
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:493–525
https://doi.org/10.1007/s00366-023-01802-1

ORIGINAL ARTICLE

An enhanced approach for inner and outer faces recognition
of complex thin‑shell parts

Pradiktio Putrayudanto1 · Yi‑Zhong Hwang1 · Jiing‑Yih Lai1 · Pei‑Pu Song2 · Yao‑Chen Tsai2 · Chia‑Hsiang Hsu2

Received: 10 January 2023 / Accepted: 23 February 2023 / Published online: 18 March 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Volume decomposition is a technique to decompose a computer aided design (CAD) model into sweepable subvolumes, by
which better types of mesh can be generated. A thin-shell part can be divided into a main body (thin shell) and protrusions
that reside on the thin shell. When the thin shell and protrusions are separated, it would become easy to decompose each
of them individually. Direct recognition of protrusions on a thin-shell part is error-prone owing to the complex structure of
protrusions. The recognition of inner and outer faces on the thin shell can help the recognition of protrusions, as well as the
volume decomposition of the thin shell. In this study, the complexity of the models considered includes the following: (1)
various types of transition faces between inner and outer faces, (2) complex protrusion structures both on the inside and out-
side of the model, (3) fillets are included, and (4) complex holes lie across multiple faces. The proposed approach is divided
into the following four steps: separation of inner and outer faces, transition faces recognition, inner faces recognition, and
outer faces recognition. A detailed discussion of the procedures for each of the steps is provided. Also, 25 thin-shell models
are employed to demonstrate the feasibility of the proposed method.

Keywords Inner and outer faces · Protrusion recognition · Feature recognition · Thin-shell part · Volume decomposition

1 Introduction

In mold flow analysis, a computer aided design (CAD)
model must be converted into solid meshes for the analy-
sis solver. Tetrahedral (Tet) mesh elements are commonly
used because they are easy to generate and can be fitted for
any complex geometry. However, the mesh element must be
close to isotropic for achieving good mesh quality, which
can result in excessive number of elements, especially for
thin-shell components. On the contrary, hexahedral (Hex)
or prismatic (Prism) meshes can be anisotropic while pre-
serving good mesh quality, which indicates that the num-
ber of elements in the shell and thickness directions can be
independent. However, to apply Hex or Prism elements, the
decomposition of a CAD model is necessary. Although sig-
nificant research on automatic Hex meshing of CAD models
has been carried out, most of the methods are restricted to

block structures [1–9]. As fully Hex meshing is difficult for
complex components, research on semi-automatic Hex-dom-
inant meshing has also be investigated [10–15]. However,
automatic decomposition of CAD models is still a bottleneck
owing to the complexity of CAD models in real applications.

Thin-shell plastic parts are used in many products and
are frequently manufactured by injection molding. On both
the inside and outside of this type of part, various features
(such as protrusions and depressions) areattached to a main
body (referred to as the thin shell). The thin shell and the
features that reside on it can be complex in shape. The inner
side is typically more complex in structure as it has many
functional and structural features design. However, complex
features may exist on the outside too. In addition, a CAD
model usually involves fillets that are tiny or long and nar-
row to some extent. Fillet is one of the most troublesome
issues in meshing as its dimension is usually much smaller
than its neighboring faces. To improve the accuracy of mold
flow analysis, users would rather perform mesh generation
manually, as they are free to design and adjust meshes region
by region. However, this requires considerable efforts in
planning, model decomposition, and mesh generation.

 * Jiing-Yih Lai
 jylai@ncu.edu.tw

1 National Central University, Taoyuan, Taiwan
2 CoreTech System (Moldex3D) Co., Ltd., Hsinchu, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01802-1&domain=pdf
http://orcid.org/0000-0002-0495-0826

