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Abstract
Multi-fidelity (MF) surrogate model has been widely used in simulation-based engineering design processes to reduce the 
computational cost, with a focus on cases involving hierarchical low-fidelity (LF) data. However, accurately identifying and 
sorting the fidelity of LF models is challenging when dealing with non-hierarchical cases. In this paper, we propose a novel 
non-hierarchical MF surrogate framework called weighted multi-bi-fidelity (WMBF) to solve this problem. The proposed 
WMBF has both the advantage of two non-hierarchical frameworks, the weighted sum (WS) and parallel combination 
(PC) techniques, leveraging an entropy-based weight to include multiple-moments statistical information. It offers not 
only a weight with more information but also a more individualized scaling function within the weighted-sum framework, 
additionally a more individualized discrepancy function compared with existing methods. Moreover, it provides the idea of 
exploiting Kullback–Leibler (KL) divergence (an entropy-based metric) to characterize uncertainty for calculating weight 
within the WS framework. To validate the performance of the WMBF, we conduct evaluations using several numerical test 
functions and one engineering case. The result demonstrates that the WMBF achieves both accurate and robust predictions 
with minimal computational cost.
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1  Introduction

Surrogate models have been widely used to replace some 
time-consuming simulations in engineering for their 
low computational cost, such as Kriging [1], polynomial 
response surface (PRS) [2], polynomial chaos expansion 
[3], support vector machine [4], and radial basis function 
(RBF) [5]. They assist in constructing accurate mathemati-
cal models and generating predictions using available design 

samples. The surrogate model constructed by the data from 
the high-fidelity (HF) model generates more accurate pre-
dictions than the one constructed from the low-fidelity (LF) 
model, but it also has a higher computational cost. Hence, 
the multi-fidelity (MF) surrogate model was proposed to 
balance the prediction accuracy and the computational cost 
[6], which has been applied in engineering optimization; see 
[7–10] and the reference therein.

The main concept of MF surrogate model involves the 
correction of LF models using HF models in different ways, 
including space mapping, multiplicative correction, additive 
correction, and comprehensive correction [11]. The space 
mapping correction can be considered as correcting the 
input or output variables of HF model to LF model, allow-
ing different dimensions of LF and HF design space. Several 
works are devoted to space mapping based on Gaussian [12, 
13] and RBF [14, 15]. In addition, the multiplicative (or 
additive) correction has been widely studied in aerospace 
[16–18] and manufacturing material [19–21]. It corrects the 
LF model response by constructing a surrogate model of the 
ratio (or difference) between the HF and LF model, known 
as the scaling (or discrepancy) function.
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Moreover, comprehensive correction is the combination 
of these two corrections. One may intuitively set the mul-
tiplicative factor as a constant and build a surrogate model 
of the additive correction. The co-Kriging was presented 
based on it in [22], and it was regarded as a general exten-
sion of Kriging under the assistance of auxiliary variables 
or secondary information [23]. It was applied to computa-
tional simulation in [24] called KOH model, which has been 
broadly applied to aerospace field [25] and intelligent manu-
facturing field [26]. The KOH model provides both predicted 
values and its mean-squared error (MSE), but it has high 
computational complexity and low robustness. Therefore, 
Han et al. developed the hierarchical Kriging (HK) [23] to 
improve KOH with a more reasonable estimated MSE and 
less computational complexity. Multiple researches have 
been presented to make variations and extensions of HK 
since it was proposed [27–29]. For example, the improved 
hierarchical Kriging (IHK) [27] was proposed by using the 
PRS to map the LF model to the HF data, which leads to a 
more accurate MF surrogate model. Another comprehensive 
correction method is the hybrid method developed in [19], 
where the additive and multiplicative correction based on the 
Kriging model were summed by using a weighting function 
based on adaptive hybrid method. A similar hybrid method 
also has been combined with RBF scaling function [30], and 
applied to Bayesian optimization [31].

When there are more than two LF models, the fusion of 
MF models becomes a significant research problem. Cur-
rently, most MF surrogate methods focus on hierarchical 
cases. These methods assume that model fidelity increases 
progressively from LF to HF, allowing approximation 
through step-by-step modeling by hierarchical MF surrogate 
model. However, this solution may not be suitable for non-
hierarchical cases in practice. In certain scenarios, it is chal-
lenging to identify and rank the fidelity of LF models intui-
tively due to the various ways of simplifying the HF model. 
For instance, a 3-D finite element model with a coarse mesh 
and a 1-D finite element model with a refined mesh are both 
simplified versions (i.e., LF models) of a 3-D finite element 
model with a refined mesh (i.e., HF model). However, it is 
difficult to determine which LF model is closer to the HF 
model. Therefore, it is necessary and promising to investi-
gate the non-hierarchical MF surrogate model.

To deal with the non-hierarchical MF cases, the 
weighted-sum (WS) method has been proposed and inves-
tigated to enhance the performance of MF surrogate model 
in recent literature [32–35]. Zhang et al. developed the lin-
ear regression multi-fidelity surrogate (LRMF) within the 
WS framework, utilizing the PRS to model the discrepancy 
function [33]. Additionally, Zhang et al. proposed the non-
hierarchical low fidelity co-Kriging (NHLF), which assigned 
scaling factors to all non-hierarchical LF models and com-
bined them as the trend function within the WS framework 

[34]. Moreover, the variance-weighted sum multi-fidelity 
surrogate (VWS-MFS) employed the WS framework for 
data fusion as well, which first fused all LF data based on 
variance-weight and then built MF model between the LF 
fusion data and HF data [35].

However, the individualization of the discrepancy func-
tion between each LF and HF data has not been considered 
in these WS-based methods. Different from the WS method, 
another approach called parallel combination (PC) regarded 
the HF model as the sum of each LF model and its corre-
sponding discrepancy function separately [32]. To this end, 
we propose a novel method based on the combination of 
the WS and PC methods when constructing a non-hierar-
chical MF surrogate model in this paper. Moreover, as for 
the weight calculation method in the WS framework, we 
provide an entropy-based weight that contains more moment 
information compared with the variance-based weight in 
VWS-MFS. Therefore, we develop a weighted multi-bi-
fidelity (WMBF) framework that utilizes the bi-fidelity sur-
rogate model to describe the relationship between each LF 
and HF data, and then fuses them for the final prediction 
with the weight using Kullback–Leibler (KL) divergence (an 
entropy-based metric) within the WS framework. Except for 
achieving the individualization of the discrepancy function, 
the proposed method also owns a weight with more informa-
tion and a more individualized scaling function in the WS 
framework compared with VWS-MFS. The effectiveness 
of the proposed method is illustrated by several numerical 
examples and one engineering case.

The remaining of this paper is organized as follows: 
the background of bi-fidelity surrogate models and the 
weighted-sum MF surrogate method are given in Sect. 2. 
Section 3 describes the details of the proposed WMBF 
method. In Sect. 4, several numerical examples and an engi-
neering case are exploited to demonstrate the superiority and 
effectiveness of the proposed WMBF method by comparing 
it with other existing surrogate models. The effects of the 
main factors are also discovered in Sect. 4. The conclusion 
and future work are given in Sect. 5.

2 � Background

The background of BF surrogate models and the weighted-
sum MF surrogate method are introduced in this section.

2.1 � Hierarchical Kriging and improved hierarchical 
Kriging for bi‑fidelity surrogate model

In this study, we focus on the relationship between HF and 
each LF data. Since it can be explored through bi-fidelity 
(BF) surrogate model, here we provide a brief introduction 
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to hierarchical methods for building a d-dimension BF sur-
rogate model between HF data set,

and LF data set,

including HK and IHK. Here, nL and nH are respectively the 
number of LF and HF sampling points; the pair 

(
XH, yH

)
 

denotes the HF sampled data sets in the vector space. Simi-
larly the LF model is assumed to sample at nL points XL with 
corresponding responses yH.

