
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:1927–1942 
https://doi.org/10.1007/s00366-023-01890-z

ORIGINAL ARTICLE

General resource manager for computationally demanding scientific 
software (MARE)

Xinchen Guo1,2  · James Charles1,2 · Namita Narendra1,2 · Gerhard Klimeck1,2,3 · Tillmann Kubis1,2,3,4,5

Received: 3 October 2022 / Accepted: 21 August 2023 / Published online: 3 October 2023 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Today’s supercomputers power scientific calculations in very different areas, ranging from nanotechnology to climate studies 
and astronomy. Research groups in nascent areas of science and engineering develop their own scientific software, since it 
cannot be obtained otherwise. These groups are typically not funded to spend time on performance optimization and soft-
ware design, but to address their original research questions. In more established fields, several accepted research applica-
tions emerge as a standard and get adopted by research groups that are users, with little software development experience. 
The variability of applications yields a hard to optimize and sub-optimal supercomputer resource usage. Large computing 
times or large memory requirements often limit the scope of the research exploration and a more optimal use can reduce 
overall compute time or increase the scientific scope of questions being asked. This work introduces a resource manager that 
requires minimal intrusion and only superficial understanding of the scientific code, but still schedules the execution of the 
calculations to optimally utilize memory, central processing unit (CPU) or both. This is exemplified with Quantum Espresso 
and recursive open boundary and interfaces (ROBIN) calculations on regional and national computer infrastructures. The 
resource manager presented here reduces compute times by 13–30% in those two scientifically relevant computational codes.

Keywords High-performance computing · CPU · Memory · Scientific software · Resource management

1 Introduction

Since the first top 500 listing, the processing power of super-
computers has increased by 5–6 orders of magnitude [1, 2] 
and computer simulations have become important research 
tools [3, 4]. Efficient design of scientific simulation tools 
has become increasingly challenging as the complexity and 
hardware has changed significantly. The community has 

evolved from adapting codes from single processor vec-
tor machines [5], to shared memory supercomputers [6], to 
small Beowulf clusters [7], massive clusters [8], and eventu-
ally to massive clusters with significant co-processors [9]. 
Recently, the memory systems have also become more com-
plex with high-bandwidth memory [10] and non-volatile 
memory [11]. Adapting research code to specific hardware 
environments is extremely labor intensive and is not a via-
ble option for most scientific codes, given the variability of 
existing and future systems. Even well-established codes, 
like Quantum Espresso, do not have a software team that is 
dedicated to performance optimization on every computing 
cluster a user of the code has access to. We believe that self-
adapting resource management will be the path forward to 
fully utilize the available hardware resources without alter-
ing the actual research code.

1.1  State‑of‑the‑art cluster‑level and node‑level 
resource management

The resource management in supercomputers has two levels: 
the cluster level and the node level. On the cluster level, job 

 * Xinchen Guo 
 guo351@purdue.edu

1 Elmore Family School of Electrical and Computer 
Engineering, Purdue University, West Lafayette, IN 47907, 
USA

2 Network for Computational Nanotechnology, Purdue 
University, West Lafayette, IN 47907, USA

3 Purdue Center for Predictive Materials and Devices, Purdue 
University, West Lafayette, IN 47907, USA

4 Purdue Institute of Inflammation, Immunology and Infectious 
Disease, Purdue University, West Lafayette, IN 47907, USA

5 Purdue Quantum Science and Engineering Institute, Purdue 
University, West Lafayette, IN 47907, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01890-z&domain=pdf
http://orcid.org/0000-0002-7240-2645


1928 Engineering with Computers (2024) 40:1927–1942

1 3

scheduling tools (e.g., PBS [12] and SLURM [13]) allocate 
computing resources (e.g., individual nodes) to each simula-
tion task and focusing, e.g., on maximal overall system uti-
lization. On each node, the operating system (OS) manages 
the computing and storage resources.

The OS manages memory and CPU usage [14–16]. How-
ever, scientific software developers and users are expected 
to explicitly limit the peak memory usage below the node 
memory [17]. Explicit and flexible memory management 
is challenging given the wide range of memory per CPU 
core, e.g., 1.4 GB/core on the Stampede 2 KNL sub-clus-
ter [18] and 6.4 GB/core on the Halstead cluster at Purdue 
University [19].

The OS manages the CPU resources using a time-shar-
ing method [20–22]: time slots are allocated among active 
processes to ensure fair sharing [23–25]. Context switches, 
switching between different processes for the same CPU 
core, can happen regularly which causes overhead. Most of 
the large clusters we are aware of, and certainly the most 
massive clusters assign a CPU or a full node to one specific 
user with one specific executable to minimize the context 
switching. When a node gets exclusively assigned to a spe-
cific research software, that software is expected to match 
the number of active threads to the available CPU cores 
to maximize CPU utilization while minimizing context 
switching.

1.2  Motivation and requirements for a general 
resource management tool

Scientific simulations often have memory usage varia-
tions [26, 27] and load imbalance [28–31]. Adding dynamic 
memory and CPU management to existing software would 
typically require fundamental code modifications. Such 
modifications are time intensive and error prone. Resource 
management can be difficult for non-specialist scientific 
software developers [32–34]. Therefore, we introduce a gen-
eral resource manager that treats existing software as black 
boxes and requires only minimal code intrusions.

There are many workflow management tools to combine 
multiple programs and coordinate their execution such as 
SWIFT [35], Pegasus [36], HTCondor [37], ANSYS work-
bench [38], Galaxy [38], etc. These high-level tools ana-
lyze the input–output dependencies and generate a directed 
acyclic graph and execute programs accordingly. However, 
they lack the dependency management on the iteration level 
which is fundamentally required to control memory usage. 
The capability to adjust CPU usage is not in the scope of 
the existing tools.

We envision and demonstrate a different approach which 
uses available OS facilities, does not require expertise in 
performance optimization, nor access to administrative 
privileges. The OS provides a tool set that in general allows 

to manage resources in high detail. To make this available 
to computational researchers, these tools have to get com-
bined into a usable application. This application, the general 
manager of resources (MARE) has to be flexible to accom-
modate any resource scenario computational scientists may 
encounter. Users of MARE must be able to program the 
resource management control.

This paper presents MARE, the resource manager that 
combines abstractions of the resource management with 
a programmable workflow management. MARE allows 
researchers who are not specialized in performance opti-
mization to easily optimize computational resource usage. 
MARE treats software as black boxes. This allows users to 
optimize the resource usage of scientific software without 
knowing its details. One key innovation of MARE is ensur-
ing optimal CPU usage with dynamic and task-adaptive mul-
tithreading. Our MARE requires no system administration 
privilege.

The reminder of the paper is organized as follows: Sect. 2 
presents the design details of MARE. Sections 3 and 4 show 
two application examples to demonstrate several concrete 
and typical resource usage problems that can be solved with 
MARE. Conclusions are presented in Sect. 5.

2  Framework design and key features

The MARE framework consists of three major components: 
manager, agent, and client. First, the MARE manager starts 
on a single node. Second, on each available compute node 
one MARE agent is started. During the agent start, the loca-
tion of the MARE manager is provided to the agent. The 
last step of the initialization has each application software 
register an associated client to the respective MARE agent. 
During runtime, each client monitors its application software 
status by instrumenting the scientific software and commu-
nicates the status repeatedly via its agent to the MARE man-
ager (see Fig. 1). Depending on the management policy and 
the received information, the MARE manager dynamically 
adjusts the assigned resources for each application.

2.1  Manager design and implementation

MARE requires only a single manager that runs on either a 
compute node or a login node. The manager receives appli-
cation software status updates from all agents via text files 
stored in the virtual file system of the RAM. These text files 
are monitored by inotify of Linux, which notifies the man-
ager about new status files available to be processed. The 
MARE manager processes concurrent status files in the 
order it received the inotify notification. Scientific applica-
tion software often requires multiple compute nodes. Shared 
network filesystems like NFS [39], Lustre [40], GPFS [41], 



1929Engineering with Computers (2024) 40:1927–1942 

1 3

etc. are mounted to compute nodes. However, MARE agents 
do not move the status files to a network filesystem, since 
the inotify feature is not sufficiently supported on network 
filesystems [42, 43]. Instead, the widely available SSH tool 
is used to transfer application software status files to the 
local filesystem of the manager. With proper caching of the 
SSH authentication, the latency of sending one status file 
is as low as 2 ms. This enables a management granularity 
(solver/iteration) of the MARE framework in the order of 
seconds.

The management policy is contained in a function that 
is executed every time a new status file is detected. Any 
kind of status information or metadata of the application 
software process can be input to the policy function. This 
can include from CPU or memory load, process informa-
tion, application data, or even user input. The manager also 
provides adjustment APIs for the policy function that can 
wrap OS details that would require advanced OS knowledge. 
Application software status updates direct the manager via 
the policy function to make adjustments. Example policies 
for synchronization and dynamic CPU usage adjustments 
are provided in MARE.

