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Abstract
This paper presents a time-explicit, fully coupled, hydro-mechanical model to simulate the two-phase flow process in 
fractured porous media, considering the geomechanical effect. Two solvers are developed, and mutual hydro/mechanical 
interactions are considered: (i) a novel finite volume discrete fracture–matrix model (FV-DFM) for two-phase flow, through 
both pores and fractures; and (ii) a combined finite-discrete element method (FDEM) for mechanical responses (e.g., defor-
mation and fracturing). Particularly, a novel two-phase exchange flow model is applied at the matrix–fracture interface, 
which overcomes the difficulty in realistically capturing the discontinuity (e.g., pressure, saturation, and normal flux) across 
fractures. Meanwhile, non-uniform time steps of fracture and matrix flow are adopted to improve computational efficiency 
while maintaining accuracy. The performance of the proposed model is validated against existing results and applied to a 
practical waterflooding process considering fracture propagation. Results show that the model can well predict the two-phase 
flow process (e.g., pressure/saturation field, reservoir recovery) in fractured reservoirs, and reveal the important HM coupled 
effect on the flow process (e.g., the stress-dependent permeability and fracture propagation), with important implication for 
hydrocarbon reservoirs and  CO2 geological storage.

Keywords Hydro-mechanical coupling · Two-phase flow · Matrix–fracture interface · FDEM · FV-DFM

1 Introduction

Two-phase flow problems in fractured porous media are of 
capital importance in environmental and engineering fields, 
such as gas and oil exploitation,  CO2 geological storage, 
geothermal extraction, and contaminant migration [1–5], 
where the occurrence and interaction of multiphase is pre-
dominant (e.g., between water, oil, or/and gas). A sound 
understanding of the two-phase flow characteristic in the 
complex geomechanical material is fundamental to optimi-
zation and safety of these engineering projects.

The flow mechanism in fractured porous media remains a 
challenging topic, especially when fractures are introduced 
[6–9]. Though fractures make up a very small portion of 
the subsurface volume, they are often primary conduits 

that dominate flow and transport behavior, resulting in 
strongly heterogeneous and anisotropic flow behavior [10, 
11]. Recently, numerical methods have become attractive 
for such complex problems as their high efficiency and low 
cost, which has led to the development of various conceptual 
models to describe fluid flow in fractured media [12–14]. 
Generally, these models can be divided into two main 
approaches [15–19]: continuum and discrete models. In the 
continuum models (e.g., single-, dual- and multi- perme-
ability continuum models [20–22]), the fractured domain is 
homogenized into continuum media with equivalent param-
eters. Although this approach is computationally efficient, it 
hardly reproduces the complex flow affected by individual 
fractures. The discrete models (e.g., discrete fracture–matrix 
model [23, 24], embedded discrete fracture model [25, 26]) 
on the other hand consider the exact geometries of individual 
fracture, and explicitly account for their hydraulic properties. 
However, the discrete models are computationally expensive 
and modeling the flow exchange at fracture–matrix interface 
is still challenging. This is crucial in the two-phase flow as 
it considers different capillary pressure characteristics and 
relative permeability curves between the rock matrix and 
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fracture [16, 27]. External conditions (e.g., extended capil-
lary pressure condition [28, 29] and cross-flow equivalent 
condition [27, 30]) are adopted to approximate the fluid 
interchange at the fracture–matrix interface; however, they 
always ignore either pressure, saturation, or flux discontinui-
ties across fractures and hardly represent the real situation.

Another key factor deserving more attention is the dynamic 
coupling of the two-phase flow and geomechanics (known as 
hydro-mechanical coupling) [7, 31–35]. The interstitial fluid 
exerts forces on the surrounding rocks, resulting in the defor-
mation or even fracturing; In return, the stress-induced changes 
in matrix porosity and fracture aperture alter permeability and 
affect the two-phase flow within the fractured media. Properly 
considering the two-way coupling is important to accurate sim-
ulations. Although numerous HM coupling models have been 
developed for single-phase flow problems [36–39], only a few 
attempts have been made to multiphase flow. Ucar et al. [40] 
enriched the finite volume method to simulate the reservoirs 
deformation induced by fluid injection. Liu et al. [41] proposed 
a mixed finite volume-finite element method for two-phase 
flow in fractured and karstified media under coupled HM con-
ditions, where a modified Barton–Bandis’s model is used to 
mimic the nonlinear fracture deformation. Ren et al. [31, 42] 
and Khoei et al. [20, 43] developed the extended finite element 
method to simulate coupled multiphase flow and geomechan-
ics response of fractured tight gas reservoirs. Ma and Ren [30, 
44] and Sun [3] combined the numerical manifold method and 
unified pipe-network model to simulate the two-phase flow in 
geological media together with geomechanical effect, which 
were then applied to CO2 storage and geothermal exploration. 
Ma et al. [45, 46] applied the well-established multiphysics 
coupling simulators (TOUGH-FLAC) for coupled multiphase 
flow and geomechanical simulations. Compared to the single-
phase flow, two-phase flow is more sophisticated, because the 
flow regimes are determined by a range of factors, including 
relative permeability of each fluid phase, and capillary pressure 
characteristics of the rock matrix and fracture [16, 27]. High-
permeable fractures may act as barriers or conduits, depending 
on the saturation, in the presence of two-phase flow. Published 
studies provide a good understanding of the coupled HM two-
phase flow simulation; however, some limitations still exist, 
e.g., the pressure/saturation/flux discontinuity across the frac-
ture and rock fracturing process are rarely considered.

In this work, we aim to overcome these limitations by 
proposing a coupled hydro-mechanical numerical frame-
work capable to model the complex coupled two-phase 
flow/geomechanical processes in fractured porous media, 
and, specifically, to consider the fracture–matrix exchange 
flow and the fracturing process. To this end, two main solv-
ers are developed and coupled (detailed in Sect. 3): (i) the 
mechanical solver (FDEM) [47–49], which captures the 
geomechanical behavior (e.g., deformation and fracturing) 
of rocks; and (ii) the two-phase flow solver (a finite volume 

discrete fracture–matrix model (FV-DFM)), which simu-
lates the flow in complex fractured porous media. Particu-
larly, together with the explicit fracture representation, we 
proposed a two-phase exchange fluid model to explicitly 
simulate the fluid transfer at matrix–fracture interface, which 
inherently captures pressure, saturation, and flux disconti-
nuity at the interfaces without additional assumptions. The 
most essential interactions between the rocks and two-phase 
fluids are addressed, including the deformation and fracturing 
induced by the fluid pressure, stress-dependent matrix poros-
ity and fracture aperture, as well as relative permeability and 
capillary pressure variation induced by the geomechanical 
effect. The advantage of the proposed two-phase exchange 
fluid model over conventional external conditions [27–30] 
is illustrated in Sect. 4. In Sect. 5, elaborate validations are 
performed to demonstrate the versatility and capability of the 
proposed model, and parametrical studies (such as capillary 
pressure, viscosity ratio, mesh sensitivity) and HM coupling 
effect are also discussed. The applicability of the model to 
practical engineering problems (waterflooding operation) is 
also demonstrated, where both growing and existing fractures 
are modeled. Conclusions are drawn in Sect. 6.

