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Abstract
Loaded shell structures may deform, rotate, and crack, leading to fracture. The traditional finite element method describes 
material internal forces through differential equations, posing challenges in handling discontinuities and complicating fracture 
problem resolution. Peridynamics (PD), employing integral equations, presents advantages for fracture analysis. However, 
as a non-local theory, PD requires discretizing materials into nodes and establishing interactions through bonds, leading to 
reduce computational efficiency. This study introduces a GPU-based parallel PD algorithm for large deformation problems 
in shell structures within the compute unified device architecture (CUDA) framework. The algorithm incorporates element 
mapping and bond mapping for high parallelism. The algorithm optimizes data structures and GPU memory usage for effi-
cient parallel computing. The parallel computing capabilities of GPU expedite crack analysis simulations, greatly reducing 
the time required to address large deformation problems. Experimental tests confirm the algorithm’s accuracy, efficiency, 
and value for engineering applications, demonstrating its potential to advance fracture analysis in shell structures.

Keywords Peridynamics · CUDA · Parallel computation · Crack analysis

1 Introduction

Shell structures are highly valued for their lightweight 
nature, streamlined manufacturing processes, and robust 
compressive strength, rendering them indispensable in 
various industries such as automotive, marine, and aero-
space [1, 2]. However, despite these advantages, real-world 

applications often expose these structures to failure due 
to noticeable displacement, significant rotation, and con-
strained elastic strain behaviors. Consequently, there is an 
urgent need for reliable numerical simulation methods that 
can effectively analyze substantial deformations and frac-
tures in thin plate bending. Nevertheless, the computational 
time required to address large deformation problems in plate 
and shell structures is excessively long. Therefore, expedit-
ing the solution algorithm to efficiently handle such issues 
holds practical engineering significance.

Numerical simulation studies on large deformations of 
plate and shell structures have traditionally relied on classi-
cal continuous mechanics (CCM). This theory utilizes par-
tial differential equations to represent material deformation, 
which presents challenges when simulating crack growth 
through numerical methods based on CCM. Within the finite 
element method (FEM) framework, material properties are 
applicable only when the analyzed model exhibits a spatially 
continuous and twice differentiable displacement domain. 
Consequently, defining spatial derivatives at discontinuities 
becomes impossible, necessitating additional techniques 
for constructing fracture models. Although meshless tech-
nology and extended FEM (XFEM) can simulate cracks 
within the CCM framework, approximating discontinuous 
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displacement domains requires incorporating auxiliary con-
ditions. Furthermore, these approaches still lack automatic 
simulation of deformation from loading to damage [3, 4].

In this context, Silling introduced the peridynamic (PD) 
theory [5], a non-local theory. Unlike the FEM, the PD 
model characterizes the material behavior of a node within 
the structure through an integral equation that describes the 
displacement in its surroundings. By avoiding spatial deriv-
atives, PD theory maintains its applicability even across 
discontinuity surfaces. Consequently, it is well-suited for 
scenarios involving discontinuities within the displacement 
domain, such as crack initiation, propagation, and prolifera-
tion [6, 7].

According to the PD theory, nodes interact with their 
adjacent counterparts through bonds [8]. In computational 
simulations, materials are discretized into nodes that encap-
sulate information such as coordinates, volume, and density. 
Moreover, within the PD framework, relationships between 
nodes and their neighboring counterparts are established 
[9]. When numerical methods are employed for solving 
these computations, a smaller incremental step size is often 
required to ensure numerical stability and precision, result-
ing in a significant number of iterative steps. Compared to 
FEMs, PD theory entails higher computational and storage 
costs, posing challenges for addressing large-scale prob-
lems. Simulating large-scale problems using PD requires 
substantial computing resources. Therefore, minimizing the 
computational expenses associated with PD models is cru-
cial for promoting their widespread application and further 
advancement.

Enhancing the efficiency of solving large-scale PD prob-
lems has consistently remained a primary focal point for 
researchers. Greta proposed a hybrid discretization and 
multi-grid method within the multi-adaptive framework 
[10], which enables variable-size grid characteristics in 
PD models by coupling grids of different sizes. Fine grids 
are exclusively utilized in critical regions and boundaries, 
while coarser grids are employed for discretization purposes 
in other areas. This approach allows for tracking critical 
regions and updating grid coupling schemes based on time 
evolution, thereby effectively enhancing the efficiency of 
solving PD models. Arman et al. introduced a hybrid mesh-
less discretization method within an adaptive framework 
[11]. It adopts a standard scheme with higher computational 
costs but greater accuracy in local critical regions of PD 
models, while employing an efficient meshless scheme in 
other areas. The meshless region is dynamically switched 
to the standard scheme region according to computational 
requirements. Consequently, the portion discretized by the 
standard scheme evolves over time and follows the crack/
damage form, ultimately resulting in an efficiently optimized 
pure PD model that maximizes computing resources.

The autonomous nature of PD element data enables each 
PD problem to be processed independently by a process-
ing element, eliminating the need for data exchange with 
other PD elements. According to Amdahl’s law [12], the effi-
ciency of algorithm parallelization increases with a higher 
proportion of content that can be parallelized in the overall 
algorithm “f” and a larger number of processing cores “n”. 
The maximum parallel acceleration ratio can be achieved 
as the value of “f” approaches 1 and “n” tends to infinity, 
leading to optimal efficiency in parallel acceleration. When 
utilized a fixed value for “n” on the same computing device, 
a larger “f” value will result in enhanced parallel accelera-
tion efficiency. In the context of solving PD problems, PD 
element calculation serves as the core of the algorithm and 
demonstrates data independence, rendering it highly suitable 
for parallel processing. Consequently, when addressing PD 
problems, efficient parallel solving can be achieved by fully 
exploiting data independence.

With the rapid advancement of computing technology, 
significant improvements in central processing unit (CPU) 
performance have been observed over the past few decades. 
However, the bottleneck of single-core CPU performance 
and the emergence of multi-core CPUs, along with power-
ful parallel computing technologies, have become promi-
nent research focuses. In this context, graphics processing 
units (GPUs) have garnered considerable attention due to 
their impressive computational power and high memory 
bandwidth. The ability of GPUs to process extensive 
amounts of data and computing tasks simultaneously con-
tributes to enhanced computing efficiency and speed. This 
parallel computing power arises from hundreds of process-
ing units within GPUs that enable concurrent execution 
of multiple tasks. Consequently, GPUs have demonstrated 
exceptional performance in scientific computing. Com-
pute unified device architecture (CUDA), introduced by 
NVIDIA in 2007, is a parallel computing architecture that 
empowers developers to harness formidable GPU comput-
ing power for general-purpose computation. The availabil-
ity of CUDA facilitates utilization of parallel computing 
capabilities leading to substantially improved computa-
tional efficiency when tackling complex mathematical 
models and algorithms.

CUDA has been effectively employed in the field of com-
putational mechanics, demonstrating its practicality and 
usefulness. Notably, Liu utilized CUDA to simulate fluid 
dynamic problems in a 2D square column [13]. Furthermore, 
Wang successfully incorporated CUDA-based parallel com-
puting in the calculation of three-dimensional elastic static 
boundary elements [14]. These studies illustrate the practical 
application of CUDA in enhancing computations within the 
domain of computational mechanics.

