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Abstract
Currently, surrogate models have been used in various fields due to their ability to save high computational cost of simulation. 
However, in practical engineering applications, the surrogate model constructed from the initial sample set may suffer from 
insufficient accuracy. Therefore, building a usable surrogate model usually requires further infilling with some new samples. 
The adaptive sampling can be produced new samples to gradually expand the dataset, thereby improving the accuracy of 
the initial model. Thus, this work develops a general adaptive sampling approach based on the average uncertainty. The new 
samples are generated at the point with the maximum value of the average uncertainty. Then, the initial model is updated 
until the updated model achieves acceptable accuracy. Six test functions and an engineering problem are employed to test the 
performance of the proposed approach. The results show that the proposed approach has higher priority than other approaches 
under the same number of added samples. Furthermore, the performance of the proposed approach is tested again by setting 
a stopping criterion. The proposed approach can satisfy the stopping criterion with the least number of iterations, meaning 
that this approach can save a lot of computational cost compared to other approaches. This work provides a reference for the 
design and optimization of engineering problems.

Keywords  Average uncertainty · Adaptive sampling · Surrogate model · Design of experiments

1  Introduction

Surrogate models have received increasing attention due to 
their low cost and less time-consuming, especially in engi-
neering optimization and design [1, 2]. Design of experi-
ment (DOE) is the key link in constructing the surrogate 
models, which directly determines the quality of the model 
to a certain extent. DOE methods for generating samples in 
the design space can be roughly divided into two categories, 
one-stage (or static) sampling [3] and adaptive (or sequen-
tial) sampling [4].

One-stage sampling refers to generating all sample points 
used to build a surrogate model at once. Until now, some 
one-stage sampling methods have been widely used, such as 
Latin hypercube design [5], minimax and maximin design 
[6], fractional factorial design [7], and entropy design [8]. 
These methods are not related to surrogate models, meaning 
that they require sample size and location to be determined 
ahead of time. In fact, there is few information about the true 
model, thereby making it difficult to determine the appropri-
ate number and location of samples. In order to address this 
limitation, adaptive sampling is developed and demonstrated 
effeteness in various applications [9–12]. More importantly, 
adaptive sampling has proven to be more efficient than one-
stage sampling [4].

Adaptive sampling, also known as sequential sampling, is 
a model-dependent approach, showing that they can actively 
learn from built surrogate models and then generate new 
samples. The prediction uncertainty metric is an important 
part of a typical adaptive sampling scheme [13]. In adap-
tive sampling, the prediction uncertainty can be used to 
select samples as reasonably as possible, so as to improve 
the accuracy of the surrogate model to the greatest extent. 
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Some approaches based on the prediction uncertainty are 
proposed, such as the probability of improvement [14], mean 
square error (MSE) [15], statistical lower bound [16], and 
expected improvement (EI) [17]. However, these approaches 
are developed based on Kriging surrogate with ready-made 
uncertainty metrics. In other words, these methods are dif-
ficult to apply in other surrogate models. In fact, other sur-
rogate models usually have higher accuracy than Kriging in 
some problems [18]. Thus, it is necessary to develop some 
adaptive sampling methods for general surrogate models.

Currently, great efforts have been devoted to adaptive 
sampling with general surrogate models, and many results 
have been achieved. For adaptive sampling with general 
surrogate models, cross-validation (CV) is usually used 
to estimate uncertainty. By using CV, multiple prediction 
models can be obtained, and then, according to the distribu-
tions of predictions estimate uncertainty. Jin et al. proposed 
an adaptive sampling method by combining the standard 
deviation of CV predictions with the maximin distance to 
estimate uncertainty [19]. Zhang et al. developed an adap-
tive sampling based on the CV and the interquartile range 
to determine the new samples (IQR) [13]. Xu et al. used 
CV predictions and the Voronoi diagram to explore global 
regions, thereby determining the uncertainty estimation at 
the given points [20]. Lv et al. presented the Go-inspired 
hybrid infilling (Go-HI) strategy using CV and a tree-like 
structure [21]. In addition, there are many CV-based adap-
tive sampling methods that can be referred to Refs. [22–25].