2  Mathematical model

This section describes the mathematical model of the cou-
pled HM two-phase flow model, which accounts for the 
momentum equilibrium for the solid phase and the flow 
continuity for each fluid phase, as well as auxiliary condi-
tions. To facilitate the modeling, following assumptions are 
made: (1) the porous matrix and fractures are saturated with 
wetting (e.g., water) and non-wetting (e.g., oil,  CO2) phases; 
(2) in both rock matrix and fractures, the fluid flow obeys 
Darcy’s law; and (3) the effects of interfacial tension can be 
approximated using the concepts of relative permeability 
and capillary pressure.

2.1  Mass conservation for fluid phase

The mass conservation of the two-phase flow in fractured 
porous media is [50]:

where t is the time; ∅ is the porosity; superscript α = m or f 
represents the matrix and fracture, respectively; ρi, Si and qi 
are the density, saturation, and sink/source term of the fluid 
phase i (subscript i = w or n represents the wetting and non-
wetting phase, respectively); vi is the velocity vector, which 
obeys the linear momentum balance equation given by the 
extended Darcy’s law:

(1)�

�t
(��Si�i) + ∇ ⋅ (�i�i) = �iqi, i = w, n ,
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where K is the intrinsic permeability tensor; g is the grav-
ity constant; z is the depth coordinate; kri and μi, are the 
relative permeability coefficient and viscosity of phase i, 
respectively.

Additionally, fluid density is related to pressure through 
compressibility term as [33]:

By substituting Eqs. (2) and (3) into (1), the mass balance 
equation can be rewritten:

2.2  Static equilibrium of solid

The quasi-static momentum equilibrium equation in the 
solid domain is [47, 51]:

where σ is the stress tensor and F is the body force vector. 
The effective stress tensor can then be calculated [3, 52]:

where b is Biot coefficient; I is the identity tensor; pavg is 
the averaged two-phase pressure.

The effective stress is further linked to strain via the con-
stitutive model:

where D is the stiffness matrix; ε is the total strain, which is 
related to displacement vector (u):

Combining Eqs. (5)–(9), the equilibrium equation for 
media saturated with two-phase fluid is:

2.3  Auxiliary equations

Apart from the above governing equations, auxiliary equa-
tions are supplied to complement the mathematical model. 

(2)�i =
�kri

�i

(∇pi − �ig∇z), i = w, n ,

(3)ci =
1

�

��i

�pi
.

(4)��
�Si

�t
+ ��Sici

�pi

�t
+ ∇ ⋅ (

�kri

�i

(∇Pi − �ig∇Z)) = qi.

(5)∇� + � = 0,

(6)�� = � + bpavg�,

(7)pavg = Swpw + Snpn,

(8)d�� = �d�,

(9)� = (∇� + �∇)∕2.

(10)∇(
1

2
D(∇� + �∇) − b(Swpw + Snpn)) + � = 0.

Firstly, the voids (pores and fractures) are assumed to be 
saturated:

Coupling between two phases is captured through the 
interfacial tension (i.e., capillary pressure pc):

Additionally, the relative permeabilities of each phase 
change during the flow process. Generally, the capillary 
pressure and relative permeability are assumed as a func-
tion of the phase saturation (common constitutive equations, 
e.g., van Genuchten, Brooks–Corey, and linear model [33, 
53, 54] are given in Appendix A).

2.4  Boundary conditions

Initial condition can be given by:

where u is the variable in the governing equations, e.g., dis-
placement, pressure, and saturation. u0 is a known function 
of time or a prescribed value of variable u.

Two types of boundary conditions are included:
Dirichlet boundary condition:

Neumann boundary condition:

where us is the prescribed value of variable u at the bound-
ary ℾD; n denotes the normal vector to the boundary, and fs 
is a given scalar function at the boundary ℾN.

3  Coupled HM two‑phase flow model

The proposed coupled HM two-phase flow model contains 
two solvers: the mechanical solver (FDEM) is used to sim-
ulate the mechanical response of the rocks; the hydraulic 
solver, based on the FV-DFM, is implemented to simulate 
the two-phase flow in fractured porous media.

3.1  Mechanical solver (FDEM)

The mechanical behavior is solved by the FDEM, which 
incorporates the advantages of both the continuum and dis-
continuum methods [55–59]. With the rapid development of 
the FDEM fundamental algorithm (e.g., large material defor-
mation, smooth contact algorithm [60, 61]), the FDEM has 

(11)Sw + Sn = 1.

(12)pc = pn − pw.

(13)�(x, y, 0) = u0,

(14)�
|||ΓD

= us.

(15)
�u

��

|||ΓN
= fs,
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been applied to many practical rock mechanics problems, 
including but not limited to laboratory and in situ tests [62], 
underground excavation [63], slope stability [64], and multi-
field coupling [65, 66]. The FDEM has been extended to HM 
coupled problems of single-phase flow [67–71]; however, few 
attempts have been made to couple two-phase flow to geome-
chanical analysis [72].

In the 2D FDEM, the simulation domain is discretized 
into three-node finite elements bonded by four-node joint ele-
ments (Fig. 1). Pre-existing or newly generated fractures are 
represented explicitly by crack elements (i.e., broken joint ele-
ments). The stress/strain of individual blocks are calculated 
by FEM formulations, while the interaction of the discrete 
blocks is simulated by DEM formulations. Transition from 
continuum to discontinuum is modeled by the breakage of the 
joint elements. Basics of the FDEM are briefly introduced, 
while further details can be referred to literature [47].

3.1.1  Governing equation

The motion of the rock is governed by the equivalent nodal 
forces using the Newton’s second law [47]:

where M and C are the nodal lumped mass and damping 
diagonal matrices, respectively; x is the vector of nodal coor-
dinates; t is the time; Fint, Fext, Fc, and Fj are nodal forces, 
representing internal forces, external forces, contact forces, 
and joint forces, respectively, which are introduced in the 
following sections.