494 Engineering with Computers (2024) 40:493–525

1 3

For the decomposition of thin-shell CAD models, several
approaches in the literature could be addressed. As a thin-
shell part is mainly composed of a thin shell and various
types of feature residing on it, it could be possible by apply-
ing feature recognition to identify the features directly. Fea-
ture recognition has been studied for many years. However,
most of the methods are for the applications in CAD, CAM
and CAPP [16–20]. Lu’s method [1] based on the extraction
of various types of edge loops can extract block shapes from
a CAD model for Hex meshing. Wu’s method [2] based on
sweep direction extraction can divide a CAD model into
several blocks that can be meshed by sweeping. However,
they both claimed that their algorithms were valid only for
limited cases. For automatic Hex meshing, the approaches of
3D cross field [3–6] and polycube [7–9] can convert smooth
surface triangular meshes of an object into all Hex meshes.
These methods are suitable primarily for block structures
too. For semi-automatic Hex-dominant meshing, Robinson
and Armstrong’s approach [10–14] for thin-walled parts is
much close to the issue addressed in this study. Their appli-
cation is mainly for aerospace parts, e.g. engine cases, which
involve the recognition and meshing of thin-shell and long-
slender regions. However, the remaining complex regions
are still processed manually.

The concept proposed in this study for solving the decom-
position problem for thin-shell CAD models is to separate
the thin shell and protrusions individually. Protrusions on
different CAD models could be complex and variable. Tra-
ditional feature recognition methods by recognizing protru-
sions directly are error-prone. Both edge loops extraction
[1] and sweep directions extraction [2] that directly extract
block shapes from a model could easily result in overflow
for complex components. This is why these two methods
can only be applied for limited cases. In this study, the faces
belonging to the thin shell are recognized and classified first.
They are then used as the constraints for recognizing protru-
sion faces group by group. As the faces on each group are
less complex in structure, the recognition and classification
of protrusions become easier. The contours that each group
of protrusion faces lie on the thin shell can also be evaluated.
Once the faces of the thin shell and protrusions are sepa-
rately obtained, it would be possible to achieve automatic
volume decomposition of complex thin-shell models.

Recognition and classification of the faces on the thin
shell is a critical issue for the aforementioned method. A
typical thin-shell part can be divided into inner and outer
faces. Faces that can be seen from outside when two parts
are assembled are called outer faces, while those that cannot
be seen are called inner faces. Inner faces mainly include
faces that belong to the inner thin shell (including transition,
wall and bottom faces; see Sect. 3) and the remaining pro-
trusion faces. Similarly, outer faces also include faces that
belong to the outer thin shell (including flange, outer wall

and bottom faces; see Sect. 3) and the remaining protrusion
faces. The face pair method proposed by Sun et al. [13] for
extracting thin shell faces on thin-shell components could be
employed. However, their method was only implemented on
an “engine case”, but has not been applied to other models.
In addition, excessive face pairs that do not lie on the thin
shell could be extracted as the conditions used for finding
a face pair are relatively simple. Unlike most literature that
only uses limited examples for demonstration, we collected
many thin-shell CAD models in the beginning of this study
to find out all kinds of situations that may occur.

In [21–23], we have developed algorithms for the recog-
nition and decomposition of thin-shell CAD models. In [21],
we focused on the recognition of ribs as ribs occupy most
of the protrusions on a model. However, erroneous recogni-
tion result may still occur for complex models. In [22], we
focused on the recognition of faces on the thin shell and
employed them for the recognition of protrusion faces. In
[23], we developed a volume decomposition algorithm for
the thin shell by considering the matching of the meshes at
the transition of the thin shell and protrusions. However, the
complexity of the thin-shell models that can be processed
was limited as follows: (1) the transition between the inner
and outer faces is flat, (2) protrusions exist on inner faces
only, and (3) other complex conditions are not considered.

The purpose of this study was to present an enhanced
method for the recognition and classification of faces on the
thin shell for more general thin-shell CAD models. In addi-
tion to the above-mentioned conditions, this study empha-
sizes the processing of the following conditions: (1) com-
plex transition between inner and outer faces, (2) protrusions
exist both on the inside and outside, (3) fillets are included,
and (4) complex holes across multiple faces are included.
A detailed description of the above-mentioned conditions
will be given in Sect. 2. The proposed face recognition and
classification method can accurately evaluate the faces on
the thin shell of different kinds of thin-shell parts. A detailed
description of the procedures in each step of the proposed
method is provided. Twenty-five CAD models and the recog-
nition results are also presented to demonstrate the feasibil-
ity of the proposed face type recognition and classification
method.