Considering the autonomous nature of PD element data 
and the absence of data exchange requirements, leveraging 
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the parallel computing capabilities of GPUs enables the 
decomposition of intricate computational tasks into multiple 
independent subtasks based on elements. The utilization of 
the abundant processing elements within GPUs facilitates 
efficient execution of parallel processing. The primary aim 
of this study is to investigate tailored parallel solutions for 
addressing large-scale PD deformation problems on the GPU 
platform.

Considering the distinctive modeling attributes of the 
PD model, we have developed a parallel computing method 
within the CUDA framework to effectively handle extensive 
deformations in PD plate and shell structures. This approach 
leverages the architectural advantages of GPUs and assigns 
each element's computation to a separate thread on the GPU, 
enabling efficient and simultaneous multi-threaded parallel 
computing. To validate our proposed algorithm, we con-
ducted a comparative analysis against results obtained from 
a CPU-based algorithm. Furthermore, we evaluated the 
acceleration performance of our algorithm by comparing 
its resolution time and acceleration ratio with those achieved 
by the CPU-based method. The experimental findings une-
quivocally demonstrate that leveraging parallel resolution 
on GPU platforms significantly enhances computational 
efficiency for large-scale PD deformation problems. Conse-
quently, this strategy emerges as a viable solution for con-
ducting extensive PD simulations.

2  A brief overview of peridynamic theory

As shown in Fig. 1, the local coordinate system of the micro-
beam bond is denoted as o-xyz, and node xi and its adjacent 
node xj are located in the PD domain H(xi) with a radius of 
δ. The displacements of any node on the bond centerline are 
defined as u�

1
(x),u�

2
(x) , and u�

3
(x).

The generalized strain vector at any position on the 
microbeam can be defined as

where �x,�y,�z and �x represent the axial strain, y and z direc-
tion curvature, and torsion angle per element length of the 
microbeam, respectively.

The corresponding generalized stress increment can be 
expressed as

where FPD
x

 , MPD
y

 , MPD
z

 , and TPD
x

 are the axial stress, y-axis 
and z-axis bending moment, and element length torque of 
the microbeam key, respectively, and �PD is the micromodu-
lus parameter matrix.

The above-generalized strain is decomposed into an 
incremental decomposition, and the displacement com-
ponent of any node on the microbeam key at the time t + �t 
can be defined as

where u′
1
,u′

2
,u′

3
 , and �′

1
 are the displacement components at 

the time t , and �u′
1
,�u′

2
,�u′

3
 , and ��′

1
 are the incremental dis-

placement components from t to t + �t.
The generalized strain at any position on the microbeam 

bond at the time t + �t is

where � is the generalized strain of the microbeam bond at 
the time t .� � is the increment of generalized strain from t 
to t + �t , which can be defined as

where ��x , ��y , ��z and ��x  respectively represent the 
axial strain, y and z direction curvature, and torsion angle 
increment per element length of the microbeam bond, 
respectively.
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,

Fig. 1  PD shell model
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The generalized strain increment in the above equa-
tion can also be divided into linear and nonlinear strain 
increments.

where

The corresponding generalized stress increment can be 
expressed as

where �FPD
x

 , �MPD
y

 , �MPD
z

 , and �TPD
x

 are the axial stress, 
bending moment in the y-axis and z-axis directions, and 
torque increment per element length of the microbeam key, 
respectively.

In CCM theory, according to the incremental virtual work 
equation, the increase of virtual strain energy density in a 
small incremental step is

where t represents the element thickness.
Similarly, in the framework of PD theory, the increase of 

virtual strain energy density in the same incremental step is

(8)
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The factor of ½ in Eq. 13 can be attributed to the fact 
that each bond endpoint of a bond “owns” only half the 
energy in the bond [15].

The generalized strain increment transformation matrix 
�� of microbeam keys and nonlinear shell elements is

where

where χ is the shape parameter, and α represents the angle 
between the coordinate system of microbeam keys and that 
of elements.

Let the virtual strain energy density increment under 
the PD theory in Eq. (13) be equal to that under the CCM 
theory in Eq. (12), and the PD micromodulus parameter 
can be obtained as follows:

The adaptive mesh refinement method dynamically 
adjusts the mesh size based on the solution accuracy 
requirements, resulting in fewer mesh elements and saving 
computational resources. This is particularly crucial for 
large-scale computing problems as it significantly reduces 
computation time and memory requirements, thereby 
improving both computational efficiency and solution 

(13)

�WL
PD

�
xi
�
=

t

2
�
�
��T

L

�
�PD

�
��L

�
∫

2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WR
PD

�
xi
�
=

t

2
�
�
��T

L

� n�
k=0

�PD(��)k ∫
2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WS
PD

�
xi
�
=

t

2
�
�
��T

N

� n�
k=0

�PD(��)k ∫
2�

0 ∫
�

0 ∫
1

0

�2d�d�d�,

�WN
PD

�
xi
�
=

t

2

⎧⎪⎨⎪⎩

�
�
��T

L

�
�PD

�
��N

�
+

�
�
��T

N

�
�PD

�
��L

�
+

�
�
��T

N

�
�PD

�
��N

�
⎫⎪⎬⎪⎭
∫

2�

0 ∫
�

0 ∫
1

0

�2d�d�d�.

(14)�� = ����,

(15)

�� =

⎡
⎢⎢⎢⎢⎢⎣

�p1 �

� �b1

�p1 �

� �b2

⎤
⎥⎥⎥⎥⎥⎦

.

�p1 =
�
(cos �)2 (sin �)2 sin � cos �

�

�b1 =
�
(cos �)2 (sin �)2 sin � cos �

�

�p2 =
6(1 − 2�)

�

�
− sin � cos � sin � cos � (cos �)2 −

1

2

�

�b2 =
�
− sin � cos � sin � cos � (cos �)2 −

1

2

�

(16)
cax =

6E

�t�3(1 − v)
, cby =

Et

2��3(1 − v)
,

cbz =
E(1 − 3v)

6�t�(1 − v2)
, ctor =

Et(1 − 3v)

2��3(1 − v2)
.



Engineering with Computers 

accuracy [16]. By coupling the flexible meshless method 
with PD, the proposed method effectively handles non-
local effects in complex geometries, large deformations, or 
dynamic boundary conditions [17]. Lubinea introduced a 
deformation strategy that combines non-local theory with 
local continuous medium mechanics to ensure both accu-
racy and computational efficiency [18]. In this study, we 
adopt Lubineau’s coupling strategy due to its relative sim-
plicity of implementation while also planning to explore 
other methods in future research.

As shown in Fig. 2, the PD-CCM coupling model is com-
posed of three subdomains: the pure CCM model Ω1 , the 
pure PD model Ω2 , and the coupling domain Ωm.