3.1.2  Internal force in finite elements

The stress–strain constitutive relationship of the finite element 
satisfies the FEM formulations [55]:

(16)�
�2x

�t2
+ �

�x

�t
= �int(x) + �ext(x) + �c(x) + �j(x),

(17)�=
�

2
(J −

1

J
)� +

�

J
(� − �),

where T is the Cauchy stress tensor; J is the determinant of 
deformation gradient; � and μ are the Lame constants; B is 
the left Cauchy–Green strain tensor; I is the identity matrix. 
Then, the equivalent internal nodal force (Fint) is:

where n and l are the normal unit vector and length of the 
triangular edge opposite to the node, respectively.

3.1.3  Contact force between discrete elements

As soon as blocks contact, the distributed contact forces 
(df) over the overlapped area (ds) are calculated by a 
potential function method [74]:

where Pc and Pt are the overlapping points in the contactor 
and target element, respectively; pn is the penalty coefficient; 
φc and φt are the potential functions, given by:

where A is the area of the triangular element, and A1, A2, 
and A3 are the areas of the sub-element.

The contact force Fcn and friction force Fct between the 
contacted blocks are [57]:

where n is the normal vector of the contact edge; vr is the 
relative velocity between the contacted elements; ∅ is the 
friction coefficient.

(18)�int=
1

2
��l,

(19)d� = pn
[
grad�c(Pc) − grad�t(Pt)

]
ds,

(20)�(P) = 3 ⋅min(A1∕A,A2∕A,A3

/
A),

(21)�cn = ∫
s

0

�ds,

(22)�ct = �‖‖� ⋅ �cn
‖‖

��
‖‖��‖‖

,

Crack element

Finite element

Joint element

(a) (b)

Fig. 1  a A rock mass with cracks and b its numerical model (After [73])
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3.1.4  Joint forces and failure criterion of joint elements

The inserted joint elements are deformable to keep the con-
tinuum behavior in intact rocks, and the breakage of joint 
elements explicitly simulates material failure. The constitu-
tive response of the joint elements is illustrated in Fig. 2, 
where the joint forces within the joint element are the func-
tion of the joint deformation [75, 76]:

where Fjn and Fjt are the normal and tangential forces that 
are perpendicular and parallel to the joint surface, respec-
tively; δo and δs are the normal and tangential displacement, 
respectively; l is the joint length; ft, and fs are the tensile 
and shear strength, respectively; function H is a piecewise 
function approximating the experimental cohesive laws [47].

Cracks initiate and propagate when the displacement 
reaches a critical value, and the failure mode can be divided 
into Mode I (i.e., tension mode), Mode II (i.e., shear mode), 
or mixed mode (Fig. 2).

3.2  Two‑phase flow solver

3.2.1  Finite volume discrete fracture–matrix model

A mixed discretization approach is proposed to resolve 
accurately and efficiently the coupled two-phase flow and 
geomechanics in fractured porous media. Based on the 
specific FDEM topology, a finite volume discrete frac-
ture–matrix (FV-DFM) model is proposed for two-phase 
fluid flow in the fractured rock. In this FV-DFM model, 
hydro-elements are inserted into the FDEM mesh for the 
seepage field calculation (Fig. 3). The porous matrix is 
discretized into non-overlapping triangular elements 

(23)
{

��� = ∫ Ho(�o) ⋅ ftdl

��� = ∫ Hs(�s) ⋅ fsdl
,

(Fig. 3—in blue), and fractures are modeled as 1D 2-node 
linear element with implicit aperture (Fig. 3—in red) 
located at the centerline of the open fracture. Three fami-
lies of hydro-nodes are defined: (1) fracture nodes; (2) 
interface nodes; and (3) matrix nodes. It is noted that 
the fracture–matrix interfaces (i.e., fracture edges) and 
fractures are represented separately; thus, the exchange 
flow between fracture and rock matrix can be explicitly 
calculated. These hydro- and mechanical mesh systems 
are compatible with each other, where the fluid flow is 
simulated using the hydraulic mesh, while the mechanical 
behavior is simulated by the FDEM mesh.

The vertex-centered finite volume method, which is 
suited for unstructured grids and guarantees local mass 
conservation, is adopted to solve the fluid flow equa-
tions. The control volume (Fig. 3—enclosed by dashed 
lines) associated with a matrix hydro-node and interface 
hydro-node is constructed by the perpendicular bisectors 
of each triangular edge connected to the node (i.e., the 
volume enclosed by circumcircle centers of the surround-
ing triangular element). Each edge of the triangular mesh 
is perpendicular to the interface of two adjacent control 
volumes. The control volume of each fracture hydro-node 
is separately calculated by the fracture aperture.

Fig. 2  Constitutive model and 
failure modes of joint elements. 
Where δop and δsp are the elastic 
limits of opening and sliding 
displacement, corresponding to 
material strengths (ft and fs). δor 
and δsr are the critical open-
ing and sliding displacement, 
depending on fracture energy 
release rates (GI and GII)

Fig. 3  Schematic of hydro-mesh and hydro-nodes inserted into the 
FDEM mesh
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3.2.2  Two‑phase fluid flow calculation

Both matrix pores and cracks form flow paths; thus, three 
seepage modes exist [36]: seepage in cracks (crack flow); 
seepage in rock matrix (matrix flow); and seepage between 
cracks and matrix (exchange flow).

Crack flow (represented in 2-node line hydro-elements, 
Fig. 4) is defined as laminar flow [66]:

where kri is the relative permeability of phase i; Ji = ∆pi/l is 
the pressure gradient between the two hydro-nodes; pi is the 
pressure and l is the fracture length; μi is the fluid viscosity; 
δ is the equivalent crack aperture [77]:

where δm = δa + δb; r = δa/δb. δa; and δb are the aperture at 
end points.

Matrix flow is defined as 2D Darcy flow in triangular 
hydro-elements. The element (∆ijk in Fig. 4) is separated 
into three sub-elements by the circumcircle center (o) and 
mid-edge points [17]. Fluid flow between adjacent control 
volumes can be evaluated as [78]:

where K is the intrinsic permeability; kri is the relative per-
meability of phase i; ∆pi is the pressure difference; l and h 
are the equivalent length and width of the flow path, respec-
tively, where l equals to the edge length and h is the distance 
between circumcircle center and edges.

Pressure difference between rock matrix and cracks 
will induce exchange flow. Since the hydro-nodes at 
the interface and fracture are explicitly represented 

(24)qf ,i = −
kri�

3Ji

12�i

, i = w, n ,

(25)� = �m

[
16r2

(1 + r)4

]1∕3
,

(26)qm,i = −Kkri
Δpi

l
h,

(Fig. 4), exchange flow can be inherently calculated at the 
matrix–fracture interface:

where kc is the exchange (leak-off) coefficient, which can be 
determined experimentally [79, 80]; p is the pressure (super-
script m+, m− and f represent the upper edge, lower edge, 
and fracture, respectively). As the material discontinuity is 
explicitly accounted for at the interface, discontinuity of the 
pressure, saturation and flux across the fracture are inher-
ently calculated (see Sect. 4).