Another type of adaptive sampling method, query by 
committee (QBC), is also proposed in Ref. [26]. QBC is 
a variance -based adaptive sampling that uses several sur-
rogates to calculate the prediction variances to estimate the 
uncertainty at a candidate point. The point with maximal 
prediction variance is chosen as the new sample. The predic-
tion variances are calculated by predictions form several sur-
rogates. Therefore, QBC can be used to identify the region 
with high uncertainty. Liu et al. comprehensively reviews 
QBC-based adaptive sampling methods and divides them 
into homogeneous QBC and heterogeneous QBC [27]. Simi-
larly, Fuhg et al. introduces the QBC method in detail and 
reviews the QBC adaptive schemes proposed in the literature 
[28]. Here, there are many references that describe the adap-
tive sampling method based on QBC [29, 30]. In addition, 
it should be noted that CV is also often used in QBC-based 
adaptive sampling [31–33].

However, CV-based predictions still introduce new con-
straints, even as they effectively characterize uncertainty. 
Because in CV, the largest error at the training samples 
appears by dropping this point out of the process of fitting. 
As a result of this error, most adaptive sampling meth-
ods based on standard deviations or variances introduce 

uncertainty at the training samples. In other words, the 
training samples have non-zero uncertainty, which interferes 
with the precise characterization of the uncertainty and may 
even lead to repeated samples [13]. Motivated by this issue, 
this paper develops an index, namely average uncertainty, 
to characterize the prediction uncertainty as accurately as 
possible. A novel general adaptive sampling method based 
on the average uncertainty (GAS-AU) is further proposed, 
and the contributions are as follows,

(1)	 This work constructs an average uncertainty index 
to improve the accuracy of prediction uncertainty by 
avoiding non-zero uncertainty at training points. This 
index eliminates the impact of non-zero uncertainty at 
the training point on the prediction uncertainty meas-
ure, as compared to standard deviations or variances in 
CV-based adaptive sampling. Therefore, the possibility 
of duplicate samples is avoided during adaptive sam-
pling.

(2)	 Based on the average uncertainty, a novel adaptive sam-
pling approach is proposed to improve the robustness 
of the model and achieve cost savings. A comparison 
of GAS-AU with other adaptive sampling approaches 
shows that it outperforms them on some test problems. 
More importantly, an engineering case still illustrates 
the priority of the proposed approach.

The remainder of this paper is structured as follows. Sec-
tion 2 gives the workflow of the proposed GAS-AU approach 
in detail. Furthermore, one-dimension problem as an exam-
ple to illustrate the specific process of using the GAS-AU 
approach. In Sect. 3, the GAS-AU approach is compared 
with other adaptive sampling approaches, i.e., MSE [15], 
EI [17], GO-HI [21], IQR [13], CVVor [20], and EIGF [25] 
using six test problems with different dimensions. Section 4 
uses an engineering problem to evaluate the performance of 
the proposed method. More importantly, the priority of the 
proposed GAS-AU approach is verified again by comparing 
with other approaches. Finally, the main conclusions of this 
work are given in Sect. 5.

2 � Average uncertainty‑based general 
adaptive sampling approach

This work proposes a novel adaptive sampling strategy, 
namely GAS-AU. In this section, the construction process 
of average uncertainty is illustrated in detail. In addition, in 
order to facilitate the reproduction, this section uses a one-
dimension problem as an example to illustrate the specific 
process of using the GAS-AU approach.
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2.1 � The average uncertainty

Based on CV predictions, this paper constructs an index 
to reflect the uncertainty of predictions. Firstly, the CV 
predictions are generated at a given point x in the design 
space,

where CVP(x) represents a set of CV predictions. 
f̂−1(x), f̂−2(x), and f̂−p(x) are the surrogate predictions at a 
given point x, where – 1, – 2, – p represent the surrogate 
model trained without the first, second, and p-th training 
points, respectively. It is noticed that p is the number of the 
training points.

With different surrogate models, CV predictions are dif-
ferent. Therefore, this work employs multiple surrogate 
models to enrich the distribution of CV predictions. For 
multiple different types of surrogate models, CV predic-
tions can be described as

where MCVP(x) represents a population of CV predictions 
under different surrogate models. m is the number of the sur-
rogate models. The median of the CV-predicted population 
is calculated as the predicted mean M. The specific formula 
is as follows,

where SMCVP(x) means to sort the elements in MCVP from 
small to large. M is the median, which represents the pre-
dicted mean. n is the number of elements in MCVP, which 
is equal to p × m.

