org/ 10. 1007/
s11831- 009- 9030-9

 21. Yang CT, Huang CL, Lin CF (2011) Hybrid CUDA, OpenMP, and
MPI parallel programming on multicore GPU clusters. Comput
Phys Commun 182(1):266–269. https:// doi. org/ 10. 1016/j. cpc.
2010. 06. 035

 22. Fang JB, Huang C, Tang T, Wang Z (2020) Parallel programming
models for heterogeneous many-cores: a comprehensive survey.
CCF Trans High Perform Comput 2(4):382–400. https:// doi. org/
10. 1007/ s42514- 020- 00039-4

 23. Boys B, Dodwell TJ, Hobbs M, Girolami M (2021) PeriPy—a
high performance OpenCL peridynamics package. Comput Meth-
ods Appl Mech Eng. https:// doi. org/ 10. 1016/j. cma. 2021. 114085

 24. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element
method: its basis and fundamentals. Elsevier, Amsterdam

 25. Gao JQ, Zhou YS, He GX, Xia YF (2017) A multi-GPU paral-
lel optimization model for the preconditioned conjugate gradi-
ent algorithm. Parallel Comput 6:1–13. https:// doi. org/ 10. 1016/j.
parco. 2017. 04. 003

 26. Naumov M, Chien L, Vandermersch P, Kapasi U (2010) Cusparse
library. In: GPU technology conference

 27. Helfenstein R, Koko J (2012) Parallel preconditioned conjugate
gradient algorithm on GPU. J Comput Appl Math 236(15):3584–
3590. https:// doi. org/ 10. 1016/j. cam. 2011. 04. 025

 28. Bolz J, Farmer I, Grinspun E, Schröder P (2003) Sparse matrix
solvers on the GPU: conjugate gradients and multigrid. ACM
Trans Graph (TOG) 22(3):917–924. https:// doi. org/ 10. 1145/ 11985
55. 11987 81

 29. Zhong JD, Han F, Zhang L (2023) Accelerated peridynamic com-
putation on GPU for quasi-static fracture simulations. J Peridyn
Nonlocal Model. https:// doi. org/ 10. 1007/ s42102- 023- 00095-8

 30. Muscat-Fenech CM, Atkins AG (1997) Out-of-plane stretch-
ing and tearing fracture in ductile sheet materials. Int J Fract
84(4):297–306. https:// doi. org/ 10. 1023/A: 10073 25719 337

 31. Armero F, Ehrlich D (2006) Finite element methods for the multi-
scale modeling of softening hinge lines in plates at failure. Com-
put Methods Appl Mech Eng 195(13–16):1283–1324. https:// doi.
org/ 10. 1016/j. cma. 2005. 05. 040

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.cma.2018.11.028
https://doi.org/10.1016/j.cma.2018.11.028
https://doi.org/10.1016/j.ijmecsci.2015.02.018
https://doi.org/10.1016/j.ijmecsci.2015.02.018
https://doi.org/10.16183/j.cnki.jsjtu.2016.09.005
https://doi.org/10.16183/j.cnki.jsjtu.2016.09.005
https://doi.org/10.1061/(ASCE)0893-1321(2008)21:3(187)
https://doi.org/10.1061/(ASCE)0893-1321(2008)21:3(187)
https://doi.org/10.1007/s10704-023-00709-8
https://doi.org/10.1016/j.cma.2021.114544
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.16183/j.cnki.jsjtu.2014.09.020
https://doi.org/10.16183/j.cnki.jsjtu.2014.09.020
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
https://doi.org/10.1016/j.ijmecsci.2022.107143
https://doi.org/10.1016/j.ijmecsci.2022.107143
https://doi.org/10.1016/j.ijmecsci.2016.11.003
https://doi.org/10.1016/j.ijmecsci.2016.11.003
https://doi.org/10.1016/j.jmps.2012.02.009
https://doi.org/10.1016/j.jmps.2012.02.009
https://doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/10.1007/s11831-009-9030-9
https://doi.org/10.1007/s11831-009-9030-9
https://doi.org/10.1016/j.cpc.2010.06.035
https://doi.org/10.1016/j.cpc.2010.06.035
https://doi.org/10.1007/s42514-020-00039-4
https://doi.org/10.1007/s42514-020-00039-4
https://doi.org/10.1016/j.cma.2021.114085
https://doi.org/10.1016/j.parco.2017.04.003
https://doi.org/10.1016/j.parco.2017.04.003
https://doi.org/10.1016/j.cam.2011.04.025
https://doi.org/10.1145/1198555.1198781
https://doi.org/10.1145/1198555.1198781
https://doi.org/10.1007/s42102-023-00095-8
https://doi.org/10.1023/A:1007325719337
https://doi.org/10.1016/j.cma.2005.05.040
https://doi.org/10.1016/j.cma.2005.05.040

	A parallel acceleration GPU algorithm for large deformation of thin shell structures based on peridynamics
	Abstract
	1 Introduction
	2 A brief overview of peridynamic theory
	3 Numerical implementation of PD algorithm in CUDA
	3.1 Data transmission optimization
	3.2 Parallel solution
	3.2.1 Parallelism of implicit solutions
	3.2.2 Parallelism of explicit solutions

	4 Numerical example
	4.1 Precision verification of parallel solving algorithm
	4.1.1 Precision verification of parallel implicit solution algorithm
	4.1.2 Precision verification of parallel explicit solution algorithm

	4.2 Speedup verification of the parallel solution algorithm
	4.2.1 Speedup verification of the parallel implicit solution algorithm
	4.2.2 Speedup verification of the parallel explicit solution algorithm
	4.2.3 Numerical example of hexagonal prism
	4.2.4 Numerical example of prefabricated cracked cylinder

	5 Conclusion
	Acknowledgements
	References