For any node xi on the shell neutral layer, the virtual strain 
energy density increment at node xi when it is located in the 
pure CCM model domain Ω1 is

The virtual strain energy density increment at node xi 
when it is located in the pure PD model domain Ω2 is

(17)
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The virtual strain energy density increment at node xi 
when it is located in the coupling domain Ωm is

where �(x) is the coupling scalar function, and �WL
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 are respectively repre-

sented as

Due to the equality of the virtual strain energy density 
increment at node xi,

Substituting Eq. (12) into Eq. (17), and then substitut-
ing Eqs. (17) and (20) into Eq. (21),

Considering the coupling function �(x) as a linear scalar 
function, Eq. (22) can be simplified as

For the coupling domain Ωm , the material parameters 
for different regions can be obtained according to the 
principle of strain energy density conservation. With the 
material parameters delineated for various regions, the 
stiffness matrix and structural reaction vector of different 
regions can be derived. Subsequently, the stiffness matrix 
and structural reaction vector of the entire structure can 
be determined. Finally, the global equilibrium equation for 
each incremental step can be systematically established.
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Fig. 2  Coupling model of the PD-CCM shell and coupling scalar 
function
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In this study, the fracture criterion based on the idea of 
strain energy is used to simulate the damage and fracture 
of shell structures. As shown in Fig. 3, in the 2D case, the 
fracture energy can be determined by the energy released 
by all bonds on the fracture surface of the element frac-
ture. The integral equation of the fracture energy Gc under 
the 2D condition can then be defined as

where t  is the thickness of the shell,Δ�c is the critical 
micropotential energy of each microbeam bond in each 
incremental step, expressed as

Assuming that uniform deformation occurs in the PD 
domain of node xi , then (25) can be simplified as

By substituting Eq. (26) into the fracture energy integral 
Eq. (24), the following can be obtained:

Finally, the energy fracture criterion of microbeam bonds 
[19] can be expressed as
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The motion equation of node x can be formulated within 
the framework of PD theory

where �(�i) represents the mass density at node �i,�̈�(𝐱i, t) 
denotes the acceleration vector at node � during time t ,H�i

 
denotes the neighborhood of node �i , which refers to the set 
comprising all nodes that interact with it.�ij and �ji are force 
density functions governing node interactions dependent on 
relative displacement and position,dV�j

 is the volume inte-
gral over all nodes in the neighborhood, and �(�i, t) refers to 
external force density acting upon node �i.

The volume V�i
 of material node �i is multiplied on both 

sides of Eq. (29),

where �(�i) is the mass matrix of the material node,�(�i, t) 
and �(�i, t) are the external force and internal force vectors 
of the material node �i respectively, and there is

The overall equation of motion for the object can be derived 
by aggregating the equations of motion for all constituent 
particles.

where � is the overall mass matrix of all material nodes,�̈�(t) 
is the overall acceleration vector of all material nodes at time 
t ,�(t) and �(t) are the overall external force and internal 
force vectors at time t , respectively.

To solve the total motion Eq. (32) of the object, the time 
course is discretized into multiple discrete time points, as 
depicted in Fig. 4. Each pair of consecutive time points is 
separated by a specific time step, where t − �tn−1,t , and t + �t 
correspond to times n − 1,n , and n + 1 , respectively. The time 
step from n − 1 to n is denoted as �tn−1 and referred to as the 

(29)�(𝐱i)�̈�(𝐱i, t) = ∫H𝐱i

[𝐟ij − 𝐟ji]dV𝐱j
+ 𝐛(𝐱i, t),

(30)𝐦(𝐱i)�̈�(𝐱i, t) = 𝐩(𝐱i, t) − 𝐫(𝐱i, t),

(31)

�(�i, t) = V�i
�(�i, t),

�(�i, t) = −V�i ∫H�i

[�ij − �ji]dV�j
.

(32)𝐌�̈�(t) = 𝐏(t) − 𝐑(t),

Fig. 3  Schematic diagram of the fracture surface

Fig. 4  Time node after discretization
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‘ n − 1 ’ incremental step; similarly, the time step from n to 
n + 1 is denoted as �tn and termed the ‘ n ’ incremental step.

For the static calculation example presented in this paper, 
we have employed the implicit solving algorithm. By sub-
stituting �̈�(t) = 𝟎 into Eq. (32), we obtain the discretized 
equation.

The incremental method, similar to the traditional FEM, is 
employed for solving the aforementioned nonlinear equation 
group. The equilibrium equation of the nth incremental step 
can be derived as follows:

where �L,�S , and �N are respectively derived from the lin-
ear stiffness matrix, initial stress matrix, and nonlinear stiff-
ness matrix for the three zones; m represents the total num-
ber of elements; �e denotes the conversion matrix between 
the local coordinate system and global coordinate system of 
each plate element; and �e is the element selection matrix 
composed of 0 s and 1 s for efficient mapping of global dis-
placement to element displacement.

The linearization method is commonly employed for itera-
tive solutions of the aforementioned nonlinear equations. 
In this study, we adopt an incremental iteration approach to 
achieve linearization solving. Specifically, during each small 
incremental step, the linearization process can be effectively 
accomplished by disregarding the influence of geometric non-
linear matrix.

The large displacement stiffness matrix �N should be 
excluded when solving the nonlinear system (34).

The iterative method is employed to solve (34), which can 
be expressed in the form of iteration as follows:

where superscript k denotes the kth iteration step in the cur-
rent incremental step, and ��k

n
 denotes the incremental dis-

placement of the kth iteration step in the current incremental 
step. If the increment of external force in the nth incremental 
step is ��n and remains unchanged in the iteration solution 
of the incremental step, then:

When the nth incremental step starts to iterate, the initial 
value is defined as

(33)�n − �n = �.

(34)

���n = �n+1 − �n

� =

m∑
e=1

(�e)T(�e)T(�L +�S +�N)�
e�e

(35)�N = �

(36)�k
n
��

k

n
= �k

n
− �k

n

(37)�k
n
= �n+1 = �n + ��n

The structural reaction vector, linear stiffness matrix and 
initial stress matrix after k iterations are as follows:

where �L is the shape matrix, describing the relationship 
between ��L and ��k

n
,� is the material parameter matrix,a 

is the element area,�n is the stress-related matrix, and � is 
the shape matrix related to nonlinear terms.

By substituting Eqs. (37) and (39) into Eq. (36), the incre-
mental displacement can be determined at the current itera-
tion step:

The increments of generalized strain and generalized 
stress at any position within the element are as follows:

According to the linearization assumption in the incre-
mental step, the kth iteration step allows for accumulation of 
generalized stress through implementation of the co-rotation 
method [20]

According to the results of displacement and stress, assess 
the convergence. If not achieved, substitute Eq. (42) into 
Eq. (39) and continue iterative calculation using Eq. (40) 
until convergence is reached. Once converged, update the 
displacement and stress values and proceed with calculating 
the next incremental step.

where l is the number of convergence steps.
In this paper, we employ the explicit central difference 

method to calculate and solve the dynamic crack propagation 

(38)�0= �, ��n= �, ��0
n
= �, �0

n
= �n, �

0
n
= �n+1, �

0
n
= �n.

(39)

(�)k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T
L
�k−1
n

da

)e

�e,

(�L)
k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T
L
��Lda

)e

�e�e,

(�S)
k
n
=

m∑
e=1

(�e)T(�e)T
(
∫a

�T�k−1
n

�da

)e

�e�e.