Next, we need to calculate the predicted value at a given 
point x. For multiple surrogate models, the predicted value 
can be calculated by [34–36],

where

 ŷ(x) is the predicted value at a given point x. ŷi(x) and �i 
are the predicted value and the weight value of the i-th sur-
rogate, respectively. In order to obtain the weight value, we 
first use Leave-one-out CV to calculate the global error [37],

(1)CVP(x) =
{
f̂−1(x), f̂−2(x),⋯ , f̂−p(x)

}

(2)MCVP(x) =
{
CVP1(x),CVP2(x),⋯ ,CVPm(x)

}

(3)SMCVP(x) =
{
S1(x), S2(x),⋯ , Sn(x)

}

(4)M(x) =

{
S(n+1)∕2(x) n is odd
1

2

(
Sn∕2(x) + S(n∕2+1)(x)

)
n is even

(5)ŷ(x) =

m∑
i=1

�iŷi(x)

(6)
m∑
i=1

�
i
= 1 and�

i
≥ 0

where CVEi is the global error of i-th surrogate. yi
(
xj
)
 is true 

response at a given training point xj . ŷ
−j

i

(
xj
)
 is the predicted 

response of surrogate trained without training point xj . A 
larger global error represents the lower prediction accu-
racy of surrogate. At this point, the weight of this surrogate 
should be set smaller. On the contrary, the weight of this sur-
rogate is set larger when the global error with small value. 
Thus, the weight can be calculated as follows,

where

Finally, based on Eqs. (4) and (5), the predicted mean 
M(x) and predicted value ŷ(x) are obtained at a given point 
x. The average uncertainty is constructed by,

AU stands for the average uncertainty, which can be used 
to estimate the uncertainty of the surrogate predictions. 
According to Eq. (10), a new sample is determined,

2.2 � Modeling using the GAS‑AU approach

The GAS-AU approach is a process of adaptive sampling 
that adds a new sample at each iteration to improve the accu-
racy of the surrogate model. The main procedure consists 
of (1) building multiple surrogate models based on the ini-
tial samples, (2) generating a new sample at the point with 
maximum AU value, (3) updating the model using initial and 
new samples, (4) continuing to generate new samples until 
the stopping criterion is met. The overall framework of the 
GAS-AU is depicted in Fig. 1.

2.3 � Illustrative example of the GAS‑AU approach

To further understand the proposed approach, a test func-
tion as shown in Eq. (12) is used to illustrate the specific 
procedure,

In this work, the Kriging (KRG) and Radial basis function 
(RBF) model are used to construct the prediction model. 
Multiquadric basis function (RBF-M) and thin plate basis 

(7)CVEi =
1

p

p∑
j=1

[
yi
(
xj
)
− ŷ

−j

i

(
xj
)]2

j = 1, 2,⋯ , p

(8)�i = ei∕e

(9)e =

m∑
i=1

(
e
i

)
and e

i
= 1∕CVE

i
.

(10)AU(x) = ||̂y(x) −M(x)||

(11)Findxnew = maxAU(x)

(12)y = (6x − 2)2 × sin[2(6x − 2)]0 ≤ x ≤ 1.
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function (RBF-T) are selected in the RBF model. Figure 2 
shows the CV prediction models under the different surro-
gate models. Based on these models, nine predicted values 
can be obtained at a given point x. The distribution of these 
predicted values reflects, to some extent, the uncertainty at 
a given point.

Figure 3 presents the CV predictions at the sample point 
(x = 1) and unsampled point (x = 0.76). At sample point x = 1, 
the calculated mean and median are 10.86 and 15.83, respec-
tively. At this point, the value of true response is 15.83. If the 
uncertainty is calculated based on the variance or standard 
deviation, we can find that the uncertainty is not 0 at sample 
point x = 1. In fact, the uncertainty at the sample point is 0 
in the absence of noise. This result interferes with accurate 
measures of prediction uncertainty. Conversely, using the 

average uncertainty constructed based on the median, the 
uncertainty is 0 at the sample point, as shown in Fig. 4. It 
means that this index can effectively avoid the situation of 
non-zero uncertainty at the training point. The interference 
caused by non-zero uncertainty at the training point is elimi-
nated and the possibility of repeated sampling is avoided 
during adaptive sampling.

