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Abstract
Volume decomposition is a technique to decompose a computer aided design (CAD) model into sweepable subvolumes, by 
which better types of mesh can be generated. A thin-shell part can be divided into a main body (thin shell) and protrusions 
that reside on the thin shell. When the thin shell and protrusions are separated, it would become easy to decompose each 
of them individually. Direct recognition of protrusions on a thin-shell part is error-prone owing to the complex structure of 
protrusions. The recognition of inner and outer faces on the thin shell can help the recognition of protrusions, as well as the 
volume decomposition of the thin shell. In this study, the complexity of the models considered includes the following: (1) 
various types of transition faces between inner and outer faces, (2) complex protrusion structures both on the inside and out-
side of the model, (3) fillets are included, and (4) complex holes lie across multiple faces. The proposed approach is divided 
into the following four steps: separation of inner and outer faces, transition faces recognition, inner faces recognition, and 
outer faces recognition. A detailed discussion of the procedures for each of the steps is provided. Also, 25 thin-shell models 
are employed to demonstrate the feasibility of the proposed method.
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1 Introduction

In mold flow analysis, a computer aided design (CAD) 
model must be converted into solid meshes for the analy-
sis solver. Tetrahedral (Tet) mesh elements are commonly 
used because they are easy to generate and can be fitted for 
any complex geometry. However, the mesh element must be 
close to isotropic for achieving good mesh quality, which 
can result in excessive number of elements, especially for 
thin-shell components. On the contrary, hexahedral (Hex) 
or prismatic (Prism) meshes can be anisotropic while pre-
serving good mesh quality, which indicates that the num-
ber of elements in the shell and thickness directions can be 
independent. However, to apply Hex or Prism elements, the 
decomposition of a CAD model is necessary. Although sig-
nificant research on automatic Hex meshing of CAD models 
has been carried out, most of the methods are restricted to 

block structures [1–9]. As fully Hex meshing is difficult for 
complex components, research on semi-automatic Hex-dom-
inant meshing has also be investigated [10–15]. However, 
automatic decomposition of CAD models is still a bottleneck 
owing to the complexity of CAD models in real applications.

Thin-shell plastic parts are used in many products and 
are frequently manufactured by injection molding. On both 
the inside and outside of this type of part, various features 
(such as protrusions and depressions) areattached to a main 
body (referred to as the thin shell). The thin shell and the 
features that reside on it can be complex in shape. The inner 
side is typically more complex in structure as it has many 
functional and structural features design. However, complex 
features may exist on the outside too. In addition, a CAD 
model usually involves fillets that are tiny or long and nar-
row to some extent. Fillet is one of the most troublesome 
issues in meshing as its dimension is usually much smaller 
than its neighboring faces. To improve the accuracy of mold 
flow analysis, users would rather perform mesh generation 
manually, as they are free to design and adjust meshes region 
by region. However, this requires considerable efforts in 
planning, model decomposition, and mesh generation.
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For the decomposition of thin-shell CAD models, several 
approaches in the literature could be addressed. As a thin-
shell part is mainly composed of a thin shell and various 
types of feature residing on it, it could be possible by apply-
ing feature recognition to identify the features directly. Fea-
ture recognition has been studied for many years. However, 
most of the methods are for the applications in CAD, CAM 
and CAPP [16–20]. Lu’s method [1] based on the extraction 
of various types of edge loops can extract block shapes from 
a CAD model for Hex meshing. Wu’s method [2] based on 
sweep direction extraction can divide a CAD model into 
several blocks that can be meshed by sweeping. However, 
they both claimed that their algorithms were valid only for 
limited cases. For automatic Hex meshing, the approaches of 
3D cross field [3–6] and polycube [7–9] can convert smooth 
surface triangular meshes of an object into all Hex meshes. 
These methods are suitable primarily for block structures 
too. For semi-automatic Hex-dominant meshing, Robinson 
and Armstrong’s approach [10–14] for thin-walled parts is 
much close to the issue addressed in this study. Their appli-
cation is mainly for aerospace parts, e.g. engine cases, which 
involve the recognition and meshing of thin-shell and long-
slender regions. However, the remaining complex regions 
are still processed manually.

The concept proposed in this study for solving the decom-
position problem for thin-shell CAD models is to separate 
the thin shell and protrusions individually. Protrusions on 
different CAD models could be complex and variable. Tra-
ditional feature recognition methods by recognizing protru-
sions directly are error-prone. Both edge loops extraction 
[1] and sweep directions extraction [2] that directly extract 
block shapes from a model could easily result in overflow 
for complex components. This is why these two methods 
can only be applied for limited cases. In this study, the faces 
belonging to the thin shell are recognized and classified first. 
They are then used as the constraints for recognizing protru-
sion faces group by group. As the faces on each group are 
less complex in structure, the recognition and classification 
of protrusions become easier. The contours that each group 
of protrusion faces lie on the thin shell can also be evaluated. 
Once the faces of the thin shell and protrusions are sepa-
rately obtained, it would be possible to achieve automatic 
volume decomposition of complex thin-shell models.

Recognition and classification of the faces on the thin 
shell is a critical issue for the aforementioned method. A 
typical thin-shell part can be divided into inner and outer 
faces. Faces that can be seen from outside when two parts 
are assembled are called outer faces, while those that cannot 
be seen are called inner faces. Inner faces mainly include 
faces that belong to the inner thin shell (including transition, 
wall and bottom faces; see Sect. 3) and the remaining pro-
trusion faces. Similarly, outer faces also include faces that 
belong to the outer thin shell (including flange, outer wall 

and bottom faces; see Sect. 3) and the remaining protrusion 
faces. The face pair method proposed by Sun et al. [13] for 
extracting thin shell faces on thin-shell components could be 
employed. However, their method was only implemented on 
an “engine case”, but has not been applied to other models. 
In addition, excessive face pairs that do not lie on the thin 
shell could be extracted as the conditions used for finding 
a face pair are relatively simple. Unlike most literature that 
only uses limited examples for demonstration, we collected 
many thin-shell CAD models in the beginning of this study 
to find out all kinds of situations that may occur.

In [21–23], we have developed algorithms for the recog-
nition and decomposition of thin-shell CAD models. In [21], 
we focused on the recognition of ribs as ribs occupy most 
of the protrusions on a model. However, erroneous recogni-
tion result may still occur for complex models. In [22], we 
focused on the recognition of faces on the thin shell and 
employed them for the recognition of protrusion faces. In 
[23], we developed a volume decomposition algorithm for 
the thin shell by considering the matching of the meshes at 
the transition of the thin shell and protrusions. However, the 
complexity of the thin-shell models that can be processed 
was limited as follows: (1) the transition between the inner 
and outer faces is flat, (2) protrusions exist on inner faces 
only, and (3) other complex conditions are not considered.

The purpose of this study was to present an enhanced 
method for the recognition and classification of faces on the 
thin shell for more general thin-shell CAD models. In addi-
tion to the above-mentioned conditions, this study empha-
sizes the processing of the following conditions: (1) com-
plex transition between inner and outer faces, (2) protrusions 
exist both on the inside and outside, (3) fillets are included, 
and (4) complex holes across multiple faces are included. 
A detailed description of the above-mentioned conditions 
will be given in Sect. 2. The proposed face recognition and 
classification method can accurately evaluate the faces on 
the thin shell of different kinds of thin-shell parts. A detailed 
description of the procedures in each step of the proposed 
method is provided. Twenty-five CAD models and the recog-
nition results are also presented to demonstrate the feasibil-
ity of the proposed face type recognition and classification 
method.

2  Literature review

Feature recognition on CAD, CAM, and CAPP are mainly 
divided into two approaches, graph-based and volumet-
ric-based. For the graph-based approach, Joshi et al. [24] 
proposed an attributed adjacency graph (AAG) built on a 
B-rep model and employed heuristics for recognizing poly-
hedral features for machining. Corney et al. [25] constructed 
a face-edge graph (FEG) for 2 1/2D parts and proposed a 
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procedure for recognizing holes and pockets. Bruzzone et al. 
[26] addressed the problem of extracting adjacency infor-
mation from a description of a solid object in terms of the 
face-to-face composition (FFC) model. The problem related 
to the development of adjacency-finding algorithms was 
discussed. Lim et al. [18] presented an algorithm for parti-
tioning protrusion and depression features (DP-features) on 
models with free-form surfaces. A vertex-edge-graph (VEG) 
of all of the candidate edges on the model was generated. 
For the volumetric-based approach, Waco et al. [27] pro-
posed a method based on alternating sum of volumes with 
partitioning (ASVP) for extracting block volumes form a 
solid model. Sakurai et al. [28] presented a method based 
on maximal volume decomposition (MVD) for extracting 
the maximum volume on a model. Woo et al. [29] proposed 
a quantitative measure, called orthogonal bounding factor 
(OBF), for the detection of protrusion features on loops of 
concave edges. All the above-mentioned methods only show 
the ability of extracting interesting features or volumes from 
a model for the machining purpose. They cannot be used for 
the decomposition of the entire model.

Liu et al. [30] employed CLoop (convex and concave 
loops) proposed in Gadh et al. [31] to decompose a solid 
model into multiple block structures, each of which rep-
resents a simple block shape, and then apply a transfinite 
mapping method that maps a unit cube into a Hex region 
in 3D space to convert each block shape into Hex meshes. 
Lu et al. [1] extended CLoop into PLoop (pure convex or 
concave loop), SLoop (mixed convexity, closed link), and 
HLoop (mixed convexity, open link), and investigated the 
partition of the 3D model based on these types of loop. A 
separator is one or more loops which can bound a cutting 
face to separate the model. Heuristic rules were proposed for 
generating separators and the corresponding cutting face for 
each of them was described. The limitation of this method is 
that the loop-based block volume recognition is not robust, 
especially for complex parts that contain loops beyond the 
consideration of this study.

