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Abstract
In this paper, the effect of using a piezoelectric material has been shown on postponing the flutter phenomenon on a regular 
blade. System response of a smart blade with only flap-wise and edgewise plunge DOF shows that the oscillations of the smart 
blade can be effectively decayed in a very short time using efficient piezopatches in the flap-wise and edgewise plunge DOF. 
Furthermore, in a smart blade with four DOF, it has been indicated having piezopatches in flap-wise and edgewise plunge 
DOF can defer the flutter speed 81.41% which is a noticeable increase in the flutter speed. Finally, by adding a piezopatch 
to the pitch DOF to a smart blade, it is possible to postpone the flutter speed 155% which is a very considerable increase.

Keywords Piezoelectric material · Flutter · Smart blade

1 Introduction

In modern blade, due to high flexibility, aeroelastic analysis 
is crucial. To maximize the blade aerodynamic performance, 
it is very important to control aeroelastic instability [1, 2]. 
Flutter phenomenon is one significant aeroelastic analysis. 
Flutter can affect negatively the blade performance even it 
can cause to redesign the blade. In modern blade, preventing 
flutter is crucial due to its effect on the long-term durability 
of the blade structure, performance, operational safety, and 
energy efficiency of the system [3–7].

For many years, smart materials as piezoelectric materials 
have been used in blade structures. Piezoelectric materials 
can operate as sensors and/or actuators on a blade, respec-
tively. They can perform as actuators and dampers to control 
the blade aeroelastic behavior. In fact, implementing piezo-
electric materials can avoid redesigning the blade which can 
significantly delay the flutter [8, 9]. These materials have 
been implemented on active aeroelastic control of an adap-
tive blade [10]. They have also been used in honeycomb 
material [11]. Moreover, they can be implemented as vibra-
tion damping to control a plate subjected to time-dependent 
boundary moments and forcing function [12]. In addition, 
piezoelectric materials can perform as flutter controller in 

damaged composite laminates by employing finite element 
method [13]. Those materials can be used to study the aeroe-
lastic flutter analysis on thick porous plates [14]. Moreover, 
piezoelectric actuators and sensors have be investigated in 
aeroelastic optimization [15]. The blade’s aeroelastic behav-
ior can be effectively modified by implementing piezopatch 
including a shunt circuit. Previously due to the large required 
inductance in passive aeroelastic control, there were practi-
cal limits in the low-frequency range like the one typically 
existing in aeroelastic phenomenon. However, nowadays 
having a small inductor integrated into a piezopatch can 
facilitate passive aeroelastic control [16]. Standard inductors 
are not a practical component to integrate into a piezopatch 
due to having too large internal resistance for resonant shunt 
application. It is possible to design large inductance induc-
tors with high-quality factors using closed magnetic circuits 
with high permeability materials.

Damping in blade structure without causing any instabil-
ity can be augmented using shunted piezopatch. Further-
more, shunted piezopatches are simple to apply and need 
little to no power. Their hardware needs the piezoelectrics 
a simple electric circuit including a capacitor, inductor, and 
resistor. The shunted piezopatch consumes the energy cre-
ated from blade vibrations to control blade aeroelastic vibra-
tion which can reduce the vibrations of specific modes and 
frequencies.

In this paper, the flutter of a simple aeroelastic system 
speed can be increased using piezoelectric material. The 
system is a 2D blade with two piezoelectric patches which 
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have plunge DOF in the flap-wise and edgewise. Later, 
the system is a 2D blade with piezoelectric patch which 
has plunge, pitch, and control rotation degrees of freedom 
(DOF) as well as unsteady aerodynamic forces. The objec-
tive of this work is to represent the role of piezoelectric 
patches that can influence substantially a simple smart 
blade system.

In Sect. 2, the equations of motion of a smart blade with 
flap-wise and edgewise plunge DOF are described how to 
solve those equations to obtain the flap-wise and edgewise 
plunge velocities, displacements, electrical currents, and 
electric charges. Then the fixed points of the system and 
their stability around those points are investigated to present 
the system response. Example 1 shows the effective decay 
in the oscillation of a smart blade in comparison to a regular 
blade.

Section 3 shows a smart blade with the plunge, pitch, and 
control DOF and two piezopatches in the flap-wise and edge-
wise plunge DOF to obtain the equations of motion under 
unsteady aerodynamic loads. Solving the system of equa-
tions produces the flap-wise and edgewise plunge velocities, 
displacements, electrical currents, and electric charges as 
well as the pitching velocity, rotation, electrical current, and 
electric charge. Afterward by obtaining the flutter speed, we 
indicate how adding two piezopatches can effectively defer 
the flutter.

