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Abstract
In this paper, an effective and highly versatile locally-defined time-marching procedure is proposed for dynamic analysis. In 
this novel technique, the time integration parameters of the method are specified at an element level, adapting themselves to 
the features of the adopted discretization and to the local proprieties of the model. In this sense, the errors of the co-applied 
spatial discretization method may be properly counterbalanced by the calculations of the proposed time integration proce-
dure, providing considerably more accurate results. Controllable numerical dissipation is also enabled by the novel approach, 
allowing the user to determine the regions of the model in which algorithmic damping is to be applied, as well as to define 
its intensity. Consequently, in the proposed formulation, an additional “material” parameter may be inputted for the analysis 
(similarly to those defining the physical properties of the model), delineating the numerical features of the considered solu-
tion procedure to be locally applied. The proposed formulation is highly accurate, efficient, and simple to implement. It also 
provides guaranteed stability and improved dissipative analyses, standing as a very effective time-marching technique. At the 
end of the paper, numerical results are presented and compared to those of standard formulations, illustrating the enhanced 
performance of the proposed novel procedure.

Keywords  Time integration · Locally‒defined parameters · Adaptive analysis · Controllable numerical dissipation · 
Enhanced accuracy · Wave propagation models

1  Introduction

In order to find a solution for governing differential equa-
tions describing complex real-world transient models, one 
has to employ spatial and temporal discretization methods. 
In this sense, separation of space and time domains is usu-
ally employed, and spatial discretization procedures are 
typically first considered, leading to a time-domain semi-
discrete system of equations, which is then analysed by a 
time integration procedure. The Finite Element Method 
(FEM) [1, 2], as well as many other formulations based on 
local approximations, has been successfully employed in 
engineering practice and in many other fields of industry 
and science to solve problems based on partial differential 
equations. In fact, local approaches are widely explored in 
what spatial discretization is concerned; however, this is not 

the case for problems in which time integration is regarded. 
In this context, local approximations are mostly based on a 
temporal and/or spatial definition of the time-step value (i.e., 
the development of adaptive time stepping techniques [3–7] 
and/or multi-time-steps/sub-cycling splitting procedures 
[8–12]). However, much more can be explored in this field.

In this work, a novel locally-defined time integration pro-
cedure is proposed, aiming to provide a highly versatile and 
effective time-domain formulation for dynamic analyses. 
The proposed technique is based on locally computed time 
integration parameters, which self-adjust to the properties 
of the spatially-temporally discretized model and to a user-
defined input parameter, which allows introducing different 
numerical features for different subdomains of the model. 
In this context, (i) a link between the adopted spatial and 
temporal discretization procedures is established, allow-
ing their errors to be better counterbalanced and enhanced 
accuracy provided; (ii) specific numerical characteristics, 
such as algorithmic damping, may be locally applied as one 
wishes (e.g., considering predefined regions, different inten-
sities etc.), further improving the accuracy of the proposed 
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solution procedure, as well as its flexibility; (iii) hybrid 
numerical analyses may be easily carried out, avoiding 
complex subdomain/interface definitions and/or treatments.

In fact, in the proposed technique, an additional “mate-
rial” parameter, similarly to those defined by the user to 
locally specify the physical properties of the model, may 
be inputted for the analysis, locally specifying the numeri-
cal properties of the applied solution procedure. In this 
work, this user-defined input parameter mainly controls 
the numerical dissipative features that are considered in the 
adopted solution process. Numerous efforts along the past 
few years have focused on developing both implicit [13–19] 
and explicit [20–27] time integration algorithms that include 
numerical dissipation of the high-frequency content, allow-
ing to reduce spurious non-physical oscillations that some-
times occur due to the excitation of spatially unresolved 
modes. Nevertheless, designing such algorithms may be 
challenging as one should add proper high-frequency dis-
sipation without introducing excessive algorithmic damping 
into the important low frequency modes. In this case, since 
the proposed time integration procedure allows highly flex-
ible configurations, it may better deal with this dilemma than 
standard procedures, establishing more appropriate solution 
strategies for effective dissipative analyses. Additionally, 
since the proposed technique adapts to the properties of the 
problem, it enables properly “tracking” the higher-frequency 
range of the model, enhancing the performance of its dis-
sipative computations.

A locally-defined strategy, in which a new “material” 
parameter is inputted to locally specify the features of the 
applied numerical solution procedure, has already been 
reported taking into account structural dynamic models [28], 
providing good responses. However, in the present work, this 
idea is much deeply explored and novel recurrence relations 
and time integration parameters are formulated, allowing to 
develop a considerably more effective solution procedure. 
In this context, the presently proposed technique considers 
some concepts that have been alternatively forged for explicit 
time-marching techniques [29, 30], enabling enhanced adap-
tive computations to be carried out for both dissipative and 
non-dissipative analyses. Nonetheless, oppositely to what is 
requested by explicit approaches, the adopted time-step of 
the discussed time-marching procedure does not need to be 
equal to or lower than a critical time-step value to provide 
stable analyses, since guaranteed stability is ascertained by 
the novel methodology. In fact, as it is discussed along this 
paper, several other additional positive features are enabled 

by the proposed new technique, describing a very promising 
time integration procedure.

The proposed formulation is based on a simple, single-step, 
truly self-starting, time-marching framework, which was pro-
posed by the author [31] and has been extensively explored 
along the last decade providing several highly effective explicit 
[24, 32] and extended-explicit [25, 29, 30] solution procedures, 
as well as very versatile explicit-explicit [12, 33] and explicit-
implicit approaches [34, 35]. Notwithstanding, as in [28], 
this paper focuses on developing an implicit time-marching 
technique that is highly accurate and considers just one solver 
procedure per time step (in opposite to composite approaches 
[15, 17, 18]), describing an efficient formulation for implicit 
analyses.

The manuscript is organized as follows: first, the govern-
ing equations of the model and the proposed locally-defined 
time integration procedure are presented, describing the basic 
aspects of the novel solution methodology; in the sequence, the 
properties of the method are discussed, and numerical appli-
cations are provided, illustrating the great effectiveness of the 
proposed formulation; finally, at the end of the paper, conclu-
sions are presented, summarizing the several positive features 
of the novel technique.

