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Abstract
A neural solution methodology, using a feed-forward and a convolutional neural networks, is presented for general tensor 
elliptic pressure equation with discontinuous coefficients. The methodology is applicable for solving single-phase flow in 
porous medium, which is traditionally solved using numerical schemes like finite-volume methods. The neural solution to 
elliptic pressure equation is based on machine learning algorithms and could serve as a more effective alternative to finite 
volume schemes like two-point or multi-point discretization schemes (TPFA or MPFA) for faster and more accurate solution 
of elliptic pressure equation. Series of 1D and 2D test cases, where the results of Neural solutions are compared to numeri-
cal solutions obtained using two-point schemes with range of heterogeneities, are also presented to demonstrate general 
applicability and accuracy of the Neural solution method.

Keywords Neural PDE · Elliptic equation · Heterogeneous · CNN · finite-volume method

1 Introduction

Subsurface reservoirs generally have a complex description 
in terms of both geometry and geology. Typical reservoir 
grid block sizes are of the order of tens of meters, while 
rock properties are measured below the centimeter scale. 
This poses a continuing challenge to modeling and simula-
tion of reservoirs since fine-scale effects often have a pro-
found impact on flow patterns on larger scales. Resolving 

all pertinent scales and their interaction is therefore impera-
tive to give reliable qualitative and quantitative simulation 
results.

Rapid variation in permeability is common in oil reser-
voirs where permeability coefficients can jump by several 
orders of magnitude. Continuity of normal flux and pressure 
at local physical interfaces between grid blocks with strong 
discontinuities in permeability are fundamental laws that 
must be built into the discrete approximation of the pressure 
equation. Finite volume methods are a class of discretization 
schemes that have proven highly successful in approximat-
ing the solution of a wide variety of conservation laws. The 
primary advantages of these methods are improved numeri-
cal robustness through discrete maximum (minimum) prin-
ciples, applicability on very general unstructured grids, and 
the intrinsic local conservation properties of the resulting 
schemes. In last two decades “flux-continuous control vol-
ume distributed (CVD) finite-volume schemes" for deter-
mining the discrete pressure and velocity fields in subsurface 
reservoirs [2] and [14]. Schemes of this type are also called 
as multi-point flux approximation schemes or MPFA [9]. 
Other schemes that preserve flux continuity have also been 
developed using mixed methods [1] and discontinuous galer-
kin methods [29]. Numerical convergence of these schemes 
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on structured and unstructured grids has also been presented 
in [14, 3] and [21].

When applying these schemes to strongly anisotropic 
heterogeneous media, they can fail to satisfy a maximum 
principle (as with other Finite-element and finite-volume 
methods) and result in loss of solution monotonicity for high 
anisotropy ratios causing spurious oscillations in the numeri-
cal pressure solution [16]. In recent years, with the advances 
in machine learning and the development of deep learning 
algorithms, researchers have started to apply deep learning 
methods to solve a variety of mathematical and engineering 
problems. For example, researchers have tried to solve ordi-
nary differential equations using neural networks [26] and 
develop a deep learning framework for solving partial differ-
ential equations [10] as well. More to that, Neural networks 
have also been used for solving steady state and turbulent 
flow problems [4, 28], and deep learning methods have been 
applied for solving poro-elastic problems in porous media 
[27]. Some researchers have also started using the power 
of deep learning techniques, like RNN-LSTM type models 
[23], for history matching and forecasting of hydrocarbon 
flows in heterogeneous porous media. Neural networks have 
also been introduced permeability upscaling and homogeni-
zation [7]

Machine learning approaches have been applied to find 
models of heat conduction problem [31], which is similar to 
flow in porous media solving elliptic equation. The work was 
presented for a one-dimensional heat conduction problem 
which involves a system of Partial Differential Equations 
(PDEs). The training data is generated by solving numeri-
cally. Nonlinear heat transfer via conduction with a com-
plex geometry using machine learning has been presented by 
[32], where the ANN technique is adopted to deal with the 
geometry complexity and nonlinear aspects of the thermal 
model. Researcher [33] have developed an ANN model for 
predicting the behaviour of non-linear flow in porous media 
by taking pressure gradient into account. Particle diameter, 
density, shape and porosity has been identified as the influ-
encing factors which were taken as input parameters. The 
generated ANN model is developed by using a huge experi-
mental data set which is found to be better to predict the flow 
behaviour over previous empirical relations. Heat and mass 
transfer investigation on the flow impingement of a hybrid 
nanofluid over a cylindrical shaped structure embedded with 
porous media has also been conduced by [34] using machine 
learning approaches.

In this paper we aim to use the power of artificial neural 
networks to solve elliptic pressure equation with discontinu-
ous coefficients. A neural solution methodology is presented 
using a feed-forward and a convolutions neural network for 
solving the elliptic partial differential equation. The method 
presented in this paper could serve as a more effective alter-
native to finite-volume and other numerical schemes. This 

paper also presents the challenges associated with solving 
elliptic PDE with discontinuous coefficients using finite-
volume method and demonstrates with help of test cases 
the superiority of neural solution methods.