2 Literature review

Feature recognition on CAD, CAM, and CAPP are mainly
divided into two approaches, graph-based and volumet-
ric-based. For the graph-based approach, Joshi et al. [24]
proposed an attributed adjacency graph (AAG) built on a
B-rep model and employed heuristics for recognizing poly-
hedral features for machining. Corney et al. [25] constructed
a face-edge graph (FEG) for 2 1/2D parts and proposed a

495Engineering with Computers (2024) 40:493–525

1 3

procedure for recognizing holes and pockets. Bruzzone et al.
[26] addressed the problem of extracting adjacency infor-
mation from a description of a solid object in terms of the
face-to-face composition (FFC) model. The problem related
to the development of adjacency-finding algorithms was
discussed. Lim et al. [18] presented an algorithm for parti-
tioning protrusion and depression features (DP-features) on
models with free-form surfaces. A vertex-edge-graph (VEG)
of all of the candidate edges on the model was generated.
For the volumetric-based approach, Waco et al. [27] pro-
posed a method based on alternating sum of volumes with
partitioning (ASVP) for extracting block volumes form a
solid model. Sakurai et al. [28] presented a method based
on maximal volume decomposition (MVD) for extracting
the maximum volume on a model. Woo et al. [29] proposed
a quantitative measure, called orthogonal bounding factor
(OBF), for the detection of protrusion features on loops of
concave edges. All the above-mentioned methods only show
the ability of extracting interesting features or volumes from
a model for the machining purpose. They cannot be used for
the decomposition of the entire model.

Liu et al. [30] employed CLoop (convex and concave
loops) proposed in Gadh et al. [31] to decompose a solid
model into multiple block structures, each of which rep-
resents a simple block shape, and then apply a transfinite
mapping method that maps a unit cube into a Hex region
in 3D space to convert each block shape into Hex meshes.
Lu et al. [1] extended CLoop into PLoop (pure convex or
concave loop), SLoop (mixed convexity, closed link), and
HLoop (mixed convexity, open link), and investigated the
partition of the 3D model based on these types of loop. A
separator is one or more loops which can bound a cutting
face to separate the model. Heuristic rules were proposed for
generating separators and the corresponding cutting face for
each of them was described. The limitation of this method is
that the loop-based block volume recognition is not robust,
especially for complex parts that contain loops beyond the
consideration of this study.

In mesh generation, one of the approaches is to ideal-
ize a solid model with mid surfaces to apply shell elements
on some regions that can be described by mid surfaces.
Depending on the range of a model that is represented by
mid surfaces, the resultant model can be a pure mid-surface
model or a mixed-dimensional model combining mid sur-
faces and the remaining complex regions. This technique can
greatly reduce the number of elements and hence the degrees
of freedom required for meshing. Sheen et al. [32] proposed
a solid deflation method to shrink a solid model into a very
thin solid, and then convert it into a mid-surface model.
This technique is applicable only to limited types of models
with planar and quadratic surfaces. Zhu et al. [33] proposed
a mid-surface abstraction method for thin-walled models
based on rib feature decomposition. It defined a hierarchical

semantic structure to describe the connection relationships
between sub-regions and the affiliation relationship of two
connected sub-regions. The rib features on the thin-walled
model were identified and organized to form a hierarchical
semantic structure. A model decomposition algorithm was
then employed to decompose rib features in accordance with
the hierarchical semantic structure. The mid-surface patches
for each sub-region were finally abstracted through an adap-
tive abstraction method. Only three models were demon-
strated in this study. More complex models need to be tested
for verifying the robustness of this method. Robinson et al.
[10] proposed a decomposition process based on the medial
axis transform (MAT) for idealizing the thin-sheet regions
of thin-walled structures as mid-surfaces, which can then
be meshed using shell elements. The remaining complex
regions on the 3D model were then meshed with tetrahe-
dral meshes. Makem et al. [11] extended Robinson’s work
to find the long slender regions on thin-walled structures. It
employed shape metrics generated using local sizing meas-
ures to identify long slender regions within the thick body.
A series of algorithms were then applied for partitioning the
think region into a non-manifold assembly of long/slender
and complex sub-regions, which were then meshed with
structured anisotropic meshes and unstructured isotropic
tetrahedral meshes, respectively.