In mesh generation, one of the approaches is to ideal-
ize a solid model with mid surfaces to apply shell elements 
on some regions that can be described by mid surfaces. 
Depending on the range of a model that is represented by 
mid surfaces, the resultant model can be a pure mid-surface 
model or a mixed-dimensional model combining mid sur-
faces and the remaining complex regions. This technique can 
greatly reduce the number of elements and hence the degrees 
of freedom required for meshing. Sheen et al. [32] proposed 
a solid deflation method to shrink a solid model into a very 
thin solid, and then convert it into a mid-surface model. 
This technique is applicable only to limited types of models 
with planar and quadratic surfaces. Zhu et al. [33] proposed 
a mid-surface abstraction method for thin-walled models 
based on rib feature decomposition. It defined a hierarchical 

semantic structure to describe the connection relationships 
between sub-regions and the affiliation relationship of two 
connected sub-regions. The rib features on the thin-walled 
model were identified and organized to form a hierarchical 
semantic structure. A model decomposition algorithm was 
then employed to decompose rib features in accordance with 
the hierarchical semantic structure. The mid-surface patches 
for each sub-region were finally abstracted through an adap-
tive abstraction method. Only three models were demon-
strated in this study. More complex models need to be tested 
for verifying the robustness of this method. Robinson et al. 
[10] proposed a decomposition process based on the medial 
axis transform (MAT) for idealizing the thin-sheet regions 
of thin-walled structures as mid-surfaces, which can then 
be meshed using shell elements. The remaining complex 
regions on the 3D model were then meshed with tetrahe-
dral meshes. Makem et al. [11] extended Robinson’s work 
to find the long slender regions on thin-walled structures. It 
employed shape metrics generated using local sizing meas-
ures to identify long slender regions within the thick body. 
A series of algorithms were then applied for partitioning the 
think region into a non-manifold assembly of long/slender 
and complex sub-regions, which were then meshed with 
structured anisotropic meshes and unstructured isotropic 
tetrahedral meshes, respectively.

Nolan et al. [12] focused on the creation of a dimension-
ally reduced model for the purpose of structural analysis 
in the preliminary design and optimization stage of a thin-
walled product. The 3D thin-walled CAD model was divided 
into thin-sheet, long-slender and complex regions. The thin-
sheet regions were first identified using the method described 
in Robinson et al. [10]. The remaining thick regions were 
then sub-divided into long-slender and complex regions 
using the method described in Makem et  al. [11]. The 
decomposed model was a non-manifold assembly of thin-
sheet, long-slender and complex volumes, which were then 
meshed using shell, beam and tetrahedral elements, respec-
tively. Sun et al. [13] proposed a face-pair based method 
for identifying thin-sheet regions, which is computationally 
more efficient than the MAT method described in Robinson 
et al. [10]. Instead of extracting mid surfaces from the face 
pairs, this method focused on how to decide the boundaries 
of the target thin-sheet regions and how to create cutting 
faces to decompose the models without generating silver 
volumes in either thin-sheets or residual domain. Each set 
of face pair can form a sweepable region that can be meshed 
with hexahedral meshes. Sun et al. [14] later proposed an 
enhanced method for long-slender region identification. It 
also emphasized the decision of the boundaries of the target 
regions and the corresponding cutting faces to isolate the 
long-slender regions suitable for sweep meshing.

For automatic Hex meshing, sweeping is one of the most 
robust techniques to generate Hex meshes. White et al. [34] 
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proposed a CCSweep technique to automatically decompose 
multi-sweepable volumes into many-to-one sweepable vol-
umes. It converted multiple-source-and-target-faces into 
a single-target-face problem, enabling the sub-volumes to 
beautomatically meshed using a many-source-to-one-target 
Hex sweeping approach. Cai et al. [35] addressed the one-
to-one sweeping and indicated that the most difficult prob-
lem was to map an all-quad source surface mesh onto its 
target surface. They proposed a harmonic function for the 
morphing of the meshes on a source surface onto its target 
surface, and a cage-based method for locating nodes inside 
volumes. This algorithm can map surface meshes between 
two concave or multiply-connected surfaces, and can also 
deal with geometries with twisted and complicate bounda-
ries. Wu et al. [36] proposed an automatic swept volume 
decomposition technique based on sweep directions extrac-
tion. It first extracted all potential local sweep directions 
from the model and generated relevant face sets for each of 
them. The reasonable cutting face set that can split the model 
into swept sub-volumes was then constructed. Finally, the 
relevant face sets were used to generate maximal single-
axis swept subvolumes. However, based on the decomposed 
results provided, it seems that some subvolumes are still 
complex in shape and may not be meshed by sweeping.

Research on automatic Hex meshing for an object repre-
sented as smooth Tet surface meshes has also been studied 
extensively. Luo et al. [37] proposed a method to obtain a 
near optimal finite element mesh from a coarse Tet surface 
mesh of a CAD model. It can identify thin sections of the 
model through a set of discrete medial surface points com-
puted from an Octree-based tracing algorithm and convert 
Tet elements into Prism elements in the thin directions. It 
can also identify geometric singular edges and generate geo-
metrically graded meshes from the edges. The meshes can 
then be mapped onto the geometry to the required level. Liu 
et al. [38] presented a method based on skeleton-based poly-
cube generation to construct feature-preserving T-meshes. 
From the input skeleton of a model, initial interior cubes 
and boundary cubes that contact with the outer surface were 
created. Each cubic region was then subdivided to obtain 
T-spline control mesh. During the subdivision, the mesh 
boundary was aligned to preserve surface features, which 
include open curves, closed curves and singularity features. 
The T-meshes were finally extracted as Bezier elements for 
isogeometric analysis. Hu et al. [7] proposed an automatic 
polycube construction algorithm using harmonic boundary-
enhanced centroidal Voronoi tessellation (HBECVT) based 
surface segmentation. Given a smooth surface triangle mesh, 
the polycube construction was viewed as a mesh segmenta-
tion task. The HBECVT method introduces local neighbor-
ing information into the energy function, which can reduce 
non-monotone boundaries and is less sensitive to the noise. 
Based on the constructed polycube, uniform Hex meshes, 

T-spline control meshes and adaptive all-Hex dual meshes 
could be generated. Hu et al. [8] modified the HBECVT 
method by introducing eigenfunctions of the secondary 
Laplace operator for surface segmentation and a novel 
generalized harmonic boundary-enhanced CTV model for 
polycube construction. This modified method can reduce the 
computational cost and eliminate unsmoothed boundary and 
over-segmentations.

Yu et al. [9] presented a software package, HexGen and 
Hex2Spline, to integrate geometry design with isogeometric 
analysis in LS-DYNA. Given a CAD model, HexGen creates 
a Hex mesh by using a semi-automatic polycube-based mesh 
generation method. Hex2Spline can construct hierarchical 
splines by using the Hex mesh from HexGen. HexSpline can 
also transfer spline information to LS-DYNA and performs 
isogeometric analysis. Yu et al. [15] further presented a Hex-
Dom software package that can create a Hex-dominant mesh 
in real applications. A semi-automated polycube-based mesh 
generation method was employed. The resulting mesh is Hex 
dominant, but is also composed of Tet and Prism meshes.

3  Basic concept and method overview

A thin-shell CAD model is basically composed of a thin 
shell that forms the basic shape of the part. The faces on a 
part can be divided into inner and outer faces, where the for-
mer are invisible when two parts are assembled and the latter 
are visible. The inner faces can be divided into the following 
four types (Fig. 1a): transition, wall, bottom, and protrusion 
faces. Faces that are adjacent to outer faces are called tran-
sition faces. Faces that form the bottom of the inner region 
are called bottom faces. Faces on the side wall are called 
wall faces. The remaining faces belong to protrusion faces. 
When multiple layers of wall face exist, the upper layer is 
called wall faces, while the lower layers are called step-wall 
faces, as shown in Fig. 1b. Similarly, the outer faces can be 
divided into the following four types (Fig. 1c): outer wall, 
outer bottom, protrusion and flange faces. The definition of 
outer wall, outer bottom and protrusion faces is similar to 
those on inner faces. Faces that are between outer wall and 
transition faces are called flange faces. Flange faces may not 
exist on a model.

Thin-shell CAD models can be analyzed in accordance 
with the following conditions. First, a transition face is basi-
cally a face that directly connects to inner and outer wall 
faces simultaneously. However, complex transition faces 
with different kinds of cross section may exist. Five types 
of transition face are commonly occurred, which are: (1) 
simple transition (Fig. 2a): the cross section is composed 
of a line or a line and arcs that connect to the line smoothly. 
The transition faces include a face or a face and its neigh-
boring fillets. It is the most common type; (2) step (Fig. 2b): 
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the cross section is a step. The transition faces include two 
faces of different heights and a face that connects to them; 
(3) open step (Fig. 2c): it is like a “step”, but with a sudden 
jump to become a “simple translation” in some regions; (4) 
extruded ridge (Fig. 2d): the cross section involves a convex 
ridge. The transition faces include the faces on the ridge and 
its neighboring faces; and (5) depressed ridge (Fig. 2e): the 
cross section involves a concave ridge. The transition faces 
include the faces on the ridge and its neighboring faces.

Second, the protrusion structure on the outside is more 
complex than that on the inside. Both outer wall and outer 
bottom faces can be divided into concave and non-concave 
types, as shown in Fig. 3. When most of the protrusions on 
the outside are distributed continuously and partition the 

wall faces into many regions, this kind of part is called a 
concave wall type (Fig. 3a). On the contrary, when most of 
the protrusions are distributed sparsely, it is called a non-
concave wall type (Fig. 3b). In addition, the outer bottom 
face is normally lower than its neighboring wall faces, e.g. 
Fig. 3a, b). However, it may occur that the outer bottom face 
is sunken inside and becomes higher than its neighboring 
wall faces, e.g. Fig. 3c. The former is called a non-concave 
bottom type, while the latter is called a concave bottom type. 
Such a classification is helpful for the recognition of differ-
ent face types.

Finally, fillets and holes are common features on 
CAD models. They are usually neglected or simplified 
for the simplification of the problem. However, in real 

(a) (b)
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Face

Bottom 

Face

Protrusion Face

Outer Region Face

Wall Face

Step Wall 

Faces

(c)

Outer protrusion 

faces

Outer wall 

faces

Outer bottom faces

Flange 

Faces

Fig. 1:  Composition of faces on thin-shell parts, a inner faces, b multiple-layer inner wall, and c outer faces
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CAD models, these features always exist and should be 
addressed too. When classifying faces on a thin shell into 
different face types, the belonging of the fillets that con-
nect to these faces should be determined also. In addition, 

most holes are located on a simple face only. However, 
holes that lie across multiple faces may also exist and com-
plicate the face type recognition problem. Therefore, the 

= Transition face type = Ridge face type

(a) (b)

(d)(c)

(e)

Fig. 2  Five types of transition faces, a simple transition, b step, c open step, d extruded ridge, and e depressed ridge
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issues related to fillets and holes should be addressed and 
solved also.