This paper is organized as follows: Flow equations and 
general problem description is presented in Sect. 2. Numeri-
cal solution methodology using Two-Point Flux and Multi-
Point Flux approximation along with its limitations is pre-
sented in Sect. 3. Neural solution of elliptic PDE using feed 
forward neural networks is presented in Sect. 4. Improved 
solution methodology using convolution neural networks is 
presented in Sect. 5. Section 6 presents results and conclu-
sions follow in Sect. 7.

2  Flow equation and problem description

2.1  Cartesian tensor

The problem is to find the pressure p satisfying

over an arbitrary domain Ω , subjected to suitable (Neu-
mann/Dirichlet) boundary conditions on boundary �Ω . The 
right hand side term � represents a specified flow rate and 
∇ = (�x, �y) . Matrix � can be a diagonal or full cartesian 
tensor with general form

The full tensor pressure equation is assumed to be elliptic 
such that

The tensor can be discontinuous across internal boundaries 
of Ω . The boundary conditions imposed here are Dirichlet 
and Neumann. The pressure is specified at at-least one point 
in the domain for incompressible flow. For reservoir simu-
lation, Neumann boundary conditions on �Ω require zero 
flux on solid walls such that (�∇p) ⋅ n̂ = 0 , where n̂ is the 
outward normal vector to �Ω.

2.2  General tensor equation

The pressure equation is defined above with respect to the 
physical tensor in the initial classical Cartesian coordinate 
system. Now we proceed to a general curvilinear coordinate 
system that is defined with respect to a uniform dimension-
less transform space with a (�, �) coordinate system. Choos-
ing Ωp to represent an arbitrary control volume comprised 

(1)−∫Ω

∇ ⋅�(x, y)∇p d� = ∫Ω

q d� = �

(2)� =

(

K11 K12

K12 K22

)

(3)K2

12
≤ K11K22
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of surfaces that are tangential to constant (�, �) respectively, 
equation 1 is integrated over Ωp via the Gauss divergence 
theorem to yield

where �Ωp is the boundary of Ωp and n̂ is the unit outward 
normal. Spatial derivatives are computed using

where J(x, y) = x�y� − x�y� is the Jacobian. Resolving the 
x, y components of velocity along the unit normals to 
the curvilinear coordinates (�, �) , e.g., for � = constant, 
�̂ ds = (y𝜂 ,−x𝜂) d𝜂 gives rise to the general tensor flux 
components

where general tensor � has elements defined by

and the closed integral can be written as

where e.g. △�F is the difference in net flux with respect to � 
and F̃ = T11p𝜉 + T12p𝜂 , G̃ = T12p𝜉 + T22p𝜂 . Thus any scheme 
applicable to a full tensor also applies to non-K-Orthogonal 
grids. Note that T11, T22 ≥ 0 and ellipticity of � follows from 
equations 3 and 7. Full tensors can arise from upscaling, 
and local orientation of the grid and permeability field. For 
example by equation 7, a diagonal anisotropic Cartesian ten-
sor leads to a full tensor on a curvilinear orthogonal1 grid 
([16]).

2.3  Boundary conditions

The two most common kinds of boundary conditions used 
in reservoir simulators to solve equation 1, are Dirichlet 
and Neumann Boundary Conditions. The Dirichlet bound-
ary condition requires the specification of pressure at the 
reservoir boundaries or wells. Typically, this involves speci-
fying flowing bottom hole pressure at a well and a constant 

(4)−∮
𝜕Ωp

�∇(p) ⋅ n̂ ds = �

(5)px =
J(p, y)

J(x, y)
, py =

J(x, p)

J(x, y)
,

(6)

F = −∫ (T11p� + T12p�) d�, G = −∫ (T12p� + T22p�) d�,

(7)

T11 =(K11y
2

�
+ K22x

2

�
− 2K12x�y�)∕J,

T22 =(K11y
2

�
+ K22x� − 2K12x�y�)∕J,

T12 =(K12(x�y� + x�y�) − (K11y�y� + K22x�x�))∕J

(8)∬Ωp

(𝜕𝜉F̃ + 𝜕𝜂G̃)

J
J d𝜉d𝜂 = △𝜉F +△𝜂G = m

pressure at physical boundaries of reservoir. The Neumann 
boundary condition requires specification of flow rates at 
reservoir boundaries. Typically, it involves specifying flow 
rates at wells and no-flow across physical boundaries of 
reservoir.

3  Numerical schemes for solving general 
tensor pressure equation

Conventional reservoir simulation employs a standard five-
point cell-centred stencil in 2D (seven in 3D) for approxi-
mating the discrete diagonal tensor pressure (not full tensor) 
equation, Fig. 1. Continuity of flux and pressure is readily 
incorporated into the standard discretization by approximat-
ing the interface coefficients with a harmonic average of 
neighboring grid block permeabilities. Unfortunately, for an 
arbitrary heterogeneous domain the assumption of a diago-
nal tensor is not always valid at the grid block scale.