Nolan et al. [12] focused on the creation of a dimension-
ally reduced model for the purpose of structural analysis
in the preliminary design and optimization stage of a thin-
walled product. The 3D thin-walled CAD model was divided
into thin-sheet, long-slender and complex regions. The thin-
sheet regions were first identified using the method described
in Robinson et al. [10]. The remaining thick regions were
then sub-divided into long-slender and complex regions
using the method described in Makem et al. [11]. The
decomposed model was a non-manifold assembly of thin-
sheet, long-slender and complex volumes, which were then
meshed using shell, beam and tetrahedral elements, respec-
tively. Sun et al. [13] proposed a face-pair based method
for identifying thin-sheet regions, which is computationally
more efficient than the MAT method described in Robinson
et al. [10]. Instead of extracting mid surfaces from the face
pairs, this method focused on how to decide the boundaries
of the target thin-sheet regions and how to create cutting
faces to decompose the models without generating silver
volumes in either thin-sheets or residual domain. Each set
of face pair can form a sweepable region that can be meshed
with hexahedral meshes. Sun et al. [14] later proposed an
enhanced method for long-slender region identification. It
also emphasized the decision of the boundaries of the target
regions and the corresponding cutting faces to isolate the
long-slender regions suitable for sweep meshing.

For automatic Hex meshing, sweeping is one of the most
robust techniques to generate Hex meshes. White et al. [34]

496 Engineering with Computers (2024) 40:493–525

1 3

proposed a CCSweep technique to automatically decompose
multi-sweepable volumes into many-to-one sweepable vol-
umes. It converted multiple-source-and-target-faces into
a single-target-face problem, enabling the sub-volumes to
beautomatically meshed using a many-source-to-one-target
Hex sweeping approach. Cai et al. [35] addressed the one-
to-one sweeping and indicated that the most difficult prob-
lem was to map an all-quad source surface mesh onto its
target surface. They proposed a harmonic function for the
morphing of the meshes on a source surface onto its target
surface, and a cage-based method for locating nodes inside
volumes. This algorithm can map surface meshes between
two concave or multiply-connected surfaces, and can also
deal with geometries with twisted and complicate bounda-
ries. Wu et al. [36] proposed an automatic swept volume
decomposition technique based on sweep directions extrac-
tion. It first extracted all potential local sweep directions
from the model and generated relevant face sets for each of
them. The reasonable cutting face set that can split the model
into swept sub-volumes was then constructed. Finally, the
relevant face sets were used to generate maximal single-
axis swept subvolumes. However, based on the decomposed
results provided, it seems that some subvolumes are still
complex in shape and may not be meshed by sweeping.

Research on automatic Hex meshing for an object repre-
sented as smooth Tet surface meshes has also been studied
extensively. Luo et al. [37] proposed a method to obtain a
near optimal finite element mesh from a coarse Tet surface
mesh of a CAD model. It can identify thin sections of the
model through a set of discrete medial surface points com-
puted from an Octree-based tracing algorithm and convert
Tet elements into Prism elements in the thin directions. It
can also identify geometric singular edges and generate geo-
metrically graded meshes from the edges. The meshes can
then be mapped onto the geometry to the required level. Liu
et al. [38] presented a method based on skeleton-based poly-
cube generation to construct feature-preserving T-meshes.
From the input skeleton of a model, initial interior cubes
and boundary cubes that contact with the outer surface were
created. Each cubic region was then subdivided to obtain
T-spline control mesh. During the subdivision, the mesh
boundary was aligned to preserve surface features, which
include open curves, closed curves and singularity features.
The T-meshes were finally extracted as Bezier elements for
isogeometric analysis. Hu et al. [7] proposed an automatic
polycube construction algorithm using harmonic boundary-
enhanced centroidal Voronoi tessellation (HBECVT) based
surface segmentation. Given a smooth surface triangle mesh,
the polycube construction was viewed as a mesh segmenta-
tion task. The HBECVT method introduces local neighbor-
ing information into the energy function, which can reduce
non-monotone boundaries and is less sensitive to the noise.
Based on the constructed polycube, uniform Hex meshes,

T-spline control meshes and adaptive all-Hex dual meshes
could be generated. Hu et al. [8] modified the HBECVT
method by introducing eigenfunctions of the secondary
Laplace operator for surface segmentation and a novel
generalized harmonic boundary-enhanced CTV model for
polycube construction. This modified method can reduce the
computational cost and eliminate unsmoothed boundary and
over-segmentations.