In Sect. 4, a smart blade with the plunge, pitch, and con-
trol DOF and piezopatches in the plunge and pitch DOF are 
presented. It shows that the flutter speed can even be further 
raised by having three piezopatches.

2  Aeroelastic analysis of smart blade

Before investigating an aeroelastic smart blade, it requires 
to investigate the stability of aeroelastic smart blade. The 
time response of aeroelastic system can be written as [17]

where �i is the smart blade spatial deformation, e�it is the 
smart blade temporal deformation, and bi is the eigenvector. 
It is a good idea to study the character of the fixed point of 
two DOF smart blade in the flap-wise and edgewise plunge 
motions separately. Flap-wise direction is perpendicular to 
the blade chord line in h1 direction, as shown in Fig. 1. In 
other words, flap-wise direction shows the direction of the 
blade’s instantaneous up and down displacements. However, 
edgewise direction shows the direction of the blade’s instan-
taneous forward and backward displacements in h2 direction, 
as shown in Fig. 1.

(1)�(t) =

n∑
i=1

�ie
�itbi

2.1  A smart blade with only plunge DOF

Consider a smart blade which has just flap-wise and edge-
wise plunge DOF as shown in Fig. 1.

By assuming constant rotational velocity, the equations 
of motion for a smart blade with two plunge DOF in free 
vibrations can be written as below

where m is the mass of smart blade, Ch1
 is the flapwise struc-

tural damping of smart blade, Kh1
 is the flapwise structural 

stiffness, h1 is the smart blade’s instantaneous flapwise 
displacement, �h1 is the flapwise plunge electromechanical 
coupling, qh1 is the flapwise plunge electric charge, Lh1 is the 
flapwise plunge inductance of piezoelectric material, Rh1

 is 
the flapwise plunge resistance of piezoelectric material, Cph1

 
is the flapwise plunge capacitance of piezoelectric material, 
Ch2

 is the edgewise structural damping of smart blade, Kh2
 

is the edgewise structural stiffness, h2 is the smart blade’s 
instantaneous edgewise displacement, �h2 is the edgewise 
plunge electromechanical coupling, qh2 is the edgewise 
plunge electric charge, Lh2 is the edgewise plunge induct-
ance of piezoelectric material, Rh2

 is the edgewise plunge 
resistance of piezoelectric material, and Cph2

 is the edgewise 
plunge capacitance of piezoelectric material. As mentioned 
before, the flapwise plunge electromechanical coupling 
can be obtained as �h1 = eh1∕Cph1

 where eh1 is the flapwise 
plunge coupling coefficient and the edgewise plunge elec-
tromechanical coupling can be obtained as �h2 = eh2∕Cph2

 
where eh2 is the edgewise plunge coupling coefficient. Con-
sidering x1 = ḣ1 , x2 = h1 , x3 = q̇h1 , x4 = qh1 , x5 = ḣ2 , x6 = h2 , 
x7 = q̇h2 , and x8 = qh2 , Eq. (2) can be written as first-order 
differential equations

(2)

⎧⎪⎪⎨⎪⎪⎩

mḧ1 + Ch1
ḣ1 + Kh1

h1 − 𝛽h1qh1 = 0

Lh1 q̈h1 + Rh1
q̇h1 +

1

Cph1

qh1 − 𝛽h1h1 = 0

mḧ2 + Ch2
ḣ2 + Kh2

h2 − 𝛽h2qh2 = 0

Lh2 q̈h2 + Rh2
q̇h2 +

1

Cph2

qh2 − 𝛽h2h2 = 0

Fig. 1  A smart blade with flapwise and edgewise plunge DOF



3867Engineering with Computers (2023) 39:3865–3876 

1 3

Defining 
q =

[
m Ch1

Kh1
�h1 Lh1 Rh1

Cph1
Ch2

Kh2
�h2 Lh2 Rh2

Cph2

]T
 

and � =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T , Eq. (3) can be 
written as

where � represents linear functions, and x1 , x2 , x3 , x4 , x5 , 
x6 , x7 , and x8 are the smart blade states and represent the 
system’s flapwise velocity, flapwise displacement, flapwise 
electrical current, flapwise electric charge responses, edge-
wise velocity, edgewise displacement, edgewise electrical 
current, and edgewise electric charge responses, respec-
tively. The two DOF aeroelastic smart blade system has eight 
eigenvalues that explain the stability of the fixed point. The 
fixed points, or static solutions, of the system are calculated 
from the solutions of