2.2  Agent design

An agent is a thin layer needed on each compute node to 
handle the network communication with the MARE man-
ager. The agent uses the inotify feature to monitor applica-
tion software status files. The event-driven design of ino-
tify avoids unnecessary file observation which saves CPU 
resources. The agent forwards new status files to the MARE 
manager.

2.3  Client design and implementation

Each application software process has an exclusive asso-
ciated client. The client connects the application software 

process with the agent. The client interacts via two inter-
faces. The first interface consists of control points in the 
source code of the application software. These control points 
allow the client to monitor the application status. Code loca-
tions around MPI function calls are natural candidates of 
control points. The client writes the status updates and pro-
cess metadata into the status files that are forwarded by the 
agent to the manager.

The second interface provides dynamic CPU resource 
adjustment. During the client’s initialization, a signal han-
dler in the framework is registered to receive SIGUSR1 and 
SIGUSR2 signals from the OS. The signal handler will auto-
matically adjust the number of threads (CPU cores) used by 
the application software according to the received signals 
from the manager.

Since the framework is written in C++ and expected to 
work with various software, a version of client-side APIs 
without name mangling [44] is created for C and Fortran. 
Additionally, a special wrapper interface (MEX) is also 
created for the popular engineering software Matlab and 
Octave.

2.4  Design considerations

The MARE framework stores and transfers application soft-
ware status between the different MARE components as text 
files. Using the file system rather than direct communication 
(pipeline or socket) decouples each component of the MARE 
framework for the highest flexibility. This design makes the 
client an optional component in the MARE framework. An 
application software can avoid the client by generating the 
MARE status files by itself.

2.5  Example policies and control points

Different software applications have different resource usage 
patterns. The MARE resource manager is designed to be 

Fig. 1  The software architecture 
of the MARE resource manage-
ment framework, containing cli-
ents, agents, and a manager. The 
manager can share a computing 
node (0 or 1 in the figure) with 
the simulation code or be hosted 
on a dedicated node (2 in the 
figure). The manager communi-
cates with each client but only 
one arrow to the first client on 
Node 1 is shown in the figure 
for cleanness



1930 Engineering with Computers (2024) 40:1927–1942

1 3

highly customizable and programmable via user-defined 
policies. A few policy examples are provided that address 
typical resource usages. The following application examples 
illustrate the management of CPU load and the simultane-
ous management of memory and CPU load. Similar policies 
can be imagined to control the memory bandwidth, network 
bandwidth, energy consumption, allocation budget on com-
munity clusters, etc.

Many scientific simulations are done iteratively. Within 
one iteration, the problem is divided into smaller chunks for 
parallel processing. An ideal location for control points is 
the end of each chunk before the synchronization prepar-
ing for the next iteration. Table 1 shows potential control 
point locations for different types of simulations in addition 
to the nanoscale simulation examples demonstrated in the 
later sections.

3  Policy example: CPU load

To exemplify a policy that manages dynamic multithread-
ing, the ab-initio code Quantum Espresso (QE) [49–51] is 
considered when applied on a heterojunction of two 2D 
materials. The code is run on Purdue University’s Halstead 
cluster [19, 52] for performance testing. Halstead consists 
of two 10-core CPUs with 128 GB of memory per node on 
a 100 Gbps Infiniband network.

3.1  Application example: structure optimization 
with Quantum Espresso

Figure 2 illustrates the application example of a monolayer 
MoS2/WS2 heterostructure. The electronic properties of 
the heterostructure are calculated in the density functional 
theory framework of the plane wave-based QE. The QE soft-
ware is written in Fortran language and had been augmented 
to utilize the MARE client APIs following Sect. 2.3.

Figure 3 shows the simplified software flow of a typical 
electronic-structure calculation with QE which consists of 
an outer structural relaxation and an inner electronic relaxa-
tion loop [53]. The ions are moved according to the forces 
on the ions that depends on the electronic density, which 
in turn depends on the ion positions. Due to their mutual 
dependence, ionic positions and electronic density have to 

Table 1  Potential control point 
location for different type of 
scientific simulation

Simulation Control point Potential sources of load imbalance

Computational fluid 
dynamics

End of subdomain E.g. grid refinement, inner iterative solver [45]

N-body End of subdomain E.g. inherent limitation of geometry based 
domain decomposition method [46]

Weather forecast End of subdomain E.g. localized weather phenomena, different 
physics [47] solvers [48]

Fig. 2  Illustration of the monolayer MoS2/WS2 heterostructure sys-
tem considered in the Quantum Espresso example

Fig. 3  Schematic of the program flow for the Quantum Espresso 
structure optimization. The inner self-consistent loop performs the 
electronic density calculation that involves solving for the mutually 
independent momentum point (labeled with “k0”, “k1”, etc.) contri-
bution to the density. The calculation of the k-point contributions get 
repeated until a converged electronic density is found. The outer loop 
iterates between ion positions and electronically mediated forces. The 
outer loop continues until global convergence is reached



1931Engineering with Computers (2024) 40:1927–1942 

1 3

be solved iteratively until convergence is achieved. Most of 
the simulation time is spent in the solution of the momentum 
(k) point contributions to density, which gets iterated often 
due to the self-consistency loops. For this example, a sin-
gle electronic density calculation with fixed ionic positions 
is used. The resource management would be the same for 
relaxation of ionic positions.

3.2  Without MARE: load imbalance

The solution of k-points is independent from each other 
and can run trivially parallel. However, since the number of 
required k-points is determined by the modeling problem, it 
can easily be incommensurate with the number of available 
CPU cores per node. This leads to load imbalance, as also 
illustrated in Fig. 4 for this example with 13 independent 
k-points and 20 CPU cores per compute node. In this case, 
ideal CPU usage cannot be achieved when the number of 
threads for each process is statically set by environmental 
variables.

3.3  Multithreading management by the operating 
system

One way to improve the CPU usage is increasing the num-
ber of threads per process from 1 to 2, which leads to an 
oversubscription of 26 computing threads for the 20-core 
CPU. Modern multi-use and multi-program operating sys-
tems are capable of handling such oversubscriptions with 
context switching [54].

The CPU usage with context switching shown in Fig. 5 
is indeed higher than in the situation without shown in 
Fig. 4. Consequently, the end-to-end time improved by 
197 s. However, the context switching also causes a very 

frequent oscillation of CPU usage per process as expected 
(see Fig. 6), which creates some CPU load by itself.

This is illustrated in the CPU usage of 1 process using 2 
threads shown in Fig. 6. The OS-controlled context switch-
ing causes the CPU usage to oscillate between 1 and 2.

Typically, to minimize context switching, the number of 
running processes or threads has to match the number CPU 
cores. The amount of processes is typically determined 
prior to the simulation by specifying the amount of MPI 
ranks. The amount of threads is determined either prior to 
the simulation by environmental variables or during the 
simulation by explicit API calls.

Fig. 4  CPU usage of the Quantum Espresso example of Fig. 2 with 
13 k-points and 13 MPI processes. Multithreading is not enabled to 
avoid oversubscription of the 20 available CPU cores. This setup 
leaves 7 CPU cores unused. Here, each color corresponds to one 
k-point and one MPI process

Fig. 5  CPU usage of the example simulation of Fig. 4 with 2 comput-
ing threads per process and context switching of the OS. 13 k-points 
correspond to the 13 colors and their computation is spread out over 
20 cores. The CPU usage and simulation time improve by 197 s down 
to 1278 s from 1474 s shown in the single threaded case of Fig. 4, but 
a highly frequent oscillation of CPU usage is found

Fig. 6  CPU usage of 1 process with a 2 threads per process in the 
oversubscription situation of the example calculation in Fig. 5 aver-
aged over subsequent time intervals of 1.7  s. The usage frequently 
oscillating between 1 and 2 due to frequent context switching by the 
OS



1932 Engineering with Computers (2024) 40:1927–1942

1 3

3.4  Management policy for CPU load

The overhead created by this oscillation can be avoided 
when information of the application software is used to 
dynamically adjust the number of threads by the MARE 
framework following a CPU load management policy. 
Processes with smaller and/or fewer computational tasks 
complete the computation sooner. The CPU resources of 
those processes are then reclaimed by the MARE manager 
and redistributed to processes with remaining tasks. Since 
threads share their memory, making the required data 
available to the newly assigned CPU cores does not require 
explicit data movement. As a result of this policy, tasks 
with higher computational load get effectively assigned a 
larger number of cores which improves the overall CPU 
load balance. To enable core reassignment, the applica-
tion software needs to be augmented with a control point 
that (1) reports to the manager the computational task is 
done (see Fig. 1) and (2) puts the corresponding process 
into sleep mode. When all processes reach that barrier, the 
CPU resource assignment is then reset to default and the 
processes are signaled to proceed. In the example of Quan-
tum Espresso, “proceeding” means to continue calculation 
of further self-consistency iterations.