In this study, an enhanced inner and outer faces recog-
nition algorithm is developed to cover all kinds of thin-
shell CAD models, as mentioned above. Figure 4 shows 
the overall flowchart of the proposed face type recognition 
algorithm. It can mainly be divided into the following two 
steps: preliminary functions and face type recognition. The 
input is a boundary representation (B-rep) model of the 

thin-shell part, and the output is the composition of faces 
both on the inside and outside. The main improvement of 
this study, compared with that in [22], is that the enhanced 
method can cover five types of transition face, fillets, com-
plex holes, and concave and non-concave types both on 
outer wall and bottom faces. This study primarily focuses 
on the development of the face type recognition. However, 
preliminary functions are briefly described below for com-
pleteness of the method.

Flange face Outer wall faceOuter bottom face Outer protrusion face

(a)

(c)

(b)

Fig. 3  Three types of wall and bottom faces on the outside, a concave wall, b non-concave wall, and c concave bottom
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In preliminary functions, the edge and face databases are 
computed first. Each database records the geometric and 
topological data of the associated entity. Fillet recognition is 
implemented next, which outputs the compositions of edge 
blended faces (EBF) and vertex blended faces (VBF). Fillet 
data enable the evaluation of faces across any EBF or VBF. 
Next, hole recognition is implemented. Hole recognition 
allows all blind and through holes on the B-rep model to be 
recognized. Coaxial holes can also be detected by this algo-
rithm. More importantly, holes that lie across multiple faces 
are also recognized. It relies on the recognition of virtual and 
multi-virtual loops first. A virtual loop is a closed contour 
formed by multiple faces that connect at least  G1 continu-
ous, whereas a multi-virtual loop is also a closed contour 
by multiple faces, but with some junctions G0 continuous.

In face type recognition (Figs. 140, 150, 160), inner and 
outer faces are separated first. It can normally yield a closed 
loop of parting line representing the transition of inner and 
outer faces. Transition faces are next determined. For “simple 
transition” (Fig. 2a), the transition faces are directly adjacent 
to the parting line. However, to cover the other four types of 
transition face (Fig. 2b–e), an algorithm is employed to search 
the faces that can represent the cross section of transition faces 
and determine the transition type. The face types on inner and 

outer faces are next recognized, respectively. For inner faces, a 
smooth face is often partitioned into many pieces owing to the 
complex structure of protrusions on the inside. Fillets may also 
appear at the junction of two or several faces and complicate 
the determination of the face type. Specific rules are provided 
to recognize wall and bottom faces in sequence. With transi-
tion, wall and bottom faces recognized, protrusion faces can 
be recognized and divided into groups based on the adjacency 
relationship. For outer faces, wall, bottom and flange faces are 
recognized in sequence. Both outer wall and bottom faces are 
divided into two types: concave and non-concave types. The 
distinction of concave and non-concave bottom types is used 
for the recognition of wall, bottom and flange faces; while the 
distinction of concave and non-concave wall types is used for 
the recognition of protrusion faces.

4  Proposed face type recognition method

4.1  Separation of inner and outer faces

Consider that the part model is aligned so that the mold 
opening direction is along + Z, and the two axes of its 
horizontal plane are parallel to the X and Y directions, 

Fig. 4  Flowchart of the pro-
posed face type recognition 
method for thin-shell CAD 
models
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respectively. The other five faces on the bounding box of 
the part model are perpendicular to + X, − X, + Y, − Y and 
− Z, respectively. Based on the definition on inner and outer 
faces previously, the outer faces are visible from the out-
side, whereas the inner faces are invisible. The visibility of 
a face could be detected by projecting lines from this face 
onto the boundary planes and checking the intersection of 
these lines with the other faces [22]. However, this concept 
could be valid for simple shape, but may not be applicable 
for complex geometry, especially when protrusion features 
exist on outer faces. Figure 5 shows the flowchart of inner 
and outer faces separation. The faces are initially divided 
into three types based on the visibility from + Z. Some of 
the face types are modified in accordance with the adjacency 
relationship. One or several loops of transition edges that 
represent the boundary of inner and outer faces can then 
be obtained. The inner and outer faces are finally separated 
based on the main loop of transition edges. The detailed 
algorithm is described below.

4.1.1  Step 1: Divide faces into three types

The faces are initially divided into candidate inner, wall 
and outer faces by checking the intersection with the 
boundary box. Consider one face fi on the model. If fi 
meets the following conditions, then it is regarded as a 
candidate outer face: (1) 𝜃f > 170◦ , where �f  is the angle 
between the surface normal nf  and + Z; (2) Lf  does not 
intersect any face on the model, where Lf  is a line from 
the centroid of fi towards nf  ; and (3) fi is not a hole face 
of through holes. When fi is neither a candidate outer face 
nor a hole face of through holes, it is assigned to one of 
the following two regions: (1) Region I: 0◦ ≤ �f ≤ 90◦ + � , 
and (2) Region II: 90◦ + 𝜀 < 𝜃f ≤ 180◦ , where � is a draft 
angle, 3◦ in this study.

When fi is in Region I, the candidate inner and wall 
faces are determined based on a projecting-line intersec-
tion check and face adjacency relationship. Define two 
parameters Max

(

nb

)

 and C2 , where Max
(

nb

)

 denotes one 
of the six directions ± X, ± Y, ± Z that is closest to the 
direction of nf  , and C2 is the status of intersection. Pro-
ject a line from the centroid of fi towards the direction 
Max

(

nb

)

 and check if it intersects any face on the model. 
If an intersection occurs, then set C2 as true, otherwise set 
C2 as false. The face type of fi is determined based on face 
adjacency relationship, as follows:

(1) If fi is not adjacent to any candidate outer face, then 
regard fi as a candidate inner face.

(2) If fi is adjacent to a candidate outer face, 
Max

(

nb

)

≠ +Z , and C2 = false, then regard fi as a 
candidate wall face

(3) Otherwise, regard fi as a candidate inner face. Also, 
mark fi.

The reason to apply such complex rules is because some 
special cases cannot be judged by the angle �f  only. The 
faces marked in Condition (3) will later be used to help 
determining the parting line. The left plot in Fig. 6a shows 
two faces that satisfy Conditions (1) and (2), respectively.

When fi is in Region II, the candidate inner and wall 
faces are determined by projecting a line from the target 
face and check the number of intersections. Different face 
type has different number of intersections. Define a param-
eter C5 , where C5 denotes the status of the intersection. 
Project a line from the centroid of fi towards ± X, ± Y and 
-Z, respectively, and check if it intersects any face on the 
model. If an intersection occurs, then C5 is increased by 1 
(The values of C5 : 0–5). The face type of fi is determined 
as follows:

(1) If C5 = 5, then regard fi as a candidate inner face.
(2) Otherwise, regard fi as a candidate wall face.

Divide faces into three types

Compute candidate transition edges

Separate inner and outer faces, and 

compute transition edges

Modify inner and outer faces based on 

loops of transition edges

Generate bounding box

Modify candidate inner and 

wall faces

B-rep model, hole data, 

fillet data 

Inner & outer faces,

parting line

End

Step 1

Step 4

Step 3

Step 5

Step 2

Fig. 5  Flowchart of inner and outer faces separation
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The right plot in Fig. 6a shows two faces that are assigned 
as candidate wall ( C5 = 4) and inner ( C5 = 5) faces, 
respectively.

4.1.2  Step 2: Modify candidate inner and wall faces

Some groups of candidate inner and wall faces may wrongly 
be recognized in previous step. They are detected and modi-
fied in accordance with face adjacency relationship, as 
follows:

1. Group candidate inner faces Gci : all candidate inner 
faces that are adjacent to each other are regarded as a 
group Gci.

2. Check and modify candidate inner faces: Let fi be 
one face in Gci . Project a line from the centroid of Gci 
towards nf  and check if it intersects any face in Gci . Let 
mci be the intersection count for faces in Gci . When an 
intersection occurs, mci is increased by 1. If any group 
Gci with mci < 4 , then all faces in Gci are changed to 
candidate wall faces.

3. Group candidate wall faces Gcw : all candidate wall faces 
that are adjacent to each other are regarded as a group 
Gcw.

4. Check and modify candidate wall faces: if all faces in 
Gcw are not adjacent to any candidate outer face, then all 
faces in Gcw are changed to candidate inner faces.

Figure 6b shows two groups of faces that meet the condi-
tions in Procedures (2) and (4), respectively.

4.1.3  Step 3: Compute candidate transition edges

Transition edges represent the common boundary of inner 
and outer faces. The edges on all candidate inner faces are 
checked one by one to determine candidate transition edges. 
Let fi be a candidate inner face and eci be an edge on fi . The 
conditions for determining candidate transition edges are 
as follows:

(1) If eci is adjacent to a candidate outer face and convex, 
and fi is marked, then eci is regarded as a candidate 
transition edge.

(2) If eci is adjacent to a candidate wall face and convex, 
then eci is regarded as a candidate transition edge.

(3) If eci is adjacent to a candidate wall face and one of its 
neighboring faces is a fillet, then eci is regarded as a 
candidate transition edge.

(4) If eci is adjacent to a candidate wall face and concave, 
then the following algorithm is implemented: search 
the neighboring faces of the candidate wall face in all 
directions. If the boundary edge is convex or the face is 
not a candidate wall face, then stop search in that direc-

tion. It finally yields a set of neighboring candidate wall 
faces that are convex in all boundary edges. The bound-
ary edges are regarded as candidate transition edges.

Figure 6c shows four edges that represent the above-men-
tioned four conditions, respectively.

4.1.4  Step 4: Separate inner and outer faces, and compute 
transition faces

Separate all faces into two types: inner and outer faces, 
except through hole faces. The common boundaries of inner 
and outer faces are regarded as transition edges. Transition 
edges will form one or several loops. For a group of inner 
faces that are adjacent to each other, it should have at least 
one face that is facing up and has a projecting line that does 
not intersect any face on the model. The algorithm to sepa-
rate inner and outer faces and evaluate transition edges is 
as follows:

(1) Divide faces into groups by candidate transition edges 
and edges of through holes: Faces that are adjacent 
to each other are regarded as a group, with candidate 
transition edges and edges of through holes being the 
boundary. It can yield multiple groups of face Gf .

(2) Divide faces (except transition hole faces) into inner 
and outer faces: All faces in each group Gf  are checked. 
Consider that fi is a face in Gf  . Generate a line Li from 
the centroid of fi towards + Z. If the following two con-
ditions are satisfied, then all faces in Gf  are regarded as 
inner faces:

(a) At least a face fi that is nearly horizontal and fac-
ing up, i.e. �f ≤ �.

(b) At least a line Li that does not intersect any face 
on the model.

Otherwise, all faces in Gf     are regarded as outer faces.