(40)
��

k

n
=
(
�k

n

)−1
(�k

n
− �k

n
)

��k
n
= ��k−1

n
+ ��

k

n

(41)
��k

n
= (�L + �N)(��

k
n
)e

��k
n
= ���k

n

(42)�k
n
= �0

n
+ ��k

n

(43)

�n+1 = �n + ��n = �n +

l∑
k=0

��k
n

�n+1 = �n + ��n = �n +

l∑
k=0

��k
n
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problem. We perform time discretization of Eq. (31) and 
obtain the total motion equation as follows:

where n represents the state at time t , and the states at other 
times are depicted in Fig. 4. The physical quantities before 
and at time t  are known. To streamline the derivation pro-
cess, we set the time step as �tn−1 = �tn = �t and express 
the velocity and acceleration in the difference scheme as 
follows:

Reformulate Eq. (44) by substituting Eq. (45), enabling the 
solution for

the displacement at time t + �tn can be obtained

the increment in displacement is as follows:

By substituting Eq. (48) into Eq. (41) and performing a 
single calculation step, the desired result can be obtained

Subsequently, Eq. (42) is utilized to derive the accumula-
tion value as follows:

by substituting �
n+1

 into the first equation of Eq. (39), we 
can obtain the total structural reaction vector �n+1 at the next 
moment, which can then be substituted into Eq. (46) for a 
new iteration round.

At the initial moment, i.e., when n = 0, it is typically 
assumed that �0 = �̇0 = � , as depicted in Eq. (45).

The substitution of Eq. (51) into Eq. (46) yields.

(44)𝐌�̈�n = 𝐏n+1 − 𝐑n,

(45)
�̇�n =

�̇�
n+

1

2

+ �̇�
n−

1

2

2
,

�̈�n =

�̇�
n+

1

2

− �̇�
n−

1

2

𝛥t
.

(46)�̇
n+

1

2

= �̇
n−

1

2

+�−1
(
�n+1 − �n

)
𝛥t,

(47)�n+1 = �n + �̇
n+

1

2

𝛥t,

(48)𝛥�n = �n+1 − �n = �̇
n+

1

2

𝛥t.

(49)
��

n
= (�L + �N)(��n)

e = (�L + �N)�
e��n,

��
n
= ���

n
.

(50)�
n+1

= �
n
+ ��

n
,

(51)�̇
−
1

2

= −�̇ 1

2

.

(52)�̇ 1

2

=
𝛥t

2
�−1�0.

Thus,

The subsequent moment, starting from n ≥ 1 , involves 
repeating the iterative steps (46) and (47). During this 
process, it is essential to continuously update the node 
displacement and broken key information. In case of a 
broken key, it should be removed and the internal force of 
the node recalculated until meeting the requirements of 
the iterative step.

3  Numerical implementation of PD 
algorithm in CUDA

In the CUDA programming model, the CPU assumes the 
role of the ‘host,’ while the GPU is referred to as the 
‘device.’ The collaborative functioning between the host 
and device is orchestrated in a manner where primary 
execution responsibility lies with the host for application 
code. In scenarios involving computationally intensive 
tasks, these tasks are delegated by the host to the device 
[21]. Termed as ‘kernels,’ these tasks are concurrently 
executed by thousands of threads. These threads are 
organized into thread blocks, which further form a grid 
structure. This hierarchical arrangement enables CUDA to 
efficiently manage and schedule a large number of paral-
lel threads.

In the PD theory, nodes and elements constitute the 
fundamental framework of the model, serving as essential 
entities for calculation and analysis. Nodes typically repre-
sent discrete particles within the material, while elements 
connect these nodes to establish a network for transmitting 
forces and information. A notable characteristic of this 
theoretical framework lies in the independence between 
data associated with nodes and elements. This independ-
ence is not only evident in their respective attributes (such 
as position, displacement, and force) but also manifests 
during their calculation process. Specifically, each node 
or element can operate autonomously without waiting 
for or relying on results from other components. Such an 
approach significantly reduces computational complexity 
and dependence while enhancing computational efficiency. 
Moreover, it endows the model with greater flexibility and 
reliability when addressing complex problems.

Leveraging this attribute, the algorithm assigns each 
thread to an individual element or node, thereby facilitat-
ing parallel acceleration through the GPU component of 
the CUDA architecture. Given that each thread can inde-
pendently perform computations, a significant number of 

(53)�1 = �̇ 1

2

𝛥t.
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threads can be concurrently scheduled for execution on the 
GPU, resulting in efficient GPU acceleration. The numeri-
cal solutions are illustrated in Figs. 5 and 6.

3.1  Data transmission optimization

The transfer of data poses a notable bottleneck in GPU paral-
lel computing. To optimize this process, various methods, 
such as asynchronous transfer (e.g., cudamecpyAsync) and 
CUDA stream operations [22], have been implemented. 
However, these techniques do not completely eradicate the 
intrinsic challenge of multiple data transfers, and the opti-
mization effectiveness may diminish as the iteration count 
grows excessively large.

When solving PD problems, it is crucial to regularly 
update the data generated by calculations. The iterative com-
putation process involved in transferring all data back to the 
CPU is highly time-consuming. However, it is unnecessary 
to transfer all data; only the final results for write opera-
tions need to be transmitted. Therefore, a highly efficient 
strategy entails performing computations on the GPU side 
and transmitting solely the final results to the CPU. This 

approach significantly reduces data transfer frequency and 
enhances parallel computation efficiency. Therefore, we opt 
to store and update these data directly on the GPU, neces-
sitating careful consideration of the type of GPU memory 
employed. The GPU’s memory architecture encompasses 
various types such as global memory, registers, local mem-
ory, shared memory, constant memory and texture memory; 
each possesses unique roles and characteristics. Although 
registers offer fast access speeds, their capacity is limited 
and closely tied to thread lifecycles; thus they are unsuit-
able for long-term data storage. Local memory boasts faster 
access speeds than global memory but has a relatively small 
capacity and a lifecycle confined to thread execution periods 
and thread block synchronization—making it ineffective in 
mitigating performance losses caused by multiple data trans-
fers. Constant memory offers certain advantages in terms 
of availability but suffers from limited capacity while only 
supporting read operations—rendering it inadequate for our 
specific application requirements. Texture memory excels 
at providing efficient access modes but entails complexity 
in setup and usage along with reliance on specific APIs and 
hardware support; simultaneously its size and access modes 

Fig. 5  Flowchart of implicit 
solution
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are also restricted—increasing complexity and limitations 
in use cases.

In contrast, global memory offers significant advantages 
by facilitating inter-thread data sharing and ensuring a con-
sistent lifecycle aligned with the GPU device cycle, thereby 
enabling prolonged retention within the GPU alongside 
modifications. Consequently, global memory becomes an 
indispensable asset for mitigating performance overheads 
resulting from frequent transfers.

In this study, we leverage global memory for data storage, 
eliminating frequent data transfers between the CPU and 
GPU. This approach enhances computing performance, as 
illustrated in Fig. 7.