Han et al. presented the HK to reduce the computational 
complexity of co-Kriging [23]. To build a BF surrogate 
model between DH and DL , HK first builds a Kriging sur-
rogate model ŷL(x) for the LF model, and then models the 
discrepancy function between ŷL(x) and the HF model as 
a stationary random process z(x):

where �0 is a scaling factor indicating the correlation 
between LF and HF models. It finally gives the prediction 
of response of the untried point as

where R ∈ ℝ
nH×nH is the spatial correlation matrix among 

the HF observed points; FHK =
[
ŷL(x1),… , ŷL(xnH)

]⊤ is the 
design vector, r ∈ ℝ

nH is the correlation vector between 
the untried point and the HF observed points. Also, we can 
obtain 𝛽0 = (F⊤

HK
R−1FHK)

−1F⊤

HK
R−1yH . Moreover, the MSE 

of the HK prediction can be calculated by:

where �2 is the variance of z(x) . This MSE estimator per-
forms more precise than the traditional Kriging because 
the approximated LF model ŷL(x) is contained. Meanwhile, 
instead of modeling the “cross correlation” between HF and 
LF data in co-Kriging, only the individual correlation of HF 
and LF data is modeled in HK, which reduces the model 
complexity.

The IHK used a PRS function to map the LF function 
to the HF data, leading to a more accurate MF model com-
pared with HK [27]. Specifically, the BF surrogate model 
between DH and DL can be formulated as

where h(x) is a response surface model with the expression 
of

DH ∶=
{(

XH, yH
)
|XH ∈ ℝ

nH×d, yH ∈ ℝ
nH
}
,

DL ∶=
{(

XL, yL
)
|XL ∈ ℝ

nL×d, yL ∈ ℝ
nL
}
,

(1)yH1
(x) = 𝛽0ŷL(x) + z(x).

(2)ŷH1
(x) = 𝛽0ŷL(x) + r⊤(x)R−1(yH − 𝛽0FHK),

(3)
𝜎2
{
1 − r⊤R−1r + [r⊤R−1FHK − ŷL(x)]

(F⊤

HK
R−1FHK)

−1[r⊤R−1FHK − ŷL(x)]
⊤
}

(4)yH2
(x) = h(x)ŷL(x) + z(x),

Taking the two-dimensional case for example, then (4) can 
be expressed as:

where � = [�1, �2, �3, �4, �5, �6] and

Using a similar solving procedure to HK, IHK produces 
results that have a similar form to (2) and (3), but with a 
different design matrix FIHK = [f (x1

H
),… , f (x

nH
H
)]⊤ and thus 

a different scaling factor 𝛽⋆ = (F⊤

IHK
R−1FIHK)

−1F⊤

IHK
R−1yH . 

Since f incorporates both the LF model and predictor loca-
tion information, IHK achieves a superior MSE estimation 
compared with HK.

2.2 � Multi‑model fusion framework 
and variance‑weighted sum multi‑fidelity 
surrogate

Chen et al. presented a non-hierarchical multi-model fusion 
framework with two main fusion methods: weighted-sum 
(WS) and parallel combination (PC) [32].

The WS approach models the true physical response yt(x) 
as a linear combination of simulation models ys(x) together 
with a single discrepancy function �(x) , i.e.,

where � = [𝜌1,… , 𝜌M]⊤ denotes the weight parameters with 
each entry corresponding to one simulation model (M is the 
number of simulation models). �(x) is the residual function 
that captures the discrepancy between the weighted sum and 
the true response.

The PC approach models the true physical response yt(x) 
as the sum of a simulation model ymi(x) and its correspond-
ing discrepancy function �i(x) , i.e.,

In MF case, the above framework (8) and (9) can be applied 
to model the relationship between LF and HF data. Hence, 
different MF surrogate methods were proposed under the 
WS framework, proving the superiority of WS [28, 33]. For 
example, Cheng et al. proposed a MF surrogate modeling 
method called VWS-MFS (VWS) based on the variance-
weighted sum, which can make the utmost of the informa-
tion from non-hierarchical LF data [35]. Its formulation can 
be expressed as:

(5)h(x) = �0 +

d∑

l=1

�lxl +
∑

1≤j≤k≤d
�jkxjxk.

(6)yH2
(x) = f (x)⊤� + z(x),

(7)
f (x) = [f1, f2, f3, f4, f5, f6]

= [1, x1, x2, x
2
1
, x1x2, x

2
2
]ŷL(x1, x2).

(8)yt(x) = ys(x)� + �(x),

(9)yt(x) = ymi(x) + �i(x)(i = 1,… ,M).
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where �i denotes the weights allocated to each set of LF 
data, g(x) is a function to modify the LF model.

The process of constructing the model can be divided into 
three steps. Firstly, the Kriging model is built for each LF data 
set, obtaining the mean ŷi

L
(x) and variance �2

i
(x) respectively. 

Secondly, the above means and variances are used for weighted 
summation. Specifically, the fused mean of the design point 
is estimated by:

Thirdly, the IHK model is used to construct the MF sur-
rogate model combining the HF data and the fused LF data. 
Finally, the prediction result and its MSE are obtained by the 
IHK predictor.

One can easily verify that (10) can be rewritten in the form 
of (8). The term �ig(x) can be regarded as the correction of 
HF data for each LF data, where �i is the weight calculated by 
the single Kriging model built on each LF data, and g(x) is a 
PRS model severing as the scaling function to map the fused 
LF data to the HF data.

3 � The proposed WMBF method

In this section, the details of the proposed WMBF method 
will be presented, including the MF construction framework, 
the entropy-based weight calculation method and the overall 
WMBF construction flowchart.

3.1 � The MF construction framework

Most existing non-hierarchical MF methods have been pro-
posed and investigated within the WS framework. Motivated 
by the separated discrepancy functions in the PC approach, 
we propose a novel non-hierarchical MF framework called 
weighted multi-bi-fidelity (WMBF). The WMBF framework 
integrates both the WS and PC methods, which is formulated 
as

where M indicates the number of non-hierarchical LF mod-
els, ŷi

L
(x) is the single Kriging surrogate model of each LF 

(10)yH(x) = g(x)

M∑

i=1

𝜔iŷi,L(x) + z(x),

(11)ȳL(x) =

M�

i=1

𝜔iŷ
i
L
(x) =

M�

i=1

ŷi
L
(x)

𝜎2
i
(x)

∑M

j=1
1∕𝜎2

j
(x)

.

(12)

ŷH(x) =

M∑

i=1

𝜔i

[
gi(x)ŷ

i
L
(x) + Zi(x)

]

=

M∑

i=1

𝜔igi(x)ŷ
i
L
(x) +

M∑

i=1

𝜔iZi(x),

data, �i, gi(x), Zi(x) stand for the weight, scaling function, 
and discrepancy function of each BF model, respectively.

On the one hand, the term 
∑M

i=1
�iZi(x) is a weighted 

summation of multiple independent Gaussian progress 
derived from the BF surrogate models. It can be regarded as 
a single Gaussian progress, enabling to express (12) in the 
form of the WS framework (8). On the other hand, the term 
gi(x)ŷ

i
L
(x) + Zi(x) is in line with the idea of separated dis-

crepancy in the PC framework (9), which will be modeled by 
BF surrogate model in the proposed method. In this way, the 
WMBF integrates the idea of both WS and PC approaches to 
enhance the accuracy of the non-hierarchical MF surrogate 
model, as illustrated in Fig. 1.

Figure 1 also demonstrates the difference between the 
WMBF and VWS. Specifically, the term �igi(x) in (12) is 
treated as the multiplicative correction between each LF 
and HF data, where �i and gi(x) are calculated based on the 
uncertainty and the scaling function of the BF model built 
on each LF and HF data. Compared with VWS, WMBF 
offers a more reasonable weight �i by utilizing information 
from the BF model instead of relying solely on the single-
fidelity (SF) model. Meanwhile, WMBF provides distinct 
scaling functions gi(x) to capture the correlation between 
each LF and HF data, whereas VWS employs a common 
scaling function g(x) for all LF models.

Moreover, the proposed WMBF framework stands out 
from other WS methods due to the individualization of the 
discrepancy between each LF and HF data, aligning with the 
principle of PC. Specifically, the discrepancy function Zi(x) 
are computed by the BF model and then fused based on their 
corresponding uncertainty weight �i.

3.2 � The entropy‑based weight calculation methods

The weight coefficient in the WS framework should adhere 
to the rule that a high weight signifies a strong correlation 
between the individual LF and HF data, further representing 
the LF’s significant contribution to the overall MF surrogate 
model.

