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Abstract
Bayesian optimization (BO) is a popular optimization technique for expensive-to-evaluate black-box functions. We propose 
a cheap-expensive multi-objective BO strategy for optimizing a permanent magnet synchronous motor (PMSM). The design 
of an electric motor is a complex, time-consuming process that contains various heterogeneous objectives and constraints; in 
particular, we have a mix of cheap and expensive objective and constraint functions. The expensive objectives and constraints 
are usually quantified by a time-consuming finite element method, while the cheap ones are available as closed-form equa-
tions. We propose a BO policy that can accommodate cheap-expensive objectives and constraints, using a hypervolume-based 
acquisition function that combines expensive function approximation from a surrogate with direct cheap evaluations. The 
proposed method is benchmarked on multiple test functions with promising results, reaching competitive solutions much 
faster than traditional BO methods. To address the aforementioned design challenges for PMSM, we apply our proposed 
method, which aims to maximize motor efficiency while minimizing torque ripple and active mass, and considers six other 
performance indicators as constraints.

Keywords Bayesian optimization · Multi-objectives optimization · Constrained optimization · Permanent magnet 
synchronous motor

1 Introduction

Bayesian optimization (BO) [1–4] is a popular surrogate-
based data-efficient technique for optimizing complex and 
time-consuming optimization problems [5, 6]. It is particu-
larly useful when data is limited or expensive to acquire. 
This paper presents a case study in which both cheap and 
expensive objective and constraint functions are considered 
in the design of electric motors.

In the case of electric motor design, many geometric and 
electromagnetic parameters can affect the motor’s perfor-
mance. BO can help to efficiently identify the optimal com-
bination of these parameters to achieve the desired perfor-
mance indicators (such as high efficiency and high torque 
density, as required for use in electric vehicles).

Electric motor design optimization is highly relevant in 
practice, as electric motors consume about 40% of the gen-
erated energy worldwide [7]. Usually, the optimization is 
done using a Genetic Algorithm (GA) evaluated on Finite 
Element Methods (FEM), requiring large numbers of evalu-
ations [8]. Such FEM evaluations can take hours to days, 
depending on the geometries of the motor under study; 
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consequently, this design optimization problem could ben-
efit substantially from an efficient optimization method [7, 
9, 10]. Our approach uses a surrogate model to approximate 
the expensive FEM evaluations [8, 11, 12]. Objectives and 
constraints that can be calculated cheaply (i.e., without the 
need for FEM, such as the total mass of the material) do not 
require a surrogate model, though; they can be quantified 
or approximated using deterministic closed-form formulas. 
Our approach distinguishes between the cheap and expensive 
functions in the optimization procedure; we show that this 
yields substantial improvements in data efficiency compared 
to traditional BO methods.

BO has two core components: a surrogate model and an 
acquisition function. The surrogate model is used to approxi-
mate the expensive output functions (either objectives or 
constraints) cheaply. The choice for the surrogate model is 
commonly a Gaussian Process (GP) [13, 14] or any other 
statistical model with uncertainty quantification capability 
such as Polynomial Chaos Expansion [15, 16], Neural Net-
works [17, 18], or Tree Parzen Estimators [19]. Based on 
the model prediction and the uncertainty quantification, an 
acquisition function is defined to sequentially search for the 
optimum design by balancing exploration and exploitation. 
A lot of BO research is available, accounting for different 
complexities in the optimization setting, such as batch opti-
mization [20, 21], multi-fidelity [22], constrained optimiza-
tion [23, 24], and multiple objectives [25, 26]. A review 
paper discussing problem settings in BO is presented in [27].

In Multi-Objective Bayesian Global Optimization 
(MOBGO), cheap and expensive objectives are commonly 
treated in the same manner, i.e., modeled using surrogate 
models. Some attempts to exploit cheap-expensive prop-
erties are presented in recent literature: Allmendinger 
et al. [28] extend the genetic algorithm approach to deal 
with cheap objectives by using a fast-first and interleaving 
method. Wang et al. [29–31] study the relationship between 
cheap-expensive objectives and search bias in evolutionary 
algorithm settings. Loka et al. [32] propose a hypervolume-
based BO approach considering a mix of cheap and expen-
sive objectives, but only for an unconstrained bi-objective 
setting.

In this study, a two-stage constrained MOBGO algorithm 
is presented to optimize a Permanent Magnet Synchronous 
Motor (PMSM) design. The algorithm explicitly distin-
guishes between the cheap and expensive output functions. 
The first stage is a constrained active learning (AL) step 
used to improve the accuracy of the expensive constraint 
predictions. This is especially useful when these constraint 
functions are highly irregular (showing many local optima) 
and/or when the feasible region of the solution space is very 
small (implying that the initial design may contain only a few 
or even no feasible designs). The second stage is the optimi-
zation stage, which uses the proposed hypervolume-based 

cheap-expensive constrained acquisition function (CEHVI-
C). This function extends the work of Yang et al. [33] by 
incorporating the cheap objectives directly in the hypervol-
ume calculation. The cheap constraints are accounted for 
in the optimizer of the BO acquisition function. We show 
that the resulting algorithm can attain competitive solutions 
faster than the traditional BO method.

The key contributions of this paper are the following:

• The proposed approach builds on a flexible way to quan-
tify hypervolume, exploiting the distinction between 
cheap and expensive objectives. This improves the com-
putational effort for calculating this metric. Moreover, 
contrary to the work in [33], it is applicable to any arbi-
trary box decomposition approach. Additionally, the 
algorithm handles expensive and cheap constraints in 
a clearly distinct way (accounting for the former in the 
probability of feasibility and for the latter in the opti-
mization of the acquisition function). As shown, this 
results in an algorithm that is data-efficient and yields 
high-quality solutions.

• Using the proposed approach, we show that the PMSM 
design problem can be solved in a data-efficient manner, 
which outperforms the common approaches used to solve 
this problem in the literature. This is in itself an insight-
ful result, as the FEM calculations are very expensive.

The rest of this paper is organized as follows: Sect.  2 
describes the PMSM under study. Section 3 explains the 
basics of multi-objective optimization in general, along with 
the corresponding notation and terminology. Section 4 pre-
sents the proposed algorithm for constrained multi-objective 
problems with cheap and expensive outcomes. In Sect.5, the 
experimental setup and results are discussed. Finally, Sect. 6 
presents the conclusions of this paper.