(C) Compute transition faces: When an edge is the common 
boundary of an inner and outer faces, it is regarded as 
a transition edge.

Figure 6d shows an example divided into 7 groups by can-
didate transition edges. Only one group of faces are assigned 
as inner faces in this step.

4.1.5  Step 5: Modify inner and outer faces based on loops 
of transition edges

One or several loops of transition edges can be formed. 
By checking the number of loops and geometric and face 
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adjacency conditions on each loop of faces, the face type can 
be determined. The procedures are as follows:

(1) Evaluate loops of transition edges: each set of adja-
cent transition edges that form a loop are recorded. It 
can yield one or several loops of transition edges Gte . 
Denote mte as the number of loops.

(2) Modify inner and outer faces based on mte:

(a) mte = 0 : ideally, at least one loop of transition 
edges can be found. If mte = 0 , it indicates that a 
model with ambiguous transition edges between 
inner and outer faces exists. The step in Sect. 4.1.3 
must be implemented again, with Condition (1) 
modified as: (1’) The edge exists between a can-
didate outer and inner face and is convex.

(b) mte = 1 : only one loop of transition edges is found. 
It is the typical case. No modification of the inner 
or outer face is needed. The corresponding loop of 
transition edges is called the parting line herein.

(c) mte > 1 : at least two loops of transition edges 
are found. The one with the longest length is the 
parting line, while the remaining loops must be 
checked. Consider that Gte is one of the remaining 
loops. Find all outer faces that are adjacent to Gte . 
All such outer faces are expanded outside to form 
a face group FGte until it reaches another loop 
of transition edges or through holes. Whether Gte 
should be preserved or not is determined as fol-
lows:

 (i) If FGtr  contains at least a candidate outer 
face, then Gte is preserved.

 (ii) If FGte does not contain any candidate outer 
face, then Gte is deleted.

If Gte is preserved, then it indicates that a large through 
hole (or pocket) exists on the model. On the contrary, if Gte 
is deleted, all faces inside this loop should be changed to 
inner faces.

Figure  6e shows two examples with mte = 1 and 4, 
respectively. The parting lines and final inner faces are also 
displayed.

4.2  Transition faces recognition

As Fig. 2 depicts, transition faces are divided into the follow-
ing five types: simple transition, step, open step, depressed 
ridge and extruded ridge. The “step” type may involve some 
faces from outer faces, while the faces on the other four 
types are all from inner faces. Therefore, the algorithm 
described below is used for detecting four types of transi-
tion faces only. The “step” type will be detected later in outer 

faces recognition. Figure 7 shows the flowchart of recog-
nizing four types of transition faces, where the open step, 
extruded ridge and depressed ridge are detected in sequence. 
When none of the above three types is satisfied, it is regarded 
as a simple transition. In this algorithm, inner faces that are 
adjacent to the parting line are put into a group Gdtr first. The 
“open step” type has a sudden jump on neighboring transi-
tion faces. Therefore, it is detected by checking the edge 
concavity between neighboring transition faces in Gdtr . For 
the “extrude ridge” and “depressed ridge” types, the faces in 
Gdtr are grown along the thickness direction to find a set of 
neighboring faces that can describe the cross-sectional shape 
of the transition. The detection of each transition type should 
be implemented individually as each has its own procedures 
of determining transition faces.

4.2.1  Open step type

Consider that fz is the open bounding plane perpendicular 
to + Z. For each fi in Gdtr , if it is parallel to fz , then the dis-
tance between fi and fz is computed. Denote the minimum 
distance among them as dmin . All other inner faces that are 
parallel to fz are then checked to find faces with a distance 
smaller than dmin . All such faces are put into a group Gut , 
called upper transition faces. Check all faces fn that are adja-
cent to the faces in Gut and divide them into two groups. 
Generate a line fn from the centroid of fn towards its surface 
normal nf  . If Ln intersects with a bounding plane, then put 
fn into a group Gout . Otherwise, if Ln intersects with an inner 
face, then put fn into another group Gin . The conditions for 
determining the “open step” type is as follows:

(a) If Gut is empty, then the transition is not an “open step” 
type.

(b) If Gut is not empty, then

– If all faces in Gout are adjacent to Gdtr and all faces in Gin 
are not adjacent to Gdtr , then the transition is an “open 
step” type.

– Otherwise, the transition is not an “open step” type.

When the transition is an “open step” type, the faces in 
Gdtr , Gout and Gut are regarded as transition faces. Figure 8a 
shows the definition of Gdtr , Gout , Gut and Gin , and transition 
faces for the “open step” type.

4.2.2  Extruded ridge type

For recognizing extruded and depressed ridge types, a 
threshold dw for the maximum width of the ridge allowed 
must be assigned. An extruded ridge can be detected by 
searching neighboring faces that are connected convexly. 
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Put all faces in Gdtr into a face set Frs . For each of the faces 
in Frs , its neighboring faces are searched recursively along 
the thickness direction on both sides. Consider that fi is a 
face in Frs and fn is one of the neighboring faces. If fn meets 
the following conditions, then fn is put into Frs : (1) fi and fn 
are connected convexly, and (2) 0◦ < 𝜃f ≤ 90◦ , where θf is 
the angle between the surface normal of fn and + Z. Other-
wise, the search stops on fn . The search is continued for all 
faces in Frs until all neighboring faces have been checked. 
The conditions for determining the “extruded ridge” type 
are as follows:

(a) Check every pair of vertical and parallel faces in Frs 
and compute its distance, namely frs and fre in Fig. 8b. 
For example, if there are four side walls on the thin 
shell, it will yield four pairs of vertical faces, and hence 
four distances. If all distances are smaller than dw , then 
the transition is an “extruded ridge” type.

(b) Otherwise, the transition is not an “extruded ridge” 
type.

When the transition is an “extruded ridge” type, the tran-
sition faces are divided into three regions: (1) ridge faces: 
all faces in Frs . The fillets that are adjacent to the faces in 
Frs are also included as ridge faces; (2) the horizontal face 
outside and its neighboring fillet; and (3) the horizontal face 
inside and its neighboring fillet. Figure 8b shows the defi-
nition of Gdtr , Frs , frs and fre , and transition faces for the 
“extruded ridge” type.

4.2.3  Depressed ridge type

Like the case of “extruded ridge”, the detection of a 
“depressed ridge” is also started by searching neighboring 
faces convexly. However, it can only reach half of the cross-
sectional shape as concave edges exist at the bottom of the 
depressed ridge. Start from a face fi in Gdtr , put all neighbor-
ing faces that are connected convexly into a face set Frs . In 
Frs , find a face frs with a face angle 90◦ ± � , where ε is the 
draft angle. Generate a line from the centroid of frs towards 

Fig. 7  Flowchart of transition 
faces recognition B-rep model, inner and outer 

data, parting line

Put inner faces adjacent to the parting 

line into a group Gdtr

Transition type & transition 

faces

Is open step type?
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for extruded ridge type

Transition faces recognition 

for simple type
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Transition faces recognition 

for depressed ridge type

End



506 Engineering with Computers (2024) 40:493–525

1 3

(a) Open step type

Recognition Phase Assigning transition faces

(b) Extruded ridge type

(c) Depressed ridge type

(d) Simple transition type

Assigning Transition Faces

Gdtr

Recognition Phase Assigning Transition Faces

Ridge faces

Outer Inner

Recognition Phase Assigning Transition Face

Ridge faces

Outer Inner

Fig. 8  Immediate results for transition faces recognition, a open step, b extruded ridge, c depressed ridge, and d simple transition
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its surface normal to intersect with a face fre . The conditions 
for determining the “depressed ridge” type is as follows:

(a) Check every pair of frs and fre along the loop of side 
walls and evaluate a distance for each pair. If all dis-
tances are smaller than dw , then the transition is a 
“depressed ridge” type.

(b) Otherwise, the transition is not a “depressed ridge” 
type.

When the transition is a “depressed ridge” type, the tran-
sition faces are divided into three regions: (1) ridge faces: 
the faces between frs and fre are regarded as ridge faces, 
where frs and fre are included. The fillets that are adjacent to 
frs and fre are also included as ridge faces; (2) the horizontal 
face outside and its neighboring fillet; and (3) the horizontal 
face inside and its neighboring fillet. All three regions of 
faces can be obtained by using the adjacency relationship 
of frs and fre . Figure 8c shows the definition of Gdtr , Frs , frs 
and fre , and transition faces for the “depressed ridge” type.

4.2.4  Simple transition

When a model does not belong to any of the above three 
types, it is regarded as a simple transition. Ideally, a simple 
transition only involves a face along the thickness direction. 
However, fillets may exist on one or both sides. When fil-
lets exist, they should be included as transition faces also. 
Figure 8d shows the definition of Gdtr and transition faces 
for the “simple transition” type.

4.3  Inner face recognition

Inner faces are divided into transition, wall, bottom and pro-
trusion faces. When multiple-layer wall exists, the faces can 
further be divided into wall and step-wall faces. As transition 
faces have been recognized, the remaining faces, including 
wall, bottom, step-wall and protrusion faces are recognized 
in sequence. When fillets exist, they must be regarded as 
either wall, bottom or protrusion faces in accordance with 
the adjacency relationship. When a fillet is adjacent to two 
different types of face, the priority of the face type that it is 
assigned is protrusion, bottom and wall face in sequence.

4.3.1  Recognition of wall faces

Wall faces are generally connected to transition faces by 
convex edges and are perpendicular to the open bounding 
plane. However, not all wall faces are necessarily connected 
to transition faces. For example, when a wall face is com-
posed of several faces, only one of them is connected to a 
transition face, while the others are not. Also, not all wall 
faces are exactly perpendicular. Some of them may be tilted 

slightly. Therefore, the procedures for detecting wall faces 
are described below:

(1) Assign initial wall faces: For all inner faces, except 
transition faces, the faces that connect to transition 
faces by convex edges are assigned as initial wall faces 
Grw.

(2) Determine the other wall faces recursively: Consider 
that fi is an inner face whose face type hasn’t been 
determined. If it meets the following conditions, then 
it is regarded as a wall face: (a) fi is adjacent to a face 
in Grw by a convex edge, and (b) 𝜃f > 𝜃t , where �f  is 
the angle between nf  and + Z, nf  is the surface normal 
of fi and �t is the inclined angle allowed, 10° in this 
study. This step is repeated for all remaining inner faces 
recursively. Whenever a face is regarded as a wall face, 
it is put into Grw.