In general a full tensor equation arises whenever the com-
putational grid is nonaligned with the principal axes of the 
local tensor field. A full tensor can occur when representing 
cross bedding, modeling any anisotropic medium that is non-
aligned with the computational grid, using non K-orthogonal 
[12, 13] or unstructured grids as well as upscaling rock prop-
erties from fine scale diagonal tensor simulation to the 12 
grid block scale. Consequently, a standard five-point diago-
nal tensor simulator will suffer from an inconsistent O(1) 
error in flux when applied to cases involving these major 
features. Accurate approximation of the full-tensor pressure 
equation requires nine-point support in two dimension (19 
or 27 in 3-D), Fig. 1. The nine point formulation is possibly 
the most reliable method to counter grid-orientation effect 
and widen the simulator range of applicability to general 
non-orthogonal grids and full-tensors [14–16, 18, 19].

3.1  Two‑point flux approximation (TPFA) Scheme

We begin with classical cell centered formulation in one 
dimension where pressures and permeabilities are defined 
with respect to cell centres. In this case equation 1 reduces to

Fig. 1  Depiction of Five-Point Stencil on the left and a Nine-Point 
Stencil on the right for 2D case

1 A grid is called orthogonal if all grid lines intersect at a right angle.
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Integration of the equation 9 over the cell i (referring to 
Fig. 2) results in the discrete difference of fluxes

where m  is possible specified local f low rate, 

F
i+

1

2

= −K
�p

i+
1

2

�x
 and the derivative remains to be defined. 

If the coefficient � is sufficiently smoothly varying it is pos-
sible to use linear interpolation between the centers of cells 
i and i + 1 and approximates the flux by

where K
i+

1

2

 is a suitable average of the adjacent cell centered 
permeabilities. However if � is discontinuous then (since 
normal flux and pressure are continuous) the pressure gradi-
ent is discontinuous and linear interpolation is not valid 
across the cell faces. Continuous pressure and normal flux 
are incorporated in the cell centered approximation by intro-
ducing a mean pressure pf  at a cell face dividing neighboring 
cells Fig. 2. Equating the resulting one sided flux approxima-
tion at the cell face results in

which ensures flux continuity. From equation 12 cell face 
pressure is given by

which is back-substituted into the discrete flux equation 11 
to yield the classical cell face flux approximation

As in one dimension pressures and permeabilities have a 
cell-wise distribution and cells act as control volumes. The 
equivalent two-dimensional discontinuous diagonal tensor 

(9)−∫
(

K(x) p�
x

)�

x
dx = m

(10)F
i+

1

2

− F
i−

1

2

= m

(11)F
i+

1

2

= −K
i+

1

2

pi+1 − pi

xi+1 − xi

(12)−Kr

pr − pf

Δxr
= −Kl

pf − pl

Δxl
= −Ff

pr − pl

Δx

(13)pf =

plKl

Δxl
+

prKr

Δxr
Kl

Δxl
+

Kr

Δxr

(14)Ff = −2KrKl

pr − pl

KrΔxl + KlΔxr

five-point scheme on rectangular grid is derived by introduc-
tion of interface pressures and a sub-cell triangular support, 
see Fig. 3. As in one dimension cell face pressures are elimi-
nated in the flux continuity conditions to yield the classical 
five point scheme with harmonic mean coefficients in two 
dimensions, further details of the scheme can be found in 
[12, 13]. The support for the classical five-point scheme is 
shown in Fig. 3, and shows that introduction of cell face 
pressures ( pf = (pN , pS, pE, pW , ) ) enables the normal veloc-
ity and pressure to be point-wise continuous at the cell faces.

3.2  Multi‑point flux approximation (MPFA) scheme

Two-point flux approximation method only take into account 
neighbouring grid cells and deals with only isotropic perme-
ability. To get a generalized discretization for anisotropic 
permeablities and general polyhedral grids, multipoint flux-
approximation method or (MPFA) uses more than two points 
to approximate the flux across each inter-cell face, typically 
it uses a stencil similar to a 9-point scheme, resulting in a 9 
diagnoals in 2D and 27 diagnoals in 3D for the global assem-
bly matrix. A lot of literature and details on MPFA method 
have been published, see [14–16, 18, 19].

For the standard MPFA - O method each face in the grid 
is subdivided into a set of subfaces, one subface per node 
that makes up the face, see Fig. 4. The inner product of 
the local-flux mimetic method gives exact result for linear 
flow and is block diagonal with respect to the faces corre-
sponding to each node of the cell, but it is not symmetric. 
The block-diagonal property makes it possible to reduce the 
system into a cell-centered discretisation for the cell pres-
sures. This naturally leads to a method for calculating the 

PL PRPF

KL KR

Fig. 2  One dimensional Cell centered and Cell face pressures

Fig. 3  Imposing continuity between the grid blocks in a five-point 
scheme. Cell-centered five-point support on a cartesian grid

Fig. 4  Full tensor pressure 
support with standard MPFA 
scheme
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MPFA transmissibilities. The MPFA-O scheme is consistent 
on grids that are not necessarily K-orthogonal.