2  Permanent magnet synchronous motor 
optimization

A permanent magnet synchronous motor (PMSM) has sev-
eral advantages compared to other types of electric motors, 
such as higher-power density and higher efficiency. Con-
sequently, this type of motor is preferred in settings where 
power density and efficiency are critical, such as in automo-
tive applications. The downside is that this motor uses rare-
earth magnets, which are not only very expensive but also 
unfriendly to the environment because of the recycling prob-
lems [34, 35] and the impact of the mining activities [36].

Figure 1 shows a schematic drawing of the motor with the 
relevant geometrical design parameters, which are further 
detailed in Table 1. The magnets (referred to as rotor poles, 
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pm) are located on the rotor in red and black (to reflect dif-
ferent polarities).

The PMSM design problem has three objectives (see 
Table 2) and six constraints (see Table 3).

The optimization of these parameters is nontrivial, 
though, as they tend to have conflicting impacts on the 
objectives: increasing the axial length of the motor (param-
eter (8) in Fig. 1), for instance, increases the average torque 
but simultaneously increases the total mass (and hence, 
cost). Consequently, this design optimization problem is a 
constrained multi-objective optimization problem. Some 
of the performance indicators in Tables 2 and 3 are cheap, 
meaning that they can be calculated by means of closed-
form formulas. The expensive indicators are evaluated using 

Finite Element Methods (FEM) [37]. More details on the 
performance indicators can be found in Appendix 1.

The PMSM problem is similar to the one proposed in [38, 
39]. Some work has been done to perform multi-objective 
optimization on a similar motor design, but it relies on many 
FEM evaluations [39–41] and handcrafted optimization 
steps [39, 42].

This study focuses on developing a data-driven approach 
that also minimizes the number of expensive evaluations, 
and so that it can be applied to different problems and 
settings.

3  Constrained MOO: problem formulation

The goal of a constrained Multi-Objective Optimization 
(MOO) method is to optimize a set of objective functions 
f (x) = [f1(x), f2(x),… , fM(x)] ∈ ℝ

M , while satisfying a set 
of constraints g(x) = [g1(x), g2(x),… , gV (x)] ≤ 0 ∈ ℝ

V

where M ≥ 2 is the number of objectives, V ≥ 1 is the num-
ber of constraints, and x ∈ X ⊂ ℝ

d . The set X  is d-dimen-
sional and bounded. Without loss of generality, this paper 
assumes that the objectives need to be minimized (except 
when explicitly stated otherwise). In MOO, there typically 
is no single optimal solution x∗ that minimizes all objectives 
simultaneously while satisfying all constraints; instead, there 
is a set of optimal solutions, referred to as the Pareto set. 

(1)
min
x

(
f1(x),… , fM(x)

)

s.t. gv(x) ≤ 0, v = 1,… ,V

Fig. 1  Motor geometry with geometrical annotations

Table 1  Geometrical design parameters of the PMSM design optimi-
zation problem

Design variable Type Unit Value

(1) Stator outer radius (SOR) Constant mm 96
(2) Rotor yoke thickness (RYt) Variable mm 5.0–20.0
(3) Width of pm (Wpm) Variable 0.7–0.9
(4) Thickness of pm (Thpm) Variable mm 3.0–5.0
(5) Rotor outer radius (ROR) Variable mm 35.0–65.0
(6) Slot height (sh) Variable mm 10.0–25.0
(7) Slot teeth ratio (STR) Variable 0.4–0.7
(8) Axial length (Lfe) Variable mm 40.0–60.0
(9) Number of pm (p) Constant 10

Table 2  Objectives for the optimization of a PMSM

Objective name Type Unit Optimization type

Efficiency Expensive % Maximization
Torque ripple Expensive N.m Minimization
Total mass Cheap kg Minimization

Table 3  Constraints for the optimization of a PMSM

Constraint name Type Constraint

Magnitude of flux density in 
stator yoke (BmagSY)

Expensive g1 ≤ 1.5 T

Magnitude of flux density in 
stator teeth (BmagST)

Expensive g2 ≤ 1.5 T

Thermal loading Expensive g3 ≤ 8 kW/m2

Average torque (Tavg) Expensive 60Nm ≤ g4 ≤ 65Nm

Shaft radius Cheap g5 ≥ 15mm

Stator yoke thickness Cheap g6 ≥ 5mm
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Mathematically, the Pareto set for an unconstrained optimi-
zation problem is defined as:

where the notation xb ≺ xa means that xb dominates xa . In 
a minimization problem with M objectives, xb ≺ xa if and 
only if fm

(
xb
) ≤ fm

(
xa
)
,∀m ∈ {1, ..,M} and ∃m ∈ {1, ..,M} 

such that fm
(
xb
)
< fm

(
xa
)
 . Informally, we can say that xb 

dominates xa if and only if it is better in at least one objec-
tive, while not being worse in any of the other objectives. 
As evident from Eq. (2), P is defined in the input space; the 
image of the Pareto set in the objective space is referred to 
as the Pareto front: P =

{
f (x) ∈ ℝ

M ∣ ∄�� ∈ X ∶ �
� ≺ x

}
 . In 

constrained problems, only feasible points x can be part of 
the Pareto set. We thus define Pareto feasible set as:

For ease of notation, we denote P ∶= Pfeas and P ∶= Pfeas 
for every constrained problem in this paper.

In this work, Bayesian Optimization (BO) is used to 
find the Pareto set in a data-efficient manner (i.e., using the 
smallest possible number of function evaluations). Bayesian 
optimization has two main components: (1) the surrogate 
model, which approximates the expensive output functions, 
and (2) the acquisition function, which guides the BO pro-
cedure by sequentially selecting additional input points to 
evaluate. BO automatically balances exploration and exploi-
tation [13, 14, 43]. The Gaussian Process (GP) is the most 
popular type of surrogate model used in BO; the techni-
cal details of the model can be found in Appendix 2. The 
proposed acquisition function is a key component and is 
discussed in the following section.

4  MOBGO algorithm for cheap‑expensive 
objectives and constraints

Previous research on MOBGO algorithms commonly uses 
an acquisition function based on the hypervolume metric to 
search for the Pareto optimal points [25, 26, 33, 44]. Very 
recently, this type of acquisition function has been applied 
in mixed-variable settings [45], parallel evaluation settings 
[46], and for high-dimensional problems [47]. Yet, none 
of these previous works exploit potential differences in the 
latencies (i.e., the evaluation times) of the different objec-
tive functions. In real-life problems, it often occurs that the 
output functions (objectives and/or constraints) are a mix of 
cheap and expensive functions.