(3) Check wall faces: Some faces may be wrongly recog-
nized as wall faces because a transition face may be 
a virtual face that crosses over multiple features. The 
procedures to detect and modify erroneous wall faces 
are described below:

Consider that fw1 is a wall face in Grw . Generate a line 
from the centroid of fw1 towards −nf  , where nf  is the sur-
face normal. Find a face fo that intersects with the line 
and is the closest face of fw1.
If fo is not an outer face, then fw1 is not a wall face. 
Remove fw1 from Grw.
If fo is an outer face, then record the distance d1 between 
fw1 and fo.

This step is repeated for all faces in Grw.

(b) For all wall faces in Grw , check if several faces point to 
the same outer face. Keep the one with the minimum 
distance in Grw , while the others are removed from Grw

.

All faces in Grw are the final wall faces. Figure 9a shows 
the results of Procedures (1) and (3) for two examples, 
respectively.

4.3.2  Recognition of bottom faces

Bottom faces are located on the bottom of the inner faces, 
mostly characterized by concave edges on the outer loop or 
connecting with wall faces. Most bottom faces are horizon-
tal, but a small inclined angle is allowed. The procedures for 
detecting bottom faces are described below:
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(1) Assign initial bottom faces: Consider that fi is an inner 
face whose face type hasn’t been determined. If fi 
meets the following conditions, then it is regarded as 
an initial bottom face: (a) fi is not a fillet, (b) all edges 
on the outer loop are concave, except the edge adjacent 
to a hole face, and (c) 𝜃f > 𝜃t , where �f  is the angle 
between nf  and + Z, nf  is the surface normal of fi and 
�t is the inclined angle allowed, 10° in this study. This 
step is repeated for all inner faces recursively, except 
transition and wall faces. Whenever a face is regarded 
as a bottom face, it is put into Grb.

(2) Assign fillets as bottom faces: The fillets that are adja-
cent to initial bottom faces should be regarded as bot-
tom faces. Consider a face fi that is adjacent to a vertex 
on the outer loops of the faces in Grb . If fi meets the fol-
lowing condition, then it is regarded as a bottom face: 
(a) fi is a fillet, or (b) fi is not a fillet, but it connects 
to a face in Grb convexly. Condition (b) is applied for 
some tiny faces that are not considered as fillets. All 
faces that are adjacent to the faces in Grb are checked 
recursively. Whenever a face is regarded as a bottom 
face, it is put into Grb.

(3) Assign isolated bottom faces separated by ribs: It may 
occur that some isolated bottom faces are separated by 
ribs. To overcome this issue, consider an inner face fi 
whose face type hasn’t been determined. If fi meets the 
following conditions, then it is regarded as a bottom 
face: (a) fi is a fillet, (b) it is adjacent to a wall face, 
and (c) it is adjacent to rib faces. Whenever a face is 
regarded as bottom face, it is put into Grb.

(4) Check bottom faces: Some protrusion faces may 
wrongly be regarded as bottom faces. When it hap-
pens, the common edge at two adjacent faces will be 
concave and  G0 continuous. Therefore, detect two adja-
cent faces in Grb that are  G0 continuous and connected 
concavely. Regard the one with a higher centroid along 
the Z direction as a protrusion face, while the other one 
with a lower centroid as a bottom face. Update the faces 
in Grb . All neighboring faces in Grb with concave edges 
should be checked in sequence.

All faces in Grb are the final bottom faces. Figure 9b 
shows the results of Procedures (1) and (4) for one example.

4.3.3  Recognition of step‑wall faces

Till now, transition, wall (1st layer) and bottom faces on 
inner faces have been recognized. When there is only one 
layer of wall faces, the wall and bottom faces are directly 

connected to each other. However, when there are multiple-
layer wall faces, some of the faces between wall and bottom 
faces are still undetermined yet. The undetermined faces 
may belong to either step-wall or protrusion face. To recog-
nize step-wall faces, a set of reference faces that connect to 
wall faces are obtained first. The remaining faces are then 
divided into groups. Protrusion faces are then recognized 
and excluded from the groups. The final faces in the groups 
are step-wall faces. Two algorithms are employed to detect 
protrusion faces. First, most protrusion faces on a group have 
at least a set of face pair that are parallel or nearly parallel 
to each other. A face intersection check can be performed 
to detect this kind of protrusion. Second, some protrusion 
faces may not be detected by the first algorithm, but they 
are higher than the neighboring wall faces. A check of the 
heights can detect his kind of protrusion. The procedures of 
step-wall face recognition are described as follows:

(1) Assign reference faces fr : for all inner faces, except 
transition, wall and bottom faces, the faces that directly 
connect to wall faces are evaluated, denoted as refer-
ence faces fr . The remaining inner faces that connect 
convexly, beside fr , are divided into grouped Glw.

(2) Exclude candidate protrusion faces based on face inter-
section check: the next step is to check all faces in each 
group Glw and exclude the groups that belong to candi-
date protrusion faces. Generate a line for every face fi 
in Glw towards −nf  , where nf  is the surface normal, and 
check the intersection between the line and the closest 
face fc . The conditions for a group in Glw are as follows:

(a) If one of the closest faces fc is an inner face, then 
exclude that group of faces from Glw.

(b) Otherwise, keep that group in Glw.
(c) Exclude candidate protrusion faces based on heights 

and assign step-wall faces: for all groups of faces in 
Glw , if the faces on a group belong to step-wall faces, 
then all faces in that group should be lower than the 
reference faces fr . On the contrary, if some of the faces 
are higher than the reference faces fr , then all faces in 
that group are considered as protrusion faces. Consider 
that the maximum height of all centroids of the faces 
in fr along the z direction is hr. Also, the maximum 
height hg for all centroids of the faces in a group Glw is 
evaluated. The faces in Glw are determined as follows:

(d) If hg < hr , then all faces in that group are step-wall 
faces.

(e) Otherwise, all faces in that group are not.

Figure 9c shows the results of Procedures (2) and (3) for 
two examples, respectively.

Fig. 9  Immediate results for inner face types recognition, a recogni-
tion of wall faces, b recognition of bottom faces, c Recognition of 
2nd layer wall faces, and d recognition of protrusion faces

◂
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4.3.4  Recognition of protrusion faces

Inner faces can be divided into transition, wall, bottom 
and protrusion faces. Once transition, wall and bottom 
faces are recognized, the remaining faces are grouped in 
accordance with the adjacency relationship. Most of the 
groups can be regarded as protrusion faces, but there are 
still minor groups that must be regarded as either wall or 
bottom faces. Fillets should be assigned as one face type 
too. When a fillet is connected to a protrusion face, it is 
regarded as part of that protrusion group. The procedures 
are described below:

(1) Assign face groups: All remaining inner faces whose 
face type hasn’t been determined are grouped in accord-
ance with the adjacency relationship. The faces on each 
group are adjacent to each other. If the faces of a blind 
hole are adjacent to those of a group, then the faces of 
this hole are included to the group also. It is noted that 
some small fillets which haven’t been assigned yet will 
be recognized as individual groups. It results in protru-
sion groups Gpi.

(2) Check face intersection on each group: For a face fi 
in a group Gpi , generate a line from the centroid of fi 
towards −nf  . Find a face fc that intersects the line and 
is closest to fi . It is noted that all faces on the same 
group must be checked. Based on the type of fc , some 
protrusion groups are determined, as follows:

(a) If any intersection face fc is an inner face or hole face, 
then regard the faces in Gpi as protrusion faces.

(b) Otherwise, proceed to next step.
(c) Determine a flag k for each group: The faces on each of 

the remaining groups may belong to protrusion, wall or 
bottom faces depending on the status of a flag k on each 
group. Check the number of faces on each group first.

(d) If the number of faces is less than 2, then set k as true.
(e) Otherwise, proceed to check the intersection by gener-

ating a line along the surface normal for each fi.
(f) If all fi intersect with any face, then set k as true.
(g) If there is one fi on the group that does not intersect 

any face, then check the neighboring face of fi . If a 
bottom face is the neighboring face, then set k as true. 
Otherwise, set k as false.

(h) Check the remaining face groups: Based on the status 
of k, the face type for each group are determined.

(i) If k is false, then assign all faces on the group as protru-
sion faces.

(j) Otherwise, check neighboring faces of the group.
(k) If the group has a wall face as its neighboring face, then 

sort some of the faces on the group to be either wall or 

bottom. Vertical faces will be assigned as wall faces, 
while the remaining faces will be bottom faces.

(l) If there is no wall face as its face neighboring, then 
convert faces on the group as bottom faces.

Figure 9d shows the results of Procedures (1) and (4) 
for two examples, respectively.

4.4  Outer faces recognition

Figure 10 shows the flowchart of the face types evaluation 
for outer faces, where the inputs are the holes, fillets, inner 
faces and parting line, and the outputs are the composition of 
faces on the outer faces. The faces are initially divided into 
outer wall and bottom faces. The model is then divided into 
concave and non-concave bottom types. For the non-concave 
bottom type, some of the transition, outer bottom and outer 
wall faces are modified in accordance with the adjacency 
relationship. The flange faces are then recognized. Outer 
wall and bottom faces are finally determined. The model is 
then divided into concave and non-concave wall types for 
evaluating protrusion faces. For the concave bottom type, 
outer wall and bottom faces are modified first. It follows the 
recognition of flange faces. The remaining procedure is the 
same as that of non-concave bottom type. A detailed descrip-
tion of the procedures is shown below.

4.4.1  Initially separate outer wall and bottom faces

Outer wall and bottom faces are initially evaluated by check-
ing the intersection with the boundary box and inner faces. 
The procedures are as follows:

(1) Set the outer faces that are adjacent to the parting line 
as outer wall faces: most of the faces that are adjacent 
to the parting line are vertical or nearly vertical, and 
hence can be considered as outer wall faces.

(2) Separate the outer faces into two regions by �f  : consider 
an outer face fi with an angle �f  between nf  and + Z. 
It is assigned to one of the following two regions: 
(1) Region I: 0◦ ≤ �f ≤ 90◦ + � , and (2) Region II: 
90◦ + 𝜀 < 𝜃f ≤ 180◦ , where � is a draft angle, 3° in this 
study.

When a face fi is in Region I, the outer wall and bottom 
faces are determined by projecting a line from the target face 
and check the number of intersections. Different face type 
has different number of intersections. Compute a parameter 
C5, where C5 denotes the status of the intersection. Project a 
line from the centroid of fi towards ± X, ± Y and ± Z, respec-
tively, and check if it intersects any face on the model. If an 
intersection occurs, C5 is increased by 1 (The values of C5: 
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0 ~ 5). Rules of determining whether fi is an outer wall or 
bottom face is as follow:

(1) if C5 = 5 , then regard fi as an outer bottom face.
(2) Otherwise, regard fi as an outer wall face.