Many large-scale software face similar load imbalance 
that this policy of dynamic multithreading can address. Even 
unforeseen scenarios can be improved due to the dynamic 
nature of MARE’s thread control. This policy essentially 
requires multiple processes being hosted on the same com-
pute node to benefit from the shared memory situation. 
Therefore, it becomes more effective with a larger number 
of cores per compute node are available.

3.5  MARE control points in Quantum Espresso

The example of Fig. 2 requires Quantum Espresso to trig-
ger a global collective MPI communication each after elec-
tron initialization, k-point computation, and update of the 
force field. In addition to the multithreaded computation of 
k-points discussed above, also the electron initialization and 
the update of the force field can be solved with multiple 
threads. Thereby, electron initialization, k-point computa-
tion, and update force field are logic segments that are inde-
pendently CPU-load-optimized by MARE. Accordingly, 
at the end of each of these segments and right before the 
MPI communication, an MARE control point is inserted 
(see Fig. 7). It is worth to mention the additions of these 
control points, including corresponding interfaces to the 
numerical library, are the only code alteration needed in 
Quantum Espresso to use MARE. This minimal intrusion 
makes it easy for simulation developers to adapt MARE for 
their needs.

3.6  Dynamic multithreading

The goal of this CPU load example of the MARE resource 
manager is to dynamically adjust the number of threads 
assigned to each process to ensure that the available CPU 
cores are always fully utilized. Here, the 13 processes that 
handle the 13 considered k-points are initialized with 1 
thread each. Then, 7 out of the 13 processes are assigned 
one additional thread to fully utilize the total 20 CPU 
cores. These 7 processes with 2 threads finish their calcu-
lations earlier than the other 6 processes that have only 1 
thread each. Once the 7 double-threaded processes reach 
their MARE control points, they signal the MARE man-
ager which in turn redistributes the overall 20 CPU cores 
to the remaining 6 processes as equally as possible. This 
redistribution of CPU cores gets repeated until all processes 
have reached the same control point (as detailed in Table 2). 
Then, the thread assignment is reset by the MARE manager 
for the next computational segment.

3.7  Assessment of performance improvement

Figure  8 shows the CPU usage of the same Quantum 
Espresso simulation with the MARE manager optimizing 
the CPU utilization. All available 20 CPU cores are almost 
fully utilized during the simulation time. Compared to the 
case with no multithreading (in Fig. 4), the end-to-end tim-
ing reduces from 1470  to 1177 s with a speedup factor of 
1.25× . MARE’s dynamic thread control still accelerate the 
end-to-end calculation by 1.08× compared to the case of 
constant multithreading (in Fig. 5).

3.8  MARE in Quantum Espresso with multiple 
parallelization levels

A Quantum Espresso example that simulates the energy bar-
rier of vacancy diffusion in Si [55] is used to demonstrate 

Fig. 7  Control points required for the electron density calculation. 
For each electron density iteration, MPI collective communication 
is required after initialization, computation of k-points and update of 
the force field. The MARE manager dynamically optimizes the CPU 
usage for each code segment individually



1933Engineering with Computers (2024) 40:1927–1942 

1 3

the effectiveness of MARE in scenarios with multiple paral-
lelization levels. A CPU load management policy is applied 
to an example of Nudged Elastic Band (NEB) [56, 57] cal-
culation in QE. The NEB simulation tool is built on top 
of the electronic structure computing engine exemplified in 
Fig. 3. The NEB method divides the simulation into inde-
pendent images in one iteration. One image consists of the 
electronic structure computation discussed in Sect. 3.1. This 
simulation example contains 10 independent images with 
the image freezing optimization [58] enabled. In this dem-
onstration, the simulation is allowed to run for 9 iterations. 
Some images are calculated fewer than 9 times as discussed 
in detail below. At minimum, two MARE control points 
per MPI ranks are utilized. One control point signals the 
start, while the other signals the completion of an iteration. 
Concretely, in this example, 12 MPI ranks are used to solve 
6 images simultaneously with each image supported by 2 
ranks. More control points could be used for each individ-
ual image calculation which is equivalent to the example in 
Sect. 3.5. However, for simplicity in demonstration, only two 
control points at the image level are applied. The Gilbreth 

cluster [59] at Purdue University with 24 CPU cores and 
196 GB memory per node is used for the demonstration.

This simulation setup exemplifies different types of load 
imbalance in NEB simulations.

• Uneven distribution of images among image groups: In 
this example, some image groups have to solve 2 or 3 
images, while the rest solve only 1. This causes idling 
ranks and gaps in the workload distribution of type A in 
Fig. 9. While this type of imbalance is under user control, 
it too often is inevitable due to simulation setup needs.

• Different workload of the images of each iteration: Dif-
ferent images cause different numerical load until their 
converge (see B in Fig. 9). This difference is unpredict-
able and varies between different iterations.

• Frozen images in one iteration: The freezing image opti-
mization avoids iterations for images with small errors. 
While this reduces the numerical workload of an image 
group, it causes load imbalance between image groups 
(see C in Fig. 9).

Once the MARE control points at the end of each itera-
tion signal the MARE manager the completion of an image 

Table 2  Number of threads 
assigned to each of the 13 
processes which each solve one 
specific k-point

The MARE resource manager dynamically adjusts the assigned number of threads for each k-point accord-
ing to the work load. In this specific example, MARE adjusts the thread numbers for the k-point calculation 
in three steps

Step k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

Step 1 2 2 2 2 2 2 2 1 1 1 1 1 1
Step 2 0 0 0 0 0 0 0 4 4 3 3 3 3
Step 3 0 0 0 0 0 0 0 0 0 5 5 5 5

Fig. 8  CPU usage of the same simulation example and setup as Fig. 4 
with the MARE resource manager. The bottom 7 colors represent 
k-points with 2 initial threads, whereas the top 6 colors represent 
k-points with 1 initial thread. The available 20 CPU cores are fully 
utilized. The spike-like CPU usage changes indicate reassignment of 
idling CPU resources to the remaining active k-points close to the end 
of each simulation iteration (illustrated in Table  2). The simulation 
time improves by 297  s down to  1177 s from 1474 s shown  in the 
single threaded case of Fig. 4

Fig. 9  Workload distribution among image groups without resource 
control by MARE. Each of the 10 colors represents the calculation 
of a specific image. The completion of iterations of all images are 
marked with dashed lines. White areas represent idling ranks. The 
letters A, B, and C highlight the 3 different types of load imbalance 
encountered in this example



1934 Engineering with Computers (2024) 40:1927–1942

1 3

group, the MARE manager can redistribute the available 
CPU cores to other image groups still busy with the elec-
tronic structure calculation. This CPU core distribution is 
reset at the beginning of each iteration. This method is appli-
cable to the 3 types of load imbalances discussed above. As 
a result of the MARE management, Fig. 10 shows 1.19× 
speedup for this example.

4  Policy example: memory and CPU load

Simulations of the recently developed ROBIN method [60] 
are used to exemplify a policy that optimizes memory and 
CPU load on two different HPC systems: (1) the Rice clus-
ter [61] at Purdue University with 20 CPU cores and 64 GB 
memory per node and (2) the Intel KNL partition on the 
Stampede 2 cluster [18, 62] at Texas Advanced Computing 
Center (TACC) with 68 cores and 96 GB per node.

4.1  ROBIN simulations of materials

State-of-the-art material simulations require periodicity at 
the simulation domain boundaries. While these boundary 
conditions are typically appropriate for ideal solid-state 
materials, realistically fabricated material samples typically 
host defects, dislocations, and irregularly strained interfaces. 
The recently developed Recursive Open Boundary and 
INterfaces (ROBIN) method allows the explicit discretiza-
tion of millions of atoms and solution of material proper-
ties within a center region of the discretized atom pool (see 
circle and zoom-in in Fig. 11). ROBIN does not constrain 
the simulation area with any symmetry. This allows accurate 
prediction of disordered materials and interfaces and avoids 

artificial periodicity assumptions. It was shown in Ref. [60] 
the periodicity assumption can even yield an erroneous 
band gap when the actual disordered material is gapless (see 
Fig. 4 in Ref. [60]). Solving the impact of the environment 
on a center simulation region requires partitioning the atoms 
and iterating quantum transport equations over the segments 
(see Fig. 11).

4.2  Peak memory usage

Depending on the overall distribution of discretized atoms 
and the partition strategy, the number of atoms in each seg-
ment can vary significantly (see Fig. 11). The memory load 
of the quantum transport equations scales squared with the 
number of atoms in each respective segment. Since the quan-
tum transport equations are iterated over the segments, the 
peak memory usage varies a lot with simulation time (see 
Fig. 12).