or, equivalently,

By considering Eq. (4), Eq. (6) can be presented as

where

(3)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = −
Ch1

m
x1 −

Kh1

m
x2 +

𝛽h1

m
x4

ẋ2 = x1

ẋ3 = −
Rh1

Lh1

x3 −
1

Cph1
Lh1

x4 +
𝛽h1

Lh1

x1

ẋ4 = x3

ẋ5 = −
Ch2

m
x5 −

Kh2

m
x6 +

𝛽h2

m
x8

ẋ6 = x5

ẋ7 = −
Rh2

Lh2

x7 −
1

Cph2
Lh2

x8 +
𝛽h2

Lh2

x6

ẋ8 = x7

(4)�̇ = � (�, q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
Ch1

m
x1 −

Kh1

m
x2 +

𝛽h1

m
x4

x1

−
Rh1

Lh1

x3 −
1

Cph1
Lh1

x4 +
𝛽h1

Lh1

x2

x3

−
Ch2

m
x5 −

Kh2

m
x6 +

𝛽h2

m
x8

x5

−
Rh2

Lh2

x7 −
1

Cph2
Lh2

x8 +
𝛽h2

Lh2

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)� (�, q) = 0

(6)�̇ = 0

(7)�̇ = A(q)�

The solution of Eq. (7) can be written [2]

where �i is the ith eigenvector of A , �i is the ith eigenvalue 
of A , and bi is the ith element of b = V−1�0 , where V is the 
eigenvector of A and �0 is the initial condition.

Example 1 A smart blade with flap-wise and edgewise 
plunge DOF in system response.

As the first example, a smart blade with only flap-
wise and edgewise plunge DOF, Fig.  1, has been con-
sidered which has the following characteristics as 
m = 0.3872Kg ,  Ch1

= 0.3237Ns∕m  ,  Kh1
= 13380N∕m  , 

eh1 = 7.55 × 10
−3C∕m  ,  Cph1

= 268nF  ,  Lh1 = 106H  , 
Rh1

= 4050Ω  ,  Ch2
= 0.5Ns∕m  ,  Kh2

= 32112N∕m  , 
eh2 = 7.55 × 10

−2C∕m  ,  Cph2
= 268nF  ,  Lh2 = 106H  , 

Rh2
= 9050Ω , and the initial conditions x1(0) = 0m∕s , 

x2(0) = 0.1m , x3(0) = 0.1A , x4(0) = 0C , x5(0) = 0m∕s , 
x6(0) = 0.1m , x7(0) = 0A , and x8(0) = 0C . Figure 2 depicts 
the system response. The solid line represents the displace-
ment of smart blade and the dashed line shows the displace-
ment of regular blade. As indicated in Fig. 2, the vibra-
tions can be very effectively decayed by the piezoelectric 
patches. Both system responses oscillate with decaying their 
amplitudes with time toward zero, which called as damped 
responses. From Fig. 2, it is clear that the amplitude of the 
smart blade responses can decay much faster than the one 
of the regular blade responses. The oscillation of smart 
blade flap-wise, Fig. 2a, decays almost 0.6s however, the 
oscillation of the regular blade takes around 12s to decay. 
Moreover, the oscillation of smart blade edgewise, Fig. 2b, 
decays 0.5s ; however, the oscillation of the regular blade 
takes around 10s to decay.

Furthermore, the phase plane plot for the velocities and 
displacements depict the point (0, 0) recalls the system tra-
jectory, as shown in Fig. 3. The trajectories of smart blade 
flap-wise and edgewise start from the initial displacements 
and velocities at the far right and it is turning to the center 

(8)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
Ch1

m
−

Kh1

m
0

�h1

m
0 0 0 0

1 0 0 0 0 0 0 0

0
�h1

Lh1

−
Rh1

Lh1

−
1

Cph1
Lh1

0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −
Ch2

m
−

Kh2

m
0

�h2

m

0 0 0 0 1 0 0 0

0 0 0 0 0
�h2

Lh2

−
Rh2

Lh2

−
1

Cph2
Lh2

0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)�(t) =

n∑
i=1

�ie
�itbi
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of the phase plane where (0, 0) is the fixed point, xF = 0 . In 
fact, the phase plane plots indicate that the fixed points draw 
the smart blade trajectories.

Likewise, the electrical current and charge phase plane 
start at the electrical current and charge initial conditions 
which are zeros and they are turning out counter-clockwise 
until arriving at maximum values. The trajectories then turn 
toward the start point (0, 0) , as shown in Fig. 4.

3  Smart blade with plunge, pitch, 
and control DOF and piezopatches 
in plunge DOF

Figure 5 depicts a 2D smart blade which has plunge, pitch, and 
control degrees of freedom. In the model, there are an airfoil 
with two piezoelectric patches in the flapwise and edgewise 
plunge DOF. The system includes the flapwise and edgewise 
plunge, pitch, and control degrees of freedom (DOF) indicated 
by h1 , h2 , � , and � , respectively. The angle of the control sur-
face around its hinge, located at distance xh from the leading 

edge, has been represented by the DOF � and the stiffness of 
the control surface has been denoted by K�.