The left plot in Fig.  11a shows two faces that are 
assigned as outer bottom ( C5 = 4 ) and outer wall ( C5 = 3 ), 
respectively.

When a face fi is in Region II, the outer wall and bottom 
faces are determined in a way like that of Region I. Compute 
a parameter C4 , where C4 denotes the status of the intersec-
tion. Project a line from the centroid of fi along ± X and ± Y, 

respectively, and check if it intersects any inner face on the 
model. If an intersection occurs, C4 is increased by 1 (The 
values of C4 : 0 ~ 4). Rules of determining whether fi is an 
outer wall or bottom face is as follow:

(1) If C4 = 0 , then regard fi as an outer bottom face.
(2) If C4 = 1 , then
(3) If 𝜃f > 170◦ , then regard fi as an outer bottom face.
(4) Otherwise, regard fi as an outer wall face.
(5) If C4 = 2 to 4, then
(6) If C5 = 5 , then regard fi as an outer bottom face.
(7) Otherwise, regard fi as an outer wall face.

Fig. 10  Flowchart of the face 
types evaluation for outer faces
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The right plot in Fig. 11a shows three faces that are 
assigned as outer bottom ((C4 = 0 ) and ( C4 = 4 amd 
C5 = 5 )) and outer wall ( C4 = 1 and 𝜃f < 170◦ ), respectively.

4.4.2  Check concave or non‑concave bottom type

A model is divided into concave or non-concave bottom 
type. For the concave bottom type, the bottom face is sunken 
compared with its neighboring wall faces; while for the non-
concave bottom type, the bottom face is convexly connected 
to its neighboring wall faces. Therefore, non-concave bottom 
faces are normally facing down and can form an individual 
loop, while concave bottom faces can further be divided into 
two types of faces: concave bottom and concave wall faces. 
The procedures for detecting concave and non-concave bot-
tom types are as follows:

(1) Group outer wall faces: Start from an outer wall face 
that is adjacent to the parting line, find all outer wall 
faces that are adjacent to each other. Put these faces 
into a group Gow.

(2) Group outer bottom faces and determine non-concave 
bottom type: An outer bottom face fi is put into a 
group Gcb if it meets the following two conditions: (1) 
𝜃f > 170◦ , and (2) fi is connected to any face in Gow . 
The remaining outer bottom faces are put into a group 
Gncb . Check the boundary loops of the faces in Gcb.

(3) If there is only a loop, then the model is regarded as a 
non-concave bottom type. Stop the process.

(4) On the contrary, if there is more than one loop, then the 
faces in Gcb are called concave bottom faces. Proceed 
Step 3.

(5) Determine concave bottom type: Find an outer bottom 
face fi that is in Gncb and is adjacent to a face in Gcb . 
Generate a line Li at the centroid of fi and along −nf  . If 
Li intersects an outer wall face in Gow , then put fi into a 
group Gcw . Start from fi , keep checking the other faces 
in Gncb by neighboring until Li does not intersect any 
face in Gow . Put all faces with Li intersecting a face in 
Gow into Gcw . Once all faces in Gncb are tested, check 
the faces in Gcw . If Gcw is not empty, then the model is 
regarded as a concave bottom type, and the faces in Gcw 
are called concave wall faces. Otherwise, the model is 
regarded as a non-concave bottom type.

Figure 11b shows the results of outer wall grouping, outer 
bottom grouping and concave wall evaluation for a model of 
concave bottom type.

4.4.3   For nonconcave bottom type

4.4.3.1 (A) Step 3: Update transition faces In general, a 
parting line separates the faces into inner and outer faces. 

The first layer of inner faces that are adjacent to the part 
line are transition faces, whereas the first layer of outer faces 
that are adjacent to the pat line are outer wall faces. The first 
layer of outer wall faces is typically vertical or nearly verti-
cal. However, it may occur that the first layer of outer wall 
faces is close to horizontal. In such a situation, the parting 
line should be moved outward to cover this layer of faces as 
transition faces. The procedures to detect such a situation 
and update transition faces are as follows:

(1) Get faces that are adjacent to the parting line: The outer 
faces that are adjacent to the parting line are put into a 
group Gf .

(2) Get outer wall faces that are adjacent to the faces in 
Gf: Let fi be an outer face that is adjacent to a face in 
Gf  . If fi meets the following two conditions, then it is 
regarded as a transition face:

(3) fi and all faces in Gf  are outer wall faces.
(4) fi is adjacent to all faces in Gf .

When fi is changed into a transition face, all faces in 
Gf  are also changed into transition faces. The left plot in 
Fig. 11c indicates the parting line and Gf  for an example, 
while the right plots indicate the situation of outer wall 
faces before and after the modification.

4.4.3.2 (B) Step 4: Modify outer bottom and  wall 
faces Some of the outer bottom and wall faces may 
wrongly be recognized. They are detected and modified 
based on geometric and face adjacency criteria. The pro-
cedures are as follows:

 (1) Group outer bottom faces GBi : All outer bottom faces 
that are adjacent to each other are regarded as a group, 
yielding GBi . The group with the maximum area is 
denoted ���

(

GBi

)

.
 (2) Check and modify outer bottom faces: For a face fi 

in ���
(

GBi

)

 , compute two parameters Rbf∕nf  and 
Lw∕all , where the former denotes the ratio between the 
number of outer bottom faces neighboring to fi and 
the number of faces neighboring to fi , and the latter 
denotes the ratio between the length of edges neigh-
boring to outer wall faces and the length of all edges 
neighboring to fi . The face type for fi is determined 
in accordance with the following conditions:

 (3) If 𝜃f > 170°, fi is kept no change.
 (4) If �f ≤ 170°,
 (5) If Rbf∕nf > 0.5 , fi is kept no change.
 (6) If Rbf∕nf < 0.5 , fi is modified as an outer wall face.
 (7) If Rbf∕nf = 0.5 , then if Lw∕all < 0.5 , then fi is kept no 

change. Otherwise, fi is modified as an outer wall 
face.
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 (8) Group outer wall faces GWi : All outer wall faces that 
are adjacent to each other are regarded as a group, 
yielding GWi.

 (9) Check and modify outer wall faces: For an outer wall 
face fi that is adjacent to the faces in ���

(

GBi

)

 , 
check if it meets the following conditions:

 (10) fi is not a fillet.
 (11) fi is not adjacent to the parting line.
 (12) A line at the centroid of fi and along nf  intersects the 

boundary plane on –Z.

If yes, then regard fi as an outer bottom face and put it 
into ���

(

GBi

)

 . On the contrary, if no, then stop the search 
along fi.

(E) Regroup outer bottom and wall faces: Outer bottom and 
wall faces that are adjacent to each other are respec-
tively grouped again.

The left example in Fig. 11d shows a situation in Proce-
dure (2), where outer bottom is modified as outer wall; while 
the right example in Fig. 11d shows a situation in Procedure 
(4), where outer wall is modified as outer bottom.

4.4.3.3 (C) Step 5: Recognize flange faces Search flange 
faces both from transition faces and outer bottom faces. 
Most flange faces are parallel to transition faces, and hence 
can be evaluated by checking the intersection of lines pro-
jected from transition faces. However, not all flange faces 
can be obtained. Therefore, lines projected from outer bot-
tom faces are also checked, which can yield the residual 
flange faces. The procedures are as follows:

(1) Evaluate candidate flange and flange faces using transi-
tion faces: Generate one or two lines along − Z direc-
tion on each transition face and find faces that intersect 
with the lines. If a transition face has at most 4 edges, 
apply one line for the intersection check. Otherwise 
(i.e. more than 4 edges), apply two lines for the inter-
section. For each transition face fti , a line Li from a 
face point ( Pi ) along –Z is generated. If there are two 
face points, then two lines will be generated. The faces 
that intersect with any of the lines are obtained. The 
one with the shortest distance is regarded as fc . Define 
two parameters dz and dt , where the former denotes 0.5 
length of the boundary box along Z direction, and the 
latter denotes the shortest distance between fti and fc 
(along − Z direction). If fc meets the following criteria, 
then it is regarded as a flange face:

(a) fc is an outer face
(b) dt < dz

(c) �f ≥ 170◦ (i.e. fc is almost facing down).

In addition, if fc meets the following criteria, then it is 
regarded as a candidate flange face:

(a) fc is an outer face
(b) dt < dz
(c) 100◦ < 𝜃f < 170◦ (i.e. fc is an inclined face).

Because fc is an inclined face, further rules must be 
applied later to determine if fc is a flange face.

(B) Evaluate candidate flange and flange faces using outer 
bottom faces: For some cases, applying transition faces 
only cannot obtain all flange faces. Outer bottom faces 
are mostly facing down, and flange faces also fit this 
feature. Therefore, a line from an outer bottom face 
is also tested to check if it can intersect any transition 
face. If an intersection occurs, the outer bottom face is 
also regarded as a flange face. For each outer bottom 
face fbi , a line Li from a face point ( Pi ) along + Z is 
generated. If there are two face points, then two lines 
will be generated. The faces that intersect with any of 
the lines are obtained. The one with the shortest dis-
tance is regarded as fc . Define two parameters dz and 
db , where the former denotes 0.5 length of the boundary 
box along Z direction, and the latter denotes the short-
est distance between fbi and fc (along + Z). If fc meets 
the following criteria, then it is regarded as a flange 
face:

(C) fc is an outer bottom face (not in Max(GBi))
(D) db < dz
(E) �f ≥ 170◦ (i.e. fc is almost facing down).

In addition, if fc meets the following criteria, then it is 
regarded as a candidate flange face:

(a) fc is an outer bottom face (not in Max(GBi))
(b) db < dz
(c) 100◦ < 𝜃f < 170◦ (i.e. fc is an inclined face).
(d) Group candidate flange faces: In Steps 1 and 2, some 

faces are already regarded as flange faces. However, 
some other faces are regarded as candidate flange faces. 
All candidate flange faces that are adjacent to each 
other are regarded as a group, yielding GFi.

(e) Modify candidate flange faces: If any candidate flange 
face in a group GFi is adjacent to a flange face, then 
all faces in that group are changed into flange faces. 
Otherwise, all faces in that group are returned to the 
original face type (i.e. either outer wall or bottom face 
type)
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(f) Regroup outer wall, bottom and flange faces: All types 
of faces are regrouped again. It yields GWi, GBi and 
GFi.