The example of Fig. 12 solves the quantum transport 
equations of ROBIN for two different energies in sequence. 
The calculation of each energy point yields a maximum 

Fig. 10  Workload distribution among the image groups of Fig.  9 
with resource control by MARE. All colors and dashed lines have 
the same meaning as in Fig. 9. Significant reduction of idling ranks 
(white space) is achieved. The total simulation with MARE takes 
11449.3 s, which is 1.19× faster than the 13613.4 s of simulation time 
without MARE

Fig. 11  Schematics of the simulation region partitioning, which is 
modeled as a round sphere with a large number of atoms. Recursive 
Green’s function method compatible partitioning requires every seg-
ment to have at most two neighbor segments. The memory load of 
each segment scales squared with the number of atoms in it

Fig. 12  Memory usage of an example calculation of the ROBIN 
method for two electronic energies solved in sequence with 20 
threads used



1935Engineering with Computers (2024) 40:1927–1942 

1 3

memory usage of 23 GB and sees the highest usage plateau 
at 13 GB. As common for quantum transport simulations, 
different electronic energies can be solved independently in 
parallel. In production run ROBIN simulations, hundreds 
to thousands of energy points [63, 64] are solved that scale 
embarrassingly.

The parallelism at the level of energy points is preferred 
to the lower level parallel computation within energy points 
because of better resource utilization efficiency and through-
put discussed in the later section. Given the computational 
behavior of each energy point is similar regardless of the 
specific energy value, computing two energy points (with 
10 threads each on a node of 20 CPU cores) simultaneously 
results in almost doubling the peak memory usage of Fig. 12 
(i.e., above 32 GB), as shown in Fig. 13a. The more efficient 
CPU commensurate calculation scenario of ROBIN would 
involve four simultaneous energy point calculations (with 5 
threads each), which then exceeds the node’s memory limit. 

Swap space is designed to absorb the memory usage bursts. 
However, swapping, even briefly, is typically turned off on 
HPC systems to avoid expensive page faults [17]. Frequent 
page faults lead to memory trashing which significantly 
slows down application software [17]. The users of HPC 
systems are expected to explicitly limit the memory usage to 
the amount of available RAM. Therefore, keeping the peak 
memory usage of the ROBIN simulation under the system 
limit may cause reduced parallelism and CPU underutiliza-
tion. Otherwise, the simulation may have reliability (crashes 
due to out-of-memory) issues.

4.3  Management policy for memory and CPU load

This example management policy provides a synchroniza-
tion mechanism (semaphore) to manage the dependencies 
among software processes. Two functions are provided for 
processes to acquire and release resources. The wait func-
tion allows a process to sleep and is controlled via signals 
from the manager. In this example, wait is applied as long 
as required resources are unavailable. The signal function 
reports the application progress to the resource manager. In 
this example, the signal function reports the completion of 
a task which triggers the manager to redistribute resources 
with the wait function. Both wait and signal are executed at 
control points added to the respective application software. 
This allows pipelining MPI processes to control the appli-
cation software progress and make it utilize all available 
machine resources constantly.

It is generally important that the application software is 
free from race conditions [65, 66]. For the MARE manage-
ment tool, it is even essential that all application software is 
free of race conditions. The concept of MARE ensures that 
it does not introduce any race conditions by itself.

4.4  Control points with the MARE framework

To enable MARE’s control of ROBIN, two control points 
are added to the ROBIN source code: the first control point 
is added at the beginning of the simulation. At this point, 
the MARE manager gets signaled via the agent that the code 
execution has reached this position and the software pro-
cess is put into sleep state. It will wait for a wake-up signal 
from the MARE manager. The second control point is added 
to the source code position of peak memory usage (see 
Fig. 12). Depending on the MARE manager, this procedure 
can yield a delay between two consecutive processes. Such 
delay can be desired to avoid peak memory usage beyond 
the machine’s limit. The client monitors whether its corre-
sponding host software reaches the second control point and 
reports the software status to the manager. Then, the man-
ager sends the wake-up signal to the next process to enter 
the execution pipeline (see Fig. 14). The pipelined execution 

Fig. 13  Memory usage of the calculation of 8 energy points with 
multithreading to fully utilize 20 CPU cores. (a) 2 parallel processes 
with 10 threads each. (b) 4 parallel processes with 5 threads each 
enabled by the MARE manager. The MARE framework enables the 
simultaneous calculation of 4 energy points with the memory con-
sumption under the system limit



1936 Engineering with Computers (2024) 40:1927–1942

1 3

enables smoother and under-the-limit memory consumption 
with the parallel computation of 4 energy points on a com-
puter node shown in Fig. 13b, which results in faster simula-
tion because of higher resource utilization efficiency.

4.5  Memory management to enable efficient 
simulation setup

MARE can enable running 4 processes in parallel: the exam-
ple in Fig. 13b uses the MARE resource manager to pipeline 
the parallel calculation of four energy points. By properly 
pipelining the 4 processes, the MARE resource manager 
successfully limits the overall peak memory usage below the 
system capacity of 64 GB. Additionally, the MARE resource 
manager enables less memory usage oscillation to achieve 
better overall resource utilization.

The multithreading parallel efficiency is another optimi-
zation factor that impacts the end-to-end application timing. 
Figure 15a shows the strong scaling of one energy point of 
ROBIN with respect to the number of parallel threads on 
one Rice node with 20 CPU cores. The end-to-end timing 
deviates the more from the projected ideal scaling line the 
more threads are used.

A more efficient CPU usage would prefer running the 
ROBIN code with as few threads as possible but as many 
processes per compute node as possible. MARE’s pipelining 
of processes discussed in the previous section enables more 
parallel processes which results in more efficient CPU usage 
and shorter end-to-end timing. Since the solution of different 
energy points scales embarrassingly parallel, we consider in 
the following the time-to-solution per energy point.

The change of this time-to-solution per energy point is 
shown in Fig. 16. The black (gray) line in Fig. 16 shows the 
memory usage over time when four (two) processes run in 
parallel per node of the Rice cluster. It is worth to repeat 
that only MARE enables running 4 processes simultaneously 

Fig. 14  Memory usage of 4 processes running the ROBIN applica-
tion simultaneously. The control points added to the ROBIN code 
enable the delayed start to pipeline the peak memory usage

Fig. 15  Multithreading (a) strong scaling and (b) parallel efficiency 
of the ROBIN simulation for one energy point on a compute node 
with 20 CPU cores on the Rice cluster

Fig. 16  Memory usage on a Rice compute node of the example 
ROBIN simulation (multithreading enabled). The black line shows 
the memory usage of 4 simulation processes with 5 threads each 
using the MARE framework. The gray line shows the memory usage 
of 2 simulation processes with 10 threads each, i.e., the optimal set-
ting without the MARE framework. MARE enables more efficient 
resource usage and a shorter time-to-solution



1937Engineering with Computers (2024) 40:1927–1942 

1 3

below the system’s limit. With 4 processes per compute 
node, the number of threads per process needed to maxi-
mally utilize the Rice CPU reduces from 10 to 5. The par-
allel efficiency improves from 68.7 to 78.4%. That is the 
reason the MARE framework effectively enables processing 
four energy points every 2937 s (734 s per energy point). In 
contrast, without MARE, one compute node can process two 
energy points every 1588 s (794 s per energy point). Using 
this scheme, MARE improves the calculation throughput 
per node by 1.08×.

The maximum performance improvement MARE can 
achieve depends on the hardware configuration and with it 
the specific strong scaling behavior. Figure 17 shows the 
strong scaling of ROBIN on the Stampede 2 cluster at the 
Texas Advance Computing Center with respect to the num-
ber of threads.

Accordingly, Fig. 18 illustrates a stronger performance 
improvement on Stampede 2 than on Rice (shown in 
Fig. 16). Figure 18 shows the memory usage of ROBIN 
when run on Stampede 2. The gray line shows three pro-
cesses with 22 threads per process which is the optimal set-
ting without the MARE manager. The black line shows five 
processes with 13 threads per process managed by MARE. 
Since the parallel efficiency improves with MARE from 
50.4% with 22 threads to 66.2% with 13 threads (see Fig. 17) 
the processing throughput of one Stampede 2 node improves 
from 3 energy points every 1583 s to 5 energy points every 
2174 s. That means, the per energy point execution time 
improves from 528 to 435 s (1.21× speedup). Figure 18 also 
shows the MARE framework enables a more efficient usage 
of the available node memory.