Based on the maximum AU value, new samples are 
generated and the predicted model is updated. The coeffi-
cient of determination R2 and normalized root mean square 
error NRMSE are used to evaluate the accuracy of the 
model, and the results are shown in Tables 1 and 2. MSE 
is an adaptive sampling approach by the maximum mean 
square error to determine a new sample [15]. GO-HI, IQR, 
CVVor, and EIGF are proposed by Lv et al. (2020) [21], 

Fig. 1   The overall framework of 
the GAS-AU
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Zhang et al. (2020) [13], Xu et al. (2014) [20], and Lam 
(2008) [25], respectively. As can be seen from Table 1, 
the prediction performance of the initial surrogate model 
is poor. After four iterations, the accuracy of the surrogate 
model is close to 1. However, GAS-AU exhibits higher 
accuracy than the other approaches. The same results can 

be drawn from Table 2, indicating the priority of the pro-
posed method.

3 � Numerical examples

This section verifies the performance of the GAS-AU 
approach, and compares it with six existing approaches: 
1) maximum mean square error (MSE) [15], 2) maximum 
expected improvement (EI) [17], 3) GO-HI proposed by Lv 
et al. [21], 4) IQR proposed by zhang et al. [13], 5) CVVor 
proposed by Xu et al. (2014) [20], and 6) EIGF proposed 
by Lam (2008) [25]. Note that the same as the multiple sur-
rogates used in Sect. 2.3, this part still uses KRG, RBF-M 
and RBF-T to construct the prediction model and average 
uncertainty AU. In addition, these individual surrogate mod-
els are implemented using the MATLAB toolbox developed 
by Viana [38].

3.1 � Test functions

The effect of the GAS-AU is tested by six numerical func-
tions with different dimension (D), i.e., the 2D function 1 
and 2, the 3D function 3, the 4D function 4, the 6D function 
5, and the 10D function 6.

Fig. 2   The CV predicted model 
under different surrogate
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Fig. 3   The CV predictions at the sample x = 1 and unsampled point 
x = 0.76
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Function 1 (2D)

Function 2 (2D)

Function 3 (3D)

(13)
y = x12 + 2x22 − 0.3cos

(

3�x1
)

− 0.4cos
(

4�x2
)

+ 0.7, x ∈ [−100, 100]2

(14)
y = [x2 − 1.275

(x1
�

)2
+ 5

x1
�

− 6]
2

+ 10
(

1 − 1
8�

)

cos
(

x1
)

+ 10, x ∈ [−5, 10]2

Function 4 (4D)
(15)

y =

3∑
i=1

x2
i
+

(
3∑
i=1

0.5ixi

)2

+

(
3∑
i=1

0.5ixi

)4

, x ∈ [−5, 10]3

(16)

y = 100(x12 − x2)
2 + (x1 − 1)2 + (x3 − 1)2

+ 90(x32 − x4)
2 + 10.1(x2 − 1)2 + (x4 − 1)2

+ 19.8
(

x2 − 1
)(

x4 − 1
)

, x ∈ [−10, 10]4

Fig. 4   Illustration of average 
uncertainty and predictions
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Table 1   Comparison of the 
results of R2 Iteration MSE GO-HI IQR CVVor EIGF GAS-AU

0 0 0 0 0 0 0
1 0 0 0 0 0.8652 0.5137
2 0.7154 0.7154 0.0718 0.8869 0.8784 0.9737
3 0.9683 0.9729 0.3869 0.9582 0.9599 0.9811
4 0.9682 0.9445 0.9110 0.9612 0.9601 0.9850

Table 2   Comparison of the 
results of NRMSE 

Iteration MSE GO-HI IQR CVVor EIGF GAS-AU

0 1.6056 1.6056 1.6056 1.6056 1.6056 1.6056
1 1.5171 1.5171 1.4517 1.4833 0.3646 0.6925
2 0.5297 0.5297 0.9567 0.3339 0.3462 0.1612
3 0.1768 0.1635 0.7775 0.2031 0.1989 0.1367
4 0.1771 0.2339 0.2962 0.1956 0.1983 0.1216
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Function 5 (6D)

Function 6 (10D)

3.2 � Design of experiment and performance criteria

Design of experiment is a sampling approach that acquires 
some samples from design space before building the 