2 � Locally‑defined time integration 
procedure

Governing equations that describe wave propagation models, 
as well as many other physical problems, require both spa-
tial and temporal discretization procedures to be conjointly 
applied, so that they can be properly numerically treated. In 
this sense, spatial discretization techniques are usually first 
considered, providing a time-domain semi-discrete system of 
equations that may be generically written as [1]:

(1)𝐌𝐔̈(t) + 𝐂𝐔̇(t) +𝐊𝐔(t) = 𝐅(t)

Table 1   Solution algorithm for each time step of the analysis

1. Compute vector � by time integrating the force vector: 
� = ∫ t

n+1

tn
�(�)d�;

2. Compute vector �:
2.1 Initialize vector � = � and, for each element e of the spatial 

discretization: If ( �e

1
≠ 0 or �e

2
≠ 0 ), assemble �

e
(𝜇e

1
�n

e
+ 𝜇e

2
Δt�̇n

e
) 

into �;
2.2. Compute: � = �−1 �;
3. Compute the velocity vector:

3.1. Solve: 𝐄Δ𝐔̇ = 𝐅 − Δt [𝐂𝐔̇
n

+𝐊(𝐔n +
1

2
Δt𝐔̇n + Δt2𝚲)] ; (where 

� is defined by the assembling of �
e
+

1

2
Δt�

e
+ �e

0
Δt2�

e
)

3.2. Compute: �̇n+1 = �̇n + Δ�̇;

4. Compute the displacement vector: �n+1 = �n +
1

2
Δt( �̇n + �̇n+1);

Fig. 1   Spectral radii for Ω
b
 = 1, 1.5, …, 10 (lighter to darker gray 

color), considering the new methodology with different �0
b
 values (for 

� = 0.0): a 1.0; b 0.8; c 0.6; d 0.4; e 0.2; f 0.0. Results for the CD and 
the TR are depicted as black dotted and dashed lines, respectively, for 
reference. (Color figure online)
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where, by adopting a solid mechanics nomenclature, M, C 
and K stand for the mass, damping and stiffness matrices of 
the spatially discretized model, respectively, F(t) stands for 
its force vector, and �(t), �̇(t) and 𝐔̈(t) represent displace-
ment, velocity and acceleration vectors, respectively. The 
initial conditions of this hyperbolic problem are given by 
�0 = �(0) and �̇0 = �̇(0) , where �0 and �̇0 stand for initial 
displacement and velocity vectors, respectively.

By time integrating Eq. (1), considering a time-step ∆t (i.e., 
tn+1 = tn + Δt ), the following expression may be established:

where the integrals on its left-hand-side may be defined as:

in which �n and �̇n represent the approximations of �(tn) 
and �̇(tn) , respectively, and �

0
 stands for a time integration 

parameter for the proposed solution methodology.
By considering Eqs. (3a, 3b, 3c), as well as a simple finite 

difference expression to define the current displacement 
vector (see Eq. (4b)), Eq. (2) may be rewritten, allowing to 
establish Eq. (4a):

In this equation, � stands for the time integral of the 
force term (as indicated on the right-hand-side of Eq. (2)), 
which can be analytically evaluated or numerically com-
puted considering any standard formulation to evaluate the 
numerical value of a definite integral (e.g., the rectangu-
lar rule: � = Δt�n+� , were 0 ≤ � ≤ 1 ; the trapezoidal rule: 
� =

1

2
Δt�n +

1

2
Δt�n+1 ; etc.).

(2)

𝐌
∫

tn+1

tn
𝐔̈(t)dt + 𝐂

∫

tn+1

tn
𝐔̇(t)dt +𝐊

∫

tn+1

tn
𝐔(t)dt =

∫

tn+1

tn
𝐅(t)dt

(3a)
∫

t
n+1

tn

𝐔̈(t)dt = 𝐔̇
n+1 − 𝐔̇

n

(3b)
∫

t
n+1

tn

�̇(t)dt = �
n+1 − �

n

(3c)
∫

t
n+1

tn

�(t)dt = Δt�n +

(

1

2
− 𝜇

0

)

Δt2�̇n + 𝜇
0
Δt2�̇n+1

(4a)

(

𝐌 +
1

2
Δt𝐂 + 𝜇

0
Δt2𝐊

)

𝐔̇
n+1 = 𝐅 +𝐌𝐔̇

n

−
1

2
Δt𝐂𝐔̇

n

− Δt𝐊(𝐔n +

(

1

2
− 𝜇

0

)

Δt𝐔̇n)

(4b)�
n+1 = �

n +
1

2
Δt( �̇n + �̇

n+1)

As one may observe, Eqs. (4a) and (4b) allow to compute 
of the velocities and displacements of the model, respec-
tively, at the current time step of the analysis. The solution 
algorithm described by these equations may be regarded as 
a particular configuration of the more generic time-marching 
solution procedure proposed by Soares [31] and, as so, it 
describes a simple, truly self-starting, single-step, non-dis-
sipative formulation, which becomes spectrally equivalent to 
the Central Difference (CD) method for �

0
= 0 , and repro-

duces the Trapezoidal Rule (TR) for �
0
= 1∕4.

In this work, this solution procedure is modified, and new 
recurrence relationships are proposed, allowing to introduce 
numerical dissipation into the analysis, as well as to enhance 
the accuracy and versatility of the developed technique. In 
this context, the solution algorithm described by Eqs. (4a, 
4b) may be reformulated, introducing an auxiliary vector � 
into the methodology and rewriting Eq. (4a) in a more suit-
able configuration, as indicated next:

In this novel solution procedure, � stands for a numeri-
cal (i.e., non-physical) acceleration vector, which is estab-
lished considering the time integration parameters �

1
 and 

�
2
 . These parameters control the numerical dissipative fea-

tures of the novel approach and, for �
1
= �

2
= 0 , numeri-

cal dissipation is not introduced into the analysis (in this 
case, Eqs.  (5a, 5b, 5c, 5d) reproduce the methodology 
described by Eqs. (4a, 4b)).