The example in Fig. 11e shows two faces that are ini-
tially detected as flange and candidate flange faces, respec-
tively. The candidate flange face is finally modified as a 
flange face as it is adjacent to a flange face.

4.4.3.4 (D) Step 6: Determine final outer wall and bottom 
faces All outer wall and bottom faces are divided into 
separate groups now. However, some of the face types are 
still wrong and must be corrected. The procedures are as 
follows:

(1) Compute Max(GBi), where the number of outer bottom 
faces is the largest: Some of the outer wall faces will 
separate outer bottom faces into different groups. If all 
faces in a group GWi do not connect with any flange 
or transition face, then all faces in GWi are changed 
to outer bottom faces. All outer bottom faces are re-
grouped again. The one with the largest number of 
faces is called Max(GBi).

(2) Check outer bottom faces: There are several groups of 
outer bottom faces GBi. Keep the faces in Max(GBi) 
as outer bottom faces, whereas the faces on the other 
groups are changed to outer wall faces.

(3) Check outer wall faces: All outer wall faces in a group 
GWi are checked.

(4) If any of the faces in GWi is adjacent to both flange and 
transition faces, then all faces in GWi are regarded as 
flange faces.

(5) If all faces in GWi are not adjacent to any flange face, 
transition face or bottom face, then all faces in GWi are 
regarded as outer bottom faces.

Figure 12a shows some erroneous bottom and wall faces 
detected in this step and the correction of them.

4.4.3.5 (E) Step 7: Check concave or  non‑concave wall 
type Till now, outer protrusion faces are regarded as either 
outer wall, bottom or flange faces. The model is further clas-
sified as two types for the recognition of protrusion faces. 
For the concave wall type, substantial protrusions exist on 
outer faces and divide wall faces into many regions. It looks 
like many concave regions exist on outer faces. On the con-
trary, for the non-concave wall type, protrusions may exist 
on outer faces, but are distributed individually. Most of the 
outer wall faces are not divided.

During the recognition of inner and outer faces, there is a 
stage that generates several groups of potential inner faces. 
Only one group of faces is finally regarded as inner faces, 
while the other groups are located on outer faces, which are 

called candidate inner faces Gcif  here. Consider that fi is a 
face in Gcif  and ncif  is the intersection count for faces in Gcif  . 
Project a line from the centroid of each fi along its nf  . If it 
intersects with any face in Gcif  then ncif  is increased by 1. All 
groups of candidate inner faces Gcif  are checked one by one. 
If any group meets the following criteria, then the model is 
regarded as a “concave wall type”:

(1) There exists a face fc that is nearly horizontal and facing 
up, i.e. ncif ≤ � , where ε is the draft angle.

(2) At least three faces intersect with other faces on the 
same group, i.e. ncif > 2.

If all groups Gcif  do not meet the above criteria, then the 
model is regarded as a “non-concave wall type”. The left 
plot in Fig. 12b shows an example of non-concave wall type. 
The right plot in Fig. 12b shows an example with 33 groups 
of candidate inner faces in Gcif  . This example is regarded as 
a concave wall type as some of the groups meet the above-
mentioned conditions.

4.4.4  For concave bottom type

The difference between concave bottom and non-concave 
bottom is that there are two layers of outer wall for the for-
mer, while there is only one layer of outer wall for the lat-
ter. The concave wall separates outer bottom faces into two 
regions, where the first region has been detected in Step 
2, while the second region has not. Figure 12c shows an 
example of concave bottom type, where the left and middle 
plots indicate the results of Steps 1 and 2, respectively. As 
the middle plot indicates, the 1st region outer bottom is just a 
simple face, while the 2nd region outer bottom is a complex 
structure. The faces on the 2nd region must be analyzed 
again to separate outer wall, outer bottom and flange faces. 
The algorithm is similar to those used in Steps 1, 4 and 5, 
and is not addressed again. The right plot in Fig. 12c shows 
the results of outer wall, outer bottom and flanged faces 
obtained for the  2nd region of outer bottom faces.

4.4.5  Determine protrusion faces

4.4.5.1 Step 9–1: For concave wall type Extract protrusion 
faces from outer faces, including bottom, wall and flange 
faces. The procedures are as follows:

 (1) Extract protrusion faces from outer faces: For each 
outer face fi , a line Li along −nf  is generated, where nf  
denotes the surface normal of fi . The faces that inter-
sect with the line are obtained and the one that has 
the shortest distance is regarded as fc . If fc is an outer 
face, then regarded fi as a protrusion face. Otherwise, 
fi is kept no change.
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 (2) Check and modify outer wall faces: In previous step, 
some outer wall faces that are on the top of protrusion 
faces have not been recognized correctly. The convex-
ity of the neighboring edges can be used to check the 
correctness of these faces. Consider an outer wall face 
fw . Define two parameters cv as the number of convex 
edges between fw and its adjacent protrusion faces, 
and cc as the number of concave edges between fw and 
its adjacent protrusion faces. If fw is on the top of a 
protrusion, cv should be larger than cc . Otherwise, cv 
should be smaller than cc . That is

 (3) If cv ≥ cc , then change fw as an outer protrusion face.
 (4) Otherwise, fw is kept no change.
 (5) Check and modify fillets: When a fillet exists between 

a protrusion and other types of faces, it is regarded 
as a protrusion face. Consider a fillet face ff  . Define 
four parameters cp, cw, lp and lw as follows: (1) cp is 
the number of protrusions faces that are adjacent to 
ff  , (2) cw is the number of outer wall faces that are 
adjacent to ff  , (3) lp is the total length of the edges 
of protrusions that are adjacent to ff  , and (4) lw is the 
total length of the edges of outer wall faces that are 
adjacent to ff  . The fillet face ff  is determined accord-
ing to the following rules:

 (6) If cp < cw , then ff  is kept no change.
 (7) If cp > cw , then change ff  as an outer protrusion face.
 (8) If cp = cw
 (9) If lp < lw , then ff  is kept no change.
 (10) If lp ≥ lw , then change ff  as an outer protrusion face
 (11) Check and modify protrusion faces: All outer protru-

sion faces that are adjacent to each other are regarded 
as a group, yielding GPi. Each group needs to be 
checked as follows: Define a parameter ci as follows. 
Consider a protrusion face fi in GPi. A line Li along 
−nf  is generated. If this line intersects with any pro-
trusion face in GPi, then the flag ci is true, otherwise 
ci is false.

 (12) If ci is true, then all faces in GPi are kept no change.
 (13) If ci is false, then change all faces in GPi as outer bot-

tom faces

The three plots highlighted in Fig. 12d show a situation 
in Procedures (1), (2) and (3), respectively.

Step 9–1 is a stage for detecting protrusion features in 
concave wall type where the protrusion features cover part 
of the outer wall. Concave wall types are classified based 
on the presence of a protrusion on the outer wall, which 
serves as a reinforcement for the model. In step 9–1(2), two 
parameters, cv and cc, are used to analyze the faces on the 
top of the protrusion feature. Generally, a single-layer pro-
trusion formed in concave wall type is cv ≥ cc, as shown in 
Fig. 13a. However, for multi-layer protrusions, there could 
exist concave faces with cv < cc, such as the case in Fig. 13b. 
We have not found any concave protrusion on the concave 
wall type for the test cases we used. However, Step 9–1(2) 
must be modified if multi-layer protrusions exist on concave 
wall type.

4.4.5.2 Step 9–2: For  non‑concave wall type Extract pro-
trusion faces from outer faces, including bottom, wall and 
flange faces.

(1) Extract candidate protrusion faces from outer faces: For 
each outer face or outer hole face fi , a line Li along −nf  
is generated, where nf  denotes the surface normal of 
fi . The faces that intersect with Li are obtained. The 
one with the shortest distance is regarded as fc . Put 
fi in different stacks in accordance with the following 
conditions:

(a) If fi is an outer face and is not adjacent to any transition 
face

(b) If fc is an outer face, then put fi into the stack G1.
(c) If fc and fi are equal, then put fi into the stack G1.
(d) If fi is a hole face and fc is an outer face, then put fi into 

the stack G2.
(c) Otherwise, skip fi.

The faces in each stack will further be checked next.

(B) Extract protrusion faces from candidate protrusion 
faces: For each face fi in G1, generate a line Li along 
−nf  . If Li intersects with any face in Gi , then regard all 

Fig. 13  Two types of protrusion 
on outer wall face, a single-
layer protrusion, and b multi-
layer protrusion
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faces in G1 as protrusion faces. Perform the same check 
for all faces in G2 too.

(C) Generate protrusion faces by convex edges: Start from 
a face fi that is adjacent to a protrusion face, but not a 
protrusion face. Search its neighboring faces that are 
convexly connected. Continue this process until no 
more face is found. All these faces are regarded as outer 
protrusion faces.

The example in Fig. 12e shows a situation in Procedure 
(3), where erroneous outer wall faces are modified as pro-
trusion faces.

5  Results and discussion

A program, written in C +  + and based on the Rhino CAD 
platform and the openNURBS functions, was implemented 
to test the feasibility of the proposed inner and outer faces 
recognition algorithm for thin-shell parts. The input data 
is a B-rep model of the part. The program will recognize 
fillets and holes first, and then recognize inner and outer 
faces, transition faces, inner face types, and outer face 
types in sequence. As the dimension of the parts may be 
different, three parameters lmax , rmax and ε in the proposed 
algorithm are provided for adjusting. The parameter lmax 
denotes the maximum perimeter of the hole or pocket that 
will be recognized. The parameter rmax denotes the maxi-
mum radius of the fillets. And, the parameter ε denotes 
the draft angle. The default values for lmax , �max and �are 
100 mm, 6.5 mm and 3°, respectively, in this study.

The results of the proposed method for 25 thin-shell 
parts are divided into four groups, as shown in Figs. 14, 
15, 16, 17 respectively, for discussion. In each part, four 
intermediate results are displayed, including separation 
of inner and outer faces, transition faces, wall, bottom 
and protrusion faces on the inside, and wall, bottom and 
protrusion faces on the outside. Figure 14 shows seven 
of the parts that are complex on the internal structure, 
while simple on the outside. Most of the ribs on the inside 
are connected together, and may even connect to other 
tubes or bosses (e.g. Cases 1–5). By isolating internal wall 
and bottom faces first, the remaining protrusion faces can 
easily be divided into groups. A protrusion classification 
algorithm can later be implemented to recognize different 
types of protrusion, e.g. ribs, tubes, columns, and symmet-
ric extrusions [22]. In Cases 6 and 7, substantial through 
holes exist on bottom faces. If some of the through holes 
are not recognized, it may affect the recognition of bot-
tom faces. In particular, in Case 6, several holes are lying 
across multiple faces. It needs the introduction of virtual 
loop (edges on a loop are  G1 continuous) [39] in order to 

recognize the loops that cross multiple faces, and hence 
the corresponding holes.