For the numerical stability, the relative permeability is 
based on the upwind scheme [3, 81]:

Thus, the total fluid flow at each hydro-node can be 
captured:

where � = 1 when the calculation node is interface node, 
otherwise � = 0.

3.2.3  Time discretization and solution

The phase pressure–saturation formulation [33, 81] is 
adopted to solve the complex mass conservation equations, 
where the wetting phase saturation (Sw) and non-wetting 
phase pressure (pn) are independent unknowns. The mass 
conservation equation (Eq. 4) can now be rewritten in terms 
of Sw and pn:

Assuming the capillary pressure only depends on satura-
tion, the capillary term ▽pc can be reformulated:

The pressure equation can be obtained by adding Eq. (31) 
to Eq. (30):

(27)

⎧
⎪⎨⎪⎩

q+
i
= −kckri(

pm+
i

−p
f

i

�∕2
), Γ+

q−
i
= −kckri(

pm−
i

−p
f

i

�∕2
), Γ−

,

(28)kri =

{
kri(Si,a) pi,a ≥ pi,b
kri(Si,b) pi,a < pi,b

.

(29)Q =

⎧
⎪⎨⎪⎩

nm∑
i=0

qm + �qfm matrix/interface

nf∑
i=0

qf + qmf fracture

,

(30)

�� �Sw
�t

+ ��Swcw(
�pn
�t

−
�pc
�t

) + ∇ ⋅ (
�kw
�w

(∇pn − ∇pc − �wg∇z)) = qw,

(31)

−��
�Sw

�t
+ ��(1 − Sw)cn(

�pn

�t
) + ∇ ⋅ (

�kn

�n

(∇pn − �ng∇z)) = qn.

(32)∇pc =
�pc

�Sw
∇Sw.

Fig. 4  Fluid flow in rock mass, including crack flow, exchange flow, 
and matrix flow
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The pressure equation (Eq.  (33)) and water satura-
tion equation (Eq. (30)) have strong non-linearities. The 
implicit-pressure–explicit saturation (IMPES) approach 
[29, 33, 81, 82] is used to solve the system of equations, 
which requires less computational expense than the non-
linear solver (i.e., fully implicit method) [27]. The global 
mass conservation (i.e., the pressure equation) is implicitly 
solved, while the saturation equation is explicitly solved 
(Algorithm 1).

Algorithm 1.  IMPES approach (for more details the 
readers are referred to [29,33,81,82)

(33)

(��Swcw + �� (1 − Sw)cn)
�pn
�t

− ��Swcw
�pc
�t

+ ∇ ⋅ (
�krw
�w

(∇pn − ∇pc − �wg∇z))

+∇ ⋅ (
�krn
�n

(∇po − �ng∇z)) = qw + qn

The IMPES method is efficient but conditionally sta-
ble, where time step limitation is required. According to 
the CFL condition [83], the critical time step size can be 
expressed as:

where tl is the previous time step size; Cmax is no more 
than 1 (set as 0.75 in this study); CFL can be calculated as:

where Vc is the volume of each computational node domain; 
m is the number of neighbor faces f to the considered node; 

(34)ΔtCFL = min(min(cΔt, 1 + 0.1cΔt), 1.2)Δtl,

(35)cΔt = Cmax∕CFL,

(36)

CFL = max(Vc)

[
Δt

�Vc

(2
�pc

�sw

MnMw

K(Mn +Mw)

m∑
f=0

Tf +
�Fw

�sw

m∑
f=0

q)

]
,

M is the phase mobility; Fw is the fractional flow, and Tf is 
the transmissivity of the face f.

where sf is the area of surface f; and df is the distance 
between the centers of the two neighboring nodes.

The stability for the CFL condition is not ensured if 
the source/sink term is present. Therefore, a user-defined 

(37)Mi =
Kkri

�i

,

(38)Fw =
kw∕�w

kw∕�w + kn∕�n

,

(39)Tf = Kf Sf∕df ,

maximal variation of saturation ∆Sw, max is added, where 
the critical time step size is [81]:

Fig. 5  Non-uniform time step size in the rock matrix, interface, and 
fracture
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Thus, the global time step size is given by:

It is obvious that the time step limitation may vary by 
orders of magnitude between matrix and fractures due to 
their drastically different physical properties. Fractures with 
higher permeability, but less volume may impose a more 
severe time step limitation [84]. Thus, using a single time 
step size throughout the entire domain would be inefficient. 
A hybrid time scheme (non-uniform time step) is imple-
mented herein for higher computational efficiency (Fig. 5): 
tm for fracture flow, and tf for fracture flow and the exchange 
flow. It is essential that tm = Ntf (N is an integer), so that data 
between the fracture and the matrix are transferred every tm. 
The efficiency and accuracy of the non-uniform time step 
sizes are demonstrated in Sect. 4.

(40)
Δts = min(

VcΔsw,max

�(−
m∑
f=0

vwSf + Vcqw)

).

(41)Δt = min(ΔtCFL,Δtp).

3.3  HM coupling effect

Hydraulic and mechanical fields in fractured porous media 
strongly interact with each other. A two-way coupling 
approach between the fractured rock and two-phase fluids 
is shown in Fig. 6.

3.3.1  Effect of fluid pressure on mechanical deformation

Flow seepage significantly changes the fluid pressure and 
stress state in rocks. For the rock matrix, the effective stress 
is based on the Biot’s poroelasticity theory:

where b is the Biot coefficient; I is identity tensor; 
pavg = Swpw + Snpn is the average two-phase fluid pressure, 
which is applied on the FDEM elements as volume stress in 
the mechanical calculations (Fig. 7a).

For fractures, the hydraulic pressure is simplified as line-
arly distributed surface loading (Fig. 7b), where pi and pj are 
the pressures on hydro-nodes i and j, respectively. Following 
the FDEM framework, the fluid pressures are then converted 
to external nodal forces on the corresponding solid nodes, 
including normal force, fn, and tangential viscous force, fs:

where l is the fracture length, δ is the equivalent aperture. 
The normal force is perpendicular to the fracture surface, 
and the viscous force is opposite to the fluid flow direction.

The deformation of the rock matrix and fracture can 
then be simulated by the mechanical solver (FDEM). 