Equations (5a, 5b, 5c, 5d) delineate the proposed time-
marching procedure. As previously remarked, this formu-
lation stands as a single-step methodology based only on 
velocities and displacements, being no computation of 
physical accelerations necessary (of course, if required, 
these accelerations may be post-processed, considering 
any proper numerical procedure). Thus, the proposed tech-
nique stands as a truly self-starting approach, eliminating 
any kind of cumbersome initial calculation. Moreover, as 
it may be observed, if lumped mass matrices are consid-
ered (as it is carried out in this work), just one system 
of equations has to be dealt with following the proposed 
formulation (i.e., the one described in Eq. (5b)) and, in this 
case, the technique also stands as a single-solver proce-
dure, avoiding excessive computational efforts, which are 

(5a)�� = �(𝜇
1
�

n + 𝜇
2
Δt�̇n)

(5b)
(

𝐌 +
1

2
Δt𝐂 + 𝜇

0
Δt2𝐊

)

Δ𝐔̇ = 𝐅 − Δt [𝐂𝐔̇
n

+𝐊(𝐔n +
1

2
Δt𝐔̇n + Δt2𝚲)]

(5c)�̇
n+1 = �̇

n + Δ�̇

(5d)�
n+1 = �

n +
1

2
Δt( �̇n + �̇

n+1)

Fig. 2   Spectral radii for Ω
b
 = 1, 1.5, …, 10 (lighter to darker gray 

color), considering the new methodology with different �0
b
 values (for 

� = 0.1): a 1.0; b 0.8; c 0.6; d 0.4; e 0.2; f 0.0. Results for the CD and 
the TR are depicted as black dotted and dashed lines, respectively, for 
reference. (Color figure online)
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usual in composite time-marching formulations [15, 17, 
18]. Additionally, the computational cost of the proposed 
technique may be further reduced if a locally defined 
formulation is regarded. In this context, Eq.  (5a) may 
be rewritten as �� = � , where vector V is established 
taking into account the assembling of local vectors �e , 
which are evaluated for each element e of the adopted 
spatial discretization. In this case, �e may be computed 
as �e(𝜇

e
1
�n

e
+ 𝜇e

2
Δt�̇n

e
) only if a so-called dissipative ele-

ment is regarded (i.e., if �e
1
≠ 0 or �e

2
≠ 0 ), otherwise the 

referred element does not contribute to the reported assem-
bling and �e does not need to be calculated, avoiding extra 
matrix–vector multiplications.

In fact, this locally-defined strategy may be much 
deeply explored and the three time integration parameters 
of the proposed technique may be locally configured, tak-
ing into account the properties of the discretized model 
to establish appropriate local values for �

0
 , �

1
 and �

2
 . In 

this context, not only a more efficient formulation may be 
provided (as previously discussed), but also a much more 
accurate solution methodology may be engendered, con-
sidering adaptive �e

0
 , �e

1
 and �e

2
 values. Thus, as reported, 

the above referred vector V is here established considering 
the assembling of local vectors that are evaluated based 
on the values of �e

1
 and �e

2
 , and the effective matrix of the 

method (see the term in parenthesis on the left-hand-side 
of Eq. (5b)) is established taking into account the assem-
bling of local matrices that are calculated based on the 
values of �e

0
 (i.e., the effective matrix is established by the 

assembling of �e +
1

2
Δt�e + �e

0
Δt2�e).

In this work, the elemental time integration parameters 
�e
0
 , �e

1
 and �e

2
 are defined as function of the maximal sam-

pling frequency of the element Ωmax

e
 (where Ωmax

e
= �max

e
Δt , 

and �max

e
 stands for the highest natural frequency of the ele-

ment, which is calculated based on its local matrices �e 
and �e ) and of its damping ratio �e (which is computed as 
�e = �e(2�e�

max

e
)−1 , where �e and �e are the physical parame-

ters of the model defining matrices �e and �e , respectively). 
Thus, �e

0
 , �e

1
 and �e

2
 are computed taking into account the 

local features of the spatially/temporally discretized model, 
establishing a link between the adopted spatial discretization 
method and the applied time integration approach, which 

enables the errors of these procedures to be better coun-
terbalanced. In this context, spatially-temporally computed 
solutions may become highly accurate, establishing a very 
effective time integration methodology.

The expressions that are here proposed to calculate the 
local time integration parameters �e

0
 , �e

1
 and �e

2
 are:

where 0 ≤ �0
b
≤ 1 stands as a input parameter (to be pro-

vided by the user, for different regions of the model), which 
controls the amount of numerical damping to be introduced 
into the analysis.

The developed expressions for �e
0
 , �e

1
 and �e

2
 (see 

Eqs. (6a, 6b, 6c)) are formulated to introduce maximal 
numerical damping at the maximal sampling frequency 
of the element e, so that the higher modes of the model 
may be effectively dissipated. In fact, by considering these 
expressions, the bifurcation spectral radius of the method 
becomes equal to �0

b
(1 − �e)—thus, the input parameter �0

b
 

represents the bifurcation spectral radius of the method 
for �e = 0 (undamped model)—and its bifurcation sam-
pling frequency becomes equal to the maximal sampling 
frequency of the focused element (i.e., �b ≡ �0

b
(1 − �e) and 

Ωb ≡ Ωmax

e
 ). By following this design, maximal algorith-

mic damping is provided for Ωmax

e
 (which enables a highly 

effective local dissipative procedure, allowing the influ-
ence of spurious high-frequency modes to be properly 
eliminated), and the intensity of this applied numerical 
dissipation is controlled by the input parameter �0

b
 , render-

ing a very flexible approach. Additionally, each element 
of the discretized model may consider a different �0

b
 value, 

so that numerical damping may be locally applied as one 
wishes, further improving the versatility of the proposed 
formulation. In this context, different �0

b
 values may be 

provided by the user for different regions of model, and �0
b
 

may then be regarded as an additional “material” property 
to be specified in the analysis (such as the physical param-
eters defining matrices M, C and K, for instance), con-
trolling the amount of numerical dissipation to be locally 
applied. The purpose of numerical dissipation is to reduce 

(6a)�e

0
=

1

4
− Ωmax−2

e

(6b)�e

1
=

{

(
1

4
+ �

e
Ωmax−1

e
)[�0

b
(1 − �

e
) + 1]2 − 1

}

Ωmax−2

e

(6c)�e

2
= −

1

2

(

1

4
+ �

e
Ωmax−1

e

)

[�0
b
(1 − �

e
) − 1]2 Ωmax−2

e

Fig. 3   Period elongation errors for Ω
b
 = 1, 1.5, …, 10 (lighter to 

darker gray color), considering the new methodology with different �0
b
 

values: a 1.0; b 0.8; c 0.6; d 0.4; e 0.2; f 0.0. Results for the CD and 
the TR are depicted as black dotted and dashed lines, respectively, for 
reference. (Color figure online)
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spurious non-physical oscillations that sometimes occur 
due to excitation of spatially unresolved modes. One basic 
difficulty in designing such dissipative algorithms is to 
add high-frequency dissipation without introducing exces-
sive algorithmic damping in the important low-frequency 
modes. By considering these locally-defined adaptive 
parameters, this difficulty may be better overcome and 
improved performances obtained.