4.6  CPU management to automatically balance 
computing resource distribution

The scheduling of computational processes entails a ramping 
of the number of active threads per node. This can be seen 

in Fig. 19 which shows the usage of a single Rice node’s 
CPUs in the case of the 4-process simulation of Fig. 16. 
The delaying of MPI processes needed to limit the memory 
load below the node’s maximum memory (see the memory 
usage management discussion of Sect. 4.2) causes the CPU 
usage to increment by steps of 5 at the beginning and decre-
ment by 5 at the end of the simulation. Since each process 
is set here by environmental variables to spawn 5 threads, 
the CPU core usage increments and decrements in steps of 
5. In addition to optimizing the memory usage, MARE can 
improve the CPU usage with the dynamic multithreading 
discussed in Sect. 3.6.

MARE’s multithreading policy dynamically adjusts the 
number of computing threads (CPU cores) used by each 
process during the simulation as shown for process 1 in 

Fig. 17  The multithreading parallel efficiency of the ROBIN simula-
tion for one energy point solved on the Stampede 2 cluster

Fig. 18  Memory usage on a compute node of an example simulation 
with 60 energy points (multithreading enabled). The black line shows 
the memory usage of 5 simulation processes (12 energy points per 
process) with the MARE framework. The gray line shows the mem-
ory usage of 3 simulation processes (20 energy points per process) 
without the MARE framework. The black line with the MARE frame-
work is faster than the gray line without the MARE framework

Fig. 19  CPU usage over time of the simulation of Fig.  16 with 4 
simulation processes and the MARE framework without additional 
adjustment. The first and last approximate 1000 s show CPU ramping 
in increments of 5 cores



1938 Engineering with Computers (2024) 40:1927–1942

1 3

Fig. 20 (black line). For comparison, Fig. 20 shows the 
number of threads for the same process without MARE’s 
dynamic multithreading (gray line). The dynamic policy 
assigns in the beginning the whole 20 CPU cores to pro-
cess 1, since it is the first to enter the scheduling pipeline. 
When the second process enters the pipeline, the 20 cores 
are distributed among the two processes. Accordingly, 
the number of threads for process 1 drops to 10. When 
the third process is scheduled to start, processes 1 and 2 
retain 6 threads, and process 3 receives the remaining 8 
available threads. Once the forth process becomes active, 
all processes are assigned 5 threads. The reverse of this 
assignment procedure happens near the end of the simu-
lation, whenever another process finishes its simulation 
tasks. Note that both dynamic (black) and static (gray) 
multithreading scenarios face oscillations in the CPU 
usage when the code iterates between serial and multi-
threaded sections. The overall CPU usage of 4 processes 
are shown in Fig. 21. The black line represents higher 
CPU usage at the begin and end of simulation with the 
dynamic CPU adjustment.

Figure  22 shows the memory usage of the same 
example on the Rice cluster. Similarly, it also shows the 
memory usage of the example on the Stampede 2 clus-
ter. The additional CPU management enables process-
ing four energy points every 2818 s on the Rice cluster 
(compared with 2937 s with memory management only). 
The speedup factor is 1.13× with the CPU management. 
The processing time of 5 energy points on one Stampede 
2 node improves from 2174 to 2037 s with the additional 
CPU management as well (1.30× speedup).

Fig. 20  CPU usage of the first process of the simulation of Fig.  19 
with and without the dynamic adjustment of the number of spawned 
threads. The gray line shows the constant setting of 5 threads as in 
Fig.  19. The black line shows the dynamic spawning which starts 
with 20 threads when all other processes are paused. It reduces in 
steps whenever another process becomes active to avoid oversub-
scription of the node

Fig. 21  Total CPU usage of all processes of the simulation in Fig. 20. 
The black line shows the CPU usage with MARE’s dynamic mul-
tithreading. It shows full CPU usage at the begin and at the end of 
the simulation. For comparison, the CPU usage without MARE’s 
dynamic thread handling of Fig. 19 is shown in gray

Fig. 22  a The memory usage of the same example in Fig. 16 on the 
Rice cluster. b The memory usage of the same example in Fig. 18 on 
the Stampede 2 KNL cluster. Dynamic multithreading is enabled in 
this figure in addition to memory usage pipelining shown in Figs. 16 
and 18. Additional speedup (see the detailed comparison in Table 3) 
and smoother memory usage can be observed



1939Engineering with Computers (2024) 40:1927–1942 

1 3

4.7  Overall performance improvement

Table 3 summarizes the calculation throughput on the 
Rice cluster and the Stampede 2 cluster with and with-
out the MARE framework. When memory management 
schedules the processes (labeled “With MARE (mem-
ory)”), more processes can run simultaneously and fewer 
threads per process are needed to utilize all CPUs. This 
improves the parallel efficiency and thus the throughput. 
The dynamic adjustment of multithreading reduces the 
CPU underutilization during pipeline filling and drain-
ing (labeled “With MARE (memory + CPU)”), which 
improves the throughput further.

5  Conclusion

The majority of supercomputers are dedicated to scien-
tific simulations. Scientific simulation software typically 
allows users varying applications with hard-to-predict 
computational load. In consequence, the supercomputer 
hardware tends to be incompletely utilized during the sci-
entific simulation runs. This paper presents the MARE 
framework which solves this problem with a few con-
trol points to the scientific simulation codes. With these 
observational points, MARE schedules the computation 
of each parallel process to optimize memory and CPU 
load during the simulation’s runtime. In this way, MARE 
enables even inexperienced users to optimally utilize the 
available infrastructure without significantly altering the 
scientific software. MARE accepts user-defined poli-
cies for, e.g., optimizing memory usage, CPU usage, or 
both. The applications of MARE on Quantum Espresso 
and ROBIN demonstrate resource efficiency improve-
ment with only superficial knowledge of the simulation 
software.

Appendix: Necessary code changes 
to interface with MARE

The MARE framework requires superficial knowledge of the 
scientific simulation software rather than an actual under-
standing of the algorithm. The following commands are 
provided to interface with the MARE framework.

• mare_init: initialize the MARE client and register the 
SIGUSR1 and SIGUSR2 signal handlers.

• mare_wait: check with the MARE manager if continuing 
execution is allowed. Suspend the process if not.

• mare_signal: inform the MARE manager to wake up a 
suspended process if there is any.

• mare_barrier: suspend the current process and inform the 
MARE manager.

In case of ROBIN simulations, all that is needed is the loca-
tion of the actual code, i.e., the respective module source 
files. The initialization of the MARE framework is added to 
the initialization function of the ROBIN module:

MARE once := false;
if MARE once ≡ false
if simulation condition1
call mare init(null,mkl set num threads, program name);
call mare wait(control point 1);

fi
if simulation condition2
call mare signal(control point 1);
MARE once := true;

fi
fi
if simulation condition3
call mare signal(control point 2);

fi

Here, ⟨simulation_condition1⟩ is only true during the sim-
ulation initialization phase. ⟨simulation_condition2⟩ is only 
true when a delay of execution is desired to, e.g., shift the 
peak memory usage point. ⟨simulation_condition3⟩ is only 
true when the calculation of one energy point (out of typically 
several hundred) finishes. These simulation conditions can be 
identified by examining the simulation logs in a benchmark 
simulation scenario. The MARE framework then uses such 
signals from all simulation processes to adjust pipelining and 
the distribution of CPU cores.

The calculations in the Quantum Espresso example all start 
at the same time, while CPU resources are adjusted for each 
parallel process toward the end of each iteration to ensure full 
utilization. Explicitly using the wait and signal commands of 

Table 3  Average time-to-solution (s) per energy point for the ROBIN 
example calculation on the Rice cluster and the Stampede 2 cluster 
with different levels of optimization

Speedup factor relative to the “Without MARE” baseline is also 
shown

System Without 
MARE

With MARE (memory) With MARE 
(memory + 
CPU)

Rice 794 s 734 s (1.08×) 705 s (1.13×)
Stampede 2 528 s 435 s (1.21×) 407 s (1.30×)



1940 Engineering with Computers (2024) 40:1927–1942

1 3

semaphores are, therefore, not needed. A simplified barrier 
command is sufficient to instrument the end of calculation of 
a process in one iteration.

call mare init();
call mare barrier(control point 1);
while simulation condition1 do

call mare barrier(control point 2);
call mare barrier(control point 3);

od
call mare barrier(control point 4);

⟨simulation_condition1⟩ is true when the self-consist-
ent calculation does not meet the convergence criteria. 
The ⟨control_point_1⟩ represents the end of initializa-
tion of each parallel process. The ⟨control_point_2⟩ and 
⟨control_point_3⟩ represent the end of two dependent 
steps in one iteration to calculate a momentum point. The 
⟨control_point_4⟩ represents the end of updating ionic forces 
after the convergence of self-consistent calculations. The 
numerical FFT library also picks up the updated threads 
assignment at the beginning of calculations.

Note that a management policy file is required as part 
of the MARE framework. Besides parsing command line 
arguments, the policy file implements the logic of a standard 
semaphore and a method to distribute CPU cores among 
active processes. Both the semaphore and the distribution 
method are agnostic to the scientific simulation. This man-
agement policy file is provided as part of the MARE frame-
work. The Purdue Research Foundation can be contacted 
via OTCIP@prf.org to obtain the MARE framework source 
code.