Figure 15 shows six of the parts that are freeform on 
the shape or complex on translation and wall faces. In 
Cases 8 and 9, substantial freeform surfaces exist on the 
wall or bottom faces. When freeform surfaces exist on the 
wall, they are usually not perpendicular. This inclination 
cannot be compensated by the draft angle ε. Therefore, 
in Sect. 4.3.1, an allowable inclined angle �t , 10° in this 
study, is employed to compensate for the inclination of 
freeform surfaces. When the inclined angle of a freeform 
surface is larger than �t , it may become difficult to distin-
guish from the wall and bottom faces, which is considered 
as another type of thin-shell part and will be discussed 
elsewhere. In Cases 10 and 11, the transition faces belong 
to “simple translation” although some of the faces are 
inclined along the X or Y direction. The faces on each side 
along the thickness direction are composed of three faces, 
a main face and two fillets that connect to the main face. 
It is noted that if the proposed algorithm is not employed, 
part of the fillets may easily be regarded as wall faces, 
instead of transition faces, In Case 12, substantial through 
holes exist on the bottom faces. In particular, several holes 
are lying on more than three faces, including a fillet. When 
these holes are not recognized correctly, some of the bot-
tom faces would not be detected correctly. In addition, 
the fillet on the outer wall is difficult to deal with as it has 
a large inclined angle. This fillet is correctly recognized 
as an outer wall face here. Case 13 should be regarded as 
one of the most difficult cases as it has a very complex 
wall structure and many through holes of irregular types. 
It needs the recognition of multi-virtual loops (edges on 
a loop are  G0 continuous) [39] in order to recognize all 
irregular holes correctly. The results also show that all 
inner and outer face types are recognized correctly.

Figure 16 shows seven of the parts that are complex 
on the external structure. Cases 14 to 16 show the exam-
ples of nonconcave wall type, where protrusion faces are 
sparsely distributed. In Cases 14 and 15, protrusion faces 
exist on the inside too. In Case 16, flange faces exist on the 
reverse side of transition faces. All three examples indicate 
that all face types on the inside and outside are recognized 
correctly. Cases 17 and 18 show the examples of concave 
wall type. All faces on the outer faces are carefully checked, 
especially protrusion faces colored in green and fillets that 
exist between different types of faces. The result shows that 
all protrusion faces and fillets on the outside are correctly 
recognized. Cases 19 and 20 show two examples of con-
cave bottom type. The outer bottom faces on both cases are 
sunken compared with their neighboring outer wall faces. In 
Case 19, some protrusion faces are further extracted from 
outer bottom faces; while in Case 20, some flange faces are 
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further extracted from outer bottom faces. All these results 
are achieved automatically by the program.

Figure 17 shows five of the parts with different types 
of transition faces, other than “simple transition”. The 

transition faces in Cases 21 to 25 are “depressed ridge”, 
“simple translation with holes”, “extruded ridge”, “step”, 
and “open step”, respectively. All these examples show 
that the proposed algorithm can detect different types of 
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5

6

7

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 14  Results of inner and outer faces recognition- complex structure outside
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translation faces accurately. Correct classification and recog-
nition of transition faces is very important as the remaining 
inner and outer faces recognition all counts on the accuracy 
of translation faces. In addition, the inner wall faces are 
divided into multiple layers in Cases 22 to 24, where the wall 
and step-wall faces are colored in blue and light blue, respec-
tively. Cases 22 and 23 show the typical situation on which 
the wall and bottom faces are separated by step-wall faces. 

Fillets existing between wall and step-wall faces can also 
be detected correctly. However, Case 24 shows a particular 
situation that part of the wall faces are connected to the bot-
tom face directly. All these results show that different kinds 
of multi-layer wall faces can be recognized satisfactorily.

Table 1 summarizes the results of inner and outer faces 
recognition for 25 cases, where the number of total faces, 
through holes, inner faces and outer faces are listed to check 
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Separation of inner & outer Transition faces Inner faces Outer faces

Fillet

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 15  Results of inner and outer faces recognition- freeform surfaces and complex shape on translation and wall faces
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the accuracy of the proposed algorithm. For inner faces, only 
total number of faces are listed as the success rates for all 
cases are 100%. Outer faces listed include wall, flange, bot-
tom and protrusion faces. The first and second values on 
each field represent total number of faces and number of 

faces not recognized correctly, respectively. Table 1 indi-
cates that the summation of through holes, inner and outer 
faces is equal to total faces for all cases. This result is very 
important as it indicates that all faces on a model have been 
recognized as one of the face types. It would become easy to 

14

16

17

19

20

15

18

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 16  Results of inner and outer faces recognition- complex structure outside
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look for the matching faces between the inside and outside 
of the thin shell on a model. Of 25 cases tested, the success 
rate for four of them, namely Cases 10, 14, 16 and 22, are not 
100%, which is because the composition of the face types on 
outer faces is more complex and variable. Figure 18 depicts 
four examples of outer face types that are not recognized 
correctly. In Fig. 18a, fi is a long and narrow surface lying 
across outer wall and bottom faces. The surface normal is 

changed across the entire surface. However, only one sam-
pling point is taken for the projecting-line intersection check. 
It might be necessary to take more sampling points on a 
surface and modify the criteria to determine the status of 
the surface correctly. In Fig. 18b, fi is a fillet between outer 
wall and bottom faces. As the fillet is also a surface, the 
problem is like that of Fig. 18a. In Fig. 18c, the blending 
faces between protrusion and flange faces are divided into 
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24

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 17  Results of inner and outer faces recognition- different types of transition faces
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multiple pieces. The face composition is too complex to be 
recognized correctly. Similar situation occurs in Fig. 18d, 
where the face composition on the highlighted region is too 
complex, and hence the faces are not recognized correctly.

The CPU time required for the entire process for all 
cases is also listed in Table 1. The CPU time required is not 
fully proportional to total number of faces on the model. 
Sect. 4.4.1, initially separate outer wall and bottom faces, 
requires the maximum percentage of CPU time as this step 
has a complex procedure to check each outer face one by 
one. Therefore, Cases 16, 17 and 22 require more CPU time 
as the outer/total face of them are 613/718, 403/845 and 
718/873, respectively. The simulations were performed on a 
personal computer with an Intel Core i7-9700 CPU 3.2 GHz 
and 16 GB of RAM.

6  Conclusion

An enhanced approach for inner and outer faces recogni-
tion of thin-shell parts was proposed in this study. A thin-
shell part can be divided into a thin shell and protrusions 
that locate both on the inside and outside of the thin shell. 
The face types on the thin shell are recognized first. The 
complexity of the parts that can be dealt with includes: 
(1) five types of transition faces between inner and outer 
faces are detected. The composition of faces on the top of 
different thin-shell parts can be analyzed accurately; (2) 
protrusion faces that distribute continuously or sparsely 
both on the inside and outside of a part can be recognized; 
(3) fillets are also assigned as appropriate face types in 
accordance with the adjacency relationship. No simpli-
fication of fillets is necessary in this algorithm; and (4) 
holes that locate across multiple faces are allowed. It can 
enhance the applicability of the proposed algorithm for 
cases that involve holes across multiple faces. With the 
proposed method, all complex protrusion structures on the 
inside and outside of a part can be divided into groups of 

Table 1  Compositions of inner and outer faces and CPU time for 25 thin-shell parts

Case Total faces Through faces Inner faces 
(Total/Fail)

Outer faces (Total/Fail) Success rate (%) CPU time (s)

Wall Flange Bottom Protrusion

1 134 0 127/0 6/0 0/0 1/0 0/0 100 0.16
2 620 86 387/0 8/0 0/0 13/0 126/0 100 2.708
3 330 40 285/0 4/0 0/0 1/0 0/0 100 0.602
4 107 20 78/0 8/0 0/0 1/0 0/0 100 0.243
5 95 0 92/0 2/0 0/0 1/0 0/0 100 0.151
6 362 151 159/0 28/0 0/0 24/0 0/0 100 1.975
7 384 95 189/0 8/0 0/0 63/0 29/0 100 1.099
8 292 17 226/0 48/0 0/0 1/0 0/0 100 1.585
9 411 89 279/0 18/0 0/0 13/0 0/0 100 2.074
10 681 4 232/0 237/0 45/7 14/0 149/5 98.2 4.064
11 245 0 45/0 8/0 0/0 10/0 182/0 100 1.397
12 415 384 17/0 5/0 0/0 6/0 0/0 100 1
13 287 69 165/0 34/4 0/0 19/0 0/5 100 1.005
14 367 0 82/0 18/0 0/0 13/8 254/0 97.8 2.44
15 193 26 133/0 10/0 0/0 10/0 14/0 100 0.688
16 718 80 19/0 508/0 18/0 1/0 92/16 97.8 14.395
17 845 432 10/0 76/0 24/0 1/0 302/0 100 5.843
18 383 16 18/0 32/0 32/0 9/0 276/0 100 3.421
19 185 4 67/0 47/0 0/0 1/0 54/0 100 0.768
20 259 0 121/0 16/0 112/0 1/0 0/0 100 2.568
21 269 14 108/0 13/0 0/0 134/0 0/0 100 2.088
22 873 96 59/0 44/0 35/24 9/0 630/0 97.3 12.514
23 50 0 41/0 4/0 0/0 5/0 0/0 100 0.212
24 140 12 71/0 24/0 0/0 9/0 24/0 100 0.458
25 366 19 282/0 53/0 0/0 12/0 0/0 100 1.84
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protrusion face. A protrusion classification algorithm can 
later be used to recognize all types of protrusion [22].

The results of the face type recognition for the thin 
shell can further be used in volume decomposition. The 
primary task in volume decomposition is to decompose a 
model into a series of sweepable sub-volumes so that each 
of them can be meshed with better type of solid meshes. 
In [23], an approach by evaluating the matching pairs of 
inner and outer contours was proposed to decompose the 
thin shell of a thin-shell part into sweepable sub-volumes. 
It employs the face types on the inner and outer faces to 
help the evaluation of inner and outer matching contours. 
As mentioned previously, the composition of faces on a 
thin-shell part could vary significantly. The face type rec-
ognition method proposed in this study can analyze the 
composition of faces for complex thin-shell parts. It is now 
possible to expand the capability of the method in [23] to 
deal with more complex thin-shell parts.
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