As discussed, the proposed technique is formulated 
so that Ωb ≡ Ωmax

e
 and �b ≡ �0

b
(1 − �e) . In this case, since 

Ωb ≤ Ωc (where Ωc stands for the critical sampling fre-
quency of the method), stability is always provided follow-
ing the proposed procedure (i.e., Ωmax

e
 is always less than or 

equal to Ωc , ensuring stability). Additionally, for �e
1
= 0 and 

�e
2
= 0 (which is yielded by �0

b
= 1 and �e = 0 , for instance), 

Ωc = Ωb ≡ Ωmax

e
 and non-dissipative analyses are then per-

formed. In this case, the technique becomes uniquely defined 
by �e

0
 and, as Eq. (6a) indicates, �e

0
→ 1∕4 as Ωmax

e
→ ∞ . 

Thus, the technique tends to replicate the TR, as Ωmax

e
 

increases. As Ωmax

e
 decreases, the period elongation errors 

provided by the novel approach are reduced, eventually 
also yielding negative period elongation errors (in fact, the 
proposed formulation provides an intermediate behaviour 
between the CD and the TR, for instance, for 0 < 𝜇e

0
< 1∕4 

or, alternatively stated, for Ωmax

e
> 2 ). Thus, taking into 

account non-dissipative analyses, the new technique (which 
provides guaranteed stability) is typically more accurate than 
the TR, which is “the second-order accurate A-stable linear 
multistep method with the smallest error constant” (Dahl-
quist’s theorem [36]).

Further details about the new locally-defined time inte-
gration procedure, which is determined by Eqs. (5a, 5b, 5c, 
5d and 6a, 6b,6c) are provided in the next section, in which 
the properties of the proposed formulation are discussed. 
The basic steps of the proposed time-marching solution 
algorithm are summarized in Table 1, in which Eqs. (5a, 
5b, 5c, 5d) are reviewed taking into account a locally-
defined approach. As one may observe in this algorithm, 
the designed solution procedure is very easy to implement 
and to apply, standing as a quite simple and straightforward 
formulation, although it is highly flexible and versatile.

3 � Properties of the method

In this section, a single degree of freedom (SDOF) problem 
is considered in order to further discuss the properties (i.e., 
accuracy, stability etc.) of the proposed technique, follow-
ing standard guidelines [1]. Of course, since different val-
ues are expected to occur along the discretized model for 
the time integration parameters of the method, a standard 
modal decomposition correlation is not valid for the pro-
posed formulation. Thus, results are here presented taking 
into account several different quantities for the input param-
eter �0

b
 , as well as for the sampling frequencies ( Ωmax

e
 ) and 

damping ratios ( �e ) of the model/method (and, consequently, 
for �e

0
 , �e

1
 and �e

2
 ), aiming to illustrate a basic possible range 

of behaviours and features that characterizes the discussed 
locally-defined approach.

The equation of motion for the SDOF model may be writ-
ten as:

where � and w stand for the damping ratio and the natural 
frequency of the model, respectively. Considering Eq. (7) 
and the proposed technique, the following recursive rela-
tionship can be established for the discussed time-marching 
solution:

where A and L stand for the amplification matrix and the 
load operator vector of the method, respectively, which may 
be defined as:

(7)ü(t) + 2𝜉w u̇(t) + w
2
u(t) = f (t)

(8)

[

u
n+1

u̇
n+1

]

=

[

A
11

A
12

A
21

A
22

] [

u
n

u̇
n

]

+

[

L
1

L
2

]

t
n+1

∫
tn

f (t)dt = �

[
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n
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n

]

+ �
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∫
tn

f (t)dt
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(

1
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w
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1
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�
2
w
4Δt4]ΔtA

(9c)A
21

= −(1 + �
1
w
2Δt2)w2ΔtA

(9d)A
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Fig. 4   Amplitude decay errors for Ω
b
 = 1, 1.5, …, 10 (lighter to 

darker gray color), considering the new methodology with different �0
b
 

values: a 1.0; b 0.8; c 0.6; d 0.4; e 0.2; f 0.0. Results for the CD and 
the TR are depicted as black dotted and dashed lines, respectively, for 
reference. (Color figure online)
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where A = (1 + �wΔt + �
0
w2Δt2)−1.

Expressions (9a, 9b, 9c, 9d), when expanded in Taylor’s 
series, provide:

and, by comparing these expressions to those of the expan-
sion of the analytical amplification matrix Aa:

(10b)L
2
= A

(11a)
A
11

= 1 −
1

2
w
2Δt2 +

1

2
�w3Δt3 +

1

2
(�

0
− �

1
− �2)w4Δt4 + O(Δt5)

(11b)

A12 = Δt − �wΔt2 −
(

1
4
− �2

)

w2Δt3

+
(

1
4
+ �0 − �2

)

�w3Δt4 + O(Δt5)

(11c)
A
21

= −w2Δt + �w3Δt2 + (�
0
− �
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− �2)w4

Δt3 − (2�
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− �

1
− �2) �w5Δt4 + O(Δt5)

(11d)
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24
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one may observe that the proposed technique is second-
order accurate, independently of the adopted values for the 
time integration parameters of the method.

The stability condition requires that matrix A does not 
amplify errors as the time step algorithm advances on time. 
Therefore, to ensure stability, � ≤ 1 must hold, where � is the 
spectral radius of matrix A, which represents the maximal 
absolute magnitude of the eigenvalues of the amplification 
matrix. In the proposed time-marching procedure, the eigen-
values of A are given by:

where A
1
 and A

2
 stand for half the trace and the determinant 

of A, respectively. These terms may be specified as follows, 
taking into account the discussed formulation:

where Ω = wΔt stands for the sampling frequency of the 
model.

By examining the spectral radius of matrix A, the time 
integration parameter �

0
 may be determined as function of 

the critical sampling frequency of the method (i.e., as func-
tion of Ωc , which is the sampling frequency value under 
which stability is ensured), considering �

1
= �

2
= 0 and 

� = 0 . In this case, one has:
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Analogously, by scrutinizing the spectral radius of matrix 
A, the time integration parameters �

1
 and �

2
 may be speci-

fied as function of the bifurcation sampling frequency (i.e., 
as function of Ωb , which is the sampling frequency value at 
which complex conjugate eigenvalues bifurcate into real dis-
tinct eigenvalues), in such a way that �b = �0

b
(1 − �) , where 

�b stands for the bifurcation spectral radius. In this case, 
one has:

As one may observe, Eqs. (15, 16a, 16b) are used to define 
�e
0
 , �e

1
 and �e

2
 as indicated in Eqs. (6a, 6b, 6c). In this context, 

as previously referred, �
0
 , �

1
 and �

2
 may be evaluated for 

(15)�
0
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1

4
− Ω−2

c

(16a)�
1
= {(�
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+ �Ω−1

b
+ Ω−2

b
)[�0

b
(1 − �) + 1]2 − 1}Ω−2

b

(16b)�
2
= −

1

2
{(�

0
+ �Ω−1

b
+ Ω−2

b
)[�0

b
(1 − �) − 1]2 + [1 − 4(�

0
+ Ω−2

b
)]}Ω−2

b

each element of the discretized model, imposing the bifur-
cation sampling frequency of the method (which is simpli-
fied to its critical sampling frequency, in a non-dissipative 
analysis) to equal the maximal sampling frequency of the 
element. Thus, in the proposed formulation, Ωb ≡ Ωmax

e
 and 

�b ≡ �0
b
(1 − �e) (which simplifies to Ωc ≡ Ωmax

e
 and �b = 1 

once a non-dissipative analysis is regarded). By following 
this approach, the proposed technique may become very 
effective dissipating spurious high-frequency modes, as well 
as counterbalancing errors provided by co-applied spatial 

(a)

(b)

u = 0 f > 0  1 2

u = 0

u = 0

u = 0

u > 0

Fig. 6   Sketches of the models: a heterogeneous rod (example 1); b 
membrane (example 2)
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discretization procedures, rendering a very accurate time-
marching formulation.

In Figs. 1 and 2, the spectral radii of the proposed tech-
nique are depicted, considering different values for �0

b
 , 

Ωb and � . In these figures, results are provided consider-
ing �0

b
 = 0, 0.2, …, 1; Ωb = 1, 1.5, …, 10; and physically 

undamped ( � = 0) and damped ( � = 0.1) models. Results for 
the TR and the CD are also depicted in these figures, for 
reference. As one may observe in Fig. 1a, � is never lower 
than 1 for Ω ≤ Ωc , once �0

b
 = 1 and � = 0 are considered, 

indicating that numerical and/or physical damping is not 
introduced into the analysis, in this case. As the selected 
value for �0

b
 decreases, more intense algorithmic damping 

is applied, allowing to control the amount of numerical dis-
sipation to be prescribed for the higher frequencies of the 
model (which, in the proposed technique, are adaptively 
“tracked” taking into account the different Ωmax

e
 values of the 

discretized model), without severely affecting its important 
low-frequency modes.

In Figs. 3 and 4, standard period elongation and ampli-
tude decay errors [1] are depicted, respectively, considering 
�0
b
 = 0, 0.2, …, 1 and Ωb = 1, 1.5, …, 10 (as well as � = 0). 

In this case, as Fig. 3 illustrates and has been previously 
highlighted, the period elongation errors of the proposed 
technique are typically lower than those related to the TR, 
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Fig. 8   Time-history results for the axial displacements at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 1: a new; b trapezoidal rule; c gener-
alized α; d composite Bathe
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describing a very accurate time-marching procedure. As 
Fig. 3 further indicates, the period elongation errors of the 
new approach vary from negative to positive values as Ωb 
increases and, consequently: (i) extremely small period elon-
gation errors take place for median Ωb values, providing, 
in this case, a highly accurate time-marching formulation 
(this aspect is further illustrated in Fig. 5); (ii) for complex 
problems, in which several Ωmax

e
 values occur, the discussed 

locally-defined time-marching formulation may enable both 
positive and negative period elongation errors, according to 
the local features of the model, allowing dispersion errors 
to be countervailed, further improving the accuracy of the 
analysis.

Taking into account amplitude decay errors, as Fig. 4 
describes, no amplitude decay is induced (as expected) once 

�0
b
 = 1 is adopted (see Fig. 4a). On the other hand, as Fig. 4 

also depicts (and is also expected), increasing amplitude 
decay errors are provided once lower �0

b
 values are regarded. 

Nevertheless, in this case, even when null or low �0
b
 values 

are considered, relative small errors are still provided for 
the important low-frequency range, highlighting the good 
performance of the proposed dissipative approach to add 
high-frequency dissipation without introducing excessive 
algorithmic damping in the important low-frequency modes.

In Fig. 5, relative error (L2 norm) responses are provided, 
considering an undamped SDOF model submitted to unit 
(both displacement and velocity) initial conditions. In this 
case, results computed by the n-substep TR and CD are 
also provided in the figure, for reference (in these n-substep 
solution procedures, n sub-step evaluations are carried out 
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Fig. 9   Time-history results for the axial displacements at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 2: a new; b trapezoidal rule; c gener-
alized α; d composite Bathe
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within a time step of the analysis, by the referred technique, 
considering a temporal discretization of Δt∕n ). As one may 
observe, the enhanced performance of the novel approach is 
clearly demonstrated in this figure, which indicates that the 
proposed single-step formulation may provide significantly 
more accurate responses than standard multiple-step com-
posite time integration procedures. In fact, as Fig. 5 illus-
trates, the new technique, considering �0

b
 = 1 and Ωmax

e
 = 2.46, 

is able to compute results that are equivalent to those of 
the 14-substep TR or to those of the 10-substep CD, high-
lighting the remarkable effectiveness of the proposed novel 
approach.

In the next section, numerical results are presented 
regarding the analyses of various spatially discretized mod-
els. For these more complex applications (which are actually 

the focus of this paper), the comportment of the proposed 
time-marching formulation may be better examined, once, 
for these problems, temporal and spatial discretization pro-
cedures act together for solution, allowing several different 
values for the time integration parameters of the method to 
concurrently occur along the discretized domain of model.

4 � Numerical examples

Two numerical applications are discussed in this section, 
whose sketches are depicted in Fig. 6. In the first example, 
the axial motion of a heterogeneous rod is analysed and, in 
this case, different material and/or numerical properties are 
applied for different subdomains of the model, allowing to 
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Fig. 10   Time-history results for the axial displacements at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 3: a new; b trapezoidal rule; c gen-
eralized α; d composite Bathe
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analyse the performance of the proposed solution procedure 
for multiple configurations. In the second example, on the 
other hand, the transversal motion of a homogeneous square 
membrane is studied and, for this application, an unstruc-
tured finite element mesh is adopted for the spatial discre-
tization of the model, allowing several parameters values 
to co-exist along the discretized domain of the membrane, 
following a non-trivial distribution. In this case, the versa-
tility and robustness of the proposed locally-defined adap-
tive procedure may be further analysed, better verifying the 
effectiveness of the novel formulation.