The existing WS-based methods still focus on obtaining 
weight coefficients through MF surrogate methods such as 
HK, Co-Kriging, etc., which may involve complex calcula-
tions, especially using Co-Kriging in high input dimensions 
will cause “the curse of dimensionality”. Weights based on 
the accuracy or uncertainty of the corresponding surrogate 
models do not have such drawbacks. Considering the uncer-
tainty, Lam gave a novel definition of fidelity in terms of a 
variance metric and used it to fuse into the non-hierarchical 
MF surrogate model [36]. VWS-MFS utilized the same 
variance metric to characterize the uncertainty of each LF 
data and accomplish the LF data fusion [35]. However, due 
to the deficiency of variance in describing uncertainty, the 
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metric of weight within the WS framework can be improved 
accordingly. Inspired by the multiple-moment statistical 
information brought by entropy, we introduce a novel met-
ric of weight coefficient based on entropy within the WMBF 
framework.

In information theory, the entropy is the measure of the 
amount of missing information, also known as Shannon 
entropy [37]. It is defined in terms of a continuous set of 
probabilities p(x) as follows:

It is found that entropy is a superior measure of uncertainty 
compared with variance because of its ability to capture 
multi-moment information. Moreover, entropy is extended to 
the mutual information to quantify information flow between 
two distributions, such as the Kullback–Leibler (KL) diver-
gence, expressed as follows:

where P and Q are two distributions respectively with prob-
ability density function p(x) and q(x) [38]. Notably, when 
P and Q are Gaussian (i.e., P ∼ N(�1, �

2
1
),Q ∼ N(�2, �

2
2
) ), 

then (14) can be expressed as

It is found from (15) that the KL divergence involves not 
only the natural logarithm of the variance but also the mean 
values, enabling the provision of more information and 

(13)H(X) = −∫X

p(x) ln p(x)dx..

(14)DKL(P||Q) = ∫x∈X

p(x)log(
p(x)

q(x)
)dx,

(15)DKL(P||Q) = ln
�2

�1
−

1

2
+

�1 + (�1 − �2)
2

2�2
2

.

greater nonlinear insights compared with the variance alone. 
Moreover, the decreasing KL divergence suggests a conver-
gence between the two distributions, P and Q, indicating 
their increasing similarity and decreasing uncertainty. This 
makes it a suitable metric for quantifying the relationship 
between the two distributions.

Thus, we propose a novel weight in the WMBF frame-
work based on (15), which utilizes the KL divergence 
Di

KL
(P||Q) between each LF and BF model to characterize 

their uncertainty and correlationship (given a total of M 
BF models), expressed as:

where �i = (log10 max(Di
KL
) − log10 min(Di

KL
))
−1 is a scalar 

for regulating the magnitude.
As the divergence between each LF and BF model 

increases, its weight in the final MF surrogate model 
decreases. This indicates that the BF model, relying on 
corresponding LF data with lower consistency with HF 
data, will contribute less to the final surrogate model. By 
incorporating multiple-moment information between each 
LF and HF data, this weight provides a more accurate esti-
mation for the MF surrogate model than VWS-MFS.

Considering that the poor BF model on some points 
may introduce interference to the surrogate model, then 
model with small weight on a certain point needs to be dis-
carded. To this end, the dropout mechanism is employed 
to polish the above weight. Specifically, we refined the 
weight function by incorporating an indicator function, 
which determines whether a given BF model is significant 

(16)�i =
(1 + (Di

KL
(P��Q))�i)−1

∑M

j=1
(1 + (D

j

KL
(P��Q))�j )−1

,

Fig. 1   Comparison of frameworks between VWS and WMBF
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enough at a particular point. By introducing a threshold 
denoted as � , the refined weight is calculated as follows:

where the indicator function is defined as:

(17) reveals that, a BF model at a specific point with a 
weight smaller than the threshold is deemed insufficiently 
effective to contribute to the final surrogate model, thus its 
weight is set to zero. On the contrary, if the weight surpasses 
the threshold, it retains its original weight. However, setting 
a weight to zero raises a concern about the normalization 
of weights. To address this, we add the original weight of 
the eliminated model on the largest remaining weight. This 
ensures that the sum of all BF models’ weights at a certain 
point equals one. In this way, the proposed weight calcula-
tion method integrates multiple BF models by discarding 
less pertinent information through the dropout mechanism, 
facilitating an adaptive selection process.

3.3 � The overall WMBF construction flowchart

The proposed WMBF construction flowchart is shown 
in Fig. 2. Specifically, we start with building individual 
SF surrogate model for each set of LF data using ordi-
nary Kriging. Then, the IHK is applied to construct the 
BF model between each LF and HF data. The uncertainty 
between each LF and BF model is quantified using the 
KL divergence. Finally, the integration of all BF models 
is accomplished by utilizing their respective weights in a 
summation procedure. The detailed process is described 
in this section.

3.3.1 � Step 1: Generate LF and HF sampling set

Assume that there are M non-hierarchical LF models 
S1
L
,… , SM

L
 mapping from design space x ∈ ℝ

d to ℝ . For each 
LF model Si

L
 , a sampling set Xi

L
= [xi,1

L
,… , x

i,ni
L
]⊤ ∈ ℝ

ni×d 
is generated using the Latin Hypercube Sampling (LHS) 
method with a relatively large number of sample points ni ( ni 
is equal for each i). As for the HF model SH , LHS is also used 
for generating sampling set XH = [x1

H
,… , x

nH
H
]⊤ ∈ ℝ

nH×d 
with a relatively small number of sample points nH . In this 
construction process, non-nested sampling is considered. 
Specifically, it means the HF sample set is sampled outside 

(17)𝜔ri
= 𝜔i × �(𝜔i > 𝜖),

(18)�(𝜔i > 𝜖) =

{
1, 𝜔i > 𝜖

0, else
,

of the LF sample set as XH ∩ XL = � , thus the non-nested 
XH is generated with some new sample points.

3.3.2 � Step 2: Run LF and HF simulations to collect LF 
and HF response values

With the sampling set Xi
L
 in Step 1, the correspond-

ing response set Yi
L
= [yi,1

L
,… , y

i,ni
L
]⊤ ∈ ℝ

ni is collected 
by running the LF simulation. Thus, the LF design set 
DLi

= {(Xi
L
, Yi

L
)}(i = 1,… ,M) with ni design points is 

obtained. With the sampling set XH in Step 1, the corre-
sponding response set YH = [y1

H
,… , y

nH
H
]⊤ ∈ ℝ

nH is col-
lected by running the HF simulation. Thus, the HF design 
set DH = {(XH, YH)} with nH design points is obtained.

Fig. 2   Construction flowchart of WMBF
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3.3.3 � Step 3: Build bi‑fidelity surrogate models for HF 
and each LF data

For each LF model Si
L
 , an ordinary Kriging model will be 

built as an SF surrogate model based on its corresponding 
design set DLi

 as follow:

where si
L
(x) is the mean function describing the overall trend 

of LF model, and zi
L
(x) is the random process with zero 

mean and variance �2
L,i

 , its covariance function is given by 
�2
L,i
RL,i(xp, xq) . The correlation function RL,i(xp, xq) quanti-

fies the relationship between two design points xp and xq , 
which is defined using different types of functions, with the 
Gaussian exponential function chosen in this paper (i.e., 
R(�, xp, xq) = exp(−�|xp − xq|2) ). The hyper-parameters � 
will be estimated using the maximum log-likelihood method 
based on the LF design set DLi

 . Details of the Kriging 
method can be found in [1]. With the same solving process, 
we get the surrogate of each LF model Si

L
 , so that given any 

design point x the predicted value is calculated as

meanwhile with the MSE as

Since the SF surrogate model ŷi
L
(x) is obtained, then the 

BF surrogate model between HF and each LF data can be 
built based on the BF methods mentioned in Sect. 2.1. Here, 
WMBF prefers the IHK considering its accurate prediction 
performance. The HK is also exploited for comparison in 
the Experiment part referred to as WMBF-HK. Therefore, 
the BF surrogate model between DH and each DLi

 can be 
formulated as

where gi(x) is a scaling function (i.e., in WMBF it is a 
response surface model while in WMBF-HK it is a constant 
scalar). For the sake of clarity, we will only focus on the 
inference based on IHK in the following part. The predictor 
of IHK is obtained at any design point x:

where 𝛽⋆
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Ri ∶= (Ri(xp, xq))p,q ∈ ℝ
nH×nH and r ∶= (R(xp, x))p ∈ ℝ

nH are 
the covariance function. The corresponding MSE is esti-
mated as:

3.3.4 � Step 4: Fuse multiple BF surrogate models to MF 
surrogate model using weighted‑sum

During the construction of the LF and BF surrogate models, 
their mean and variance are given by the Kriging and IHK 
method. Specifically, each LF model yi

L
∼ N(ŷi

L
, 𝜎̂2

L,i
) and each 

BF model yi
H
∼ N(ŷi

H
,𝜑2

i
) . According to (15), the KL diver-

gence between yi
L
 and yi

H
 is calculated as follow:

Thus, the MF surrogate model is built by fusing multiple 
ŷi
H
(x) into a weighted summation as follow:

The weight �ri
 is calculated as (17) expressed where � is set 

as 0.1 (since its sensitivity analysis proves that it has little 
influence on the modeling effect). The weight of each BF 
model �i is calculated by:

where �i = (log10 max(Di
KL
) − log10 min(Di

KL
))
−1.