Using the Lagrange’s equations and the Kirchhoff’s law 
leads the equations of motion as

where m , Ch1
 , Kh1

 , h1 , �h1 , qh1 , Lh1 , Rh1
 , Cph1

 , Ch2
 , Kh2

 , h2 , �h2 , 
qh2 , Lh2 , Rh2

 , and Cph2
 are defined as in Eq. (2), S�h is the static 

mass moment of the blade around the pitch axis xf  , I� is the 
mass moment of inertia around the pitch axis xf  , S� is the 
static mass moment of the control surface around the hinge 
axis xh , I� is the control surface moment of inertia around 
the hinge axis, I�� is the product of inertia of the blade and 
control surface, L is the lift, Mxf  is pitching moment of the 
blade around the pitch axis xf  , Mxh is the pitching moment 

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

mḧ1 + S𝛼h�̈� + S𝛽𝛽 + Ch1
ḣ1 + Kh1

h1 − 𝛽h1qh1 = −L

S𝛼hḧ1 + I𝛼�̈� + I𝛼𝛽𝛽 + C𝛼�̇� + K𝛼𝛼 = Mxf

S𝛽 ḧ1 + I𝛼𝛽 �̈� + I𝛽𝛽 + C𝛽 �̇� + K𝛽𝛽 = Mxh

Lh1 q̈h1 + Rh1
q̇h1 +

1

Cph1

qh1 − 𝛽h1h1 = 0

mḧ2 + Ch2
ḣ2 + Kh2

h2 − 𝛽h2qh2 = 0

Lh2 q̈h2 + Rh2
q̇h2 +

1

Cph2

qh2 − 𝛽h2h2 = 0

(a) Flapwise

(b) Edgewise

0 0.5 1
-0.1

-0.05

0

0.05

0.1

0 0.5 1
-0.1

-0.05

0

0.05

0.1

Fig. 2  Smart blade system responses

(a) Flapwise

(b) Edgewise
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Fig. 3  Phase plane for the velocity and displacement
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of the control surface around the hinge axis xh . Considering 
unsteady aerodynamics, the lift and moments can be written 
as follows [17, 18]

Substituting Eqs. (11, (12) into Eq. (10) provides a set of 
equations of motion which is only time-dependent and can be 
solved numerically like using the backward finite difference 
scheme for numerical integration [18]. However, the equations 
of motion can be given as ordinary differential equations by 
implementing the exponential form of Wagner function’s 
approximation. These equations can be solved analytically 
rather than numerically therefore, they would be much more 
practical [19, 20]. The Wagner function’s approximation can 
be presented as

where Ψ1 = 0.165 , Ψ2 = 0.335 , �1 = 0.0455 , and �2 = 0.3.
The full unsteady aeroelastic equations of motion can be 

given as follows

where y =
[
h1 � � qh1 h2 qh2

]T represents the displace-

ment and charge vector, w =
[
w1 ⋯ w6 0

]T  gives the 
aerodynamic states vector, Φ(t) presents Wagner’s function, 
A is the structural mass and inductance matrix, B represents 
the aerodynamic mass matrix, C is the structural damping 
matrix, D represents the aerodynamic damping matrix, E 
gives the structural stiffness and resistance matrix, F is the 
aerodynamic stiffness matrix, W represents the aerodynamic 
state influence matrix, � gives the initial condition excita-
tion vector, and W1 and W2 present the aerodynamic state 
equation matrices.

(11)

L(t) =𝜌b2
(
U𝜋�̇� + 𝜋ḧ − 𝜋ba�̈� − UT4�̇� − T1b𝛽

)

+ 2𝜋𝜌bU

(
Φ(0)w − ∫

t

0

𝜕Φ
(
t − t0

)
𝜕t0

w
(
t0

)
dt0

)

(12)

Mxf = − 𝜌b2
(
−a𝜋bḧ + 𝜋b2

(
1

8
+ a

2
)
�̈� −

(
T7 +

(
ch − a

)
T1

)
b
2𝛽

)

− 𝜌b2
(
𝜋

(
1

2
− a

)
Ub�̇� +

(
T1 − T8 −

(
ch − a

)
T4 +

T11

2

)
Ub�̇�

)

− 𝜌b2
(
T4 + T10

)
U

2𝛽

+ 2𝜌Ub2𝜋

(
a +

1

2

)(
Φ(0)w − ∫

t

0

𝜕Φ
(
t − t0

)
𝜕t0

w
(
t0

)
dt0

)