(42)�� = � − bpavg�,

(43)fn,a = fn,c =
pil

3
+

pjl

6
, fn,b = fn,d =

pil

6
+

pjl

3
,

(44)fs,a = fs,b = fs,c = fs,d =
pi − pj

4
�,

Fig. 6  Interaction between the mechanical solver and two-phase flow 
solver

Fig. 7  Fluid pressure applied to 
the a matrix and b fracture
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Furthermore, hydraulic fracturing caused by high fluid pres-
sure can also be captured by the failure of joint elements 
(Sect. 3.1.4).

3.3.2  Effect of rock deformation on permeability

Simultaneously, the geomechanical deformation in turn 
affects the two-phase flow process via the change of hydrau-
lic properties and new fluid channels.

The porosity and permeability variation of the matrix can 
be calculated using the stress-dependent porosity and perme-
ability model [3, 45]:

where ∅0 is the initial porosity; k0 is the initial permeability; 
K is the bulk modulus; and σ′m = (σ′x + σ′y)/2 is the effective 
mean stress.

The fracture aperture variation under stresses is described 
in Fig. 8. Specifically, under tensile conditions, fracture aper-
ture can be calculated explicitly from the FDEM mechanical 
model as the normal translation components between the 
opposite edges of a crack element [85]:

(45)� = � + (�0 − �)exp(−Δ�m
/
K),

(46)k
/
k0 = (�

/
�0)

3,

where δ0 is the initial fracture aperture; s is the opening vec-
tor defined by the nodal difference in a broken joint element; 
and n is the unit normal vector of the joint element.

However, under compressive conditions, the aperture can-
not be calculated directly in FDEM, which is then calculated 
based on an empirical non-linear hyperbolic model [86, 87]:

where un is the fracture normal closure:

where umax is the maximum closure; Kn is the fracture stiff-
ness, and Kn0 is the initial fracture stiffness.

3.4  Coupling procedure

A sequential coupling procedure is adopted to solve the HM 
coupled model. At each calculation step, fluid flow through 
both porous matrix and fracture networks is solved using the 
developed FV-FDM approach. Fluid pressures are then used 
as external loads for the FDEM solver in modeling stresses, 
strains, and fracturing. The updated rock geometry is used 
to update fluid parameters (porosity and permeability) for 
the next flow time steps.

4  Advantages of the two‑phase exchange 
flow model

The mass transfer at the fracture–matrix interface is impor-
tant in the two-phase flow simulation while remaining a 
challenge in numerical simulations. Figure 9 illustrates 
possible fluid exchange scenarios between rock matrix and 

(47)� = �0 + � ⋅ �,

(48)�op = �0 − un,

(49)un =
�n�

Kn + �n�
/
umax

(50)Kn = Kn0(1 −
�n�

Kn0umax + �n�
)

Fig. 8  Schematic of fracture deformation. The curve on the left is 
plotted against the normal stress under compression condition, while 
the right part is aperture calculation under tension condition

Fig. 9  Schematic of the possible 
exchange flow protocols across 
the fracture
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fractures, where fractures behave as sink/source. An efficient 
model should capture the fluid exchange between fracture 
and matrix, as well as the pressure, saturation, and flux dis-
continuity at the interface, caused by the drastic properties 
contrast between matrix and fracture.

Several attempts have been proposed to handle the 
two-phase flow transfer at the interface. One widely used 
method is the cross-flow equilibrium condition [27, 30], 
which assumes fluid conservation across the interface and 
continuity requirements for both wetting/non-wetting flux 
(Fig. 10a):

Obviously, this condition ignores the discontinuous flux 
across the fracture, and the sink/source function of fractures. 
Additionally, the fracture and adjacent matrix share the same 
degrees of freedom (e.g., pressure and saturation). There-
fore, this implicit assumption of the continuous pressure/
saturation at the interface can hardly properly simulate the 
real flow across fractures.

Another model is the extended capillary pressure con-
dition, which assumes the capillary pressure continuity at 
the interface [3, 29]. The relationship of the wetting phase 
saturation between fracture ( Sfw ) and its adjacent matrix ( Sm

w
 ) 

can be described by the capillary pressure curve (Fig. 10b):

where S∗
w
 is a threshold saturation associated with the matrix 

entry pressure. Although it captures the saturations jump 
between the fracture and matrix, exact matrix–fracture 
flux is not explicitly evaluated. The wetting phase satura-
tion in the adjacent matrix, Sm

w
 , is directly set to 1, when Sfw

≥S∗
w
 , which has no physical meaning. It is also limited to 

the conditions of larger fracture permeability (i.e., conduit 
fracture) and the larger matrix capillary pressure [27, 88]. 
Additionally, the pressure and saturation at the opposite 

(51)�i�i ⋅ �|Γ+ = �i�i ⋅ �|Γ−, i = w, n .

(52)Sm
w
=

{
(pm

c
)−1(p

f
c(S

f
w)) S

f
w ≤ S∗

w

1 S
f
w > S∗

w

,

fracture edges are the same, which is not representative of 
real situations.

Overall, the above two widely used models hardly real-
istically simulate the two-phase flow at the fracture–matrix 
interface. However, the proposed two-phase exchange flow 
model in this paper allows for an explicit and accurate repre-
sentation of the fluid exchange at interface, which inherently 
calculates the pressure, saturation, and flux discontinuity 
across the fracture, as demonstrated in the following test. A 
rock domain (1 m × 1 m, Fig. 11), initially saturated with oil, 
contains a throughout fracture which acts as either conduits 
(kf =  10–15  m2) or barriers (kf =  10–9  m2). A prescribed pw = 1 
MPa and Sw = 1 are set at the injection point. The calculation 
parameters are listed in Table 1.

The water pressure and saturation distribution are shown 
in Figs. 12 and 13. Overall, saturation and pressure decrease 
from the inlet to the outlet boundary. In the case where frac-
ture permeability is lower than that of neighboring matrix 
(i.e., fracture behaves as a barrier), water is trapped and 
accumulates below the fracture and moves horizontally. 
Obvious pressure jumps between the opposite fracture edges 
are observed. In contrast, in highly conductive fracture case, 
water tends to propagate across the fracture and hence results 
in a relatively continuous pressure/saturation distribution. A 

Fig. 10  Schematic of the a cross-flow equilibrium condition and b extended capillary pressure condition

Fig. 11  Model geometry for the exchange flow problem
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higher pressure/saturation in fractures along the diagonal 
line is due to higher fracture permeability.