The MSE-based weight is also considered for comparison 
in Experiment part referred to as WMBF-MSE, where the 
weight of each BF model �i is calculated as follow:

3.3.5 � Step 5: Evaluation of MF surrogate model

Measurements that describes the error between the surrogate 
model prediction and the ground truth are adopted to evaluate 
the accuracy of the surrogate models as follows:

•	 maximum absolute error (MAE) is a metric revealing the 
local accuracy.
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L
− ŷi
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•	 mean relative error (MRE) is a metric revealing the overall 
confidence degree of accuracy.

•	 root mean square error (RMSE) is a metric revealing the 
global accuracy.

These three metrics can be calculated for N test points by:

where yi and ŷi represent the true value and the predicted 
value of response at the ith test point, respectively.

4 � Experiment

4.1 � Demonstration example

To illustrate the entire process of the proposed WMBF, we 
use a 1-d test function (refer to Example 3 in “Appendix 1”) 
with 2 LF models as an example and present the correspond-
ing results during the procedure.

The left figure in Fig. 3 displays the true value curves of 
HF and LF models, suggesting no hierarchical difference 

(29)

MAE = max |yi − ŷi|,

MRE =

√√√√ 1

N

N∑

i=1

|yi − ŷi|
|yi|

,

RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)
2,

between each LF and HF model. On the other hand, the right 
figure in Fig. 3 presents the absolute correlations between 
each LF and HF model in the small interval, illustrating 
the unstable correlations between each LF and HF model 
throughout the whole design space. Therefore, Fig. 3 clearly 
demonstrates the non-hierarchical nature of this test func-
tion, necessitating the use of a specific non-hierarchical sur-
rogate method.

In this demonstration, we manually choose the HF and LF 
design points to prevent the nonuniform distribution result-
ing from random sampling. The design points of the HF 
and LF model are chosen as SH = [0.18, 0.27, 0.5, 0.73, 0.82] 
and SL = [0, 0.2, 0.4, 0.6, 0.8, 1] . We then use different sur-
rogate methods with the same design samples to test their 
effect. Particularly for the BF method (i.e., IHK), the number 
of design points is kept the same as others(i.e., HF design 
points are still SH and LF design points are SL′ which consists 
of 2 × 6 design points uniformly chosen within the design 
space).

Several surrogate methods, including SF method (i.e., 
Kriging), BF method (i.e., IHK [27]) and MF methods 
(i.e., LRMF [33], VWS [35], NHLF [34], WMBF-MSE 
and WMBF-KL), are used to predict this example. Specifi-
cally, WMBF-MSE exploits the MSE-based weight [referred 
to (28)] within the proposed WMBF framework, while 
WMBF-KL utilizes KL-divergence-based weight within the 
WMBF framework (i.e., the proposed method). Their predic-
tion errors are calculated using 1000 randomly generated test 
points, as presented for comparison in Table 1. The results 
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Fig. 3   Figures of the ground truth of Example 3. Left figure shows the true value curves of the HF and LF models. Right figure shows the abso-
lute correlations between HF and each LF model in intervals
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show that WMBF-KL achieves the lowest error among all 
methods, further confirming its superior performance.

The proposed WMBF method not only constructs a non-
hierarchical MF surrogate model in a novel framework but 
also employs an innovative weight calculation method based 

on entropy. To demonstrate its superiority within both the 
novel framework and the weight calculation, we provide the 
illustrations in Figs. 4 and 5.

On the one hand, Fig. 4 showcases the weight curves cor-
responding to the design point x for three methods: VWS, 

Table 1   Errors of different 
surrogate methods for 
Example 3

Results in bold represent the minimum errors among the same metric

Kriging IHK LRMF VWS-MFS NHLF WMBF-MSE WMBF-KL

MAE 0.6575 0.1288 1.1752 0.2852 3.0842 0.1086 0.0657
RMSE 0.1916 0.0444 0.3450 0.0659 0.7062 0.0480 0.0326
MRE 0.5338 0.0478 0.9598 0.2127 1.8983 0.0532 0.0362
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Fig. 4   Curves of weights of different surrogate models. The left 
figure indicates the weight curves of LF models changing with x in 
VWS-MFS. The middle figure indicates the MSE-based weight 

curves of multiple BF models changing with x in WMBF. The right 
figure indicates the KL-divergence-based weight curves of multiple 
BF models changing with x in WMBF

0 0.2 0.4 0.6 0.8 1

x

10-8

10-6

10-4

10-2

100 MSE of each BF model

0 0.2 0.4 0.6 0.8 1

x

10-10

10-8

10-6

10-4

10-2

LF

MSE of each LF model

LF
1

LF
2
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WMBF-MSE, and WMBF-KL. It is found that the weight 
curves of VWS remain constant with respect to x, whereas 
those within WMBF vary in magnitude with x. This finding 
clarifies that the proposed WMBF framework outperforms 
VWS in its strong adaptability to unknown inputs, enabling 
it to derive more appropriate weights than VWS. More spe-
cifically, Fig. 5 displays the MSE curves of each BF model 
and LF model, respectively, from WMBF-MSE and VWS. 
Evidently, the MSE curves of LF models coincide, resulting 
in constant weights of 0.5 in VWS, rendering these weight 
coefficients meaningless. In contrast, the MSE curves of BF 
models exhibit some discrepancies near the interval’s bound-
ary, which corresponds to the original function’s behavior in 
Fig. 3. This indicates the superiority of the WMBF frame-
work in exploiting the BF information instead of the LF’s 
to calculate weight, thereby enhancing information utili-
zation. Moreover, the weight curves in Fig. 4 when using 
different metrics to characterize uncertainty in the WMBF 
framework, demonstrate similar changing trends. Their vary-
ing trends better align with the ground truth or correlation 
curves shown in Fig. 4, emphasizing the WMBF’s superior 
ability to characterize the true model compared with VWS.

On the other hand, the respective weight curves based on 
MSE and KL divergence within WMBF in Fig. 4 also exhibit 
some differences. As indicated in (26), the weight in WMBF 
signifies the contribution of each BF model to the final sur-
rogate model. Therefore, it should ideally correspond to the 
correlation between each LF and HF model, as displayed 
in Fig. 3. In this regard, the WMBF-KL outperforms the 
WMBF-MSE. In addition, in terms of numerical values, 
the MSE values are zero at the known points. Conversely, 
KL divergence value is zero only when two distributions 
are identical, resulting in non-zero values for the KL diver-
gence between each BF and LF model. The utilization of 
zero as the denominator in weight calculations is theoreti-
cally unsound. In contrast, adopting KL divergence mitigates 
this concern, highlighting its merits in capturing uncertainty.

4.2 � Numerical examples

In this part, more numerical examples involving various 
design space dimensions are presented to illustrate the 
effectiveness of the proposed WMBF. On the one hand, the 
effectiveness and robustness of surrogate methods are dis-
cussed for method comparison in the first part using the fixed 
sample size. On the other hand, the impact of the sample 
size and sample budget, which are regarded as two key fac-
tors influencing the results of the surrogate method, are also 
explored in the following parts to further verify the superior-
ity of WMBF over the existing methods.