(13)

M
xh

= − 𝜌b2
(
−T1bḧ + 2T13b

2�̈� −
1

𝜋
T3b

2𝛽

)

− 𝜌b2
((

−2T9 − T1 + T4

(
a −

1

2

))
Ub�̇� −

1

2𝜋
UbT4T11 �̇�

)
−

𝜌b2U2

𝜋

(
T5 − T4T10

)
𝛽

− 𝜌b2UT12

(
Φ(0)w − ∫

t

0

𝜕Φ
(
t − t0

)
𝜕t0

w
(
t0

)
dt0

)

(14)Φ(t) = 1 − Ψ1e
−�1Ut∕b − Ψ2e

−�2Ut∕b

(A + 𝜌B)ÿ + (C + 𝜌UD)ẏ +
(
E + 𝜌U2F

)
y + 𝜌U3W = 𝜌U�Φ̇(t)

(15)ẇ −W1y − UW2w = 0

(a) Flapwise

-2 -1 0 1 2
10-3

-0.4

-0.2

0

0.2

0.4

(b) Edgewise

-2 0 2
10-3

-0.5

0

0.5

Fig. 4  Phase planes for the electrical current and charge

Fig. 5  A smart blade with plunge, pitch, and control DOF and a piez-
opatch in flapwise plunge DOF
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Equations (15) can be formed in purely first-order ordinary 
differential equations by

where

Example 2 A smart blade with plunge, pitch, and control DOF 
and a piezopatch in flapwise and edgewise plunge DOF.

As the second example, a smar t blade with 
plunge, pitch, and control DOF, Fig.  5, is consid-
ered with the following parameters [17]. It assumes 
m = 13.5Kg  ,  S�h = 0.3375Kgm  ,  S� = 0.1055Kgm  , 
Ch1

= 2.1318Ns∕m  ,  Kh1
= 2131.8346N∕m  , 

I� = 0.0787Kgm2  ,  I�� = 0.0136Kgm2  , 
C� = 0.1989Nms∕rad  ,  K� = 198.9712Nm∕rad  , 

(16)�̇ = Q� + �Φ̇(t)

(17)

Q =

⎡
⎢⎢⎣

−M−1(C + �UD) −M−1
�
E + �U2F

�
−�U3M−1W

I6×6 06×6 06×6
06×6 W1 UW2

⎤
⎥⎥⎦

(18)� =

(
�UM−1�

012×1

)

I� = 0.0044Kgm2 , C� = 0.0173Ns∕m , K� = 17.3489N∕m , 
eh1 = 0.145C∕m  ,  Cph1

= 268nF  ,  Lh1 = 103H  , 
Rh1

= 1274Ω , Kh2
= 2131.8346N∕m , Ch2

= 2.1318Ns∕m , 
eh2 = 0.145C∕m  ,  Cph2

= 2680nF  ,  Lh2 = 103H  a n d 
Rh2

= 1274Ω.
Running the simulation gives the f lutter speed 

74.2973m∕s which presents 81.41% increase in the flut-
ter speed of a regular blade with the same characteristics 
without piezoelectric patches. Figure 6 depicts the variation 
of damping ratios of a regular blade and smart blade with 
respect to the airflow velocity or airspeed. It is clear that hav-
ing piezoelectric patch on the blade can effectively increase 
the flutter speed.

Furthermore, Fig. 7 shows the real part of eigenvalues 
versus the freestream velocity. Again, Fig. 7b indicates the 
flutter speed of the smart blade can be effectively increased 
in comparison to the regular blade one.

In addition, Fig. 8 depicts the imaginary part of eigenval-
ues versus the freestream velocity. Figure 8b indicates the 
flutter speed of the smart blade can be effectively increased 
in comparison to the regular blade one.

Equation (8) can be used to form the matrix Q and its 
eigenvalues and eigenvectors can be obtained for two 
different airspeeds, U = 10m∕s and the flutter speed, 

Fig. 6  Damping ratio versus 
airspeed, a regular blade, b 
smart blade
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Fig. 7  Real part of eigenvalues 
versus airspeed, a regular blade, 
b smart blade
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U = 74.2973m∕s . The structural states dynamics of the 
smart blade can be represented in eight complex eigenval-
ues. The complex eigenvalues of the regular blade are conju-
gate as the complex eigenvalues of the smart blade. Six real 
eigenvalues belong to the aerodynamics states dynamics. 
Moreover, the piezoelectric states dynamics include four real 
eigenvalues. The first three elements of each eigenvector 
give the structural velocities, flap-wise piezoelectric elec-
trical current is given by the fourth element, structural dis-
placements can be obtained from the next three elements, 
flapwise piezoelectric electric charge is given by the eighth 
element, edgewise velocity can be obtained from the ninth 
element, edgewise displacement can be represented by the 
tenth element, edgewise piezoelectric electric charge is 
given by the eleventh element, and finally the last next ele-
ment correspond aerodynamic state displacements.