To the best of our knowledge, the only papers available 
so far on this topic are [28, 48] (which focus on exploit-
ing latency differences in evolutionary algorithms), and 

(2)P =
{
x ∈ X ∣ ∄�� ∈ X ∶ �

� ≺ x
}

(3)
Pfeas =

{
x ∈ X ∣ ∄�� ∈ X ∶ �

� ≺ x, g(x) ≤ 0, g(��) ≤ 0
}

[32] (which presents a BO algorithm limited to bi-objective 
unconstrained MOO problems). Recently, Buckingham 
et al. [49] proposed a scalarization-based multi-objective 
BO approach for a similar problem. However, their method 
assumes that the cheap objective does not have a closed-
form formula.

We propose a two-stage optimization approach (as in 
[50]), which is depicted in Fig. 2. The first stage is optional 
and is referred to as the Active Learning (AL) stage. It 
aims to improve the accuracy of the GPs for hard-to-model 
constraints (if any), using the Feasible Predictive Variance 
acquisition function discussed in Sect. 4.1. In the AL phase, 
the initial surrogates for these constraints are estimated 
based on a set of initial design points, which are evaluated 
using the expensive FEM models. The most common choice 
in the BO literature is a maximin Latin Hypercube design, 
[51] to ensure that the resulting set is space-filling. As the 
aim of the AL phase is to improve the accuracy of these 
constraint models, additional points are queried using the 
Feasible Predictive Variance acquisition function, which is 
discussed in detail in Sect. 4.1. The AL stage ends when 
the specified AL budget is depleted and there is at least one 
feasible point present in the observations. In some cases, the 
feasible area of the problem is very small, which may force 
the analyst to keep querying points until both conditions are 
fulfilled.

The second stage is the Bayesian optimization stage. If it 
was preceded by the AL stage, the resulting observations are 
used as starting points, on which the surrogate models are 
again estimated. If the AL phase was skipped, the starting 
points are generated through a space-filling design (usually 
a maximin Latin Hypercube design, for the reasons stated 
above), and they are first evaluated with the expensive FEM 
models to estimate the initial surrogate models. The addi-
tional points to evaluate are then selected using the proposed 
cheap-expensive hypervolume-based expected improvement 
acquisition function, which is discussed in Sect. 4.2. The 
algorithm ends when the total budget has been depleted, and 
the points that have been evaluated as feasible and Pareto-
optimal are put forward as the points on the front.

As explained below, the acquisition functions of both 
stages account for the estimated Probability of Feasibility 
(PF) of the point with respect to the expensive constraints, 
to avoid spending the budget for evaluating points that are 
likely infeasible. The feasibility with respect to the cheap 
constraints is handled inside the optimization procedure 
that maximizes the acquisition functions, as discussed in 
Sect. 4.2.2.

4.1  Stage 1: active learning (AL)

This stage aims to improve the accuracy of the GP models 
of the expensive constraints by focusing solely on exploring 
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the region where the model exhibits high uncertainty. This is 
especially useful when the expensive constraint functions are 
non-smooth (i.e., highly irregular, showing many local optima, 
which makes the function hard to model) and/or when the fea-
sible region of the solution space is very small (implying that 
the initial design may contain only a few or even no feasible 
designs). In such cases, the information gained during the AL 
stage results in significant efficiency gains in the optimization 
stage.

The acquisition function used is the Feasible Predictive 
Variance (FPV), which is defined as:

where �2
v
 is the predictive variance of the hard-to-model con-

straint v at x∗ , and PFv refers to the Probability of Feasibility 
(see e.g. [23]) of x∗ for constraint v:

where g̃v(x∗) refers to the Gaussian process outcome for con-
straint v at x∗ , and TN denotes the data set already available 
for constraint v.

In the PMSM case study, we use this stage specifically for 
the average torque constraint (see Table 3) as this constraint 

(4)FPV =

V∏
v=1

�2
v
⋅ PFv(x∗),

(5)PFv(x∗) ∶= Pr[g̃v(x∗) ≤ 0]

(6)= ∫
0

−∞

p
(
g̃v(x∗) ∣ x∗, TN

)
dg̃v(x∗),

is hard to model, and, moreover, it restricts the number of 
feasible solutions more severely than the other constraints.

4.2  Stage 2: Bayesian optimization

After finding enough feasible solutions, new points are 
selected by maximizing the Cheap-Expensive Expected 
Hypervolume Improvement with Constraints (CEHVI-C) 
acquisition function:

CEHVI-C multiplies the proposed CEHVI acquisition func-
tion (see Sect. 4.2.1) with the probability of feasibility of 
all expensive constraints gv ( v = 1⋯V  ). Assuming that all 
these constraints are independent, this reduces to a multipli-
cation of the individual PFv(x∗) . Note that equation 7 also 
implicitly assumes conditional independence between the 
objective and constraint functions [23]. Both assumptions 
are standard in constrained Bayesian optimization.

The cheap constraints are not directly incorporated 
in Eq. 7, since this would likely introduce severe non-
smooth behavior in the response surface of the acquisi-
tion function. Instead, the cheap constraints are accounted 
for in the optimization procedure implemented to maxi-
mize the acquisition function, which is further detailed 
in Sect. 4.2.2.

(7)CEHVI-C = CEHVI(�,�,P, r) ⋅

V∏
v=1

PFv(x∗)

Fig. 2  Two-stage optimization 
scheme. The first stage (AL) 
is optional. We use it in our 
experiments for the PMSM 
case. The data set resulting from 
the active learning steps in a are 
then used as the starting points 
in b. If the AL phase is skipped, 
the starting points in b are 
generated by a Latin Hypercube 
design

(a) Active learning (b) Bayesian Optimization
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4.2.1  Cheap‑expensive expected hypervolume 
improvement

We extend the EHVI formulation presented in [33] such 
that (1) it can efficiently handle a mix of cheap and expen-
sive objectives, and (2) it can be used independent of the 
hyperbox decomposition method chosen to implement the 
calculations.

In hypervolume-based MOBGO, the notion of improve-
ment by the Lebesgue measure is used. Let us first define 
the hypervolume indicator (HVI) H [52, 53]. Given a Pareto 
front P , the hypervolume indicator H of this front P w.r.t. a 
reference point r is defined as follows [52, 53]:

where �M is the Lebesgue measure of the region that domi-
nates r and that is dominated by P (in ℝM , i.e., for ℝ2 , �2 
is the area of the dominated region, while on ℝ3 , �3 is the 
volume).