The specific implementation ideas are outlined as follows:

1. Import the model on the CPU side and initialize the data.
2. Allocate memory on the GPU side to store the data 

required for calculations.
3. Transfer node and element data to the GPU.
4. Conduct iterative computations on the GPU.
5. Modify certain node data on the CPU.
6. Transfer the modified data to the GPU.
7. Upon completion of the iteration, input the results to the 

host and generate the output.

The proposed method requires only one full data trans-
mission from the host to the device, with minimal node 
data transmitted after each iteration. This strategy greatly 
improves acceleration performance compared with tech-
niques demanding complete data transmission during each 
iteration.

Fig. 6  Flowchart of the explicit 
solution

Fig. 7  Flow chart of data transmission
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3.2  Parallel solution

In the context of large-scale problems, the computational 
cost associated with generating neighborhood data for PD 
elements in a serial manner significantly escalates, thereby 
diminishing the algorithm’s computational efficiency. Nota-
bly, the process of creating neighborhood data for distinct 
PD elements is independent and repeatable, demonstrating 
high parallelism [23]. Leveraging this insight, aligning each 
PD element with a GPU thread enables parallel construc-
tion of neighborhood data. As depicted in Fig. 8, each ele-
ment or node’s computational task can be mapped to a GPU 
thread using this parallelization strategy. This approach 
substantially reduces computation time and enhances the 
algorithm’s computational efficiency.

The detailed invocation process of threads can be 
described as follows:

Initially, a unique thread index, referred to as ‘tid’, 
needs to be generated. The computation formula for tid 
is given by tid = blockIdx.x * blockDim.x + threadIdx.x. 
In this equation, blockIdx.x represents the index of the 
thread block, blockDim.x signifies the number of threads 
within each dimension of the thread block, and threadIdx.x 
denotes the index of the thread within its respective thread 
block. Consequently, the distinct index tid for each thread 
is derived from a combination of blockIdx.x, blockDim.x, 
and threadIdx.x.

Consequently, each thread independently computes 
the corresponding element data for its assigned thread ID 
(i.e., tid). This parallel process enables efficient and rapid 

processing of large datasets by allowing every thread to 
autonomously execute its computational task.

In the figure, δ represents the radius of the PD domain. 
Once the PD domain is established, each PD element within 
this domain is assigned a thread for calculation, thus achiev-
ing a high degree of parallelization.

3.2.1  Parallelism of implicit solutions

In the resolution of implicit PD problems, a crucial step 
involves aggregating single stiffness matrices into a global 
stiffness matrix. However, conventional parallel strategies, 
such as assigning a thread to each stiffness matrix, may 
lead to concurrent access by multiple threads to the same 
node during assembly, resulting in computational errors. 
Although generating single element stiffness matrices in 
parallel on the GPU and subsequently transferring them to 
the CPU for sequential assembly can provide acceleration 
benefits for small-scale problems, this approach becomes 
significantly limiting for large-scale problems due to the 
overhead associated with assembling and transmitting the 
global stiffness matrix.

To address this issue, this study employs an atomic opera-
tion scheme. Atomic operations in CUDA allow a thread to 
complete the read–write process of a specific storage ele-
ment without interference from other threads. By leveraging 
atomic operations, this study achieves the parallel assem-
bly of the global stiffness matrix on the GPU, eliminating 
the need for multiple transmissions between the CPU and 
GPU. Although atomic operations entail a performance loss, 
the resulting accelerated performance compensates for this 
drawback.

In the implicit solution of large PD deformation prob-
lems, after assembling the global stiffness matrix, con-
straints and forced displacements should be imposed on the 
system. Given that only a small portion of node data needs 
modification for imposing constraints and forced displace-
ments, transmitting the entire node array between the CPU 
and GPU would lead to significant time loss. Hence, this 
study adopts an indexing method to identify and transmit 
only the required data for the modified nodes, effectively 
reducing data transmission overhead.

Upon applying constraints and displacements, a load vec-
tor must be generated. Considering that the forces acting 
on each node are independent, each node can be mapped to 
a thread on the GPU, enabling parallel computation of the 
resultant forces for each node. Once accomplished, a linear 
system of equations, denoted as Kd = F, emerges, where K 
signifies the global stiffness matrix, F represents the load 
vector, and d denotes the displacement vector to be solved. 
This system of linear equations can be resolved using the 
preprocessed conjugate gradient method (PCG).

Fig. 8  Assigning threads to PD elements
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The implicit solution of large deformation problems 
differs from other PD problems in that during the implicit 
solution, the displacement solution of the linear equation 
system obtained by each iteration step must be evaluated 
for convergence. If it does not converge, it must be resolved 
within this iteration step until the convergence condition is 
met, and then the current iteration step can be bypassed. 
This characteristic necessitates solving multiple linear equa-
tions at each iteration step when resolving large deformation 
problems, resulting in substantial time costs. The flow chart 
of the implicit solution of large deformation problems is 
depicted in Fig. 9.

The resolution of linear equations represents the most 
time-consuming phase within the overall problem-solving 
procedure. This is primarily attributed to the extensive 
numerical computations and matrix operations involved, 
which exhibit considerable computational complexity and 
volume. Therefore, solving these equations becomes notably 

time-intensive owing to the significant demands posed by 
the resolution of linear equations.

Despite the admirable performance of the CPU in pro-
cessing large sets of linear equations, its computational 
speed and efficiency encounter limitations as the scale of 
the problem increases. GPU acceleration technology lever-
ages the parallel computing capabilities of GPUs to boost 
computational efficiency. It achieves this by dividing the 
computing tasks into multiple subtasks and executing them 
concurrently on the GPU. When addressing the solution of 
linear equations, GPU acceleration technology parallelizes 
numerous matrix operations and numerical calculations 
integral to the computation, thereby significantly reducing 
computation time.

Owing to the limited graphics memory capacity of the 
GPU, storing the entire stiffness matrix in GPU memory is 
impractical. To address this challenge, this study employs a 
compression technique to transform the total stiffness matrix 
into a sparse matrix format and stores it using the row-first 
compression compressed sparse row (CSR) method [24]. 
To facilitate a comprehensive understanding of the CSR 
storage matrix, we illustrate the mapping relation between 
full memory and CSR sparse memory with an example, as 
shown in Fig. 10. The relevant parameters in the CSR, such 
as the Row and Col indices, are detailed in Table 1. The inte-
gration of the global stiffness matrix stored in sparse format 
can be conducted efficiently, considerably reducing memory 
consumption and solving time. This approach enables the 
resolution of problems with increased degrees of freedom 
through GPU acceleration.

The cuSPARSE library in CUDA comprises a set of basic 
linear algebra subroutines for sparse matrices, which can 
notably accelerate the calculation of sparse matrices [25, 
26]. The cuBLAS library implements the basic linear alge-
bra subroutine (BLAS) in the  NVIDIA®  CUDATM runtime, 
enabling users to fully utilize the computing resources of the 
 NVIDIA®  CUDATM GPU [27]. Consequently, the solvers 
used in this study are based on the cuSPARSE and cuB-
LAS libraries to ensure optimal efficiency in solving linear 
equations.