For the two structural modes, the smart blade eigenvalues 
at U = 10m∕s are as follows

and its corresponding eigenvectors which present the smart 
blade structural mode shapes are

�1 = −1.3460 ± 42.7410i�2 = −5.4698 ± 64.0705i

where, in each mode shape, flapwise plunge displacement is 
presented by the first element, pitch angle can be indicated 
by the second element, control surface angle is presented 
by the third element, and edgewise plunge displacement is 
given by the last element. Generally, since the degrees of 
freedom of aeroelastic systems are coupled to each other, 
they cannot occur independently. Mostly, in mode one and 
two, there are control surface and pitch displacements. The 
smart blade mode one has significant pitch angle in com-
parison to the regular blade. Figure 9 depicts deformation 
of the two modes of the smart blade. In addition, the value 
of pitch in mode one is high however, the value of pitch in 
mode two is zero.

Furthermore, the eigenvalues of the smart blade at air-
speed U = 74.2973m∕s can be as follows

and its corresponding mode shapes are

�1 =

⎧⎪⎨⎪⎩

−0.0034

0.3795

0.9249

−0.0005

⎫⎪⎬⎪⎭
,�2 =

⎧⎪⎨⎪⎩

0.0000

0.0000

0.0000

0.0000

⎫⎪⎬⎪⎭

�1 = −21.2035 ± 13.2734i, �2 = −5.4698 ± 64.0705i

Fig. 8  Imaginary part of eigen-
values versus airspeed, a regular 
blade, b smart blade
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The real part of �1 is much more negative in compari-
son to eigenvalues at air speed U = 10m∕s . Moreover, at 
U = 74.2973m∕s , the value of mode one pitch is significant, 
as shown in Fig. 10.

In next section, there is a smart blade including three 
DOF and two piezopatches in the plunge and pitch DOF 
to compare its aeroelastic behavior with a regular blade 
and how the flutter phenomenon can be postponed more by 
implementing third piezopatch on a smart blade.

4  A smart blade with plunge, pitch, 
and control DOF and piezopatches 
in plunge and pitch DOF

In this section, there is a smart blade with plunge, pitch, and 
control DOF in which there are three piezopatches, two in 
the flapwise and edgewise plunge DOF and third one in the 
pitch DOF, as shown in Fig. 11. The same characteristics 
of the section three smart blade has been considered in this 
system.

�1 =

⎧⎪⎨⎪⎩

0.0494

0.8685

−0.3664

0.0072

⎫⎪⎬⎪⎭
,�2 =

⎧⎪⎨⎪⎩

0.0000

0.0000

0.0000

0.0000

⎫⎪⎬⎪⎭

The equations of motion of the smart blade can be 
obtained using the Lagrange’s equations and the Kirchhoff’s 
law as

where m , S�h , S� , Ch1
 , Kh1

 , h1 , �h1 , qh1 , Lh1 , Rh1
 , Cph1

 , Ch2
 , Kh2

 , 

h2 , �h2 , qh2 , Lh2 , Rh2
 , Cph2

 , L , I� , I�� , C� , K� , Mxf  , I� , C� , K� , 

Mxh , xf  , and xp are defined as in Eq. (10), L� is the piezoelec-
tric material pitch inductance, R� is the piezoelectric mate-
rial pitch resistance, Cp� is the piezoelectric material pitch 
capacitance, �� is the electromechanical coupling of pitch, 
and q� is the electric charge of pitch. The electromechanical 
coupling of pitch, �� , depends on the coupling coefficient 
of pitch, e� , and the capacitance of pitch, Cp� , and it can be 
obtained by �� = e�∕Cp�.

The aeroelastic equations of motion in full unsteady form 
can be written as follows

where y =
[
h1 � � qh1 h2 qh2 q�

]T is the displacement 
and charge vector.