3.3  Limitations of TPFA and MPFA schemes 
for elliptic pressure eqn

The two-point flux approximation method (TFPA) is conver-
gent if and only if grid cells are Cartesian or parallelogram 
in 2D and parallelepiped in 3D, otherwise, also known as a 
�-orthogonal grids. Cartesian grids are �-orthogonal with 
respect to diagonal permeability tensor but not with respect to 
full permeability tensor, see Fig. 5. Therefore, a major limita-
tion of TFPA method is that if its used to solve the elliptic 

pressure equation on a non �-orthogonal grid it results in 
wrong results due to grid-orientation effects. MPFA method, 
on the other hand, is more suitable for such non �-orthogonal 
grids and gives a more accurate solution, see Fig. 6, which 
shows how permeability anisotropy impacts the pressure prop-
agation between sources and sinks leading to wrong results.

Although, MPFA methods give correct results for non-
K-orthogonal and full permeability tensor, they result in 
non-monotonic solution when applied to highly an-isotropic 
permeability tensors [14, 17]. A variety of modified MPFA 
schemes have been developed by many authors to correct for 
non-monotonic behavior but still some challenges exist for 
highly complex cases. An example of such a case where stand-
ard MPFA method fail to yield accurate solution is shown in 
Fig. 7, which shows non-monotonic behavior of the pressure 
solution in presence of very high anisotropy, for more details 
please see reference [17].

4  Neural solution method

Machine learning is a field of mathematics and computer 
science for artificial intelligence that analyzes algorithms 
that solve various problems without giving “precise” 

Fig. 5  The grid on the left is a cartesian type grid with grid lines 
aligned with principal coordinate axes. The grid on the right is a plot 
of K-orthogonal grid

Fig. 6  Figure showing comparative simulation results, on a cartesian grid with high anisotropy, between TPFA and MPFA methods
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instructions. These algorithms can be loosely classified 
into supervised and non-supervised learning, however in 
this paper the focus is on the former. Each time a machine 
solves a particular problem from a given input, some rel-
evant feedback is obtained about its output by comparing it 
to a "true" result. At first epochs the computer is untrained 
and the errors are high, however, with time it manages to 
learn by re-selecting a set of parameters automatically for 
more accurate results.

Artificial Neural Network is a very renowned type of 
machine learning algorithms that is used for many difficult 
problems such as applications for image and language pro-
cessing, forecasting, risk assessment, market research, etc. 
The idea behind machine learning algorithms is trying to 
recognize an underlying relationship between some input 
and its output vectors. This is done by mimicking the phe-
nomenon inside the brain where nerve cells (called neurons) 
create intricate relationships of varying strength between one 
another that resembles a net, thus such algorithm earned its 
name as a "neural network". ANN is known for being an 
universal function approximator - this means that it may, in 
theory, given sufficient amount of data that is processed for 
a specific problem and fed accordingly, imitate any possible 
relationship (where there is one).

There are two types of problems ANN can deal with: 
classification and regression. Classification usually outputs 
some kind of probability estimate of a defined occurrence, 
whereas regression outputs values of a function at a certain 
input. The main focus in this paper is on the latter, however 
it is extremely important to understand the part that is usu-
ally taught in classification approach - Logistic Regression 
(LR). This is because LR is in a way a building block of NN 
as it defines what a neuron is.

Using one LR approach will only yield strictly monoto-
nous solutions (either increasing in value or decreasing), 
however if two or more LRs are used on the same input 

- they can be added to construct almost any shape imagi-
nable much like Fourier series. The main idea idea behind 
basic feed-forward ANN is - stacking LR approach multi-
ple times and repeatedly feeding modified input spaces into 
sequential modifiers. However, the weights are guided to 
produce a wanted output (called target) using back-propaga-
tion and optimization algorithms. If weights are not optimal 
- the output of the ANN is far from a target by some error 
calculated by a cost function (e.g. Mean Square Error). This 
cost function has to be minimized by weights (e.g. using 
Gradient Descent algorithm) so that the error would be as 
small as possible. A lot of minimization algorithms make 
use of cost function gradient which is very computationally 
expensive to compute, so a back-propagation algorithm is 
usually used [5] to approximate the gradient.

4.1  Neural solutions to elliptic pressure equation ‑ 
using convolutional neural network

The inspiration behind this work was drawn from Physically 
Informed Neural Network (PINN) [30] approach with an 
implementation of convolutions for solving the elliptic pres-
sure equation. This is due to inherent limitation of a simple 
feed forward neural networks failing to obtain a good quality 
numerical solution and the problem being more focused on 
spacial derivatives.