Fig. 9  Flowchart of implicit solution for large deformation Fig. 10  Example of thick matrix to CSR sparse matrix
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3.2.2  Parallelism of explicit solutions

The conventional serial solving method incurs substantial 
time costs when calculating the links associated with PD 
bonds [28]. As illustrated in Fig. 11, once the size of the 
PD domain is established and element I is identified, any 
element within the same domain as element I (e.g., element 
J) determines the range of the PD domain. A PD bond ξij is 
formed between node i of element I and node j of element J, 
thereby linking these elements. Serial computation for bond 
force calculation results in considerable time expenditure. 
However, bond force calculation exhibits high parallelism, 
and the independent computation of each bond facilitates 
GPU parallel acceleration. The computation of each bond 
can be delegated to an individual concurrent thread on the 
GPU to accomplish this task.

Upon completion of the bond force calculation, it must be 
distributed to each node. Analogous to the assembly of the 
global stiffness matrix, common nodes exist in the parallel 

distribution process. To circumvent the issue of multiple 
threads reading and writing the same node, atomic opera-
tions are necessary. The method employed for explicit solv-
ing is the central difference method, and the steps are as 
follows:

(1) The node acceleration is obtained by calculating the 
derivative of the node velocity.

(2) Multiply the node acceleration by the preset time step 
to obtain the node velocity.

(3) Multiply the node velocity by the time step to obtain 
the current iteration step displacement.

(4) Add the current iteration step displacement to the node 
displacement.

(5) Update the node coordinates.

In the resolution of the central difference method, the 
data between nodes are independent, enabling solution 
acceleration by allocating a thread to each node for parallel 
computation. Prior to the next incremental step, the frac-
ture information of the PD bonds must be updated. Given 
that the key state is independent, a thread can be allocated 
to each PD element to achieve GPU parallel acceleration 
and update the bond fracture state [29].

4  Numerical example

In Sect. 4.1, the accuracy of the PD algorithm is veri-
fied by comparing the results of the GPU algorithm with 
the traditional finite element CPU algorithm. The implicit 

Table 1  Relevant parameters of the CSR matrix

Argument Parameter meaning

Matrix A sparse matrix of m rows and n columns
NNZ Number of non-zero elements of a matrix
Val Stores data of length NNZ, which holds all non-zero numbers of the matrix in rows first
Row Stores an array of integers of length m + 1, the first m element of which records i = 0. m − 1 is the index of the first non-

zero element in row i, whereas the value of the last element is NNZ
Col Stores an array of integers of length NNZ that contains the column index of the corresponding element in the array Val

Fig. 11  Formation of PD bonds between PD elements

Table 2  Hardware configuration information for CPU and GPU

HOST CPU 12th Gen Intel(R) Core(TM) i7-12700 (with 
12 cores, 4.9 GHz, 20 threads)

RAM 128 GB, DDR4
DEVICE GPU NVIDIA GeForce RTX 3060 (3584 CORES)

RAM 12 GB, GDDR6
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algorithm adopts a single plate, whereas the explicit 
algorithm adopts a Y-shaped prefabricated crack plate. 
In Sect. 4.2, the efficiency of the parallel algorithm will 

be verified. After ensuring accuracy, the time taken to 
solve the PD large deformation problem using the GPU 
algorithm and CPU algorithm is compared, and the accel-
eration ratio is obtained to verify its acceleration effect. 
Table 2 provides the configuration information of the CPU 
and GPU in the calculation.

4.1  Precision verification of parallel solving 
algorithm

4.1.1  Precision verification of parallel implicit solution 
algorithm

The calculation example used in this section involves a sin-
gle plate employed solely to test the accuracy of the parallel 
implicit solving algorithm. The model settings are shown Fig. 12  Model of single tie plate

Fig. 13  Comparison of displacement results between GPU parallel 
algorithm and CPU algorithm, a, c, e shows the displacement results 
in X-direction, Y-direction and Z-direction for GPU parallel algo-

rithm, b, d, f shows the displacement results in X-direction, Y-direc-
tion, and Z-direction for CPU algorithm
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in Fig. 12. The length of the plate is L = 90 mm, the width 
is W = 30 mm, and the thickness is h = 0.8 mm. The elastic 
modulus of the plate is E = 210 GPa, the Poisson’s ratio is 
v = 0.33, and the density is 2440 kg/m3 . The left end is fixed, 
and the uniform load acting on the right boundary of the 
model is P = 1 MPa. The grid size is Δx = 1 mm, and the PD 
domain size is set to δ = 3Δx.

The displacement results of the GPU parallel algorithm 
are compared with those of the CPU algorithm to verify 
the accuracy of the GPU parallel algorithm. The com-
parison of displacement results for the two algorithms is 
shown in Fig. 13.

By comparing the displacement results of each iteration 
step of the GPU parallel algorithm and CPU algorithm, we 
observe that the results of the two algorithms are essen-
tially the same. This observation confirms the accuracy of 
the GPU parallel algorithm, demonstrating its suitability 
for accelerating the solution of large-scale problems.

4.1.2  Precision verification of parallel explicit solution 
algorithm

In this section, the example used is a Y-shaped prefabri-
cated cracked plate, which is widely used to evaluate the 
accuracy of crack propagation simulation algorithms. The 
initial crack plate model and PD region setting are shown 
in Fig. 14. The length of the plate is L = 100 mm, the width 
is W = 40 mm, and the thickness is h = 1 mm. There is an 
initial prefabricated crack at L/2, with the crack length a0 
= 50 mm. The elastic modulus of the plate is E = 72 GPa, 
the Poisson’s ratio is v = 0.33, the density is 2440 kg/m3 , 
and the critical energy release rate is Gc = 135 J/m2 . The 
uniform load acting on the upper and lower boundaries of 
the model is P = 12 MPa. For the crack propagation region, 
a grid discretization with a mesh size of Δx = 0.5 mm is 
used, and the PD domain size is set to δ = 3Δx.

The crack propagation paths calculated by GPU at 
different time steps were compared with the calculation 
results by CPU, as shown in Fig. 15.

The calculation results of the GPU are basically con-
sistent with those of the CPU, and the crack propagation 
path of the GPU parallel algorithm is consistent with that 
of the CPU algorithm. This finding verifies the accuracy 
of the GPU parallel explicit algorithm and can be used to 
accelerate the solution of large-scale problems.

4.2  Speedup verification of the parallel solution 
algorithm

4.2.1  Speedup verification of the parallel implicit solution 
algorithm

In this section, the parallel implicit algorithm is tested for 
its acceleration performance using a model of a uniformly 

Fig. 14  Y-shaped prefabricated cracked plate

Fig. 15  Crack extension paths of Y-shaped prefabricated cracked 
plate at different time steps, a computed results at GPU side, b com-
puted results at CPU side

Fig. 16  Uniform pressure modeling of thin plates
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pressed thin plate. The model settings are illustrated in 
Fig. 16. The plate has a length of L = 90 mm, a width of 
W = 30 mm, and a thickness of h = 0.8 mm. The elastic 
modulus of the plate is E = 210 GPa, the Poisson’s ratio is 
v = 0.33, and the density is 2440 kg/m3 . A fixed constraint 
is applied at the left end. The surface uniformly distributed 

load acting on the model surface is P = 1 MPa. The total 
number of elements is 10,800. The grid size is Δx = 0.5 mm, 
and the PD domain size is set to δ = 3Δx.