Acknowledgements This work was supported in part by Intel Parallel 
Computing Center at Purdue. J.C. and T.K. acknowledge support from 
Silvaco. This research was supported in part through computational 
resources provided by Information Technology at Purdue University, 
West Lafayette, Indiana. This work used the Extreme Science and 
Engineering Discovery Environment (XSEDE), which is supported 
by National Science Foundation under Grant No. ACI-1548562. This 
work used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) Stampede 2 at the Texas Advanced Computing Center 
(TACC), The University of Texas at Austin through allocation TG-
MCA08X012. The use of nanoHUB.org computational resources oper-
ated by the Network for Computational Nanotechnology funded by 
the US National Science Foundation under Grant Nos. EEC-0228390, 
EEC-1227110, EEC-0228390, EEC-0634750, OCI-0438246, OCI-
0832623, and OCI-0721680 is gratefully acknowledged. The authors 
would like to thank valuable discussions with Kuang-Chung Wang 
and Yuanchen Chu.

Funding This work was supported in part by Intel Parallel Computing 
Center at Purdue. J.C. and T.K. acknowledge support from Silvaco. 
This research was supported in part through computational resources 
provided by Information Technology at Purdue University, West Lafay-
ette, Indiana. This work used the Extreme Science and Engineering 
Discovery Environment (XSEDE), which is supported by National 

Science Foundation under Grant No. ACI-1548562. This work used the 
Extreme Science and Engineering Discovery Environment (XSEDE) 
Stampede 2 at the Texas Advanced Computing Center (TACC), The 
University of Texas at Austin through allocation TG-MCA08X012. 
The use of nanoHUB.org computational resources operated by the Net-
work for Computational Nanotechnology funded by the US National 
Science Foundation under Grant Nos. EEC-0228390, EEC-1227110, 
EEC-0228390, EEC-0634750, OCI-0438246, OCI-0832623, and OCI-
0721680 is gratefully acknowledged.

Data availability The data are available upon reasonable request.

Declarations 

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

 1. Performance development. https:// www. top500. org/ stati stics/ perfd 
evel/. Accessed 28 Feb 2022

 2. Robert Y, Shende S, Malony AD, Morris A, Spear W, Biersdorff 
S, Smith B, Wang D, Ricciuto D, Post W, Berry MW, Irigoin F, 
Yelick K, Graham SL, Hilfinger P, Bonachea D, Su J, Kamil A, 
Datta K, Colella P, Wen T, Dongarra J, Luszczek P, Bhatele A, 
Freudenberger SM, Diekert V, Muscholl A, Herlihy M, Moss JEB 
(2011) TOP500. Encyclopedia of parallel computing. Springer, 
Boston, pp 2055–2057. https:// doi. org/ 10. 1007/ 978-0- 387- 09766-
4_ 157

 3. Kaufmann WJ, Smarr LL (1992) Supercomputing and the trans-
formation of science. W. H. Freeman & Co., New York

 4. Council NR, Sciences DEP, Board CST, Supercomputing CF, 
Patterson CA, Snir M, Graham SL (2004) Getting up to speed. 
National Academies Press, Washington. https:// doi. org/ 10. 17226/ 
11148

 5. Watanabe, T.: The NEC SX-3 supercomputer system. In: COMP-
CON Spring ’91 Digest of Papers. IEEE Comput. Soc. Press, pp 
303–308. https:// doi. org/ 10. 1109/ CMPCON. 1991. 128822p

 6. Gostin, G., Collard, J.-F., Collins, K.: The architecture of the HP 
Superdome shared-memory multiprocessor. In: Proceedings of the 
19th annual international conference on supercomputing—ICS 
’05. ACM Press, New York, p 239 (2005). https:// doi. org/ 10. 1145/ 
10881 49. 10881 81

 7. Sterling T, Becker DJ, Savarese D, Dorband JE, Ranawake UA, 
Packer CV (1995) Beowulf: a parallel workstation for scientific 
computation. In: Proceedings of the 24th international conference 
on parallel processing. CRC Press, pp 11–14

 8. Kahle JA, Moreno J, Dreps D (2019) 2.1 Summit and Sierra: 
Designing AI/HPC Supercomputers. In: 2019 IEEE international 
solid- state circuits conference—(ISSCC), vol 2019-Febru. IEEE, 
San Francisco, CA, USA, pp 42–43. https:// doi. org/ 10. 1109/ 
ISSCC. 2019. 86624 26

 9. Tanabe N, Ichihashi Y, Nakayama H, Masuda N, Ito T (2009) 
Speed-up of hologram generation using ClearSpeed accelerator 
board. Comput Phys Commun 180(10):1870–1873. https:// doi. 
org/ 10. 1016/j. cpc. 2009. 06. 001

 10. Sodani A (2015) Knights landing (KNL): 2nd Generation Intel® 
Xeon Phi processor. In: 2015 IEEE hot chips 27 symposium 
(HCS). IEEE, Cupertino, CA, USA, pp 1–24. https:// doi. org/ 10. 
1109/ HOTCH IPS. 2015. 74774 67

https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/
https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.17226/11148
https://doi.org/10.17226/11148
https://doi.org/10.1109/CMPCON.1991.128822
https://doi.org/10.1145/1088149.1088181
https://doi.org/10.1145/1088149.1088181
https://doi.org/10.1109/ISSCC.2019.8662426
https://doi.org/10.1109/ISSCC.2019.8662426
https://doi.org/10.1016/j.cpc.2009.06.001
https://doi.org/10.1016/j.cpc.2009.06.001
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1109/HOTCHIPS.2015.7477467


1941Engineering with Computers (2024) 40:1927–1942 

1 3

 11. Vetter JS, Mittal S (2015) Opportunities for nonvolatile memory 
systems in extreme-scale high-performance computing. Comput 
Sci Eng 17(2):73–82. https:// doi. org/ 10. 1109/ MCSE. 2015.4

 12. Nitzberg B, Schopf JM, Jones JP (2004) PBS pro: grid computing 
and scheduling attributes, pp 183–190. https:// doi. org/ 10. 1007/ 
978-1- 4615- 0509-9_ 13

 13. Yoo AB, Jette MA, Grondona M (2003) SLURM: simple Linux 
utility for resource management, pp 44–60. https:// doi. org/ 10. 
1007/ 10968 987_3

 14. Zivanovic D, Pavlovic M, Radulovic M, Shin H, Son J, Mckee SA, 
Carpenter PM, Radojković P, Ayguadé E (2017) Main memory in 
HPC. ACM Trans Arch Code Optim 14(1):1–26. https:// doi. org/ 
10. 1145/ 30233 62

 15. Silberschatz A, Galvin PB, Gagne G (2003) Operating system 
concepts. Wiley, Hoboken

 16. Bovet DP, Cesati M (2006) Understanding the Linux Kernel. 
O’Reilly, Beijing

 17. Out-of-Memory (OOM) or Excessive Memory Usage. https:// 
www. osc. edu/ docum entat ion/ knowl edge_ base/ out_ of_ memory_ 
oom_ or_ exces sive_ memory_ usage. Accessed 02 Mar 2022

 18. STAMPEDE2. https:// www. tacc. utexas. edu/ syste ms/ stamp ede2. 
Accessed 02 Mar 2022

 19. Overview of Halstead. https:// www. rcac. purdue. edu/ compu te/ 
halst ead/. Accessed 02 Mar 2022

 20. Ritchie DM, Thompson K (1974) The UNIX time-sharing system. 
Commun ACM 17(7):365–375. https:// doi. org/ 10. 1145/ 361011. 
361061

 21. Ritchie DM (1980) The evolution of the unix time-sharing system, 
pp 25–35. https:// doi. org/ 10. 1007/3- 540- 09745-7_2

 22. Pellegrini A, Quaglia F (2017) A fine-grain time-sharing time 
warp system. ACM Trans Model Comput Simul 27(2):1–25. 
https:// doi. org/ 10. 1145/ 30135 28

 23. Wong CS, Tan IKT, Kumari RD, Lam JW, Fun W (2008) Fairness 
and interactive performance of O(1) and CFS Linux kernel sched-
ulers. In: 2008 international symposium on information technol-
ogy. IEEE, Kuala Lumpur, Malaysia, pp 1–8. https:// doi. org/ 10. 
1109/ ITSIM. 2008. 46318 72

 24. Kim C, Huh J (2016) Fairness-oriented OS scheduling support 
for multicore systems. In: Proceedings of the 2016 international 
conference on supercomputing—ICS ’16. ACM Press, New York, 
pp 1–12. https:// doi. org/ 10. 1145/ 29254 26. 29262 62