The pressure/saturation evolution across p (0.5, 0.5) is 
plotted to better show the discontinuity across the fracture 
(Fig. 14). Obvious pressure/saturation jumps across the frac-
ture are observed, which is more apparent in the case with 

lower fracture permeability. Note that pressure/saturation in 
fracture with higher permeability is larger than those at sur-
rounding edges, which is different from monotonic decrease 
trend in low fracture permeability case. The reason is water 
flows faster in the high-permeable fracture, thus the pres-
sure/saturation grows faster than the surrounding matrix, 

Table 1  Simulation parameters Parameters Value Parameters Value

Water density, ρw (kg/m3) 1000 Oil density, ρn (kg/m3) 800
Water viscosity, μw (Pa∙s) 1e-3 Oil viscosity, μn (Pa∙s) 5e-3
Matrix permeability, km  (m2) 8 ×  10–13 Fracture aperture, δ0 (mm) 1
Matrix porosity, ∅m 0.2 Brooks and Corey (BC) model m = 2
Residual water saturation, Swr 0.1 Residual oil saturation, Swn 0.1

Fig. 12  a Water pressure distribution b along the diagonal line at t = 1 and 4 h

Fig. 13  a Water saturation distribution b along the diagonal line at t = 1 and 4 h
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which is also supported by the discontinuous exchange 
fluxes across the lower/upper edges at t = 1 h (Fig. 15). In 
the barrier case, water flows into the fracture from the lower 
edge and then enters the upper edge. However, in the conduit 
case, water in fracture flows into both edges at the far end, 
which behaves as a source term.

In addition, the efficiency and accuracy of the non-
uniform time step sizes are also investigated. Different 
time step ratios, tm/tf = 20, 10, 1, are utilized. The pressure 
and saturation distribution at t = 1 h (Fig. 16) show that, 
although there are slight differences (specifically at the 
interface) between the different ratios, the relative error 
is less than 2%. The error might be the numerical diffu-
sion introduced by the data exchange frequency, which is 
conducted at each tm (Sect. 3.2.3). However, the calcula-
tion speed rapidly increases, about over 20 times faster in 

the case of tm/tf = 20 compared to the uniform time step 
size (i.e., tm/tf = 1). This non-uniform time step size alle-
viates the time step size constraint on the fractures with 
higher permeability and allows a higher computational 
efficiency without sacrificing accuracy. The tm/tf = 10 is 
used throughout this paper.

Fig. 14  Temporal evolution of the water pressure and saturation in the fracture, upper edge, and lower edge with fracture permeability of a 
kf =  10–15 and b kf =  10–9  m2

Fig. 15  Water flux distribution along the lower and upper fracture 
edges at t = 1 h. (Inflow is positive and outflow is negative)

Fig. 16  Comparison of the water pressure and saturation distribution 
at t = 1 h for different tm/tf ratios

Fig. 17  Computational model for the Buckley–Leverett test
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5  Numerical tests

In this section, numerical tests are presented to demon-
strate the performance of the proposed coupled HM two-
phase flow model.

5.1  Buckley–Leverett benchmark test

The Buckley–Leverett (BL) benchmark test [89] is widely 
used for two-phase flow calibration. The process of water 
(wetting phase) displacing oil (non-wetting phase) is 
independently simulated for fracture (case I) and porous 
matrix (case II) cases. The computational model is shown 
in Fig. 17 (a single fracture with δ = 1 mm) is located at 
the model center in case I). The domain is initially filled 
with oil with Sn = 0.9 and pn = 0 MPa. A constant water 
injection volume Qi = 5 ×  10–6  m3/s is performed at its 

left boundary, and the oil pressure at its right boundary 
remains constant. No fluid leakage occurs at the other 
boundaries. The calculation parameters are the same as 
those in Table 1. The capillary pressure is neglected to 
provide a proper comparison with the Buckley–Leverett 
solution, unless otherwise indicated.

5.1.1  Case I: single fracture

The water saturation distributions along the fracture at dif-
ferent times are shown in Fig. 18a and compared with the BL 
theoretical solutions (Fig. 18b). The injected water gradually 
displaces the oil phase, and the position where the water sat-
uration drops sharply is the penetration front. The simulated 
results are generally consistent with the theoretical solutions.

We further investigate the effect of fracture aperture 
(δ = 0.8, 1, 1.5 mm) and viscosity ratio (μw/μn = 0.2, 0.5, 
1). The water saturation distributions at t = 120 s are shown 

Fig. 18  a Water saturation distributions in the single fracture at t = 60 s, 120 s and 180 s; b comparison of the present results and BL theoretical 
solutions

Fig. 19  Water saturation distributions in the fracture at t = 120 s with different a fracture aperture and b viscosity ratio
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in Fig. 19 and agree well with the theoretical solutions. It 
also shows that under a constant water injection volume the 
waterfront propagates faster with a smaller aperture and 
lower wetting/non-wetting viscosity ratio.

5.1.2  Case II: porous matrix

The water saturation distributions in the porous matrix are 
shown in Fig. 20, and the results agree well with the BL 
theoretical solutions.

To evaluate mesh sensitivity, different meshes sizes 
(s = 0.2, 0.1, and 0.05 m) are used. The simulation results 
of the water saturation distribution at 3 h (Fig. 21a) are in 
fair agreement with each other. However, the solution with 
a finer mesh is closer to the theoretical solution, where the 
waterfront can be better approximated.

Particularly, the numerical model allows to investigate 
the capillary pressure effect, which was neglected in the BL 
solution. The capillary pressure herein follows the Brooks 
and Corey model [54] with entry pressure pe = 20 kPa and 

Fig. 20  a Water saturation distributions in the matrix at t = 1, 2 and 3 h; b comparison of the present results and BL theoretical solutions

Fig. 21  Water saturation distributions with a different mesh size at t = 3 h, and b capillary pressure effect

Fig. 22  Geometry of the fractured porous medium (after [24])
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shape factor m = 2. The water saturation distribution is 
shown in Fig. 21b, which agrees with numerical results 
solved by 1D finite difference method [90]. Compared with 
the case without capillary effect (Fig. 20), a smoother tran-
sition is observed at the waterfront. The reason is that the 
interfacial tension (capillary pressure) between two phases 
causes the imbibition of the water phase, which converts 
the sharp water saturation front resulting from the pressure 
gradient and viscous force to a smooth water saturation 
distribution.