4.2.1 � Effectiveness and robustness

We test nine test functions (see “Appendix 1”) using the 
proposed WMBF (both WMBF-MSE and WMBF-KL) and 
other non-hierarchical MF surrogate methods (i.e., LRMF 
[33], VWS-MFS [35] and NHLF [34]) with the fixed sample 
size provided in “Appendix 2”. They are decided by the pre-
liminary experiment to make the model sufficiently accurate. 
Columns in Table 8 respectively represent the total sample 
size N, the sample size ratio p0 , the HF and each LF sample 
size NHF|NLF and the number of LF models M.

By randomly setting the seed of the initial LHS designs, 
the surrogate modeling procedure is run 50 times for each 
method and test function. Their errors (MAE, RMSE and 
MRE) are shown as the boxplots in Fig. 6. Specifically, for 
all test functions, the WMBF-based methods achieve smaller 
errors compared with others, proving the WMBF’s effective-
ness. To compare the size of the boxes, we quantify the num-
ber of vertical grids inside them due to the log-scaled y-axis. 
The robustness of the WMBF framework is evident from 
their relatively smaller boxes compared with other methods 
across all test functions, attributed to the variance reduction 
achieved by the ensemble of multiple BF models. Since there 
are some outliers outside the boxes, we exclude these outli-
ers and average the remaining values for a fairer comparison. 
The results in Table 2 show that the WMBF-based methods 
exhibit smaller errors for all test functions. To support this 
finding statistically, the one-sided t-test is performed on the 
repeated prediction errors between WMBF-KL and each 
method. The corresponding results are reflected in Table 2, 
with errors underscored once if the p-value is less than 0.05, 
and doubly underscored if the p-value is less than 0.1. The 
statistical tests affirm that the proposed WMBF-KL signifi-
cantly outperformed others in most cases. Some results for 
WMBF-MSE are not statistically significant, possibly due 
to the substantial performance improvement introduced by 
the WMBF framework in comparison to existing methods.

As the conclusion of this part, the proposed method 
exhibits a relatively robust performance while ensuring the 
prediction accuracy across all test functions. Notably, the 
WMBF framework emerges as the dominant role, with the 
KL divergence demonstrating its effectiveness in enhancing 
performance.

4.2.2 � The effect of sample size and its rate

The sample size plays a crucial role in surrogate modeling 
as it directly reflects the computational cost. Meanwhile, in 
MF cases, the sample size ratio between LF and HF models 
also matters, which determines the allocation of total sam-
ples. An ideal surrogate model should effectively utilize the 
sampling design points while minimizing cost. In this part, 
we conduct experiments to demonstrate the advantage of 
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WMBF concerning these aspects, using a two-dimensional 
test function (i.e., Example 5 in “Appendix 1”).

Assume a total sample size of N, with a portion pN being 
LF samples, and the remaining (1 − p)N being HF samples. In 
this study, there exists more than one LF model, and each LF 
model’s sample size is assumed to be p0N , where p = Mp0 
represents the sample size rate of the LF model and is con-
strained to 0.5 < p < 1 (M indicates the number of LF mod-
els). Additionally, we define the sample size ratio between LF 
and HF model as � =

pN

(1−p)N
 . Since � changes with p, we will 

only investigate the variation in N and p0 in the following 
experiment to maintain simplicity.

The variation range of N and p0 is influenced by two factors. 
Firstly, the total sample size range is bounded by the mini-
mum requirement for the HF sample size, denoted as NHF , 
which must satisfy NHF ≥ (d + 1)(d + 2)∕2 (d represents the 
dimensionality of the input variables) required in the IHK 
modeling procedure (see [27] for more details). Secondly, it is 
commonly understood that the sample size of LF exceeds that 
of HF, thus yielding the condition p0∕1 −Mp0 > 1 . Conse-
quently, the range of p0 is restricted to 1∕M + 1 < p0 < 1∕M , 

where M = 2 in Example  5. Furthermore, considering 
NHF = (1 −Mp0)N ≥ (d + 1)(d + 2)∕2 , the final range of p0 
is given by

In light of the revealed latent relationship between N and 
p0 , we conduct experiments on their feasible combinations 
within respective ranges. Specifically, the assessment of the 
surrogate model involves quantifying the errors between the 
ground truth and the prediction of the model constructed 
based on the corresponding parameter combinations. To 
guarantee both non-redundancy of � and the uniform cover-
age across the sampling domain, we compose the series of 
N, consisting of twelve values uniformly distributed within 
a range limited to more than five times the lower bound of 
NHF . Correspondingly, the p0 series is constituted by six 
equidistant values, ensuring uniform distribution within the 
bounds defined by (30).

Six different MF surrogate modeling methods (i.e., 
LRMF, NHLF, VWS-MFS, VWS-HK, WMBF-HK and 

(30)1

M + 1
< p0 <

2N − (d + 1)(d + 2)

2NM
.

Fig. 6   Boxplots of different test functions with different surrogate 
methods. Each subfigure presents the performance of the test func-
tion indicated as its subtitle. The boxes in each figure include the 

error values between the lower (25%) and upper (75%) quartiles. The 
y-coordinate axis is log-scaled, considering the significant difference 
in the order of magnitude between the errors
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WMBF) are used for comparison. Table 3 presents the low-
est error achieved by each method. Our approach generally 
outperforms others with the smallest error. The error curves 
are plotted as N and p0 are increased, respectively, while 
keeping another parameter at its optimal value, as shown in 
Figs. 7 and 8.

Figure 7 illustrates that the general error trend decreased 
as N increased. This suggests that as the sample size 
increases, the effect of surrogate models improves when the 
sample size rate is fixed. Significantly, the curves of the pro-
posed WMBF consistently remain at the bottom, proving its 
better effectiveness and cost-saving ability compared with 

Table 2   Average errors of 
different surrogate methods 
after removing outliers for 
Example 1–9

Results in bold represent the minimum errors among the same metric
1The error with single underline represents that the p-value of t-test between the WMBF and the corre-
sponding method is less than 0.05
2The error with double underline represents that the p-value of t-test between the WMBF and the corre-
sponding method is less than 0.1

Example Error LRMF VWS-MFS NHLF WMBF-MSE WMBF-KL

1 MAE 3.65E−031 4.01E−05 5.95E−03 2.62E−05 2.61E−05
RMSE 2.27E−03 5.69E−06 1.23E−03 3.84E−06 3.83E−06
MRE 6.74E−03 3.48E−05 6.62E−03 2.44E−05 2.43E−05

2 MAE 4.02E−03 1.22E+00 2.44E−01 3.81E−03 3.80E−03
RMSE 6.10E−04 2.62E−01 5.70E−02 4.32E−04 4.30E−04
MRE 3.18E+00 2.31E+03 2.31E+03 9.93E−02 9.92E−02

3 MAE 9.93E−02 1.65E−01 3.99E−01 3.69E−02 2.13E−02
RMSE 1.62E−01 3.10E−02 7.02E−02 6.42E−03 4.58E−03
MRE 4.34E−01 9.48E−02 1.73E−01 1.92E−02 1.17E−02

4 MAE 2.82E+01 6.96E+01 8.60E+01 2.32E+01 1.89E+01
RMSE 4.06E+00 1.23E+01 1.75E+01 3.08E+00 2.82E+00
MRE 4.99E+00 1.32E+01 1.75E+01 3.70E + 00

2 3.16E+00

5 MAE 8.13E−04 2.81E−04 2.40E−02 3.13E−04 1.93E−04
RMSE 7.34E−04 5.00E−05 7.37E−03 5.55E−05 3.63E−05
MRE 8.56E−05 3.60E−06 6.99E−04 3.90E−06 2.68E−06

6 MAE 5.69E+00 5.56E+00 5.53E+00 5.47E+00 5.09E+00
RMSE 3.99E−01 4.09E−01 3.96E − 01 4.21E−01 3.96E−01
MRE 5.77E−03 3.99E−03 4.93E−03 4.11E−03 3.95E−03

7 MAE 1.09E+02 9.19E + 01 1.30E + 02 8.72E+01 8.66E+01
RMSE 2.06E+01 1.07E+01 3.29E + 01 1.01E+01 1.00E+01
MRE 7.89E+00 1.12E+00 1.76E + 01 1.07E+00 1.07E+00