Using this definition, we can define the hypervolume 
improvement (also referred to as exclusive hypervolume) 
generated by a new point y∗ as:

Based on the definition of hypervolume improvement in 
Eq. 9, we can define the Expected HyperVolume Improve-
ment (EHVI) at an arbitrary new design point �⋆ as:

where y corresponds to a (random) M-variate objective vec-
tor, while ��,�(y) denotes the value of the M-variate inde-
pendent normal density function in this vector (given the 
predictive mean vector � ∈ ℝ

M at �⋆ , and the predictive 
variance vector �2 ∈ ℝ

M
+

 at �⋆ ). For ease of notation, let 
EHVI(�,�,P, r) ∶= EHVI(�,�).

Let us define a set Δ(y,P, r) which contains (given a 
Pareto front P , the reference point r and the output vector 
y ) all the output vectors that currently do not belong to the 
dominated set, but that would be added to it when the vector 
y were added to the front [33, 54]:

For notational simplicity, let Δ(y,P, r) ∶= Δ(y) . The EHVI 
in Eq. 10 can then be rewritten as:

(8)H(P, r) = �M
(
∪y∈P[r, y]

)
,

(9)Hexc(y∗,P, r) = H(P ∪ {y∗}, r) −H(P, r).

(10)EHVI(�,�,P, r) = ∫
ℝM

Hexc(y,P, r) ⋅ ��,�(y)dy,

(11)
Δ(y,P, r) =

{
z ∈ ℝ

M ∣ y ≺ z , z ≺ r and ∄q ∈ P ∶ q ≺ z
}
,

(12)

EHVI(�,�) =

NM∑
i=1

(
∫

y1=u
(i)
1

−∞

⋯∫
yM=u

(i)
M

−∞

)
�M

[
S
(i)
M
∩ Δ(y)

]
⋅ ��,�(y)dy,

where �M refers to the M-dimensional Lebesgue measure, 
S
(i)
M

 refers to hyperbox i (see Eq. B20 in Appendix 2), and 
NM denotes the total number of hyperboxes in the decom-
position. Note that Eq. 12 allows for piece-wise integration, 
given the summation over the different hyperboxes.

Dividing each integration slice ∫ ym=u
(i)
m

−∞
 into 

(∫ ym=l
(i)
m

−∞
+ ∫ ym=u

(i)
m

l
(i)
m

) , we obtain:

as evident, each of the individual terms of this sum consist 
of the multiplication of M factors, each of which contains 
the sum of 2 integrals. Since integration is a linear mapping, 
we can expand each individual term in Eq. 13, resulting in 
a summation of 2M terms, each consisting of an M-dimen-
sional integral.

Let us finally define C(j)2 as a binary representation of such 
an M-dimensional integral. C(j)2 ’s length is thus equal to M. 
The kth element, C(j)2

k
 , equals 0 if the kth integral has finite 

bounds, and 1 if the lower bound is −∞.
Using the results from [26, 33], the EHVI can then be cal-

culated exactly as follows:

with

where i refers to the index number of the hyperbox, k to the 
index number of the objective function, and C(j)2

k
 is the binary 

representation of the kth objective. Note that Eq. 14 implic-
itly uses the independence assumption between the differ-
ent objectives, to replace the M-dimensional integrals by 
multiplication of M single-dimensional integrals. As evident 
from Eq. 15, the calculation of these single integrals can be 
done exactly, but depends on whether the integral has finite 
bounds ( C(j)2

k
= 0 ) or an infinite lower bound ( C(j)2

k
= 1 ). 

More specifically, for C(j)2
k

= 1 , we have:

where Φ denotes the Cumulative Distribution Function 
(CDF) of the standard normal distribution. Equation 16 

(13)

EHVI(�,�)

=
NM
∑

i=1

((

∫

y1=l
(i)
1

−∞
+∫

y1=u
(i)
1

y1=l
(i)
1

)

⋯

(

∫

yM=l(i)M

−∞
+∫

yM=u(i)M

yM=l(i)M

))

�M
[

S(i)M ∩ Δ(y)
]

⋅ ��,� (y)dy,

(14)EHVI(�,�) =

NM∑
i=1

( 2M∑
j=0

( M∏
k=1

�e(i, k,C
(j)2
k

)
))

,

(15)�e

�
i, k,C

(j)2
k

�
∶=

⎧⎪⎨⎪⎩

Ψ
�
l
(i)
k
, u

(i)
k
,�k, �k

�
if C

(j)2
k

= 0

�

�
l
(i)
k
, u

(i)
k
, �k,�k

�
if C

(j)2
k

= 1,

(16)�

(
l
(i)
k
, u

(i)
k
, �k,�k

)
=
(
u
(i)
k
− l

(i)
k

)
⋅

(
Φ

(
l
(i)
k
− �k

�k

))
,
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also occurs in [33], but we adjust it here for a minimization 
context.

For C(j)2
k

= 0 , we have:

with

where � and Φ denote the Probability Density Function 
(PDF) and Cumulative Distribution Function (CDF) of the 
standard normal distribution, respectively.

We can further refine Eq. 14 to deal efficiently with 
cheap and expensive objectives. To that end, we introduce 
an M-dimensional binary vector tf  : the kth element of this 
vector, tf

k
 , equals 0 if the kth objective is cheap, and 1 other-

wise.We can then efficiently calculate the resulting Cheap-
Expensive Hypervolume Improvement (CEHVI) as follows:

with

For the expensive objectives, this expression reduces to �e 
as given by Eq. 15. For the cheap objectives, the calculation 
of �c(i, k,C

(j)2
k

) depends on the relative location of yk w.r.t. 
l
(i)
k

 and u(i)
k

 , as shown in Table 4. As evident, the resulting 
values are deterministic.

4.2.2  Acquisition function maximization

In every iteration, the query points are obtained by maxi-
mizing the acquisition function (usually referred to as inner 
optimization). We use a multi-start optimization method [55, 
56] that incorporates the cheap constraints. First, the Monte 
Carlo method is used to sample 5000 points, and the points 
that violate cheap constraints are removed. We then select 
the 10 points with the highest CEHVI-C value and apply 
Sequential Least Square Programming (SLSQP) with the 
cheap constraints [57] to each of these in parallel (using the 
SLSQP implementation of the Scipy [58] library).