(17)

y = 0.0204x1x4
(

x1 + x2 + x3
)

+ 0.0187x2x3
(

x1 + 1.57x2 + x4
)

+ 0.0607x1x4x25
(

x1 + x2 + x3
)

+ 0.0437x2x3x26
(

x1 + 1.57x2 + x4
)

, x ∈ [0, 100000]6

(18)

y =

10∑
i=1

x2
i
+

(
10∑
i=1

0.5ixi

)2

+ (

10∑
i=1

0.5ixi)

4

, x ∈ [0, 50]10

surrogate [39]. In this work, Latin hypercube sampling is 
used to produce the initial samples. Table 3 presents the 
sampling configurations for the above six test functions. 
MATLAB built-in function lhsdesign is used to randomly 
generate the initial samples and test samples. In addition, 
all results are averaged over 20 DOE sets to reduce the 
effect of randomness.

The coefficient of determination R2 and normalized root 
mean square error NRMSE are usually used to evaluate the 
global accuracy of the surrogate model. The mathematical 
expression can be described as,

where ŷj , yj , and ȳ are the prediction value of the model, the 
actual response value, and the mean value of yj , respectively. 
The range of R2 is from 0 to 1, but negative values appear in 
some cases. Thus, in this work, R2 was set to 0 if R2 ≤ 0 . On 
the one hand, R2 < 0 and R2 = 0 all represent that the sur-
rogate model cannot capture the relationship between design 
variables and responses. On the other hand, if R2 ≤ 0 then 

(19)R2 = 1 −

∑
j

�
�yj − yj

�2
∑

j

�
yj − ȳ

�2

(20)NRMSE =

�����
∑

j

�
ŷj − yj

�2
∑

j

�
yj
�2

Table 3   Sampling configurations for the six functions

Function Dimension Initial samples Infilling 
samples

Test samples

1 2D 6 4 2000
2 2D 6 5 2000
3 3D 9 10 3000
4 4D 12 15 4000
5 6D 18 25 6000
6 10D 35 30 200,000

Fig. 5   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 1
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setting R2 = 0 will avoid the large negative value deteriorat-
ing the averaged results.

3.3 � Performance analysis

For test function 1, Fig. 5 shows the comparisons of the 
GAS-AU with six approaches, i.e., MSE, EI, GO-HI, IQR, 
CVVor and EIGF. Note that the mean of R2 and NRMSE is 
averaged over 20 DOE sets. Std of R2 and NRMSE repre-
sent the standard deviation of R2 and NRMSE over 20 DOE 
sets, which can be described the robustness of the surro-
gate model. In the top subplot of Fig. 5, we can see that the 
adaptive sampling approach can effectively improve the pre-
diction accuracy. Compared to other approaches, GAS-AU 
presents the best prediction accuracy at every infilling sam-
ple. In other words, the proposed approach exhibits the best 
improvement in each iteration than the other approaches. 
More importantly, compared with MSE, EI, GO-HI, IQR, 
CVVor and EIGF, the GAS-AU approach performs the best 
robustness. In addition, the analysis based on the NRMSE 
also verifies the above results.

Figure 6 depicts the comparison of the GAS-AU with 
MSE, EI, GO-HI, IQR, CVVor, and EIGF on test function 
2. The same results as in Fig. 5 are still obtained, that is, the 
GAS-AU presents the best prediction accuracy and robust-
ness in each iteration process. It shows that compared with 
other approaches, the proposed approach can maximize the 
performance of the prediction model when infilling samples 
each time.

On test function 3, Fig. 7 compares GAS-AU with other 
approaches. The obtained results in Fig. 7 are similar to that 
in Figs. 5 and 6. In short, compared with MSE, EI, GO-HI, 
IQR, CVVor, and EIGF, the GAS-AU presents the best 
prediction accuracy and robustness in each iteration. The 
results mean that the proposed method can be achieved the 
best improvement in every infilling sampling than the other 
approaches.

The GAS-AU is compared with other approaches on 
test function 4, as shown in Fig. 8. It is clear from the 
overall trend that the proposed method has high priority, 
even if GAS-AU does not consistently display the best 
prediction accuracy and robustness. Similarly, in the case 
of test functions 5 and 6, the results shown in Figs. 9 and 
10 still illustrate the above finding. In summary, the GAS-
AU provides the best prediction accuracy in each iteration 
when compared with MSE, EI, GO-HI, IQR, CVVor, and 
EIGF. In spite of the fact that the GAS-AU may not always 
exhibit the best robustness, it still performs better than 
other methods.