The incremental step is set to 100 steps, and the maxi-
mum iteration times of a single incremental step are set to 
100. The GPU parallel algorithm and CPU algorithm are 
used for solving, respectively. The displacement result of 
the GPU parallel algorithm is shown in Fig. 17.

By comparing the displacement results of the two algo-
rithms, the displacement of any incremental step is basi-
cally the same in the solving process. Thus, the acceleration 
performance of the GPU parallel algorithm can be verified. 
The model with PD elements accounting for 50% of the total 
number of elements is selected to test the time of each link 
of an iteration step of the GPU parallel algorithm and the 
CPU algorithm, as shown in Table 3.

Table 3 indicates that when solving large deformation 
implicit problems, the solving time of linear equations in the 
iterative step is remarkably high. Although assembling the 
global stiffness matrix requires some time, each incremen-
tal step only requires assembling the global stiffness matrix 
once. However, due to the existence of convergence condi-
tions for displacement results, the solving of linear equations 
often needs to be repeated many times, and the current incre-
mental step can only be completed when the displacement 
solution satisfying the displacement convergence conditions 
is obtained. Therefore, the solving time of the linear equa-
tions can be approximated to the total calculation time, and 
the acceleration ratio of the PCG parallel solution on the 
GPU and the UMF solution on the CPU can be calculated 
using the total calculation time.

Fig. 17  The displacement result of GPU parallel algorithm

Table 3  Time of each session of one iteration step of the two algo-
rithms, in (s)

Assemble the 
global stiffness 
matrix

Impose 
constraints

Solving 
linear equa-
tions

Updating 
stress and 
strain

CPU 11.16 0.03 1228.65 0.74
GPU 4.23 0.01 163.82 0.16

Fig. 18  Total computation time 
of GPU parallel algorithm and 
CPU algorithm with different 
PD element ratios
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The total calculation time of the GPU parallel algorithm 
and the CPU algorithm under different proportions of PD 
elements is shown in Fig. 18.

With the increase of the PD element ratio, the CPU 
computing time increases, whereas the GPU computing 
time also increases, but not significantly compared with 
the CPU. Therefore, the speedup ratio (CPU computing 
time/GPU computing time) shows an upward trend, and 
the acceleration effect of the GPU parallel algorithm can 
reach 7.4–9.8 times, demonstrating excellent acceleration 
performance.

To further prove that the GPU parallel algorithm has a 
good acceleration effect on large-scale problems, this sec-
tion refines the model grid with a 50% PD element ratio and 
tests the acceleration effect of the GPU parallel algorithm 
with the same PD element ratio under different grid sizes, 
as shown in Table 4.

Table 4 only provides statistics for the time of solving 
linear equations once under different grid sizes. Referring to 
Table 3, the time of solving linear equations can be approxi-
mately equal to the time of one iteration step t, whereas 
the total solving time of implicit large deformation T = n × t, 
where n is the total number of iterative steps. Therefore, the 
ratio of CPU to GPU for solving linear equations once is 
the acceleration ratio of the GPU parallel algorithm to the 
CPU algorithm.

According to Table 4, with the increase in the number 
of elements, the acceleration ratio also increases. When the 
number of elements is 270,000, the number of rows of the 
stiffness matrix is 27 × 4 × 6 = 6.48 million, achieving a 10 
times acceleration effect when dealing with a million-order 
matrix. This demonstrates superior acceleration performance 
compared with the CPU.

4.2.2  Speedup verification of the parallel explicit solution 
algorithm

To validate the acceleration performance of the parallel 
explicit algorithm, this section investigates the progressive 
damage process of a square low-carbon steel plate with a 
preset crack under lateral load. The specific experimental 
process for this problem can be found in the literature [30]. 
As shown in Fig. 19, the length, width, and thickness of the 

steel plate are L = 203 mm, L = 203 mm, and h = 0.8 mm, 
respectively. The steel plate has an initial preset crack at 
X = L/2, with a crack length of a_0 = 30 mm. The elastic 
modulus of the low-carbon steel plate is E = 210 GPa, the 
Poisson’s ratio is v = 0.33, the density is 7.85 t/m3 , and the 
critical energy release rate is Gc = 255 kN/m . The left and 
right ends of the steel plate are fixed and constrained, and 
an incremental load F is applied at both ends of the crack.

For the crack propagation region, the grid size of 
Δx = 1.75 mm is initially used for grid discretization, and the 
PD domain size is set as δ = 3Δx, with a total of 13,456 ele-
ments in the model. The explicit central difference method 
is employed to calculate the crack propagation process with 
gradually increasing load, and the time step is set to 0.1 μs, 
which is sufficient to meet the stability conditions of numeri-
cal integration. After 50,000 incremental steps, the load is 
gradually increased to 1800 N, and the quasi-static results of 
the crack propagation process are obtained. The calculation 
results of the GPU parallel algorithm is shown in Fig. 20.

During solving, the calculation time is statistically 
recorded, as shown in Fig. 21, which captures the calcula-
tion time of the GPU parallel algorithm and the CPU algo-
rithm under different PD ratios. With the increase in the PD 

Table 4  GPU computation time vs. CPU computation time for differ-
ent grid sizes at 50% PD element ratio, in (s)

Grid size (mm) Degrees of 
freedom

GPU 
computing 
time

CPU 
computing 
time

Speedup

0.5 259,200 163 1229 7.54
0.25 1,036,800 347 3148 9.07
0.1 6,480,000 11,329 115,293 10.18

Fig. 19  Model of a square mild steel plate with preset cracks

Fig. 20  Crack expansion path results for mild steel plate calculated by 
GPU parallel algorithm
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element ratio, CPU calculation time increases, whereas GPU 
calculation time also increases, but the increase is not large 
compared with the CPU. Therefore, the speedup ratio (CPU 
calculation time/GPU calculation time) shows an increasing 
trend, and the speedup ratio is positively correlated with the 
PD element ratio.

At the same time, this section compares the computing 
time of the links that take up a large proportion of time, as 
shown in Fig. 22. The time-consuming links in the explicit 
solution of the GPU parallel algorithm and the CPU algo-
rithm are stress and strain update and structural reaction cal-
culation, but the GPU computing time is much lower than 
that of CPU computing time. With the increase in the num-
ber of PD elements, the acceleration ratio of the two links 
also increases, which proves that the GPU parallel algorithm 
has the acceleration performance that the CPU algorithm 
cannot reach.

The model grid is further refined, and the GPU comput-
ing time and CPU computing time of different grid sizes at 
the ratio of 100% PD elements are statistically analyzed, as 
shown in Table 5.