Implementation of neural network, which would replicate 
TPFA results for the elliptic pressure equation is done for 1D 
problems before moving on to more complex 2D problems. 
Assuming the isotropic permeability domain that is aligned 
with the rectangular grid, the Poisson’s equation becomes:

(15)
d2p(x)

dx2
⋅ k(x) = 0

Fig. 7  Figure showing comparative simulation results, on a Cartesian grid with high anisotropy, between TPFA and MPFA methods
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where p(x) is the FVM approximation obtained from (TPFA 
or MPFA) type formulation. In 1D case, � =

(

K11

)

 , so the 
whole permeability domain can be described by a singlevari-
ate function � = k(x) . The main objective is to set up the 
neural network, given as, NN(x) such that the solution would 
converge on the numerical one:

Substituting equation 16 into equation 15 the expression 
becomes:

for some specifically defined boundary conditions, as source 
(1) and sink (0), at the both ends of the domain given as: 
(p(0) = P0 and p(1) = P1).

Loss function is constructed in such a way so that it mim-
ics the Darcy’s law. Two separate loss functions with differ-
ing weights are constructed, one of which is only for learn-
ing the numerical FVM stencil and the another is a typical 
data driven loss function, see equation 18.

The loss function could be subsequently written using the 
FVM stencil shown in equation 19 as:

The most straightforward way of implementing boundary 
conditions is by putting them directly inside of the loss func-
tion, given as:

Where the last term of 20 corresponds to the boundary 
condition. But the implementation of BCs within the loss 
function results in unstable solutions. To avoid instabilities 
in the neural solution the BCs are implemented as a func-
tion that would represent the pressure distribution, say g(x). 
Since neural network could approximate any function, g(x) 
could be arranged in such a way that it would always satisfy 
the left and right boundary conditions on one dimensional 
domain, shown in equation 21.

(16)NN(x) = p(x)

(17)d2NN(x)

dx2
⋅ k(x) = 0

(18)Loss =

(

d2NN(x)

dx2
⋅ k(x)

)2

(19)

Loss =

(

2k(xi)k(xi+1)

k(xi) + k(xi+1)
(NN(xi+1) − NN(xi))

−
2k(xi−1)k(xi)

k(xi−1) + k(xi)
(NN(xi) − NN(xi−1))

)2

(20)

Loss =

(

2k(xi)k(xi+1)

k(xi) + k(xi+1)
(NN(xi+1) − NN(xi))

−
2k(xi−1)k(xi)

k(xi−1) + k(xi)
(NN(xi) − NN(xi−1))

)2

+(NN(0) − P0)
2 + (NN(1) − P1)

2

such that at x = 0, g(0) = P0 and at x = 1, g(1) = P1 . With 
the boundary conditions implemented the resulting loss 
function becomes as shown in equation 22.

Input for an elementary 1D PINN is usually a single neuron 
that represents any real x-coordinate, where the output is 
also a single neuron that returns a pressure value at that 
particular x-coordinate. This is great as the neural network 
can evaluate the pressure distribution at any point of the 
1-D domain, where numerical methods would find it difficult 
for a given discretization, thus being not as flexible in that 
regard. Another point to note is the implementation of the 
boundary conditions. Here Dirichlet BCs are implemented, 
which define some fixed pressure values at the ends of the 
domain. A very simple architecture with only one dense 
layer out of 32 neurons is used, see Fig. 8.

Although this type of network architecture works well, 
it has one limitation that this network could only be trained 
with one permeability distribution at a time. To overcome 
this challenge the input neurons are treated as discrete coor-
dinates themselves, rather than having one single input neu-
ron for coordinate insertion. That way it is possible to have 

(21)g(x) = P0 + (x2 − x) ⋅ NN(x) + x(P1 − P0)

(22)

Loss =

(

2k(xi)k(xi+1)

k(xi) + k(xi+1)
(g(xi+1) − g(xi))

−
2k(xi−1)k(xi)

k(xi−1) + k(xi)
(g(xi) − g(xi−1))

)2

Fig. 8  Architecture of a simple feed forward network with one dense 
layer consisting out of 32 hidden neurons (1:32:1). This network was 
used for the classic PINN formulation for the elliptic pressure equa-
tions in 1D
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an input slot for every permeability value of the discretized 
domain. The network would also produce an output of the 
same size (equal to the disrcretization node count nx).

Gaussian noise glossed over with moving mean algorithm 
is used to generate several realizations of complex input per-
meability domains k(x). The new architecture of the neural 
network could now be drawn and is shown in Fig. 9.

To further improve the performance of the network addi-
tional convolutional layers are added to the network, see 
Fig. 10. Convolution operation can be thought as evalua-
tion of permeability change at every point, which act as a 
derivative analog. This meant that the network could learn 
from shapes and edges rather then intricately interconnected 
raw data.

5  Results

Once the neural network is constructed it requires to be 
tested for validation. In this section we will show series of 
test in 1D and 2D to validate the neural solution method. The 
results are also compared with numerical solution obtained 
via finite volume method. Finally, convergence results are 
also presented as means to validate the neural solutions for 

Fig. 9  Architecture of a bit more complex feed forward network 
with two dense layers both consisting out of 32 hidden neurons 
(n

x
∶ 32 ∶ 32 ∶ n

x
) . This model was used for feeding the network per-

meabilities at each discretized point in the domain while getting the 
pressure values as an output

Fig. 10  Architecture of a convolutional neural network (CNN) used with two convolutional layers that triple the channels for feature extraction, 
two max pooling layers after each convolution for reduction of the amount of neurons by two and two dense layers for loss minimization
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2D cases, where successive refinement of the problem are 
used to compare neural solution against the numerical solu-
tion to demonstrate error convergence.