In order to represent Eqs. (20) in purely first-order ordi-
nary differential equations form, one can use the following 
equation

where

(19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mḧ1 + S𝛼h�̈� + S𝛽𝛽 + Ch1
ḣ1 + Kh1

h1 − 𝛽h1qh1 = −L

S𝛼hḧ1 + I𝛼�̈� + I𝛼𝛽𝛽 + C𝛼�̇� + K𝛼𝛼 − 𝛽𝛼q𝛼 = Mxf

S𝛽 ḧ1 + I𝛼𝛽 �̈� + I𝛽𝛽 + C𝛽 �̇� + K𝛽𝛽 = Mxh

Lh1 q̈h1 + Rh1
q̇h1 +

1

Cph1

qh1 − 𝛽h1h1 = 0

mḧ2 + Ch2
ḣ2 + Kh2

h2 − 𝛽h2qh2 = 0

Lh2 q̈h2 + Rh2
q̇h2 +

1

Cph2

qh2 − 𝛽h2h2 = 0

L𝛼 q̈𝛼 + R𝛼 q̇𝛼 +
1

Cp𝛼

q𝛼 − 𝛽𝛼
�
xf − xp

�
𝛼 = 0

(A + 𝜌B)ÿ + (C + 𝜌UD)ẏ +
(
E + 𝜌U2F

)
y + 𝜌U3Ww = 𝜌U�Φ̇(t)

(20)ẇ −W1y − UW2w = 0

(21)�̇ = Q� + �Φ̇(t)

Fig. 10  Smart blade 
mode shapes of unsteady 
plunge-pitch-control 
at U = 74.2973m∕s . a 
�
n
= 4.0Hz , b �

n
= 10.2Hz
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where 
� =

[
ḣ1 �̇� �̇� q̇h1 q̇𝛼 h1 𝛼 𝛽 qh1 ḣ2 q̇h2 h2 qh2

q𝛼 w1 ⋯ w6

]T 
is the 20 × 1 state vector, M = A + �B , I7×7 is a 7 × 7 unit 
matrix, 07×7 is a 7 × 7 zero matrix, 07×6 is a 7 × 6 zero matrix, 
06×7 is a 6 × 7 zero matrix, and 011×1 is a 11 × 1 zero vector. 
The initial conditions are �(0) = �0 . The initial condition 
�Φ̇(t) , which plays an excitation role, can decay exponen-
tially. In this work, in order to reach steady-state solutions, 
the initial condition is eliminated hence Eq. (21) can be writ-
ten as

Example 3 A smart blade with plunge, pitch, and control 
DOF and piezopatches in plunge and pitch DOF.

In this example, one more piezopatch is implemented 
in pitch DOF of the example two smart blade to control 
vibrations. As shown in Fig. 11, a smart blade is consid-
ered which has plunge, pitch, and control DOF. Further-
more, there are three piezopatches, two in plunge and one 
in pitch DOF. The smart blade has the same characteris-
tics for the smart blade of example two. It assumes that 
eh1 = 0.145C∕m , Cph1

= 2680nF , Lh1 = 200H , Rh1
= 2974Ω , 

eh2 = 0.0145C∕m  ,  Cph2
= 2680nF  ,  Lh2 = 200H  a n d 

Rh2
= 1274Ω , the parameters of pitch piezopatch as the 

coupling coefficient of pitch e� = 0.00145C∕m , the piezo-
electric material pitch capacitance Cp� = 268nF , the piezo-
electric material of pitch inductance L� = 200H , the piezo-
electric material of pitch resistance R� = 574Ω.

(22)

Q =

⎡
⎢⎢⎣

−M−1(C + �UD) −M−1
�
E + �U2F

�
−�U3M−1W

I7×7 07×7 07×6
06×7 W1 UW2

⎤
⎥⎥⎦

(23)� =

(
�UM−1�

013×1

)

(25)�̇ = Q�

Results of simulation show that having one more piezo-
patch in the pitch DOF can suppress the flutter phenomenon 
in the pitch mode, as shown in Fig. 12. Therefore, there 
is possibility to remove flutter in pitch DOF by possessing 
three piezopatches, two in the plunge DOF and one in the 
pitch DOF. However, the flutter phenomenon appears with 
higher speed in the flapwise plunge DOF.

Figure 12 indicates flutter happens at 104.4198m∕s in the 
control DOF in the smart blade with three piezopatches. 
The new flutter speed value shows that it has been increased 
155% in the smart blade in comparison to the one of a regu-
lar blade which has the same characteristics without piezo-
patch. In addition, the new flutter speed has be increased 
40.54% in the smart blade in comparison to the one of a 
smart blade, which possesses the same characteristics and 
only two piezopatches in the flapwise and edgewise plunge 
DOF. Obviously implementing three piezopatches can sup-
press the flutter phenomenon in the pitch mode. However, it 
appears in the flapwise plunge mode with higher speed, as 
depicted in Fig. 12b.