(17)
Ψ
(
l
(i)
k
, u

(i)
k
,�k, �k

)
= Ψ−∞

(
u
(i)
k
, u

(i)
k
,�k, �k

)
−

Ψ−∞

(
u
(i)
k
, l
(i)
k
,�k, �k

)
,

(18)Ψ−∞(a, b,�, �) ∶ = ∫
b

−∞

(a − z)
1

�
�

( z − �

�

)
dz

(19)= ��

(
b − �

�

)
+ (a − �)

[
Φ

(
b − �

�

)]
,

(20)CEHVI(�,�) =

NM∑
i=1

( 2M∑
j=0

( M∏
k=1

�(i, k,C
(j)2
k

, t
f

k
)
))

,

(21)�(i, k,C
(j)2
k

, t
f

k
) ∶=

{
�c(i, k,C

(j)2
k

) if t
f

k
= 0

�e(i, k,C
(j)2
k

) if t
f

k
= 1.

5  Result and discussion

5.1  Experiment settings

The proposed hypervolume-based MOBGO algorithm was 
implemented using Trieste [59] in Python. Before applying 
our method in the Motor Optimization case, we consider five 
benchmark functions to test the performance of the proposed 
algorithm, by testing it on three unconstrained optimization 
problems (DTLZ1, DTLZ2, and DTLZ3 [60]) and two con-
strained optimization problems (BNH [61] and SRN [62]). 
The characteristics of these benchmark functions are pre-
sented in Table 5. The reference point indicated in the table 
is used for the hypervolume computations.

For these benchmark functions, (d × 11 + 1) initial design 
points were generated using quasi-random Halton Sampling 
[63]. The proposed method is compared with EHVI(-Con-
strained), Random sampling, and NSGA-II (see [64]; we 
used the version present in PyMOO [65], which accounts for 
constraints). The total budget for the FEM simulator is set 
to 100 input evaluations, except for the NSGA-II algorithm: 
as this method is less data efficient, we allow it to spend 250 
input evaluations. The AL budget is set to zero, as the expen-
sive constraints (if any) are not hard to model. Evidently, for 
the unconstrained problems, the CEHVI-C acquisition func-
tion reduces to the CEHVI acquisition function (see Eq. 7).

For the PMSM optimization problem, 35 initial points 
are generated using Latin Hypercube sampling [51]. The AL 
budget for the BO methods is set to 10 iterations; we include 
the AL phase in this problem as the initial design is small, 
so we expect it to be beneficial, especially for learning the 
hard-to-model average torque (Tavg) constraint. Both the 
initial design and the number of AL iterations are deliber-
ately kept small as the FEM model is relatively slow to run. 
We compare the performance of our algorithm against the 
same competitors as in the benchmark functions. The total 
budget equals 100 input evaluations, except for the NSGA-II 
algorithm (250 evaluations).

Table 4  Calculation of �c(i, k,C
(j)2
k

) for the cheap objectives

Condition Value

yk < l
(i)
k
< u

(i)
k

�c

(
i, k,C

(j)2
k

)
=

{
0 if C

(j)2
k

= 0

(u(i)
k
− l

(i)
k
) if C

(j)2
k

= 1

l
(i)
k
< yk < u

(i)
k

�c

(
i, k,C

(j)2
k

)
=

{
(u(i)

k
− yk) if C

(j)2
k

= 0

0 if C
(j)2
k

= 1

l
(i)
k
< u

(i)
k
< yk �c

(
i, k,C

(j)2
k

)
= 0
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5.2  Results for benchmark functions

We carried out 10 repetitions for each of the benchmark 
experiments, to check the robustness of the results against 
the randomness involved in the algorithms (which is evi-
dent in the NSGA-II and Random algorithms; in the BO 
algorithms, it impacts the multistart design of the inner 
optimization).

Figure 3 shows the evolution of the mean hypervolume 
on the different benchmark functions, for the competing 
algorithms. As shown, the BO approaches (CEHVI and 
EHVI) clearly outperform the competing algorithms in the 
unconstrained problem settings (top row). Moreover, the 
CEHVI algorithm has significantly better performance than 
the EHVI algorithm in the DTLZ1 and DTLZ3 experiments, 
which have a disjoint Pareto front [60] and are thus hard 

to optimize (the DTLZ2, by contrast, has a smooth Pareto 
front).

In the constrained benchmark problems (bottom row), 
CEHVI-C again has a clearly higher hypervolume indicator 
value than the other methods. While both problems have a 
smooth Pareto front, CEHVI-C outperforms EHVI-C in the 
SRN problem (in the BNH problem, the performance of both 
algorithms is similar, as the cheap function is smoother and 
thus relatively easy to model with GPs).

Table 6 gives an overview of the final hypervolume 
obtained at the end of the different algorithms, along with 
the difference (in % ) from the true optimal hypervolume. As 
evident from this table, CEHVI-C is the winner in all test 
problems except in BNH. Note, though, that NSGA-II only 
succeeds in outperforming both BO approaches here because 
we gave it a significantly higher total budget; for limited 

Table 5  Full specification of the 
benchmark functions

Name Input d Objectives Constraints Reference point

Expensive Cheap Expensive Cheap

DTLZ1 6 2 1 0 0 [425, 425, 425]
DTLZ2 6 2 1 0 0 [2.5, 2.5, 2.5]
DTLZ3 6 2 1 0 0 [825, 825, 825]
BNH 2 1 1 1 1 [150, 100]
SRN 2 1 1 1 1 [800, 200]

(a) DTLZ1 Hypervolume (b) DTLZ2 Hypervolume (c) DTLZ3 Hypervolume

(d) BNH Hypervolume (e) SRN Hypervolume

Fig. 3  Evolution of the mean hypervolume on the benchmark problems, with a total budget of 100 evaluations. The shaded areas reflect the 95% 
confidence intervals based on 10 repetitions
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budgets ( <= 100 ), NSGA-II is clearly inferior (as evident 
from Fig. 3). To assess the performance on varying input 
and output dimensions, extra experiments are conducted and 
presented in Appendix 2.

5.3  Results for PMSM design problem

To check the robustness of the algorithms against 
randomness, we ran 10 repetitions. The hyper-
volume values are calculated with reference point 
[Efficiency, Torque ripple, Total mass] = [0.80, 8.1, 23.].