 25. Love R (2005) Linux kernel development. Developer’s library. 
Pearson Education, UK

 26. Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K 
(2013) Characterizing and profiling scientific workflows. Futur 
Gener Comput Syst 29(3):682–692. https:// doi. org/ 10. 1016/j. 
future. 2012. 08. 015

 27. Balaprakash P, Buntinas D, Chan A, Guha A, Gupta R, Narayanan 
SHK, Chien AA, Hovland P, Norris B (2013) Exascale workload 
characterization and architecture implications. In: 2013 IEEE 
international symposium on performance analysis of systems and 
software (ISPASS). IEEE, pp 120–121. https:// doi. org/ 10. 1109/ 
ISPASS. 2013. 65571 53

 28. Hendrickson B, Devine K (2000) Dynamic load balancing in com-
putational mechanics. Comput Methods Appl Mech Eng 184(2–
4):485–500. https:// doi. org/ 10. 1016/ S0045- 7825(99) 00241-8

 29. Frachtenberg E, Feitelson DG, Petrini F, Fernandez J (2003) Flex-
ible coscheduling: mitigating load imbalance and improving utili-
zation of heterogeneous resources. In: Proceedings international 
parallel and distributed processing symposium. IEEE Comput. 
Soc, p 10. https:// doi. org/ 10. 1109/ IPDPS. 2003. 12131 91

 30. Chen W, Ferreira da Silva R, Deelman E, Sakellariou R (2015) 
Using imbalance metrics to optimize task clustering in scien-
tific workflow executions. Future Gener Comput Syst 46:69–84. 
https:// doi. org/ 10. 1016/j. future. 2014. 09. 014

 31. Tallent NR, Adhianto L, Mellor-Crummey JM (2010) Scalable 
identification of load imbalance in parallel executions using call 
path profiles. In: 2010 ACM/IEEE international conference for 
high performance computing, networking, storage and analysis. 
IEEE, New Orleans, pp 1–11. https:// doi. org/ 10. 1109/ SC. 2010. 47

 32. Wilson G (2014) Software carpentry: lessons learned. F1000Re-
search 3:62. https:// doi. org/ 10. 12688/ f1000 resea rch.3- 62. v2

 33. Johanson A, Hasselbring W (2018) Software engineering for 
computational science: past, present and future. Comput Sci Eng 
20(2):90–109. https:// doi. org/ 10. 1109/ MCSE. 2018. 02165 1343

 34. Schmidberger M, Brugge B (2012) Need of software engineering 
methods for high performance computing applications. In: 2012 
11th international symposium on parallel and distributed com-
puting. IEEE, Munich, pp 40–46. https:// doi. org/ 10. 1109/ ISPDC. 
2012. 14

 35. Zhao Y, Hategan M, Clifford B, Foster I, von Laszewski G, Nefed-
ova V, Raicu I, Stef-Praun T, Wilde M (2007) Swift: fast, reliable, 
loosely coupled parallel computation. In: 2007 IEEE congress 
on services (Services 2007). IEEE, Salt Lake City, pp 199–206. 
https:// doi. org/ 10. 1109/ SERVI CES. 2007. 63

 36. Deelman E, Blythe J, Gil Y, Kesselman C, Koranda S, Lazzarini 
A, Mehta G, Papa MA, Vahi K (2004) Pegasus and the pulsar 
search: from metadata to execution on the grid, pp 821–830. 
https:// doi. org/ 10. 1007/ 978-3- 540- 24669-5_ 107

 37. Litzkow MJ, Livny M, Mutka MW (1988) Condor-a hunter of idle 
workstations. In: Proceedings of the 8th international conference 
on distributed. IEEE Computer Society Press, pp 104–111. https:// 
doi. org/ 10. 1109/ DCS. 1988. 12507

 38. Chimakurthi SK, Reuss S, Tooley M, Scampoli S (2018) ANSYS 
workbench system coupling: a state-of-the-art computational 
framework for analyzing multiphysics problems. Eng Comput 
34(2):385–411. https:// doi. org/ 10. 1007/ s00366- 017- 0548-4

 39. Pawlowski B, Juszczak C, Staubach P, Smith C, Lebel D, Hitz D 
(1994) NFS Version 3: design and implementation. In: USENIX 
summer 1994 technical conference (USENIX Summer 1994 Tech-
nical Conference). USENIX Association, Boston

 40. Braam P (2019). The Lustre storage architecture. https:// doi. org/ 
10. 48550/ arXiv. 1903. 01955

 41. Schmuck F, Haskin R (2002) GPFS: a shared-disk file system 
for large computing clusters. In: Proceedings of the 1st USENIX 
conference on file and storage technologies. FAST ’02. USENIX 
Association, USA, p 19

 42. Inotify(7)-Linux manual page. https:// man7. org/ linux/ man- pages/ 
man7/ inoti fy.7. html. Accessed 03 May 2022

 43. Fisher C (2022) Linux filesystem events with inotify. https:// 
www. linux journ al. com/ conte nt/ linux- files ystem- events- inoti fy. 
Accessed 05 Mar 2022

 44. Meyers S (2012) Effective C++ digital collection: 140 ways to 
improve your programming. Pearson Education, Upper Saddle 
River

 45. Streng M (1996) Load balancing for computational fluid 
dynamics calculations, pp 145–172. https:// doi. org/ 10. 1007/ 
978- 94- 009- 0271-8_4

 46. Pearce O, Gamblin T, de Supinski BR, Arsenlis T, Amato NM 
(2014) Load balancing n-body simulations with highly non-
uniform density. In: Proceedings of the 28th ACM international 
conference on supercomputing. ACM, New York, pp 113–122. 
https:// doi. org/ 10. 1145/ 25976 52. 25976 59

 47. Straka M (2023) Application scaling case study. https:// bluew 
aters. ncsa. illin ois. edu/ lifer ay- conte nt/ docum ent- libra ry/ Docum 
entat ionDo cumen ts/ Works hops/ New UserW orksh opMay 2013/ 
Straka- WRF_ Scali ng. pdf. Accessed 17 Aug 2023

 48. Ouermi TAJ, Kirby RM, Berzins M (2018) Performance opti-
mization strategies for WRF physics schemes used in weather 
modeling. Int J Network Comput 8(2):301–327. https:// doi. org/ 
10. 15803/ ijnc.8. 2_ 301

https://doi.org/10.1109/MCSE.2015.4
https://doi.org/10.1007/978-1-4615-0509-9_13
https://doi.org/10.1007/978-1-4615-0509-9_13
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://doi.org/10.1145/3023362
https://doi.org/10.1145/3023362
https://www.osc.edu/documentation/knowledge_base/out_of_memory_oom_or_excessive_memory_usage
https://www.osc.edu/documentation/knowledge_base/out_of_memory_oom_or_excessive_memory_usage
https://www.osc.edu/documentation/knowledge_base/out_of_memory_oom_or_excessive_memory_usage
https://www.tacc.utexas.edu/systems/stampede2
https://www.rcac.purdue.edu/compute/halstead/
https://www.rcac.purdue.edu/compute/halstead/
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/361011.361061
https://doi.org/10.1007/3-540-09745-7_2
https://doi.org/10.1145/3013528
https://doi.org/10.1109/ITSIM.2008.4631872
https://doi.org/10.1109/ITSIM.2008.4631872
https://doi.org/10.1145/2925426.2926262
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1109/ISPASS.2013.6557153
https://doi.org/10.1109/ISPASS.2013.6557153
https://doi.org/10.1016/S0045-7825(99)00241-8
https://doi.org/10.1109/IPDPS.2003.1213191
https://doi.org/10.1016/j.future.2014.09.014
https://doi.org/10.1109/SC.2010.47
https://doi.org/10.12688/f1000research.3-62.v2
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1109/ISPDC.2012.14
https://doi.org/10.1109/ISPDC.2012.14
https://doi.org/10.1109/SERVICES.2007.63
https://doi.org/10.1007/978-3-540-24669-5_107
https://doi.org/10.1109/DCS.1988.12507
https://doi.org/10.1109/DCS.1988.12507
https://doi.org/10.1007/s00366-017-0548-4
https://doi.org/10.48550/arXiv.1903.01955
https://doi.org/10.48550/arXiv.1903.01955
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://www.linuxjournal.com/content/linux-filesystem-events-inotify
https://www.linuxjournal.com/content/linux-filesystem-events-inotify
https://doi.org/10.1007/978-94-009-0271-8_4
https://doi.org/10.1007/978-94-009-0271-8_4
https://doi.org/10.1145/2597652.2597659
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/DocumentationDocuments/Workshops/New%20UserWorkshopMay2013/Straka-WRF_Scaling.pdf
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/DocumentationDocuments/Workshops/New%20UserWorkshopMay2013/Straka-WRF_Scaling.pdf
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/DocumentationDocuments/Workshops/New%20UserWorkshopMay2013/Straka-WRF_Scaling.pdf
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/DocumentationDocuments/Workshops/New%20UserWorkshopMay2013/Straka-WRF_Scaling.pdf
https://doi.org/10.15803/ijnc.8.2_301
https://doi.org/10.15803/ijnc.8.2_301