5.2  Two‑phase flow in fractured porous medium

Two-phase flow through fractured porous medium is vali-
dated against benchmark test published in Karimi-Fard et al. 
[24]. The modeling domain (1 m × 1 m), initially saturated 
with oil (Sn = 1), contains three fractures with aperture of 
0.1mm (Fig. 22). The matrix porosity and permeability are 
0.2 and 1 ×  10–15  m2, respectively. Water is injected at the 
injection point at a rate of 0.01 PV/D (i.e., 2.32 ×  10–8  m3/s, 
PV is the volume normalized by pore volume), and produced 
from the production point. The viscosity of water and oil is 
1 ×  10–3 Pa∙s and 0.45 ×  10–3 Pa∙s, respectively. To properly 

Fig. 23  Water saturation profiles at different PV water injections. a the present model and b results from Karimi-Fard et al. [24]

Fig. 24  Cumulative oil production obtained from this work and 
Karimi-Fard et al. [24]

Fig. 25  The geometry of the fractured porous medium contains an 
inclined fracture



2528 Engineering with Computers (2024) 40:2513–2535

compare with the published results [24], we specify a linear 
variation (see Appendix A) of the relative permeability and 
neglect capillary pressure.

The water saturation profiles after 0.1, 0.3, and 0.5 PV 
water injection are compared with published results [24] 
(Fig. 23). The injected water gradually displaces the oil 
phase, and the water saturation gradually increases. Frac-
tures with higher permeability behave as primary channels. 
A close match is observed between our model and Karimi-
Fard et al. [24], even though subtle differences are evident in 
the saturation maps, likely due to the different discretization 
procedures. Both models also show a close agreement of the 
oil production (Fig. 24).

5.3  HM coupling effect

The hydro-mechanical coupling effect between the two-
phase flow and geomechanics is validated in this test 
against Khoei et al. [20]. A square-shaped porous medium 

(1 m × 1 m) contains a 2 m-long fracture inclined at θ = 45° 
(Fig. 25). The sample is initially saturated with oil (Sn = 1), 
and the water is injected from the bottom left corner at a 
rate of 0.01 PV/day. All edges are hydraulically imper-
meable, and the left and bottom edges are mechanically 
restrained. Modeling parameters are given in Table 2.

Figure 26 presents the water saturation contours after 
50-day water injection (i.e., 0.5 PV) under different rock 
Young’s moduli, and compared with published solutions 
[20]. It shows that the two-phase flow pattern highly 
depends on the crack deformation. For the case with a 
high rock stiffness (E = 100 GPa), the waterfront has a 
circular shape, and the presence of the fracture has no 
considerable effect on the flow pattern. It is because the 
fluid pressure is insufficient to open the fracture adequately 
(Fig. 27c). However, when the rock stiffness decreases, the 
fracture opens (Fig. 27c), which consequently increases 
the fracture permeability. Fractures with a higher permea-
bility behaves as priority channels, resulting in faster water 

Table 2  Parameters for test 4.3 (after [20])

Parameters Value Parameters Value

Rock density, ρs (kg/m3) 2000 Matrix porosity, ∅m 0.2
Young’s modulus, E (GPa) 5, 20, 100 Poisson ratio, v 0.2
Water density, ρw (kg/m3) 1000 Oil density, ρn (kg/m3) 660
Water viscosity, μw (Pa∙s) 1e-3 Oil viscosity, μn (Pa∙s) 0.45e-3
Residual water saturation, Swr 0 Residual oil saturation, Swn 0
Matrix permeability, km  (m2) 1 ×  10–15 Fracture aperture,  δ0 (mm) 1 ×  10–3

Capillary pressure pc = pc0 ln(Sw) pc0 = 1 ×  105 Pa
Relative permeability krw = Sm

w
, krn = (1 − Sw)

m m = 3

Fig. 26  The water saturation distribution at 50 days for various Young’s moduli. a the present work and b published results [20]
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penetration. The displacement and fracture aperture distri-
bution for the case of E = 5 GPa at 50 days are comparable 
to the published results [20] (Fig. 27).

Figure 28 depicts the oil production in 100 days. Produc-
tion curves begin with a similar rate for various Young’s 
moduli, and production rates decrease as the waterfront 
approaches the outlet point. Production rate decreases first 
in the case of E = 5 GPa since its largest fracture perme-
ability accelerates the water flow toward the outlet point 
(i.e., earlier water breakthrough). Consequently, oil cannot 
be efficiently extracted, and almost 50% of the oil remains 
in the reservoir after 100 days. However, the oil production 
in the case of E = 100 GPa is nearly 1.4 times greater than 
that of E = 5 GPa.

Fig. 27  Comparison of the displacement contours, in E = 5 GPa case at 50 days, between a the present work and b published results [20]. c Frac-
ture openings for various Young’s moduli

Fig. 28  Oil production curves for various Young’s moduli

Fig. 29  Schematic of a the 
inverted nine-spot injection pat-
tern and b the selected simula-
tion domain (after [93])
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5.4  Waterflooding operation with inverted 
nine‑spot pattern

The waterflooding operation [91, 92] that displaces hydro-
carbons by injecting water is a widely used technique to 
enhance hydrocarbon recovery. During the waterflooding 
operation, prior stimulated fractures may further propagate 
and connect to the wells, which will result in early water 
breakthrough [93]. The proposed model is further adopted 
to investigate the effect of the fracture growth on the early 
water breakthrough and the hydrocarbons recovery during 
waterflooding operation with a popular inverted nine-spot 
injection pattern (Fig. 29). Due to model symmetry, the com-
putational domain (Fig. 29b) comprises one injecting and 
three producing wells, where the boundaries are co-oriented 

with the direction of horizontal principal stresses (σH = 38.6 
MPa and σh = 36 MPa) [93]. The hydraulic fracture at the 
injecting well is 100 m long and parallel to σH, while that 
of the producing wells is 200 m long and oriented in the 
direction of σH with a small bias of ± 8◦. The computational 
domain is initially filled with oil with a pressure of 20 MPa. 
The water is injected into the injection well at a constant 
rate Qin, while the boundary conditions at the three produc-
ing wells are maintained as the initial stage. The modeling 
parameters are listed in Table 3.

The HM coupling effect, especially the fracturing, are 
first investigated, with an injection rate Qin = 18  m3/day. 
Three scenarios are considered: (i) pure flow simulation, (ii) 
partial HM coupling (without fracturing), and (iii) fully cou-
pled HM. The water pressure and saturation distribution at 

Table 3  Parameters for test 4.4

Parameters Value Parameters Value

Rock density, ρs (kg/m3) 2500 Matrix porosity, ∅m 0.2
Young’s modulus, E (GPa) 20 Poisson ratio, v 0.25
Tensile strength (MPa) 5 Friction angle, (°) 20
Mode I fracture energy, GI (J/m2) 15 Mode II fracture energy, GII (J/m2) 120
Water density, ρw (kg/m3) 1000 Oil density, ρn (kg/m3) 800
Water viscosity, μw (Pa∙s) 1e-3 Oil viscosity, μn (Pa∙s) 0.4e-3
Residual water saturation, Swr 0 Residual oil saturation, Swn 0
Matrix permeability, km  (m2) 5 ×  10–15 Fracture aperture, δ0 (mm) 10
Capillary pressure pc = pc0 ln(Sw) pc0 = 1 ×  105 Pa
Relative permeability krw = Sm

w
, krn = (1 − Sw)

m m = 2

Fig. 30  The water a pressure and b saturation distribution of three scenarios at t = 1000 days
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1000 days are shown in Fig. 30. Water quickly fills fractures 
connected to the injection well and flows into the matrix dis-
placing the oil phase. The waterfront in scenarios (i) and (ii) 
is similar, almost in a round shape. However, the front size 
in scenario (ii) is slightly smaller, because of the increased 
matrix porosity and fracture aperture under fluid pressure. A 
significant difference was observed in the scenario (iii) with 
growing hydraulic fracture: hydraulic fracture at the inject-
ing well continues to propagate under the fluid pressure, 
which promotes the water flow in the direction of fracture 
propagation. The waterfront almost reaches the producing 
wells.