Figure 4 shows the evolution of the mean hypervolume 
for the different algorithms. For the BO algorithms, we used 
the first ten iterations to implement an AL stage: here, points 
were queried by implementing the FPV acquisition func-
tion on the average torque constraint, to improve the cor-
responding GP model. As evident from the figure, the AL 
phase already succeeds in improving the hypervolume. In 
the optimization stage, we see that CEHVI-C performs bet-
ter than EHVI-C; NSGA-II is clearly inferior to both BO 
approaches. Actually, it even fails to query feasible points at 
certain iterations (even the later ones) due to the many con-
straints in the PMSM design problem. As a result, its hyper-
volume only improves marginally in the first 100 iterations. 
As evident from Table 7, which shows the expected hypervol-
ume obtained at the end of the algorithms, the improvements 
obtained remain marginal even at a higher budget.

Figure 5 illustrates the quality of the final Pareto front 
obtained by the CEHVI-C and the EHVI-C methods for 
a single-arbitrary run. Clearly, CEHVI-C succeeds in 
achieving solutions with a lower Torque ripple and a lower 
Total mass than EHVI-C without compromising motor 
efficiency. The CEHVI-C runs also take less computation 
time, as it avoids any estimations for the cheap objective 
and constraints.

Table 6  Overview of the 
mean hypervolume and the 
% difference from the true 
optimal hypervolume (with 95% 
confidence interval), obtained 
at the end of the algorithms, for 
the benchmark problems

The best result for each problem is highlighted in bold

Test Problem BO Budget Method HVI Δ to Ground truth (%)

DTLZ1 100 Random 7.5892e7 ± 1.3126e5 1.13771 ± 0.27586
100 EHVI 7.6585e7 ± 7.5134e4 0.23531 ± 0.15791
100 CEHVI 7.6759e7± 4.6615e3 0.00822 ± 0.00979
250 NSGA2 7.6571e7 ± 6.8405e4 0.25402 ± 0.14376

DTLZ2 100 Random 1.4318e1± 0.05256 4.86801 ± 0.56346
100 EHVI 1.4925e1 ± 0.03135 0.83512 ± 0.33607
100 CEHVI 1.4985e1± 0.03113 0.43829 ± 0.33369
250 NSGA2 1.4713e1± 0.03997 2.24603 ± 0.42848

DTLZ3 100 Random 5.4802e8 ± 2.2293e6 2.40430 ± 0.64053
100 EHVI 5.5766e8 ± 1.8455e6 0.68636 ± 0.53025
100 CEHVI 5.6148e8± 2.5549e4 0.00621 ± 0.00734
250 NSGA2 5.5988e8± 5.3153e5 0.29195 ± 0.15272

BNH 100 Random 1.3127e4± 1.6295e1 0.69974 ± 0.19886
100 EHVI-C 1.3134e4 ± 2.1248e1 0.65131 ± 0.25931
100 CEHVI-C 1.3161e4± 1.9731e1 0.44741 ±0.24080
250 NSGA2 1.3174e4± 3.2091e1 0.35001 ± 0.39163

SRN 100 Random 3.1101e5 ± 2.9123e3 3.95808 ± 1.45103
100 EHVI-C 3.1885e5± 5.2265e3 1.53636 ± 2.60401
100 CEHVI-C 3.2240e5± 4.2819e2 0.43908 ± 0.21333
250 NSGA2 3.1885e5 ± 1.9090e3 1.53684 ± 0.95111

Fig. 4  Evolution of the mean hypervolume for the PMSM design 
problem, for a total budget of 100 iterations. The shaded areas reflect 
the 95% confidence interval based on 10 repetitions
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The three objectives of the optimization are the torque 
ripple, the motor efficiency, and the total mass. The mag-
net mass is also added because it is the most expensive 
part of the machine. Generally speaking, the cost of 1 kg 
of rare-earth magnets equals more than ten times that of 
1 kg of copper or 1 kg of iron [66, 67].

Figure 6 shows the optimal geometry of an (arbitrary) 
Pareto-optimal PMSM design obtained by CEHVI-C, 
along with the flux lines and flux densities. While there is 

saturation in some parts of the core, it does not impact the 
performance metrics in any negative way.

6  Conclusion

In this paper, a hypervolume-based MOBGO approach has 
been presented and applied in view of optimizing a Permanent 
Magnet Synchronous Motor design. This design problem con-
sists of a mix of expensive performance metrics (which require 
FEM evaluations) and cheap performance metrics (which can 
be evaluated using closed-form expressions). The key strength 
of the proposed approach is that it distinguishes between these 
cheap and expensive functions, by only estimating Gaussian 
Process models for the expensive outcomes. It includes an 
active learning stage (which uses the FPV acquisition function 
to improve the accuracy for hard-to-model constraints) and an 
optimization phase (which uses the proposed CEHVI-C acqui-
sition function, which is a constrained and cheap–expensive 
version of the well-known EHVI criterion). The performance 
of the CEHVI-C function was first evaluated on a number of 
benchmark functions; as shown, it leads to superior perfor-
mance over the standard EHVI-based approaches, especially 
when the cheap objective(s) are hard to model with GP. This 
superiority was further confirmed in the PMSM design results.

The proposed approach is likely beneficial for other engi-
neering design problems that include cheap and expensive 
outcomes. In future research, we plan to extend the approach 
further such that it can handle noisy function evaluations. 
Another interesting topic is to extend the method to be cost-
aware. Indeed, the cost of an expensive function evaluation 
may not be the same over the entire search space; cost-aware 
BO may then try to find the optimal solutions while mini-
mizing both the number of function evaluations and the 
resulting evaluation cost.

Appendix 1 details of the PMSM problem

Expensive objectives

The expensive objectives are evaluated using Finite Element 
Methods (FEM) [37]. The motor torque objective is given 
by:

where p refers to the number of rotor poles, �o is the perme-
ability of the air, Dg is the airgap diameter, Lfe is the axial 
length, and Lg is the length of the airgap. The notations Fs , 
Fr , and �sr refer to the magnetomotive force of the stator 
and the rotor, and the angle between them, respectively. Fs 
depends mainly on the winding geometry (area, number of 

(22)Tm =
p

2

��oDgLfe

2Lg
FsFr sin

(
�sr

)
,

Table 7  Overview of the mean hypervolume (with 95% confidence 
interval halfwidth), obtained at the end of the algorithms, for the 
PMSM design problem

The best result is highlighted in bold

Method AL Budget Total Budget HVI

EHVI-C 10 100 9.6239 ± 0.2607
CEHVI-C 10 100 10.5554 ± 0.1258
NSGA-II 0 250 1.4818 ± 0.5237

Fig. 5  Log of Pareto front of a single experiment run

Fig. 6  One of the Pareto-optimal designs found by CEHVI-C
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turns, and phases) and on the permeable current density. 
Fr depends mainly on the properties and geometry of the 
magnet, as well as on g and Lfe . The calculation of Fs and Fr 
relies on the expensive FEM evaluation.