The responses that are computed by the proposed time-
marching technique are compared to those of very well-
known time integration procedures, such as the Trapezoi-
dal Rule [13], the Generalized α method [14] (adopting 
�∞ = 0.5 ), and the Bathe method [15]. The Generalized α 

method stands as a dissipative time-integration formulation, 
whose computational effort is basically the same of the TR, 
requiring one solver procedure per time step. The Bathe 
method, on the other hand, stands as a composite dissipa-
tive approach, requiring two solver procedures per time step. 
Thus, its computational effort is basically twice that of the 
TR or of the Generalized α method. The computed results 
are also compared to those provided by another locally-
defined formulation [28], illustrating the performance of 
the proposed new approach in comparison to a previously 
presented equivalent technique.

Analytical answers are available taking into account 
the two applications that are described in this section [37, 
38], allowing to properly evaluate the accuracy of the time-
marching formulations that are here considered for solution. 
Thus, to calculate the relative errors of the computed results, 
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Fig. 11   Time-history results for the axial displacements at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 4: a new; b trapezoidal rule; c gen-
eralized α; d composite Bathe
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when comparing the performances of the adopted time inte-
gration procedures, the following expression is regarded:

in which u stands for the computed time-history response of 
a selected degree of freedom, ua corresponds to its analytical 
counterpart, and N represents the total number of time steps 
in the analysis.

As previously observed, the standard Finite Element 
Method (FEM) [1, 2] is here employed for the spatial dis-
cretization of the above-referred models. Notwithstanding, 
the discussed time integration procedure is not restricted 

(17)Error =

[

N
∑

n=1

(un − u
a
(tn))2∕

N
∑

n=1

(u
a
(tn))2

]1∕2

to be applied associated with this method, and it may be 
employed in association with any well-established spatial 
discretization technique that is based on local formulations.

4.1 � Example 1

The first application considered in this work is that of 
a rectangular body behaving like a heterogeneous one-
dimensional rod [37]. A sketch of the model is depicted in 
Fig. 6a. As illustrated in this figure, the rod is fixed at its 
right border ( x = L ) and subjected to a prescribed axial trac-
tion acting on its left border ( x = 0 ), which is defined by 
f (t) = P sin(� t∕T)[H(t) − H(t − T)] , where P = 1.0 kNm−2 
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Fig. 12   Time-history results for the axial velocities at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 1: a new; b trapezoidal rule; c general-
ized α; d composite Bathe
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and T = 0.01 s describe the amplitude and the duration of 
the applied traction, respectively, and H(⋅) stands for the 
Heaviside function. The length of the rod is defined by 
L = 1.0m , and two equal-sized subdomains compose the 
referred heterogeneous model, as depicted in Fig. 6a. In this 
case, whereas the left subdomain of the rod (subdomain 1) 
is formed by a material whose p-wave propagation veloc-
ity is defined by c

1
= 10ms−1 , different materials are here 

employed to characterize the right subdomain of the model 
(subdomain 2). Thus, in this example, the following values 
are considered for the p-wave propagation velocity of sub-
domain 2: (i) c

2
= 10ms−1 (model 1, homogeneous rod); (ii) 

c
2
= 20ms−1 (model 2); (iii) c

2
= 30ms−1 (model 3); and (iv) 

c
2
= 40ms−1 (model 4).

A uniform structured FEM mesh with 4000 linear trian-
gular elements is employed to spatially discretize the rod 
(taking into account a regular 100 × 20 subdivision of its 
domain). In this case, for the proposed novel formulation, 
three layers are considered along the discretized domain of 
the model, for which different �0

b
 values are assigned. Thus, 

(i) for the first layer, which is delineated by 0 ≤ x ≤ 10−2L , 
�0
b
= 0 is applied; (ii) for the second layer, which is defined 

by 1
2
L ≤ x ≤ (

1

2
+ 10−2)L , �0

b
= c

1
∕c

2
 is considered; and, 

finally, (iii) for the third layer, which is described by the 
remain of the model, �0

b
= 1 is assigned. In this context, 

numerical damping is applied just on 2% of the domain of 
the heterogeneous rod (i.e., on a narrow strip of elements 
next to its loaded border and on an analogous strip next to 
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Fig. 13   Time-history results for the axial velocitiess at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 2: a new; b trapezoidal rule; c general-
ized α; d composite Bathe
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its material interface), and on 1% of the domain of the homo-
geneous rod (i.e., just on a narrow strip of elements next to 
its loaded border).

Initially, the referred homogeneous rod is studied, and 
several different time-step values are considered for its 
analysis. For each one of these adopted Δt values, the rela-
tive error of the computed axial displacements and veloci-
ties at the middle of the rod ( x = L∕2 ) is evaluated, follow-
ing Eq. (17), and depicted in Fig. 7, taking into account 
the discussed novel approach and the previously referred 
standard time-marching procedures (similar error results are 
obtained if other points of the model are considered). As 
one may observe in this figure, the proposed novel formula-
tion provides exceptionally more accurate responses than 
the referred standard techniques, even yielding much better 

results than the selected composite methodology, which con-
siders two solving procedures per time step.

It is important to observe that the error results that are 
depicted in the Fig. 7 are related to both the spatial and 
the temporal discretization methods that are applied in the 
analysis. Thus, the convergence orders of the selected time 
integration procedures are not supposed to be reproduced in 
this figure (as they are, for instance, in Fig. 5), as it describes 
the behaviour of the adopted conjoint spatial/temporal solu-
tion methodology rather than of the adopted time integration 
procedure.

In Fig. 8, time history results for the axial displacement 
at the middle of the homogenous rod (model 1) are depicted, 
taking into account the referred time integration procedures 
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Fig. 14   Time-history results for the axial velocities at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 3: a new; b trapezoidal rule; c general-
ized α; d composite Bathe
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Fig. 15   Time-history results for the axial velocities at the middle of the rod ( Δt = 5 ⋅ 10−4s ), for c2/c1 = 4: a new; b trapezoidal rule; c general-
ized α; d composite Bathe

Table 2   Computed relative errors for the displacements at the middle 
of the rod ( Δt = 5 ⋅ 10

−4
s)

Method c2/c1

1 2 3 4

New 1.60∙10–2 3.60∙10–2 5.24∙10–2 5.75∙10–2

Trapezoidal rule 8.16∙10–2 1.12∙10–1 1.57∙10–1 1.75∙10–1

Generalized α 7.98∙10–2 1.09∙10–1 1.55∙10–1 1.72∙10–1

Composite bathe 7.01∙10–2 8.98∙10–2 1.27∙10–1 1.43∙10–1

Table 3   Computed relative errors for the velocities at the middle of 
the rod ( Δt = 5 ⋅ 10

−4
s)