5.1  1D case

In this subsection the results are presented for a few 1D test 
cases using the convolutional neural network described in 
section above for solving the elliptic pressure equation. The 
test case includes a permeability distribution in 1D described 
by Gaussian noise. The results generally show a very good 
agreement between the FVM and NN results, see Fig. 11.

However, there are a few exeptional cases where NN fails 
to accurately capture the physical pressure solution of FVM, 
resulting in a somewhat trivial shape with a considerable 

amount of noise. The worst case error wise is demonstrated 
in Fig. 12.

Finally, we present some statistics involving training and 
testing to show that the loss function is minimized and that 
there only a small number of cases with a relatively larger 
error between the FVM and NN solutions, see Fig. 14. Out 
of 5 million trials only a handful of them had “significantly" 
large loss. After identifying the worst cases, they were ana-
lyzed on how were they different from the whole popula-
tion. It would seem that NN had a difficult time dealing with 
permeability domains with sharps fronts (see Fig. 13) as 
well as unexpected deviations from the overall permeability 
trajectories (highlighted with a circle in Fig. 13). Difficult 
cases usually also contain a higher number of peaks/valleys 
(sometimes 5 at a time as in Fig. 13), not only being more 

Fig. 11  Permeability distribution with hills and valleys with a corresponding 1-D pressure solution from FVM and NN showing very good cor-
relation. This is an example of a solution at around the mean error value of 0.01

Fig. 12  Test case with the highest error where NN has trouble capturing the solution of FVM accurately, due to the strong changes in permeabil-
ity distribution
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likely to create the aforementioned sharp fronts, but also 
making it considerably more difficult to properly estimate 
the pressure solution. In these particular cases even FVM 
produces a somewhat flat pressure line with small devia-
tions, which are hard to pick up by the NN, because of the 
diminishing error and the vast quantity of simpler cases. 
This is all speculation based on the observations.

5.2  2D case

The main focus in this section is to observe the ability of 
CNN to deal with a strong heterogeneity of the domain 

which is commonly present in real world problems. Since 
CNN approach produced satisfactory results in 1D case, the 
work is now carried out to a 2D domain for further investiga-
tion. Similarly to 1D case, the following results are achieved 
by training CNN on the FVM’s generated data on a highly 
heterogeneous domain made by Gaussian noise and moving-
mean algorithms (see Fig. 15).

While these domains are unpredictable, they do have a 
certain frequency analog to them - a general idea of a num-
ber of wave-like structures being repeated across the domain. 
This is one of the hyper-parameters that can be somewhat 
controlled while generating such permeability domains. The 
aforementioned waves have ever-changing amplitudes and 
even frequencies, which make this problem even more dif-
ficult. It is fair to say, that there are more types of domains 
to be considered in the future, like cracked surfaces, non-cir-
cular heterogeneity and layering, however this paper focuses 
only on high heterogeneity. The permeability domain for a 
2D case is set to range from 1 to 10, creating more interest-
ing solutions to showcase.

The first Fig. 16 depicts the overall pressure distribution. 
In these graphs the main point is to notice that CNN man-
ages to deal with large areas of uniformity in permeability 
data and understand what overall "color" should the graph 
undertake. Upper images correspond to FVM solutions and 
the lower ones are the outputs of CNN, having respective 
underlying permeability domains. These are more trivial 
solutions, whereas Fig. 17 depicts how well CNN distributes 
pressure values along more complicated domains. There is a 
noticeable correspondence between the FVM solution vari-
ation and the analogous shift of colours in the CNN images. 

Fig. 13  One of the most difficult permeability domains on which 
NN produced pressure solutions with higher errors. Sharp front and 
inconsistencies in value are highlighted with orange circles, where 
the numbering refers to the amount of peaks/valleys the curve has. 
These qualities are hypothesized to be something that differentiate 
poor NN solutions from the well-behaved ones

Fig. 14  a This histogram shows how much of the training samples 
every bin of squared errors received. The X-axis actually goes up 
to   0.311 (this highest error pressure solution example presented in 
Fig. 14), but the frequencies become vanishingly small quite soon. b 

This graph shows every squared error of every trial. Since most of the 
errors are clumped at around the 0.005, we see a high density at the 
bottom of the graph. The red line indicates the level of the errors that 
are higher
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This shows the NN ability to replicate finer details on top of 
aforementioned overall pressure distribution.

The obvious issue is that the noise contamination is most 
severe with these cases in its amplitude and the amount. 
Some stochastic jumps in value break the desired uniform-
ity of the solution as well as the conservation of the flux 
which can be reduced by implementing smoothing functions. 
While this approach would decrease the error of the solution, 
overall it is not desirable as the standard smoothing func-
tions do not take into account the underlying permeability 
domain. In theory, this could be reduced by implementing 
deeper network structures and more sophisticated network 
architectures.