With the gradual refinement of the grid and the increase 
in the number of PD elements, the calculation time of both 
GPU and CPU also increases. However, the GPU parallel 
algorithm outperforms the CPU algorithm in processing 
PD elements, leading to an increasing speedup ratio. As the 
grid of the model becomes more refined, incorporating more 
PD elements, the speedup ratio grows larger, highlighting 
the superior acceleration performance of the GPU parallel 
algorithm.

Scalability is a crucial performance metric for evalu-
ating GPU algorithms, which can be classified into two 
main types: weak scalability and strong scalability. Weak 
scalability refers to the algorithm's ability to maintain effi-
ciency as the problem scale increases, while strong scal-
ability implies that the algorithm’s efficiency improves 
with increasing problem scale. From a theoretical perspec-
tive, the non-local characteristics of PD method neces-
sitate each node to consider interactions with other nodes 
within a specific range during calculations. Consequently, 
as degrees of freedom increase, the computational work-
load often exhibits super linear growth trends. With an 
increasing number of nodes, each node will require more 
adjacent nodes for interactive calculations accordingly. In 
a two-dimensional space with uniformly distributed nodes 
and constant interaction range, the number of adjacent 
nodes needed by each node for interactive calculations 
is proportional to the square root of node density (this 
arises from considering that area in two-dimensional space 
is proportional to radius squared and number of nodes is 
proportional to area). However, since each node needs to 
interact with multiple other nodes, overall computational 
workload will approach or exceed the square of degrees 
of freedom. To verify GPU algorithm’s scalability effec-
tively, we expanded data scale and computing time based 
on square proportionality with degrees of freedom when 
conducting comparative analysis under different grid sizes; 
subsequently comparing this expanded computing time 
with actual time required by smaller grids as shown in 
Table 6.

Fig. 21  GPU computation time 
vs. CPU computation time for 
different PD element ratios
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The analysis results indicate that the GPU algorithm 
exhibits robust scalability, with its efficiency gradually 
improving as the data size increases. Furthermore, optimi-
zation of data transfer and reduction in scheduling overhead 

effectively mitigate their impact on algorithm acceleration 
performance during large-scale data processing.

Fig. 22  Comparison of compu-
tation time for the more time-
consuming parts of the explicit 
solving process

(a) Time comparison of stress-strain updating links

(b) Time comparison of structural reaction force calculation sessions
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4.2.3  Numerical example of hexagonal prism

The model used in this section is a hexagonal prism model 
with a prism length of L = 304.8 mm, a bottom side length 
of 65.33 mm, and a thickness of h = 3.048 mm. The elastic 
modulus of the plate is E = 193 GPa, the Poisson’s ratio is 
v = 0.33, the density is 7980 kg/m3 , and the critical energy 
release rate is Gc = 150 kN/m . The upper and lower bottom 
surfaces are fixedly constrained, and the uniform load acting 
on the model cylinder is P = 1 MPa. The schematic diagram 
of the model is shown in Fig. 23. The total number of ele-
ments is 19,052, and the grid size is Δx = 2.5 mm. The PD 
domain size is set to δ = 3Δx. The GPU calculation time 
is 4492 s, and the CPU calculation time is 33,102 s. The 
comparison result of the GPU parallel algorithm is shown 
in Fig. 24.

The model, with 100% PD elements, undergoes refine-
ment by gridding. Table 7 presents the comparison of calcu-
lation time and acceleration ratio under different grid sizes. 
Post-gridding, the acceleration ratio increases with the grow-
ing number of elements, indicating a positive correlation 
between acceleration performance and the number of ele-
ments. A higher element count results in better acceleration 
performance for the GPU parallel algorithm.

4.2.4  Numerical example of prefabricated cracked cylinder

The model used in this section is a cylinder with a prefabri-
cated crack, with a height of H = 600 mm, a bottom diameter 
of 200 mm, and a thickness of h = 3.048 mm. The elastic 
modulus of the plate is E = 65 GPa, the Poisson’s ratio is 
v = 0.33, the density is 7850 kg/m3 , and the critical energy 
release rate is Gc = 150 kN/m . The upper and lower bottom 
surfaces are fixed, the prefabricated crack is applied at H/2, 

and the cylindrical surface is applied with a horizontal uni-
form load, as shown in [31], and the schematic of the model 
is shown in Fig. 25. The total number of elements is 18,621, 
the grid size is Δx = 4.5 mm, and the PD domain size is 
set to δ = 3Δx. The result of the GPU parallel algorithm is 
shown in Fig. 26.

Upon refining the model mesh, the computing time of 
both algorithms is statistically analyzed, and the accelera-
tion ratio is recorded. Table 8 presents these results, showing 

Table 5  GPU computation time vs. CPU computation time for differ-
ent grid sizes at 100% PD elements, in (s)

Grid size (mm) Degrees of 
freedom

GPU 
computing 
time

CPU 
computing 
time

Speedup

1.75 322,944 10,619 74,645 7.03
1 989,016 45,743 359,189 7.85
0.75 1,759,920 60,452 497,297 8.23

Table 6  The scalability analysis 
of GPU algorithms, in (s)

Grid size (mm) Degrees of freedom Effective GPU 
computing time

Theoretical computing 
time as task scales

Speedup

1.75 322,944 10,619 10,619 1
1 989,016 45,743 99,594 2.18
0.75 1,759,920 60,452 344,142 5.69

Fig. 23  Schematic diagram of hexagonal prism model

Fig. 24  The GPU algorithm calculation results

Table 7  GPU computation time vs. CPU computation time for differ-
ent grid sizes at 100% PD elements, in (s)

Grid size (mm) Degrees of 
freedom

GPU com-
puting time

CPU com-
puting time

Speedup

2.5 456,760 4492 33,102 7.37
1.5 1,256,976 9073 78,329 8.63
1 2,854,800 18,276 173,787 9.51
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an enhanced acceleration performance of the GPU paral-
lel algorithm after mesh refinement. The GPU algorithm 
exhibits superior acceleration performance as the number of 
elements in the model increases, particularly in addressing 
large-scale PD plate shell deformation problems.

5  Conclusion

This study introduces an innovative parallel algorithm, lever-
aging GPU capabilities, specifically crafted to address large 
deformation challenges in PD shells with notable efficiency. 
The algorithm exploits GPU acceleration technology to par-
tition the computational task into numerous subtasks, allow-
ing for concurrent execution on the GPU and resulting in a 

substantial improvement in computational efficiency. The 
accuracy and superior efficiency of this parallel algorithm 
are substantiated by the successful execution of six distinct 
examples. Although the algorithm is primarily optimized for 
single-GPU usage, we hypothesize that employing multi-
GPU parallel computing would yield more effective results 
when tackling large-scale problems. In future research, our 
objective is to explore multi-GPU parallel algorithms to fur-
ther enhance the efficiency and scalability of our proposed 
solution, making it capable of handling even larger-scale 
problems. In addition, we plan to extend the application 
of this algorithm to address large deformation challenges 
in practical engineering scenarios. This expansion aims to 
contribute to the development of more precise and efficient 
numerical simulation methodologies within the engineer-
ing domain. In conclusion, the proposed GPU-based paral-
lel algorithm holds significant potential for addressing large 
deformation challenges in PD shells, demonstrating both 
theoretical relevance and practical applicability.
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