We further explore the water injection rate (Qin = 3, 6, 
9, 15, 18, and 21  m3/day) on the fracture propagation and 
displacement efficiency, under fully coupled HM conditions. 
Roughly two groups can be divided: without fracture propa-
gation at Qin = 3, 6, and 9  m3/day, and with fracture propa-
gation at Qin = 15, 18, and 21  m3/day (Fig. 31a). A higher 
injection rate leads to a more rapid fracture growth. Fig-
ure 31b shows the water pressure at injection well, where a 

higher injection rate induces a more rapid pressure increase. 
The pressure in non-propagating cases tends to stabilize, 
while the pressure in growing fracture case has fluctuations 
associated with fracture propagation. Water production as a 
function of time is shown in Fig. 32a, where higher injec-
tion rates lead to earlier water breakthrough. To better show 
the waterflooding efficiency, PV produced water versus PV 
injected water is shown in Fig. 32b. For scenarios with-
out fracture propagation at low injection rates, their water 
production curves are very close; however, significant dif-
ferences occur when fracture propagates at high injection 
rates. In this specific case, fracture growth under Qin = 15 
 m3/day leads to the most efficient operation, while further 
increasing injection rate reduces the sweep efficiency. It can 
be explained that proper fracture propagation can promote 
the oil displacement along fracture propagation direction, 
enhancing the sweep efficiency; however, when fracture 
propagates too fast, the efficiency drops because of the ear-
lier water breakthrough.

Fig. 31  Evolution of a fracture length and b water pressure under different injection rates

Fig. 32  PV water production versus a time and b PV water injection under different injection rates
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Note that this process is highly nonlinear and involves 
complex interactions between the propagating and existing 
fractures, and the orientation of the fractures connected to 
the producing wells (Fig. 32). The results obtained here can 
only be used as a reference for this typical pattern. However, 
considering the fracturing process shows vital importance, 
and a fully coupled simulation is useful for a better produc-
tion strategy.

6  Conclusions

The co-existence of two-phase flow and their couplings 
with geomechanics in a complex system, renders hydro-
mechanical modeling of fractured media very challenging. 
This work proposed a novel coupled HM model for two-
phase flow simulation in fractured porous media considering 
geomechanics and fluid mechanics. This model combines 
the capability of the FDEM method in capturing geome-
chanical behavior of fractured rocks, and that of the FV-
DFM in simulating two-phase flows through both pores 
and fracture networks. The mutual interaction between the 
hydro-mechanical fields is performed by a two-way cou-
pling procedure. The performance of the proposed coupled 
HM two-phase model is progressively demonstrated against 
benchmark tests. The key achievements are summarized as 
follows:

1 The coupled HM model captures the most essential 
interactions between the fractured rocks and two-phase 
fluids, including the geomechanical effects on the poros-
ity, fracture aperture, permeability, and capillary pres-
sure, as well as the two-phase seepage effects on the 
deformation and fracturing of the fractured rock mass. 
Particularly, inheriting from the FDEM, one key advan-

tage is simulating complex fracture propagation caused 
by the two-phase seepage-stress coupling.

2 The novel FV-DFM, explicitly considering matrix 
flow, fracture flow and fracture–matrix exchange flow, 
is capable of two-phase flow (e.g., pressure/saturation 
field) in fractured porous media. The hydraulic meshes 
in FV-DFM are compatible with the mechanical meshes 
in FDEM, facilitating the HM coupling implementa-
tion. Meanwhile, non-uniform time steps significantly 
improve the calculation efficiency while keeping accu-
racy.

3  The novel two-phase exchange flow model allows for 
an explicit and accurate calculation of the mass transfer 
at matrix–fracture interface, benefiting from the exact 
representation of fracture and interface. Compared to the 
traditional methods, this model inherently captures pres-
sure, saturation, and flux discontinuity across high/low 
permeability fractures without any additional assump-
tions.

4  Considering the HM coupling effect, especially the frac-
turing, is significant in the two-phase flow process. The 
increasing fracture aperture and fracture growth, under 
the hydraulic pressure, will induce a preferential flow 
channel, which promotes the flow along the direction 
of fracture propagation. On the other hand, propagated 
fractures may induce earlier water breakthrough, which 
reduces recovery efficiency. Thus, an optimized fractur-
ing strategy should be considered to improve efficiency 
during practical waterflooding operations.

The proposed model can also be incorporated into more 
numerical methods, e.g., finite element method (FEM), dis-
crete element method (DEM), numerical manifold method 
(NMM), etc., to solve the coupled hydro-mechanical two-
phase flow problems.

Fig. A1  a Capillary pressure and b relative permeability in the BC model, VG model, and linear model (m = 2, pc0 = 1 kPa, and pcm = 10 kPa)
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Appendix A

The capillary pressure, pc, and relative permeability, kr, in 
two-phase flow is a function of the wetting phase saturation. 
Several widely used models are introduced (Fig. A1).

(1) Brooks and Corey (BC) model [54] pc = pc0S
−1∕m
we

A1

krw = Sm
we
, krn = (1 − Swe)

m A2
(2) Van Genuchten (VG) model [53] pc = pc0(S

−m
we

− 1)1−1∕m A3

krw = S0.5
we
(1 − (1 − S

1∕m
we )m)2, krn = (1 − Swe)

0.5(1 − S
1∕m
we )2m A4

(3) Linear models [24] pc(Sw) = pc0 + (1 − Sw)(pcm − pc0) A5
krw = Swe, krw = 1 − Swe A6

pc0 is the entry capillary pressure; m is a material con-
stant; pcm is the maximal capillary pressure; Swe is the effec-
tive wetting phase saturation:

where swr and snr are residual saturation of the wetting and 
non-wetting phase, respectively.
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