1942 Engineering with Computers (2024) 40:1927–1942

1 3

 49. ...Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno 
Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococ-
cioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, 
Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo 
G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawa-
mura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, 
Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la-Roza 
A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, 
Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, 
Vast N, Wu X, Baroni S (2017) Advanced capabilities for materi-
als modelling with Quantum ESPRESSO. J Phys Condens Matter 
29(46):465901. https:// doi. org/ 10. 1088/ 1361- 648X/ aa8f79

 50. ...Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni 
C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso 
A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, 
Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari 
N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, 
Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov 
A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: 
a modular and open-source software project for quantum simula-
tions of materials. J Phys Condens Matter 21(39):395502. https:// 
doi. org/ 10. 1088/ 0953- 8984/ 21/ 39/ 395502

 51. Giannozzi P, Baseggio O, Bonfà P, Brunato D, Car R, Carnimeo I, 
Cavazzoni C, de Gironcoli S, Delugas P, Ferrari Ruffino F, Ferretti 
A, Marzari N, Timrov I, Urru A, Baroni S (2020) Q <scp>uan-
tum</scp> ESPRESSO toward the exascale. J Chem Phys 152:15. 
https:// doi. org/ 10. 1063/5. 00050 82

 52. McCartney G, Hacker T, Yang B (2014) Empowering faculty: 
a campus cyberinfrastructure strategy for research communities. 
Educause Rev 20:20

 53. Affinito F (2016) QE, main strategies of parallelization and lev-
els of parallelisms. https:// hpc- forge. cineca. it/ files/ Cours esDev/ 
public/ 2016/ Bolog na/ Mater ial_ Scien ce_ codes_ on_ innov ative_ 
HPC_ archi tectu res/ Corso MAX- PRACE- QE- Paral leliz ation. pdf. 
Accessed 05 Mar 2022

 54. Iancu C, Hofmeyr S, Blagojevic F, Zheng Y (2010) Oversub-
scription on multicore processors. In: 2010 IEEE international 
symposium on parallel and distributed processing (IPDPS). IEEE, 
Atlanta, pp 1–11. https:// doi. org/ 10. 1109/ IPDPS. 2010. 54704 34

 55. QuantumNerd: Quantum-Espresso-Tutorial-2019. https:// github. 
com/ quant umNerd/ Quant um- Espre sso- Tutor ial- 2019- Proje cts/ 
blob/ master/ 16_ Si_ vacan cy_ diffu sion/ neb_ cal_1_ noCI/ si. super 
cell_3_ neb. in. Accessed 17 Aug 2023

 56. Henkelman G, Jónsson H (2000) Improved tangent estimate in the 
nudged elastic band method for finding minimum energy paths 
and saddle points. J Chem Phys 113(22):9978–9985. https:// doi. 
org/ 10. 1063/1. 13232 24

 57. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image 
nudged elastic band method for finding saddle points and mini-
mum energy paths. J Chem Phys 113(22):9901–9904. https:// doi. 
org/ 10. 1063/1. 13296 72

 58. Input File Description Program: neb.x / NEB / Quantum 
ESPRESSO (version: 7.2). https:// www. quant um- espre sso. org/ 
Doc/ INPUT_ NEB. html# idm88. Accessed 17 Aug 2023

 59. Overview of Gilbreth. https:// www. rcac. purdue. edu/ knowl edge/ 
gilbr eth/ overv iew. Accessed 17 Aug 2023

 60. Charles J, Kais S, Kubis T (2020) Introducing open boundary 
conditions in modeling nonperiodic materials and interfaces: the 
impact of the periodicity assumption. ACS Mater Lett 2(3):247–
253. https:// doi. org/ 10. 1021/ acsma teria lslett. 9b005 23

 61. Overview of Rice. https:// www. rcac. purdue. edu/ compu te/ rice/. 
Accessed 05 Mar 2022

 62. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw 
A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, 
Scott JR, Wilkins-Diehr N (2014) XSEDE: accelerating scientific 
discovery. Comput Sci Eng 16(5):62–74. https:// doi. org/ 10. 1109/ 
MCSE. 2014. 80

 63. Andrawis R, Bermeo JD, Charles J, Fang J, Fonseca J, He Y, 
Klimeck G, Jiang Z, Kubis T, Mejia D, Lemus D, Povolotskyi M, 
Rubiano SAP, Sarangapani P, Zeng L (2015) NEMO5: achieving 
high-end internode communication for performance projection 
beyond Moore’s law. arXiv: 1510. 04686

 64. Steiger S, Povolotskyi M, Park H-H, Kubis T, Klimeck G (2011) 
NEMO5: a parallel multiscale nanoelectronics modeling tool. 
IEEE Trans Nanotechnol 10(6):1464–1474. https:// doi. org/ 10. 
1109/ TNANO. 2011. 21661 64

 65. Quinn MJ (2003) Parallel programming in C with MPI and 
OpenMP. McGraw-Hill Education Group, Dubuque

 66. Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: 
a comprehensive study on real world concurrency bug charac-
teristics. In: Proceedings of the 13th international conference on 
architectural support for programming languages and operating 
systems. ASPLOS XIII, pp 329–339. ACM, New York, NY, USA 
(2008). https:// doi. org/ 10. 1145/ 13462 81. 13463 23

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1063/5.0005082
https://hpc-forge.cineca.it/files/CoursesDev/public/2016/Bologna/Material_Science_codes_on_innovative_HPC_architectures/CorsoMAX-PRACE-QE-Parallelization.pdf
https://hpc-forge.cineca.it/files/CoursesDev/public/2016/Bologna/Material_Science_codes_on_innovative_HPC_architectures/CorsoMAX-PRACE-QE-Parallelization.pdf
https://hpc-forge.cineca.it/files/CoursesDev/public/2016/Bologna/Material_Science_codes_on_innovative_HPC_architectures/CorsoMAX-PRACE-QE-Parallelization.pdf
https://doi.org/10.1109/IPDPS.2010.5470434
https://github.com/quantumNerd/Quantum-Espresso-Tutorial-2019-Projects/blob/master/16_Si_vacancy_diffusion/neb_cal_1_noCI/si.supercell_3_neb.in
https://github.com/quantumNerd/Quantum-Espresso-Tutorial-2019-Projects/blob/master/16_Si_vacancy_diffusion/neb_cal_1_noCI/si.supercell_3_neb.in
https://github.com/quantumNerd/Quantum-Espresso-Tutorial-2019-Projects/blob/master/16_Si_vacancy_diffusion/neb_cal_1_noCI/si.supercell_3_neb.in
https://github.com/quantumNerd/Quantum-Espresso-Tutorial-2019-Projects/blob/master/16_Si_vacancy_diffusion/neb_cal_1_noCI/si.supercell_3_neb.in
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://www.quantum-espresso.org/Doc/INPUT_NEB.html#idm88
https://www.quantum-espresso.org/Doc/INPUT_NEB.html#idm88
https://www.rcac.purdue.edu/knowledge/gilbreth/overview
https://www.rcac.purdue.edu/knowledge/gilbreth/overview
https://doi.org/10.1021/acsmaterialslett.9b00523
https://www.rcac.purdue.edu/compute/rice/
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
http://arxiv.org/abs/1510.04686
https://doi.org/10.1109/TNANO.2011.2166164
https://doi.org/10.1109/TNANO.2011.2166164
https://doi.org/10.1145/1346281.1346323

	General resource manager for computationally demanding scientific software (MARE)
	Abstract
	1 Introduction
	1.1 State-of-the-art cluster-level and node-level resource management
	1.2 Motivation and requirements for a general resource management tool

	2 Framework design and key features
	2.1 Manager design and implementation
	2.2 Agent design
	2.3 Client design and implementation
	2.4 Design considerations
	2.5 Example policies and control points

	3 Policy example: CPU load
	3.1 Application example: structure optimization with Quantum Espresso
	3.2 Without MARE: load imbalance
	3.3 Multithreading management by the operating system
	3.4 Management policy for CPU load
	3.5 MARE control points in Quantum Espresso
	3.6 Dynamic multithreading
	3.7 Assessment of performance improvement
	3.8 MARE in Quantum Espresso with multiple parallelization levels

	4 Policy example: memory and CPU load
	4.1 ROBIN simulations of materials
	4.2 Peak memory usage
	4.3 Management policy for memory and CPU load
	4.4 Control points with the MARE framework
	4.5 Memory management to enable efficient simulation setup
	4.6 CPU management to automatically balance computing resource distribution
	4.7 Overall performance improvement

	5 Conclusion
	Appendix: Necessary code changes to interface with MARE
	Acknowledgements 
	References