As can be seen from Figs. 5, 6, 7, 8, 9, 10, as long as 
there are enough iterations, a surrogate model with suffi-
cient prediction accuracy can be constructed by the adap-
tive sampling method. The difference, however, is that a 
good adaptive sampling method can build a high-accuracy 
model with fewer iterations. Thus, in order to analyze the 
performance of GAS-AU more accurately, it is necessary 
to set the iteration stopping criterion. As described in Ref. 
[40], R2 > 0.8 means that the surrogate model presents good 
prediction accuracy. Nevertheless, in this work, the iteration 
stopping criterion is set to R2 > 0.9 to obtain better prediction 

Fig. 6   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 2
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Fig. 7   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 3
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Fig. 8   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 4
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Fig. 9   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 5
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Fig. 10   Comparison of GAS-
AU and six adaptive sampling 
approaches on test function 6
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accuracy. If the requirements are met, the iterative process 
is stopped, otherwise, the iteration continues.

Table 4 gives the detailed comparison results of the GAS-
AU with other approaches on number of iterations. Note that 
the mean of iterations is averaged over six test functions. In 
comparison to other methods, the average savings represents 
the cost savings achieved by GAS-AU. The GAS-AU has the 
smallest number of iterations in each test function. At the 

same time, compared with MSE, EI, GO-HI, IQR, CVVor, 
and EIGF, the GAS-AU saves an average of 43%, 79%, 46%, 
41%, 50%, and 62% computational costs. The results indi-
cate that the proposed approach can build surrogate models 
with acceptable predictive capability at a lower cost than 
other approaches. Once again, the priority of GAS-AU is 
stated.

Table 4   Comparison of 
GAS-AU with six adaptive 
sampling approaches on number 
of iterations

Cases MSE EI GO-HI IQR CVVor EIGF GAS-AU

Function 1 4 5 4 4 5 4 2
Function 2 5 15 6 7 8 7 5
Function 3 14 37 13 13 13 18 7
Function 4 20 15 15 15 15 25 12
Function 5 47 146 47 40 40 50 30
Function 6 48 148 60 54 72 97 22
Mean of iterations 23 61 24 22 26 34 13
Average savings 43% 79% 46% 41% 50% 62% 0

Fig. 11   Structural parameters of 
the hoist sheave
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4 � Engineering problem

This section uses a hoist sheave as shown in Fig. 11 to 
further study the performance of the proposed GAS-AU 
approach. In Fig.  11, x1 to x8 represent the structural 
parameters, that is, the eight variables in the design space. 
To determine the design size of the hoist sheave, a maxi-
mum stress model is built using the surrogate model. The 
eight variables are defined as follows:

Fun ∶ � = f
(
xi
)
, i = 1, 2,⋯ , 8

(21)s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2100 ≤ x1 ≤ 2300

500 ≤ x2 ≤ 800

300 ≤ x3 ≤ 500

100 ≤ x4 ≤ 300

2300 ≤ x5 ≤ 2500

300 ≤ x6 ≤ 500

250 ≤ x7 ≤ 500

150 ≤ x8 ≤ 300

In order to obtain the stress of the hoist sheave, finite 
element analysis is adopted to conduct computer simula-
tions. The number of grids is approximately 30 thousand for 
finite element analysis computations, as shown in Fig. 12. 
In addition, the stress distribution is shown in Fig. 13. The 
material of the finite element analysis model is Q345-B, in 
which the density, elastic modulus, Poisson's ratio, yield 
strength and tensile strength are 7850, 2.06e5, 0.28, 345, 
470, respectively.

In this section, Latin hypercube sampling is employed to 
generate 40 initial samples for constructing the initial sur-
rogate model. Furthermore, we adopt 100 samples as the test 
dataset to evaluate the performance of the surrogate model. 
The evaluation index still adopts R2 and NRMSE, which is 
similar to Sect. 3. Then, the adaptive sampling method is 
used to generate the new samples to improve the prediction 
accuracy of the surrogate model until this model meets suf-
ficient accuracy (R2 > 0.9).