The efficiency of the motor is given by:

where �r is the rotor speed, and Pl refers to the motor losses: 
copper loss, magnet loss, and iron (stator and rotor core 
losses). Pl depends on the flux density, geometry, material 
properties, current density, and the speed of the motor. Pl is 
evaluated by FEM.

Cheap objectives and constraints

Total mass calculation

The cheap objective function for the motor design problem 
is the total mass of the following motor parts: part1 = stator 
core (silicon steel), part2 = rotor core (silicon steel), part3 
= winding (copper), and part4 = rotor poles (magnets). The 
mass of partn can be calculated as follows:

where steel density = 7267.5 kg∕m2 , copper density = 8933 
kg∕m2 , magnet density = 7400 kg∕m2 . Then, the total mass 
of the motor can be obtained as follows:

Cheap constraints

For the calculation of the cheap constraint functions, 
we first need to define the following constants: airgap 
length (Lg) = 1 , slot opening height (soh) = 1 , slot wedge 
width (swx) = 1 , slot width yoke side ratio (swyR) = 1.5 , 
slots = 12 . The stator Y thickness ( SYt ) can then be calcu-
lated using following formulas:

(23)� =
Tm�r

Tm�r + Pl

100,

(24)Volume partn = Area partn × Length partn

(25)Mass partn = Volume partn × Density partn,

(26)Total mass =

4∑
n=1

Mass partn.

(27)Rslotmiddle = ROR + Lg + soh + swx + (0.5 × sh)

(28)LMslot = STR × 2� ×
Rslotmiddle

slots

(29)sw = swyR × LMslot

The second cheap constraint, shaft diameter ( ShaftD ) is 
defined by:

Appendix 2 Background on Bayesian 
optimization

GP model details

The Gaussian Process (GP) model [13, 14, 43] is the most 
popular type of surrogate model used in BO, especially if the 
input domain is continuous. Informally, a GP defines a distri-
bution over real-valued functions: f (x) ∼ GP(m(x), k(x, ��)) , 
and is fully specified by its mean function m(x) and its (posi-
tive semi-definite) covariance function k(x, ��).

A GP provides a predictive distribution for the out-
put function under study at unobserved input locations 
in the search space, given a (limited) set of available 
input/output data. Suppose we want to model an output 
function fm , for which we have evaluated the set of data 
points X = [x1,… , xN] , yielding function evaluations 
Ym = [fm(x1),… , fm(xN)] . Then, DN = {X, Ym} is defined as 
the observed data so far in our optimization process, and 
the GP model is trained on these data (usually by means of 
maximum likelihood estimation, as discussed below).

The means and variances of the predictive distribution 
f⋆ , at any set of unobserved data points X⋆ = [x⋆1,… , x⋆L] , 
can then be estimated as follows:

where 𝜇m

(
X⋆

)
 is the L × 1 vector with the predictive means, 

and 𝜎2
m

(
X⋆

)
 is the L × 1 vector with the predictive vari-

ances. The notation Kxx refers to the N × N matrix contain-
ing the estimated covariances between the available data, 
i.e., k(xi, xj) for i, j = 1…N . The notation K⋆x is the L × N 
matrix containing the covariance estimates between the 
new points X⋆ and the N available points, i.e., k(x⋆i, xj) , for 
i = 1…L, j = 1…N . The notation K⋆⋆ refers to the L × L 
matrix containing the estimated covariances between the 
new points, i.e., k(x∗i, x∗j) for i, j = 1…L . To model the 
covariance function, we choose the Matérn 5/2 kernel [68]. 
This kernel is a common choice when the smoothness of the 
function is unknown [6], since it does not make any overly 

(30)
Rteeth =

√
(ROR + Lg + soh + swx + sh)2 + (0.5 × sw)2

(31)SYt = SOR − Rteeth

(32)ShatfD = 2 × ROR − 2 × RYt − 2 × Thpm

(33)𝜇m

(
X⋆

)
= �

(
f⋆ ∣ X⋆,DN

)
= K⋆xK

−1
xx
Ym

(34)𝜎2
m

(
X⋆

)
= Var

(
f⋆ ∣ X⋆,DN

)
= K⋆⋆ − K⋆xK

−1
xx
KT
⋆x
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smooth assumptions with respect to the output function 
under study. It is defined as follows:

where � is the kernel variance, and li is the kernel length 
scale for the ith dimension.

When training the GP, Maximum Likelihood Estimation 
(MLE) [69] is commonly used to estimate the hyperparameters 
� ∶= {�, l1,… , ld}:

In the MOBGO case, each expensive output function (objec-
tives as well as constraints) is modeled using a distinct, sin-
gle-output GP.

Expected improvement

In unconstrained single-objective optimization problems, 
one of the most popular acquisition functions is the Expected 
Improvement (EI) [1]. As evident from its name, it measures 
the improvement in the objective outcome that the analyst 
may expect when querying a new point x∗ , given the current 
best objective outcome obtained so far ( ̂y ) and the current 
GP model for the objective function (estimated on the cur-
rently available data Dn ). Given the GP model assumptions, 
the predictive outcome f (x∗) at such a new point is normally 
distributed ( N(�, �2) , with � the predictive mean at x∗ and 
�2 the predictive variance). The improvement function at any 
arbitrary new point x∗ is then given by the following random 
variable (without loss of generality, we assume here that we 
aim to minimize the objective function):

where � is the indicator function. The EI at x∗ is given by the 
following closed-form expression:

(35)k
�
x, x�

�
= �

�
1 +

√
5r +

5

3
r2
�
exp(−

√
5r),

(36)r =

√√√√ d∑
i=1

(
xi − x�

i

)2
l2
i

,

(37)�̂� = argmax
𝜃

log p(f ∣ X, 𝜃)

(38)= argmax
�

−
1

2

(
log |2�Kx x| + fTK−1

x x
f
)
.

(39)I(�∗) ∶= (ŷ − f (x∗))�(ŷ > f (x∗)),

(40)
EI
(
x∗;Dn

)
∶=�[I(x∗)]

= 𝜎𝜙

(
ŷ − 𝜇

𝜎

)
+ (ŷ − 𝜇)Φ

(
ŷ − 𝜇

𝜎

)
.