Method c2/c1

1 2 3 4

New 2.07∙10–1 2.75∙10–1 2.84∙10–1 2.69∙10–1

Trapezoidal Rule 7.08∙10–1 6.52∙10–1 6.56∙10–1 6.12∙10–1

Generalized α 6.87∙10–1 6.34∙10–1 6.43∙10–1 5.93∙10–1

Composite Bathe 6.38∙10–1 5.57∙10–2 5.58∙10–1 5.42∙10–1
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and Δt = 5 ⋅ 10−4s . Analogous results are depicted in Figs. 9, 
10, and 11, considering the described heterogeneous model 
2, 3, and 4, respectively. Similarly, time history results for 
the axial velocities at the middle of the rod, for models 1, 2, 
3 and 4, are depicted in Figs. 12, 13, 14 and 15, respectively. 
As these figures illustrate, the proposed locally-defined 
adaptive technique properly deals with the several configu-
rations that are here considered for the rod, always provid-
ing considerably better responses than standard methodolo-
gies. The relative error results of the time history responses 
depicted in Figs. 8, 9, 10 and 11 and in Figs. 12, 13, 14 

Table 4   Computed relative errors at the middle of the rod considering 
locally-defined techniques

Type Method c2/c1

1 2 3 4

Displace-
ment

New 1.60∙10–2 3.60∙10–2 5.24∙10–2 5.75∙10–2

Ref. [28] 6.20∙10–2 7.88∙10–2 1.15∙10–1 1.32∙10–1

Velocity New 2.07∙10–1 2.75∙10–1 2.84∙10–1 2.69∙10–1

Ref. [28] 5.84∙10–1 4.98∙10–1 5.17∙10–1 5.09∙10–1
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Fig. 16   Time-history results computed by the proposed new methodology (black line) and the composite Bathe method (grey line), for c2/
c1 = 100, at a x = 0 (left border of the rod); b x = L/4; c x = L/2; and d x = 3L/4
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Fig. 17   Sketch of the discretized membrane: a Ωmax

e
 distribution 

along the model and indication of the selected numerically damped 
(left) and undamped (right) subdomains; b zoomed view of the 

upper-left part of the adopted mesh (dissipative elements are depicted 
in blue and non-dissipative elements are depicted in green). (Color 
figure online)
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Fig. 18   Time-history results for the transversal displacements at the middle of the membrane: a new; b trapezoidal rule; c generalized α; d com-
posite Bathe
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and 15 are provided in Tables 2 and 3, respectively, further 
demonstrating the excellent accuracy of the proposed novel 
approach. As these tables indicate, the errors computed for 
the novel procedure are approximately 4.4 and 2.5 (Table 2) 
and 3.1 and 2 (Table 3) times lower than the lowest error 
computed for the other techniques, considering the referred 
homogeneous and heterogeneous model, respectively. As 
one may perceive, these numbers describe a huge differ-
ence of performance. In fact, by just comparing the errors 
computed for these described standard techniques, this rela-
tion becomes, at most, less than 1.3. Thus, for the considered 
analyses, the benefits of the new approach in relation to the 
composite Bathe method may be considered much greater 
than the benefits of the composite Bathe method to the TR, 
for instance. This represent a huge gain of performance for 

the novel technique, since its computational effort to analyse 
the considered rod is basically the same as that of the TR, 
which is basically half that of the Bathe method. In fact, the 
computed CPU times for all the above described analyses 
were basically the same for the novel technique, the TR and 
the Generalized α method (with a discrepancy of less than 
10% between their lowest and highest CPU times, regarding 
all the performed analyses), which were approximately half 
that of the composite Bathe method.

In Table 4, the relative error results that are computed 
considering the locally-defined time-marching technique 
described in reference [28] are provided, indicating that, as 
previously highlighted, the presently proposed formulation 
stands as a more effective solution procedure than equivalent 
previously presented techniques (although, as described in 
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Fig. 19   Time-history results for the transversal displacements at the middle of the membrane (damped model): a new; b trapezoidal rule; c gen-
eralized α; d composite Bathe
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Tables 3 and 4, the formulation described in reference [28] 
also provides lower errors than standard approaches).

It is interesting to observe that the novel technique may 
also compute considerably more accurate responses than 
standard explicit formulations. To illustrate this fact, for 
c
2
∕c

1
= 1 and c

2
∕c

1
= 2 , for instance, stable analyses may 

be enabled considering the composite explicit technique pro-
vided by Noh and Bathe [21], allowing to compute relative 
errors of 6.02∙10–2 and 7.05∙10–2 for displacements and of 
5.76∙10–1 and 4.66∙10–1 for velocities, respectively, which 
are, once again, considerably larger than those of the new 
technique.

Fig. 20   Computed results along the discretized (1) undamped and (2) damped membrane, at t = 0.1 s: a reference response; b new c generalized 
α; d composite Bathe

Table 5   Computed relative errors at the middle of the membrane

Method Undamped model Damped model

New 1.75∙10–1 9.72∙10–2

Trapezoidal Rule 3.06∙10–1 1.54∙10–1

Generalized α 2.83∙10–1 1.40∙10–1

Composite Bathe 2.80∙10–1 1.42∙10–1

Table 6   Computed relative errors at the middle of the membrane con-
sidering locally-defined techniques

Method Undamped model Damped model

New 1.75∙10–1 9.72∙10–2

Ref. [28] 2.25∙10–1 1.15∙10–1
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Finally, in Fig. 16, time history results for the axial dis-
placement at four different points of the rod are depicted, 
for the novel approach and for the composite Bathe method, 
considering a highly heterogeneous model (i.e., c

1
= 10ms−1 

and c
2
= 1000ms−1 ). For this configuration, as illustrated 

in this figure, the novel technique still provides much more 
accurate responses than the referred composite method, 
rendering results with fewer spurious non-physical oscilla-
tions, as well as with fewer amplitude decay errors (describ-
ing a combination that, although ideally pursued, is hardly 
achieved).