From the error profile of 2D case it can be seen, that 
increasing dimensionality of the problem leads to the error 
histogram being more skewed and its peak considerably 
skinnier (see Figs. 14 a and 18 (a)). These results show that 
for 1D case it was relatively easier to maintain roughly the 
same error throughout the possible instances of the prob-
lem, whereas, in 2D case it can be observed that there is a 
clear subsection of cases that have lower error, while the 
error dispersion is overall higher. These results show that it 
could be expected that the neural network model may lead to 
larger error in higher dimensions and might require further 
improvements to contain the errors.

The mean error is still relatively low and sits at some very 
low values (see Fig. 14 (b)). Figure 19 shows the solution 
and spacial error distribution of a case with mean error.

5.3  Neural convergence results

Convergence of the NN method can be investigated by solv-
ing the same elliptic equation on different refinement grids. 
This is implemented by generating hundred thousand 32x32, 

16x16, 8x8 and 4x4 grid permeabilities and along their FVM 
solutions by reducing the resolution 2, 4 and 8 fold. The 
NN model is trained only on the 32x32 grid. Since the net-
work has 32 × 32 = 1024 input neurons, the lower resolution 
permeabilities are augmented to a 32x32 grid by repeating 
the values in matrix. An example of an augmentation by a 
double is shown in equation 23.

This way MSE can be calculated on for each 32x32, 16x16, 
8x8 and 4x4 cases (now augmented to a 32x32 grid). A log-
log graph (see Fig. 20) is produced with two a straight lines 
- orange depicts an overall trend line, where the green one is 
only fitted on 16x16, 8x8 and 4x4 permeability grids. This 
is because 32x32 case will always have a significantly lower 
error as the network was trained on it. Figure 20 shows that 
error is reducing with refinement and that NN method is 
working, which builds confidence in the scheme.

6  Comparative analysis

6.1  Computational efficiency

While it is true, that in a reservoir simulation context, the 
pressure equation is usually coupled to the saturation/com-
ponent concentration equation (which is then solved at each 
time step), the focus of this paper is on the solution of the 
pressure step, as it takes large computational effort, from 
numerical solution point of view. Solving coupled system, 
pressure and saturation, is most certainly to be investigated 
in future work. Although the neural network constructed in 
this research work focuses on simplicity and scalability, it 
will be further improved to handle more challenging cases 
in future research work.

Other researchers have also worked on solving Darcy 
flow problem using neural networks [6]. Their methodol-
ogy uses a special network architecture like residual layers 
that are enhanced with Fourier transformations and point-
wise convolutions to obtain a resolution invariant method. 
This allows any arbitrarily sized image to be processed by 
the neural network, making the neural methodology much 
less task specific.

Exploring the sensitivity of computational efficiency 
concerning the number of layers and grid blocks is impor-
tant, because our neural network’s architecture actually 
varies depending on the resolution. For example, cases 
presented here use at most 32 × 32 = 1024 grid blocks 
requiring 1024 neurons as input, whereas practical mod-
els usually comprise of resolution in the order of 128 × 128 

(23)
1 2

3 4
→

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Fig. 15  A highly heterogeneous permeability space generated by 
Gaussian noise function coupled with moving-mean algorithm. It 
somewhat resembles the permeability structure of what can be found 
in various porous media including Earth subsurface
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and would require 16 times more neurons. We address 
computational efficiency of our method in this paper by 
including a simple study of comparative computation time 
with a traditional FVM done. FVM has a lot of different 
implementations, which could impact its computational 
efficiency, in this paper we have used the FVM imple-
mentation presented in [8]. Lot of factors can effect the 
efficiency like simple choice of programming language, 
libraries used and the programming competence of the 
authors themselves. Other factors, which may also impact 
computational efficiency include CPU parameters versus 
GPU, since the neural network could be trained using 
GPU, but not parallelized, where as for FVM - it is other 
way around. In this comparative analysis we have used a 
computer with Intel(R) Core(TM) i9-10900KF CPU @ 
3.70GHz 3.70 GHz.

Figure  21 illustrates that with the number of grid cells 
increase, the computation time for both methods becomes 
exponentially more expensive. It is worth noting that when 
using smaller grids, the FVM is actually faster than the sug-
gested neural network, however, it is not the case with larger 
problems, where CNN outperforms FVM in terms of time 
efficiency Fig.  22.

Figure  21 presents all information related to network 
training times across varying grid sizes. So it happens, that 
bigger networks are able to produce much better results at 
the cost of being large and hard to train, whereas smaller net-
works reach their accuracy limit swiftly and stops improving 
soon after. To give all networks a fair chance to compete 
timewise, the results provided in Fig. 21 are gathered by 
training each network until their error does not decrease 
after 100 iterations since the last minimum error value. This 

(a) (b) (c)

(d) (e) (f)

Fig. 16  Graph depicting CNN ability to deal with overall distribution of u on a highly heterogeneous permeability domain. a–c Solutions using 
FVM d–f Solutions using CNN
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means, that the data presented in Fig. 21 is not of the net-
works that would produce the best results, as those provided 
in Sect. 5, but such that they could be comparable to one 
another. Results shown in Fig. 21 show that as the number 
of domain nodes grows, the computational resources needed 
for CNN training increase exponentially.