This section still compares the proposed GAS-AU 
approach with MSE, EI, GO-HI, IQR, CVVor, and EIGF, 
and the results are shown in Fig. 14. It visually compares 
the prediction accuracy of the stress model during each itera-
tion. The fluctuations of the curves in Fig. 14 suggest that 

Fig. 12   Structural grids for the 
hoist sheave model
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infilling new samples may also lead to poor prediction accu-
racy. However, from the overall trend, the prediction accu-
racy of the surrogate model is improved with the increase 

of the number of sample points. More importantly, although 
GAS-AU does not always show the best prediction accuracy, 
it still outperforms other methods. The analysis based on 
NRMSE also illustrated the above results again. In short, 
under the same number of iterations, GAS-AU exhibits 
higher priority than other approaches.

To obtain more reliable results, this section tests the 
performance of the proposed GAS-AU approach again by 
setting a stopping criterion (R2 > 0.9). Furthermore, GAS-
AU is still compared with other approaches, and the results 

Fig. 13   Stress distribution for 
the hoist sheave
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Fig. 14   Comparison of GAS-AU and four adaptive sampling 
approaches on an engineering problem

Table 5   Comparison of GAS-AU with six adaptive sampling 
approaches on number of iterations

Approaches Number of iterations Savings (%)

GAS-AU 23 0
MSE 42 45%
EI 59 61%
GO-HI 33 30%
IQR 54 57%
CVVor 32 28%
EIGF 52 56%
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are listed in Table 5. The proposed GAS-AU method satis-
fies the stopping criterion with only 23 iterations. Com-
pared to MSE, EI, GO-HI, IQR, CVVor, and EIGF, the 
proposed approach has the least number of iterations. The 
result illustrates that this method can be used to construct 
the surrogate model with acceptable accuracy at a lower 
cost than other approaches. In other word, the GAS-AU 
can satisfy the iterative criterion at a faster rate. For this 
engineering problem, the GAS-AU saves 45%, 61%, 30%, 
57%, 28%, and 56% computational costs than MSE, EI, 
GO-HI, IQR, CVVor, and EIGF, respectively. In summary, 
the proposed approach has a higher priority than other 
approaches.

5 � Conclusion

This work proposes a novel adaptive sampling approach 
method, namely GAS-AU. In the proposed approach, the 
most important is the construction of the average uncer-
tainty index. This indicator is designed to describe predic-
tion uncertainty as accurately as possible. First, the pre-
dicted mean is obtained based on the CV predictions of 
multiple surrogate models. Compared to a single surrogate 
model, multiple surrogates can be enriched the distribu-
tion of CV predictions, further improving the reliability 
of the predicted mean. Then, the weight coefficients are 
calculated based on the global errors of multiple surro-
gate models, thereby construct predicted model. Finally, 
an average uncertainty index is constructed based on the 
predicted mean and predicted model. A new sample at 
the point with the largest average uncertainty is generated 
to update the predicted model until the model reaches an 
acceptable accuracy.

Six test functions with different dimension are used to 
test the performance of the GAS-AU approach. Compared 
with MSE, EI, GO-HI, IQR, CVVor, and EIGF, the GAS-
AU approach presents the better prediction accuracy and 
robustness. The results mean that the proposed GAS-AU 
approach can be achieved the better improvement than the 
other approaches. More importantly, the same results are 
obtained on an engineering problem, indicating that the 
GAS-AU exhibits higher priority than other approaches 
under the same number of added samples. To make the 
obtained results more reliable, this paper tests the perfor-
mance of the proposed GAS-AU approach again by setting 
a stopping criterion. Compared with MSE, EI, GO-HI, 
IQR, CVVor, and EIGF, the GAS-AU can satisfy the stop-
ping criterion using the minimum number of iterations. 
The results show that this proposed approach can achieve 
the construction of surrogate models with acceptable 
accuracy at a lower cost compared to other approaches. In 

summary, the GAS-AU approach demonstrates a higher 
priority than other approaches.

Although the proposed approach shows good perfor-
mance and can save a lot of computational cost, it cannot 
be ignored that this approach uses CV prediction, mean-
ing that GAS-SU is slightly slower than MSE and EI in 
calculation speed. Therefore, the next work is to improve 
the calculation speed of the GAS-AU approach.
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