8 MAE 1.91E+03 7.48E+02 2.14E+03 7.32E+02 7.32E+02
RMSE 2.32E+02 7.52E + 01 2.35E+02 7.46E+01 7.46E+01
MRE 4.28E−02 9.55E − 03 4.20E−02 9.44E − 03 9.44E−03

9 MAE 8.91E+08 3.20E+07 1.89E+09 3.06E+07 2.67E+07
RMSE 4.86E+07 2.27E+06 1.63E+08 2.27E+06 1.92E+06
MRE 1.78E+03 1.13E+02 2.37E+04 1.06E+02 9.91E+01

Table 3   The lowest error of each method in their optimal sample size and ratio for Example 5

Results in bold represent the minimum errors among the same metric

Method LRMF NHLF VWS-MFS VWS-HK WMBF-HK WMBF

MAE 1.32E−04 3.92E−05 1.99E−06 4.08E−06 4.11E−06 1.92E−06
RMSE 7.16E−05 4.38E−06 1.53E−07 3.36E−07 3.39E−07 1.49E−07
MRE 5.96E−06 2.24E−07 6.72E−09 1.67E−08 1.67E−08 6.07E−09
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other methods. Methods using model uncertainty to calcu-
late weight within WS framework including VWS-based 
and WMBF-based methods exhibit better performance than 
LRMF and NHLF. It reveals the fact that the large sample 
size improves VWS and WMBF well, as increased samples 
contribute to a reduction in uncertainty.

In Fig. 8, it is evident that the error curves exhibit a gen-
eral upward trend as p0 increases, indicating that the sur-
rogate model would perform better as the HF sample size 
getting larger. Because the less effective information leads 
to a decrease in modeling accuracy. All methods show this 
trend except LRMF, which indicates that it is relatively 
insensitive to variations in sample proportion. Probably 
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because the ordinary least square method it used to solve 
the coefficients does not strictly require a large sample size. 
Additionally, the polynomial response surface LRMF used 
to model the discrepancy function has an obvious disadvan-
tage compared to the Gaussian process in terms of modeling 
accuracy. Moreover, IHK-based methods outperform HK-
based methods when p0 is small, but the trend reverses when 
p0 is large. This is because IHK requires more coefficients 
to be solved, which requires sufficient sample information. 
Overall, the proposed WMBF is the most effective when 
there is enough sample information, as shown by its lower 
position in most cases, confirming its effectiveness and cost-
efficiency. A notable observation is the significant fluctua-
tion in VWS-MFS’s curves, which is absent in WMBF’s. 
That means that WMBF demonstrates a more stable perfor-
mance than VWS-MFS.

4.2.3 � The effect of sample budget ratio

In this part, we perform experiments considering the cost 
and budget, which also gauge the cost-saving ability of the 
surrogate model. The budget and cost ratios assigned for 
sampling one design point between the single LF model 
and the HF model are denoted as b0 and c0 , respectively. 
In engineering applications, the cost ratio c0 is generally 
straightforward to determine but challenging to manually 
control. While the budget ratio b0 remains elastic, allow-
ing flexible adjustment of the sampling budget allocation 
between LF and HF models. Thus in this experiment, we 
focus on the effect of the surrogate models under a fixed c0 
and a sequence of values for b0 , using a two-dimensional test 
function (i.e., Example 5 in “Appendix 1”).

The experimental procedure is similar to that of 
Sect. 4.2.2, involving the calculation of errors between the 
ground truth and the prediction of the model built by dif-
ferent combinations of c0 and b0 . Notably, when the total 
budget is fixed, variations in c0 and b0 will ultimately affect 
the sample size ratio between M LF models and 1 HF model, 
denoted as � in Sect. 4.2.2 where 𝛾 > 1 . It is evident that 
�0 = b0∕c0 , where �0 = �∕M represents the sample size ratio 
of a single LF and HF model. Hence, we have 𝛾0 > 1∕M 
(in this experiment �0 falls within the range of [1, 5]). In 
this way, exploring the effect of surrogate models under dif-
ferent b0 with a fixed c0 is equivalent to investigating the 
impact of surrogate models under different �0 , effectively 

reflecting the influence of b0 . Specifically, in this experi-
ment, the total sample size N = 200 , and the fixed cost ratio 
c0 = 1∕200 , while b0 is constrained within the range of 
b0 = �0 × c0 ∈ [c0, 5c0] . A sequence of 12 b0 values is sam-
pled within this range, considering the non-redundant �0 and 
the uniform sampling coverage. Since the c0 and b0 values 
are determined, the surrogate model is constructed using 
the corresponding �0 = b0∕c0 , and the errors are calculated.

Six different MF surrogate modeling methods (i.e., 
LRMF, NHLF, VWS-MFS, VWS-HK, WMBF-HK and 
WMBF) are tested for comparison. The lowest error of each 
method is listed in Table 4, where the proposed WMBF 
demonstrates advantages in minor errors compared with 
others.

Figure 9 depicts the error curves varying with b0 under a 
fixed c0 value of 1

200
 . Among these curves, NHLF and LRMF 

exhibit smooth changes, demonstrating that their perfor-
mance may be less affected by the variations in b0 . However, 
their relatively higher values compared with the other curves 
indicate their weak effectiveness. The error curves for the 
remaining models show a clear trend: as b0 increases, the 
surrogate performance worsens. This phenomenon implies 
that a smaller budget ratio between LF and HF should be 
adopted, allocating more budgets to the HF model and fewer 
to the LF model, thereby ensuring a better performance of 
the MF surrogate model. Besides, the WMBF method dem-
onstrates the best performance at small b0 , as indicated by 
its consistently lower error curves across [0.004, 0.016]. 
Notably, comparing the curves of WMBF and VWS-MFS 
reveals significant fluctuations in the VWS-MFS curves 
around b0 = 0.01 , which are absent in the WMBF curves. 
This suggests that WMBF shows a more stable performance 
than VWS-MFS under varying budget ratios b0.

The above experiments reveal a significant impact of the 
sample size ratio between LF and HF models on the sur-
rogate model. Consequently, further investigation into the 
influence of HF and LF samples on the performance of the 
proposed WMBF is conducted. This is achieved by main-
taining a constant number of LF (or HF) samples while vary-
ing the HF (or LF) samples in Example 5. The resulting error 
bars are illustrated in Fig. 10. Both of the varying bar plots 
indicate that the overall errors of WMBF decrease as HF 
(or LF) sample size increases. Moreover, when the sample 
size comes to a certain range, the errors tend to be constant. 
This phenomenon demonstrates that increasing the HF (or 

Table 4   The lowest error of 
each method in their optimal 
sampling budget ratio with non-
nested and nested sampling for 
Example 5

Results in bold represent the minimum errors among the same metric

Method LRMF NHLF VWS-MFS VWS-HK WMBF-HK WMBF

MAE 1.94E−04 1.07E−02 8.63E−07 2.55E−06 2.16E−06 7.85E−07
RMSE 1.82E−04 2.08E−03 4.81E−08 1.54E−07 1.31E−07 4.57E−08
MRE 2.12E−05 1.86E−04 1.59E−09 5.77E−09 4.92E−09 1.56E−09
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LF) sample size provides WMBF with more information 
for modeling, thereby enhancing its performance. However, 
once the sample size reaches a point indicating sufficiency 
for modeling, its further augmentation contribute small addi-
tional information. Thus, the future exploration in sequential 
sampling is necessary.

4.2.4 � Discussion of the numerical experiment

The above numerical experiments are analyzed for the influ-
ential elements to the model performance in this part.

From the methodology perspective, the weighted-sum 
framework integrates multiple models through the ensem-
ble mechanism, reducing variance and enhancing robust-
ness. The VWS and WMBF framework, which leverage 
uncertainty for weight calculation in the ensemble process, 
demonstrate superior performance compared to methods that 
prioritize individual modeling. The refined BF model IHK 
also improves performance when information is sufficient. 
The proposed WMBF emphasizes the relationship between 
LF and HF data compared with VWS, focusing on richer 

information in characterizing individual BF. Consequently, 
WMBF outperforms VWS in accuracy.