6.2  Comparison with analytical solution

When demonstrating the convergence of the method, MPFA 
numerical result were used as an approximation for the ana-
lytical solution. As to compensate for that, we provide a 
homogeneous domain case, where the analytical solution 
in 2D is known to be linear. A comparison between the 

exactly computed analytical solution and CNN is provided 
in Fig. 23.

Analytical comparison shows that the neural network 
mostly produces very accurate results, however, nearing 
permeability boundary values 1 and 50, the errors tended to 
accumulate. The rightmost orange part is quite commonly 
observed in neural network training, when the network lacks 
the knowledge about what is happening with never seen 
input values. For example, at early stage of training a fully 
connected network to learn a simple sin(x) function in range 
[0, 2�] , it will usually be more neglectful towards the ends 
of the interval. After 2� the values diverge from sine func-
tion as does the CNN with the permeability values it never 
seen. Some challenges are seen in analytical comparison 

(a) (b) (c)

(d) (e) (f)

Fig. 17  Graph depicting CNN ability to deal with some challenging distributions of u on a highly heterogeneous permeability domain. a–c Solu-
tions using FVM d)–f Solutions using CNN
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for lower homogeneous permeability value, corresponding 
to the leftmost right part of the curve in Fig. 23. Analytical 
results show that it is unusually hard for the neural network 
to deal with relatively small permeability values closer to 
sources and sinks. Relatively low means both low in accord-
ance to its surroundings as well as in the working interval 
[1, 50]. We hypothesize this, because relatively permeability 
values about sources and sinks are responsible for creat-
ing solutions addressed in subsection 5.2 in Fig. 16. Even 
though the CNN manages to occasionally train on such data 
(and produce pretty consistent and accurate results), it seems 
that in homogeneous domain at relatively low permeability 
makes this fault very noticeable. This requires further inves-
tigation and will be addressed in upcoming research, as it is 
only a hypothesis.

6.3  Anisotropy

As mentioned in the beginning of this paper, MPFA methods 
leads to oscillatory outcomes in scenarios where the anisot-
ropy is particularly pronounced. The primary focus of this 
paper, however, is to work with highly heterogeneous porous 
domains and to maintain its purity with regards to this aspect 
only, so there was no rush to introduce other aggravating 
specifics as anisotropy. nevertheless, this remains a highly 
relevant issue, which has been quite extensively tackled in 
a recently published paper [20]. Their findings demonstrate 
that neural networks, in general, have a tendency to evade 
oscillatory behavior, which is one of the motivations behind 
utilizing such NN methods.

7  Summary

In this paper the details of constructing a Neural Network 
for tackling elliptic pressure equation for single-phase 
flow in porous media with discontinuous coefficients 
is presented, refereed to as Neural operator for elliptic 
PDE. Firstly, numerical solution to elliptic pressure equa-
tion with discontinuous coefficients is presented using 
standard two-point (TFPA) and multi-point flux (MPFA) 
approaches. Pros and cons of each of the approach is dis-
cussed. Numerical solutions are used to generated train-
ing data sets for Neural Network approach proposed in 
the paper. Next an approach is presented where the Neu-
ral operator network is developed using a Convolutional 
Neural Network with hidden layers, and is trained using 
back-propagation using the training data-set generated 
from numerical approaches. Most results are good and 
are obtained for simpler cases where as for some more 
complex rare cases - network fails to generate satisfactory 
solutions. Paper also presents a number of one and two 
dimensional cases using the Neural solutions for a range 
of elliptic PDE problems with discontinuous coefficients. 
Series of tests are performed on cases involving varying 
degree of fine scale permeability heterogeneity. Mean 
square error is used to optimize network performance with 
a help of a large training data-set comprising of over 5 mil-
lion realizations of permeability and pressure distribution 
in one and two dimensions. Finally, convergence results 
are also presented where error between neural solution 
and numerical solution method is compared for successive 

Fig. 18  a This histogram illustrates the density of the 2D training samples at certain MSE values. b This graph shows every MSE value of every 
2D trial. The red line indicates the mean MSE value which is at the very bottom of the graph
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Fig. 19  2D pressure solution 
from FVM and NN showing a 
good correlation alongside the 
corresponding permeability dis-
tribution and the absolute error 
distribution. This is an example 
of a solution at around the mean 
of MSE value of 0.00085

(a) (b)

(c) (d)

Fig. 20  Convergence graph for the 2D NN solutions
Fig. 21  A bar plot concerned with the computation time comparison 
between FVM and CNN methods across different problem grid sizes
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refinements. It can be concluded from the results presented 
in this paper that CNN based neural networks are capable 
of solving simple to complex problems involving elliptic 
pressure equation with discontinuous coefficients.
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