Moreover, Fig. 13 shows the eigenvalue real parts versus 
the freestream velocity. Figure 13b depicts clearly flutter 
has been removed in the pitch mode, but it happens in the 
flap-wise plunge mode with higher speed. In fact, when one 
piezopatch is implemented in the pitch DOF, it increases the 
pitching stiffness of the blade, then flutter will shift from the 
pitch DOF to the bending DOF. It is also clear that the flutter 
speed of the smart blade with three piezopatches has been 
increased in comparison to the flutter speed of the smart 
blade with only two piezopatches.

Furthermore, Fig. 14 indicates the eigenvalues imaginary 
parts versus the freestream velocity. According to Fig. 14b, it 
is clear that flutter happens in the flap-wise plunge mode and 
the smart blade flutter speed has been effectively increased 
in comparison to the regular blade one.

Equation (16) can be used to form the matrix Q then 
its eigenvalues and eigenvectors can be obtained for two 
different airspeeds, U = 10m∕s and the flutter speed, 
U = 104.4198m∕s . The smart blade structural states 

Fig. 12  Smart blade damping 
ratio versus airspeed with, a 
plunge piezopatches, b plunge 
& pitch piezopatches
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dynamics can be represented by eight complex eigenval-
ues. Similar to the regular blade eigenvalues, these complex 
eigenvalues are conjugate. Six real eigenvalues are for the 
aerodynamics states dynamics. Moreover, six real eigenval-
ues represent the piezoelectric states dynamics. The first 
four eigenvector elements provide structural velocities, the 
next four elements give structural displacements, the next 
six elements provide aerodynamic state displacements, and 
finally the last six elements correspond to piezoelectric elec-
tric charges.

At U = 10m∕s , the eigenvalues of smart blade for the two 
structural modes can be as follows

and their corresponding eigenvectors can represent the smart 
blade structural mode shapes as

where, in each mode shape, the first element provides plunge 
displacement of flapwise, the second element presents pitch 
angle, the third element indicates control surface angle, and 

�1 = −22.0865 ± 1.4051i, �2 = −0.0863 ± 11.9886i

�1 =

⎧⎪⎨⎪⎩

−0.3729

0.3119

0.8688

−0.0498

⎫⎪⎬⎪⎭
,�2 =

⎧⎪⎨⎪⎩

0.0000

0.0000

0.0000

0.0000

⎫⎪⎬⎪⎭

the last element provides plunge displacement of edgewise. 
The degrees of freedom of aeroelastic systems are gener-
ally coupled to each other and cannot appear independently. 
Mainly, flapwise plunge displacement, pitch, and control 
surface angles happen in mode one. Mode one contains sig-
nificant positive control surface angle. Figure 15 shows the 
deformation of the smart blade in the two modes. Clearly 
similarity almost exists in pitch and control with opposite 
signs in modes one.

Furthermore, at air speed U = 104.4198m∕s , the smart 
blade eigenvalues can be

and their corresponding mode shapes are as

The real part of �2 is much closer in comparison to eigen-
values at air speed U = 10m∕s and the real part of �1 is almost 
zero. In addition, at U = 104.4198m∕s , all mode shape com-
ponents of �1 and �2 become almost zero, as depicted in 
Fig. 16.

�1 = −0.0863 ± 11.9886i, �2 = −3.1737 ± 43.1479i
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Fig. 13  Real part of eigenvalues 
versus airspeed, a smart blade 
with plunge piezopatches, b 
smart blade with plunge & pitch 
piezopatches
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Fig. 14  Imaginary part of eigen-
values versus airspeed, a smart 
blade with plunge piezopatches, 
b smart blade with plunge & 
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5  Conclusion

In this paper, it has been shown how using piezoelectric 
patches, the flutter phenomenon can be postponed on a 
smart blade. Section 2 represents system response of a 
smart blade with only plunge DOF. Clearly, the oscilla-
tions of the smart blade can be effectively decayed in a 
very short time by implementing efficient flapwise and 
edgewise piezopatches. Almost in 0.6s , the vibration of 
the smart blade with only plunge DOF can be decayed; 
however, the vibration of the regular blade without piezo-
electric patch needs around 12s to decay. As illustrated 
in Sect. 3, using two piezopatches in the flapwise and 
edgewise plunge DOF of a regular blade with three DOF, 
the flutter speed can be postponed 81.41% which shows 
that the flutter speed has been increased in a considerable 
value. Moreover, it shows that how the flutter phenomenon 
can shift from the flapwise plunge mode in a regular blade 
to the pitch mode in a smart blade. Later, it presents the 
effect of adding one more piezopatch to a smart blade in 
the pitch DOF to postpone more the flutter phenomenon. 
The flutter speed in a smart blade can be postponed 155% 
which is a very considerable value.
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