From the sampling perspective, the effective informa-
tion amount from samples significantly impacts model per-
formance. This is influenced by three factors: total sample 
size, sample proportion, and sample location. The changes 
in total sample size and sample proportion were discussed in 
Sects. 4.2.2 and 4.2.3, specifically exploring N, p0 , and b0 . 
Controlling them to eventually increase the effective infor-
mation improves model performance. However, once enough 
effective information is obtained for an accurate model, fur-
ther sampling has a small impact. In this paper, the sam-
ple location is determined by LHS, which can be further 
optimize in our future work incorporated with sequential 
sampling to find the minimum effective information for the 
most accurate model.

4.3 � Engineering case: the NACA0012 airfoil

In this part, we verify the practicability of the proposed 
method by applying it to an engineering case involving a 

Fig. 9   Errors curves of different 
surrogate models varying with 
b
0
 under the fixed c

0
(1∕200) for 

Example 5. The y-coordinate 
axis is log-scaled, considering 
the significant difference in the 
order of magnitude between the 
errors
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CFD-based problem. Specifically, we solve the Euler equa-
tion for the NACA0012 airfoil under fixed freestream condi-
tions (i.e., pressure = 101,325 Pa, temperature = 273.15 K). 
Various state-of-the-art solvers under different mechanisms, 
corresponding to the non-hierarchical case discussed in this 
work, are available to address this problem in practice. We 
utilize two computational tools: the open-source CFD code 
called SU2 [39] and a self-developed software called Foil-
flow [40].

The inputs to the problem are the Mach number (Uni-
form, [0.6, 0.8]) and angle of attack (Uniform, [ −10, 10]), 
while the coefficients of lift (CL) and coefficients of drag 
(CD) are the random outputs. The ratio of these two coef-
ficients, known as the lift-drag ratio (LDR), is a significant 
parameter for evaluating aerodynamics and aerodynamic 
efficiency of aircraft. Hence, predicting it accurately holds 

great importance for aircraft design and aerodynamic con-
trol. In this experiment, we construct two surrogate models: 
one for CL and another for CD, and then calculate LDR 
based on their predictions.

In this case, a fully-converged simulation with fine 
mesh from SU2 is regarded as the HF simulation, while the 
partially-converged simulation with fine mesh from SU2 
(denoted by LF1) and the 1fully-converged simulation with 
coarse mesh from Foilflow (denoted by LF2) are regarded 
as two non-hierarchical LF simulations, respectively. On 
the one hand, the partially-converged simulation of SU2 
(LF1) is obtained by retaining one decimal place of sig-
nificant digits from the fully-converged solution. Figure 11 
shows the convergence behavior of the outputs from SU2 
at a specific design point, which indicates the LF point is 
indeed partially converged. On the other hand, the fine mesh 

Fig. 10   Errors bar of WMBF varying with NH and NL for Example 5. 
The y-coordinate axis is log-scaled, considering the significant differ-
ence in the order of magnitude between the errors. The corresponding 
NL and NH is fixed as 20 and 10
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Fig. 11   Convergence behavior of outputs from SU2 at a specific 
design point. The top and bottom subfigures exhibit the convergence 
behavior of CD and CL respectively, where the blue line depicts the 
convergence curves and the red point locates the LF partially-con-
verged simulation

Table 5   Three simulations 
at the same design point for 
engineering case

CL CD LDR

HF 0.7710 0.0096 80.1500
LF1 0.7508 0.0137 54.7919
LF2 0.7909 0.0108 72.9058
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used in SU2 (HF and LF1) consisted of 10,216 triangu-
lar cells (i.e., 5233 points), while the coarse mesh used in 
Foilflow (LF2) consists of 6144 cells. Figure 12 illustrates 

the mesh figures of simulations from these two solvers, 
clearly indicating that SU2 employs a finer grid compared 
with Foilflow. Table 5 presents the relationship between 
these three simulations (i.e., HF, LF1 and LF2) at the same 
design point. The differences between HF simulation with 
LF1 and LF2 cannot be contrasted directly. Thus, the non-
hierarchical MF methods are necessary for this engineer-
ing case. In this engineering case, one HF simulation by 
SU2 costs around 15 s on a Intel(R) Core (TM) i5-1135G7 
(2.42 GHz) computer, while 7 s for one partial-converged 
LF simulation by SU2 and 7 s for one LF simulation by 
Foilflow. Therefore, the cost ratios between each LF and 
HF model are both 0.4667.

Similar to the previous numerical examples, here we also 
perform the experiment using non-nested LHS samples. We 

Fig. 12   The mesh figures of two simulations. The left figure shows the mesh figure of SU2 provided for HF and LF1 models. The right figure 
shows the mesh figure of Foilflow provided for LF2 model

Table 6   Details of different sampling cases for engineering case 
experiment

Case Sample source Sample size allocation

Single fidelity (Case1) HF from SU2 N
H
= N(1 − mp

0
)

Bi-fidelity (Case2a) HF, LF from SU2 N
H
= N(1 − mp

0
)

N
L
=

m

2
Np

0

Bi-fidelity (Case2b) HF from SU2 N
H
= N(1 − mp

0
)

LF from Foilflow N
L
=

m

2
Np

0

Multi-fidelity (Case3) HF, LF1 from SU2 N
H
= N(1 − mp

0
)

LF2 from Foilflow N
L1

= N
L2

=
m

2
Np

0

Table 7   Errors of surrogate 
models of CL, CD and LDR for 
different sampling cases

Results in bold represent the minimum errors among the same metric

 (N = 140, p
0
= 0.4302 ⇔ N

H
= 20,N

L
= 60)

Case1 Case2a Case2b Case3

Kriging IHK IHK LRMF VWS NHLF WMBF

CL MAE 0.0760 0.1633 0.1510 0.0589 0.1348 0.1530 0.0882
MRE 0.0305 0.0202 0.0330 0.0220 0.0309 0.0248 0.0171
RMSE 0.0218 0.0298 0.0363 0.0150 0.0342 0.0331 0.0146

CD MAE 0.2131 0.0779 0.0475 0.0634 0.1501 0.0378 0.0284
MRE 17.4903 0.6004 0.3935 1.2711 2.3300 0.5443 0.3713
RMSE 0.0749 0.0171 0.0104 0.0122 0.0291 0.0086 0.0062

LDR MAE 0.2891 0.2413 0.1985 0.1223 0.2849 0.1908 0.1166
MRE 17.5207 0.6206 0.4265 1.2930 2.3609 0.5691 0.3884
RMSE 0.0967 0.0470 0.0466 0.0272 0.0632 0.0417 0.0208
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compare the performance of three cases: SF, BF and MF, con-
sidering four sampling sources. The specific details are listed 
in Table 6, where N, p0,m are consistent with their definitions 
in Sect. 4.2.2. The ordinary Kriging and the IHK are applied 
to SF and BF cases, respectively, while four MF surrogate 
methods (WMBF, VWS, NHLF and LRMF) are employed in 
MF cases. Table 7 lists the MAE, RMSE and MRE of these 
surrogate models, which are calculated using 100 randomly 
generated validation points. Based on the errors of CD and CL, 
the errors of LDR are calculated by adding them up together 
as total errors.

The results presented in Table 7 illustrate that the pro-
posed WMBF outperforms others, with smaller errors in 
most cases. Notably, since the MAE of the proposed method 
for CL prediction does not rank as the absolute best, it does 
reveal a limitation in local performance. Nevertheless, its 
MAE remains commendably low, at 1%, underscoring its 
overall effectiveness.

Besides, Fig. 13 shows the true and predicted LDR values 
of the validation points using different surrogate methods. 
The proximity of the scatter points to the black line indicates 
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Fig. 13   The true and predicted LDR values of the validation points. 
The black line represents the regression of y = x . The star, diamond 
and square types represent the prediction results of Kriging, HK and 
WMBF, respectively
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the accuracy of the predictions. The results suggest that the 
WMBF has a better performance than BF and SF methods. 
Furthermore, Fig. 14 displays the error curves of different 
surrogate models (i.e., SF, BF and MF) varying with the 
number of HF samples. The overall trend of these curves 
clearly demonstrates the superiority of MF over BF and SF, 
providing strong evidence that the surrogate model’s per-
formance improves with the incorporation of higher-fidelity 
information.