Hyperbox decomposition

The concept of hypervolume improvement ( Hexc ) in ℝ2 is illus-
trated in Fig. 7. To calculate Hexc efficiently (using piece-wise 
integration), the non-dominated space is partitioned into a set 
of hyper-boxes or hyper-cells (as few boxes/cells as possible).

Figure 8 illustrates this hyper-box decomposition in ℝ2 for a 
Pareto front P consisting of 4 points. Note that each hyperbox 
S
(i)
2

 ( i = 1,⋯ , 5 ) in this figure can be represented by its lower-
bound vector l(i)

2
 and its upper bound vector u(i)

2
 (both vectors 

are 2-dimensional in this case). In ℝM , the hyper-boxes are 
thus represented by:

where NM is the number of hyper-boxes.

(41)
S
(i)
M
=
(
l
(i)
M
, u

(i)
M

)
=

((
l
(i)
1
,… , l

(i)
M

)⊤

,
(
u
(i)
1
,… , u

(i)
M

)⊤
)

for i = 1,… ,NM ,
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Fig. 7  Illustration of the hypervolume improvement (light grey area) 
of a new point y∗ given the Pareto front P (colour figure online)
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Table 8  Hypervolume 
improvement with 95% 
confidence interval for the 
DTLZ1 function

Reference points of [600, 600] and [600, 600, 600] are used for M = 2 and M = 3 respectively
Higher HVI indicates better performance, lower the Δ to ground truth indicates better performance (in 
bold)

M d Method Budget HVI Δ to Ground truth (%)

2 4 Random 100 3.5801e5 ± 3.8568e2 0.55050 ± 0.17285
EHVI 100 3.5941e5 ± 1.7502e2 0.16443 ± 0.07844
CEHVI 100 3.5995e5 ± 4.0028e1 0.01462 ± 0.01794
NSGA2 200 3.5973e5 ± 8.0121e1 0.07492 ± 0.03591

6 Random 100 3.5127e5 ± 1.4763e3 2.42410 ± 0.66164
EHVI 100 3.5694e5 ± 1.0928e3 0.85069 ± 0.48978
CEHVI 100 3.5976e5 ± 8.4896e1 0.06634 ± 0.03804
NSGA2 200 3.5780e5 ± 5.3252e2 0.61180 ± 0.23866

8 Random 100 3.3646e5 ± 2.4519e3 6.53840 ± 1.09890
EHVI 100 3.5194e5 ± 1.5345e3 2.23770 ± 0.68771
CEHVI 100 3.5931e5 ± 1.4983e2 0.19246 ± 0.06715
NSGA2 200 3.5162e5 ± 1.5136e3 2.32700 ± 0.67834

3 4 Random 100 2.1574e8 ± 6.3676e4 0.12257 ± 0.04756
EHVI 100 2.1598e8 ± 1.1133e4 0.01097 ± 0.00832
CEHVI 100 2.16008 ± 8.4567e2 0.00036 ± 0.00063
NSGA2 200 2.1598e8 ± 8.8661e3 0.00863 ± 0.00662

8 Random 100 2.1597e8 ± 3.4617e4 0.01509 ± 0.02586
EHVI 100 2.1550e8 ± 2.3715e5 0.22961 ± 0.17714
CEHVI 100 2.1597e8 ± 3.4617e4 0.01509 ± 0.02586
NSGA2 200 2.1475e8 ± 2.0456e5 0.58044 ± 0.15279

Table 9  Hypervolume 
improvement with 95% 
confidence interval of the 
DTLZ2

Reference points of [3, 3] and [3, 3, 3] are used for M = 2 and M = 3 respectively
Higher HVI indicates better performance, lower the Δ to ground truth indicates better performance (in 
bold)

M d Method Budget HVI Δ to Ground truth (%)

2 4 Random 100 0.8046e1 ± 0.0015e1 1.99680 ± 0.29509
EHVI 100 0.8183e1 ± 0.0001e1 0.31922 ± 0.02189
CEHVI 100 0.8192e1 ± 0.0001e1 0.21739 ± 0.02481
NSGA2 200 0.8152e1 ± 0.0011e1 0.70169 ± 0.22646

6 Random 100 0.7895e1 ± 0.0021e1 3.83750 ± 0.42409
EHVI 100 0.8171e1 ± 0.0001e1 0.46986 ± 0.02671
CEHVI 100 0.8191e1 ± 0.0001e1 0.22889 ± 0.02007
NSGA2 200 0.8083e1 ± 0.0011e1 1.55390 ± 0.21220

8 Random 100 0.7709e1 ± 0.0025e1 6.11000 ± 0.50078
EHVI 100 0.8160e1 ± 0.0003e1 0.60907 ± 0.07758
CEHVI 100 0.8180e1 ± 0.0002e1 0.36247 ± 0.04917
NSGA2 200 0.7950e1 ± 0.0021e1 3.17340 ± 0.41099

3 4 Random 100 2.5836e1 ± 4.2026e2 2.23270 ± 0.25659
EHVI 100 2.6318e1 ± 2.5326e2 0.40931 ± 0.15460
CEHVI 100 2.6345e1 ± 3.0863e2 0.30718 ± 0.18843
NSGA2 200 2.6188e1 ± 4.5699e2 0.89802 ± 0.27901

8 Random 100 2.5252e1 ± 0.0072e1 4.43990 ± 0.43750
EHVI 100 2.6251e1 ± 0.0063e1 0.66186 ± 0.38174
CEHVI 100 2.6260e1 ± 0.0114e1 0.62720 ± 0.69741
NSGA2 200 2.5836e1 ± 0.0081e1 2.23050 ± 0.49500
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Different box-partition algorithms have been presented 
in the literature, see for instance [25, 26, 33, 70, 71]. In 
this paper, we use the box-partition algorithm from [25]. 
This is without loss of generality since the proposed algo-
rithm in this paper is compatible with any box-partition 
algorithm.

Appendix 3 DTLZ results with varying input 
and output dimensions

To assess the performance of our proposed method under 
varying input and output dimensions, we conducted an 
evaluation of the DTLZ functions with combinations of 
input dimensions of [4, 6, 8] and output dimensions of 
[2, 3]. All of the scenarios assume 1 cheap objective. The 
obtained results for DTLZ1, DTLZ2, and DTLZ3 are pre-
sented in Tables 8, 9, and 10, respectively. The hyper-
volume values presented in the tables demonstrate the 
superiority of the proposed method in comparison to other 
competing methods.  
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