4.2 � Example 2

In this second application, the transversal motion of a homo-
geneous square membrane is analysed [38]. The membrane 
is fixed at its inferior ( y = 0 ), superior ( y = L ) and right 

( x = L ) borders and, at its left ( x = 0 ) boundary, u(t) = H(t) 
is prescribed. A sketch of the model is depicted in Fig. 6b. 
The geometry of the membrane and its wave propagation 
velocity are defined by L = 1.0m and c = 10ms−1 , respec-
tively. The symmetry of the model is regarded and just 
its upper half is spatially discretized, considering a FEM 
mesh composed by 40,000 linear triangular elements. For 
this application, since a discontinuity of the boundary con-
ditions occurs at the upper left ( x = 0 , y = L ) corner of 
the discretized model, refinement is applied towards this 
region. For the proposed novel formulation, initially, two 
layers are considered along the discretized domain of the 
membrane, for which different �0

b
 values are assigned. In 

this context, (i) for the first layer, which is characterized 
by 0 ≤ x ≤ 10−1L , �0

b
= 0 is applied; and, (ii) for the sec-

ond layer, which is represented by the remain of the model, 
�0
b
= 1 is considered. The adopted time-step value for this 
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Fig. 21   Time-history results for the transversal displacements at the middle of the membrane considering the new methodology with different �0
b
 

values (for the entire domain of the model): a 1.00; b 0.75; c 0.50; d 0.25
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application is Δt = 2.5 ⋅ 10−4s . The computed Ωmax

e
 values 

for these referred spatial and temporal discretizations are 
depicted in Fig. 17. This figure also illustrates the consid-
ered subdomains for �0

b
 and provides a partial view of the 

adopted FEM mesh. As indicated in Fig. 17 (and expected), 
the values of Ωmax

e
 vary towards the upper left corner of the 

membrane, following the refinement of the adopted mesh.
Time-history results for the computed displacements at 

the middle ( x = y = L∕2 ) of the membrane are depicted in 
Fig. 18, taking into account the previously referred time-
marching formulations. As this figure illustrates, the pro-
posed novel technique is able to better diminish the non-
physical oscillations of the problem, as well as to avoid 

excessive algorithmic damping, providing more accurate 
responses than the referred standard time-marching proce-
dures. Analogous results are depicted in Fig. 19, considering 
a physically damped model (i.e., � ≠ 0 ). In this case, once 
again the new approach is able to provide better responses, 
more properly extinguishing spurious oscillations and bet-
ter avoiding numerical dissipative and dispersive errors. 
These aspects are further illustrated in Fig. 20, in which 
computed displacement results along the discretized domain 
of the model are depicted, for t = 0.1 s. The relative error 
results of the time history responses described in Figs. 18 
and 19 are provided in Table 5, further demonstrating the 
better accuracy of the proposed novel approach. As this 
table indicates, the errors computed for the novel procedure 

Fig. 22   Computed results along the discretized membrane, at (1) t = 0.05 s and (2) t = 0.20 s: a reference response; b new (0.50) c generalized α; 
d composite Bathe
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are approximately 1.6 (undamped model) and 1.5 (damped 
model) times lower than the lowest error computed for the 
standard techniques, indicating once again the great gain in 
performance provided by the new formulation (in fact, by 
just comparing the errors computed for the described stand-
ard techniques, this relation becomes, at most, 1.1).

As described in Table 4, the relative error results that are 
computed by the locally-defined time-marching procedure 
reported in reference [28] are, as well, provided in Table 6 
for this second application, indicating once again the better 
performance of the novel approach in relation to this previ-
ously presented technique.

In Fig. 21, time-history results for the computed dis-
placements at the middle of the undamped membrane are 
depicted, considering a unique value for the input parameter 
�0
b
 of the novel approach, which is assigned for the entire 

domain of the model. In this case, results for �0
b
= 1 (non-

dissipative analysis), as well as for �0
b
= 0.75 , �0

b
= 0.5 and 

�0
b
= 0.25 (dissipative analyses), are depicted, allowing to 

evaluate the performance of the proposed solution technique 
considering different amounts of applied algorithmic damp-
ing. Results for �0

b
= 0.5 are further provided in Fig. 22, in 

which computed displacement responses along the discre-
tized domain of the model, at t = 0.05 s and t = 0.2 s, are 
depicted, allowing to compare once more the accuracy of the 
novel approach to those of standard techniques.

As Figs.18, 19, 20, 21, 22 illustrate, the proposed 
locally-defined adaptive formulation properly deals with 
the spatially unresolved higher modes of the model, suit-
ably diminishing the non-physical oscillations that arise on 
the computed responses without significantly affecting the 
contribution of the important lower modes, providing more 
accurate solutions than standard time-marching techniques.

5 � Conclusions

In this paper, a locally-defined time-marching procedure 
is proposed for dynamic analysis. The discussed technique 
considers a second-order accurate, truly self-starting, single-
step, single-solver, solution algorithm to recursively com-
pute the displacements and velocities of the model. Numeri-
cal accelerations are also locally computed in the proposed 
formulation, taking into account local matrix–vector multi-
plications just on subdomains where dissipative analyses are 
to be performed. In fact, as discussed in the proposed pro-
cedure, the three time integration parameters of the method 
are locally determined following the local properties of the 
discretized model and the input parameter �0

b
 , which controls 

the amount of numerical damping to be introduced into the 
analysis. Thus, in the reported technique, �0

b
 may be provided 

by the user as an additional “material” parameter (similarly 

to those defining the physical properties of the model), 
locally delineating the numerical features of the considered 
solution procedure. In this context, a much more versatile 
time integration methodology is enabled, allowing more 
flexible analyses to be carried out, and enhanced accuracy 
provided.

As illustrated in the previous section, the proposed tech-
nique is highly accurate, always providing much better 
results than standard approaches, even considering com-
posite time-marching procedures. In fact, as reported, 
in the proposed locally-defined adaptive formulation, 
Ωb ≡ Ωmax

e
 and �b ≡ �0

b
(1 − �e) . Thus, for any given time-

step value, all elements of the model operate as if in their 
bifurcation state, ensuring stability for the analyses and 
establishing a link between the adopted spatial and tem-
poral discretization procedures, allowing their errors to be 
better counterbalanced and more accurate responses com-
puted. In this context, as it has been illustrated, the tech-
nique also provides a very effective self-adjustable dissipa-
tive approach, allowing higher frequencies to be “tracked” 
and, consequently, the influence of the spatially unresolved 
higher modes of the model to be properly damped (dimin-
ishing spurious non-physical oscillations that may arise 
on the computed responses), without significantly affect-
ing the contribution of the important lower modes, further 
enhancing the accuracy of the proposed technique.

As described in Table 1, the discussed locally-defined 
adaptive procedure is also quite simple to implement and 
to apply, rendering a very straightforward time-marching 
formulation that avoids complex subdomain definitions 
and interface treatments between regions in which differ-
ent numerical features are to be considered. In fact, as 
discussed in this manuscript, the proposed technique pro-
vides several positive attributes that are usually required 
from an effective time-marching formulation, standing as a 
very attractive solution methodology for dynamic analysis.
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