In summary, the proposed WMBF exhibits great perfor-
mance in the context of this engineering case, surpassing 
other commonly used surrogate methods, which proves its 
strong suitability in engineering applications. Moreover, lev-
eraging higher-fidelity data to construct the surrogate model 
significantly enhances its effectiveness.

5 � Conclusion

In this paper, we propose a novel framework named weighted 
multi-bi-fidelity (WMBF) to deal with the non-hierarchical 
case in MF surrogate modeling. The proposed WMBF dem-
onstrates several advantages over the existing methods. As 
a WS-based method, it utilizes the uncertainty of each LF 
and BF model to analyze their relationship, resulting in a 
weight that incorporates more information and a more indi-
vidualized scaling function than VWS-MFS. Meanwhile, it 
includes the concept of PC, which provides a more indi-
vidualized discrepancy function compared with the exist-
ing WS-based methods. Besides, it offers a novel weight 
to character uncertainty with entropy, which contains more 
statistical moment information compared with the variance-
based weight.

The effectiveness of the proposed method is demonstrated 
using nine numerical test functions, where several MF sur-
rogate approaches (VWS, LRMF and NHLF) are used for 
comparison. The conclusions can be summarized as follows:

(1) The proposed WMBF exhibits excellent robustness 
and great effectiveness in repeated experiments across most 
test functions with a fixed sample size. Notably, the WMBF 
framework plays a major role, while the KL-divergence-
based weight is demonstrated effective. (2) Taking a two-
dimensional test function as an example, considering the 
sample size rate and budget ratio, the proposed WMBF out-
performs other surrogate models in terms of saving sampling 
costs. On the one hand, under identical sampling conditions, 
WMBF surpasses other surrogate models by owing the low-
est error curves among all. (3) On the other hand, when the 
sampling cost ratio is fixed, the performance of the surro-
gate models deteriorates with an increase in the budget ratio. 

However, the proposed WMBF shows the highest level of 
stability, indicating that it is the most cost-saving option. 
(4) The effective information provided by samples is the 
essentially control factor in sampling aspect. Once sufficient 
effective information is achieved by enough samples, further 
sampling contribute small to enhancing model performance. 
Finally, the proposed method is applied to solve the predic-
tion problem of an airfoil in the real world, demonstrating its 
efficiency and feasibility in engineering problems.

The construction of the non-hierarchical LF data fusion 
framework is the initial step. However, to improve the sur-
rogate model’s performance, additional refinements and 
optimizations are essential. Specifically, we intend to investi-
gate the integration of the proposed MF surrogate modeling 
framework with a sequential sampling strategy in our future 
work. Furthermore, we will explore alternative frameworks 
for non-hierarchical MF surrogate models, such as the meth-
ods involving Artificial Neural Networks (ANNs).

Appendix 1: The numerical example 
expressions

Example 1 

Example 2 

Example 3 

Example 4 

(31)

yH = sin x

yL1 = yH + 0.1(x − �)2

yL2 = 1.2yH + 0.1(x − �)2 − 0.2

0 ≤ x ≤ 2�

(32)

yH = (6x − 2)2 sin 12x − 4

yL1 = 0.5yH + 10(x − 0.5) + 5

yL2 = 0.4yH − x − 1

yL3 = 0.3yH10x + 6

0 ≤ x ≤ 1

(33)

yH = 2 sin�x∕5

yL1 = x(x − 5)(x − 12)∕30

yL2 = (x + 2)(x − 5)(x − 10)∕30

0 ≤ x ≤ 10

(34)

yH = 4x2
1
− 2.1x4

1
+ x6

1
∕3 + x1x2 − 4x2

2
+ 4x4

2

yL1 = yH(0.7x1, 0.7x2) + x1x2 − 65

yL2 = yH(0.8x1, 0.6x2) − x4
1
+ 32

x1, x2 ∈ [−2, 2]
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Example 5 

Example 6 

Example 7 

Example 8 

(35)

yH = − sin x1 − exp(x1∕100) + x2
2
∕10

yL1 = − sin x1 − exp(x1∕100) + 10.3

+ 0.03(x1 − 0.3)2 + (x2 − 1)2∕10

yL2 = − sin 0.9x1 − exp(0.9x1∕100) + 10 + 0.64x2
2
∕10

x1, x2 ∈ [0, 1]

(36)

yH = x1∕2

(√
1 + (x1 + x2

3
)x4∕x

20
1
− 1

)

+ (x1 + 3x4)e
(1+sin x3)

yL1 = 0.79(1 + sinx1∕10)y
H − 2x1 + x2

2
+ x2

3
+ 0.5

yL2 = yH + ex3∕2 − x1∕10

x1, x2,x3, x4 ∈ [0.5, 1]

(37)

yH =
[
100(x2 − x2

1
)2 + (x1 − 1)2 + 100(x3 − x2

2
)2

+(x2 − 1)2 + 100(x4 − x2
3
)2 + (x3 − 1)2

+100(x5 − x2
4
)2 + (x4 − 1)2 + 100(x6 − x2

5
)2

+(x5 − 1)2
]
∕100000

yL1 =
[
100(x2 − x2

1
)2 + 4(x1 − 1)2 + 100(x3 − x2

2
)2

+4(x2 − 1)2 + 100(x4 − x2
3
)2 + 4(x3 − 1)2

+100(x5 − x2
4
)2 + 4(x4 − 1)2 + 100(x6 − x2

5
)2

+4(x5 − 1)2
]
∕100000

yL2 =
[
80(x2 − x2

1
)2 + (x1 − 1)2 + 80(x3 − x2

2
)2

+(x2 − 1)2 + 80(x4 − x2
3
)2 + (x3 − 1)2

+80(x5 − x2
4
)2 + (x4 − 1)2 + 80(x6 − x2

5
)2

+(x5 − 1)2
]
∕100000

yL3 =
[
100(x2 − x2

1
)2 + 100(x3 − x2

2
)2 + 100(x4 − x2

3
)2

+100(x5 − x2
4
)2 + 100(x6 − x2

5
)2
]
∕100000

xi ∈ [−5, 10], i = 1,… , 6

(38)

yH =
2�x3(x4 − x6)

ln (x2∕x1)
[
1 + 2x7x4∕

(
ln (x2∕x1)x

2
1
x8
)
+ x3∕x5

]

yL1 = 0.4yH + x2
1
x8 + x1x7∕x3 + x1x6∕x2 + x2

1
x4

yL2 = 0.6yH + 10x1x5∕x2 + x1x8∕x4 + x3
1
x7

x1 ∈ [0.05, 0.15];x2 ∈ [100, 50000];x3 ∈ [63070, 115600];

x4 ∈ [990, 1110];x5 ∈ [63.1, 116];x6 ∈ [700, 820];

x7 ∈ [1120, 1680];x8 ∈ [9855, 12045];

Example 9 

Appendix 2: The sample size in Sect. 4.2.1

The fixed sample size and rate used in Sect. 4.2.1 are listed 
in Table 8, which are determined according to the mode of 
the optimal combinations of all methods.
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(39)

yH =

10∑

i=1

x3
i
+

(
10∑

i=1

0.5ixi

)2

+

(
10∑

i=1

0.5ixi

)4

yL1 =

10∑

i=1

x3
i
+

(
10∑

i=1

2ixi

)2

+

(
10∑

i=1

3ixi

)4

yL2 =

10∑

i=1

x3
i
+

(
10∑

i=1

3ixi

)2

+

(
10∑

i=1

4ixi

)4

yL3 =

10∑

i=1

x3
i
+

(
10∑

i=1

ixi

)2

+

(
10∑

i=1

2ixi

)4

xi ∈ [−5, 10], i = 1,… , 10

Table 8   The fixed sample size and ratio used in Sect. 4.2.1

N p
0

N
HF
|N

LF
M

Example 1 31 0.3500 9|11 2
Example 2 60 0.2806 9|17 3
Example 3 31 0.3500 9|11 2
Example 4 65 0.3897 15|25 2
Example 5 100 0.4431 12|44 2
Example 6 260 0.4615 20|120 2
Example 7 570 0.3158 30|180 3
Example 8 560 0.4286 80|240 2
Example 9 3800 0.3158 200|1200 3
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