Yu et al. [9] presented a software package, HexGen and
Hex2Spline, to integrate geometry design with isogeometric
analysis in LS-DYNA. Given a CAD model, HexGen creates
a Hex mesh by using a semi-automatic polycube-based mesh
generation method. Hex2Spline can construct hierarchical
splines by using the Hex mesh from HexGen. HexSpline can
also transfer spline information to LS-DYNA and performs
isogeometric analysis. Yu et al. [15] further presented a Hex-
Dom software package that can create a Hex-dominant mesh
in real applications. A semi-automated polycube-based mesh
generation method was employed. The resulting mesh is Hex
dominant, but is also composed of Tet and Prism meshes.

3 Basic concept and method overview

A thin-shell CAD model is basically composed of a thin
shell that forms the basic shape of the part. The faces on a
part can be divided into inner and outer faces, where the for-
mer are invisible when two parts are assembled and the latter
are visible. The inner faces can be divided into the following
four types (Fig. 1a): transition, wall, bottom, and protrusion
faces. Faces that are adjacent to outer faces are called tran-
sition faces. Faces that form the bottom of the inner region
are called bottom faces. Faces on the side wall are called
wall faces. The remaining faces belong to protrusion faces.
When multiple layers of wall face exist, the upper layer is
called wall faces, while the lower layers are called step-wall
faces, as shown in Fig. 1b. Similarly, the outer faces can be
divided into the following four types (Fig. 1c): outer wall,
outer bottom, protrusion and flange faces. The definition of
outer wall, outer bottom and protrusion faces is similar to
those on inner faces. Faces that are between outer wall and
transition faces are called flange faces. Flange faces may not
exist on a model.

Thin-shell CAD models can be analyzed in accordance
with the following conditions. First, a transition face is basi-
cally a face that directly connects to inner and outer wall
faces simultaneously. However, complex transition faces
with different kinds of cross section may exist. Five types
of transition face are commonly occurred, which are: (1)
simple transition (Fig. 2a): the cross section is composed
of a line or a line and arcs that connect to the line smoothly.
The transition faces include a face or a face and its neigh-
boring fillets. It is the most common type; (2) step (Fig. 2b):

497Engineering with Computers (2024) 40:493–525

1 3

the cross section is a step. The transition faces include two
faces of different heights and a face that connects to them;
(3) open step (Fig. 2c): it is like a “step”, but with a sudden
jump to become a “simple translation” in some regions; (4)
extruded ridge (Fig. 2d): the cross section involves a convex
ridge. The transition faces include the faces on the ridge and
its neighboring faces; and (5) depressed ridge (Fig. 2e): the
cross section involves a concave ridge. The transition faces
include the faces on the ridge and its neighboring faces.

Second, the protrusion structure on the outside is more
complex than that on the inside. Both outer wall and outer
bottom faces can be divided into concave and non-concave
types, as shown in Fig. 3. When most of the protrusions on
the outside are distributed continuously and partition the

wall faces into many regions, this kind of part is called a
concave wall type (Fig. 3a). On the contrary, when most of
the protrusions are distributed sparsely, it is called a non-
concave wall type (Fig. 3b). In addition, the outer bottom
face is normally lower than its neighboring wall faces, e.g.
Fig. 3a, b). However, it may occur that the outer bottom face
is sunken inside and becomes higher than its neighboring
wall faces, e.g. Fig. 3c. The former is called a non-concave
bottom type, while the latter is called a concave bottom type.
Such a classification is helpful for the recognition of differ-
ent face types.

Finally, fillets and holes are common features on
CAD models. They are usually neglected or simplified
for the simplification of the problem. However, in real

(a) (b)

Transition

Face

Bottom

Face

Protrusion Face

Outer Region Face

Wall Face

Step Wall

Faces

(c)

Outer protrusion

faces

Outer wall

faces

Outer bottom faces

Flange

Faces

Fig. 1: Composition of faces on thin-shell parts, a inner faces, b multiple-layer inner wall, and c outer faces

498 Engineering with Computers (2024) 40:493–525

1 3

CAD models, these features always exist and should be
addressed too. When classifying faces on a thin shell into
different face types, the belonging of the fillets that con-
nect to these faces should be determined also. In addition,

most holes are located on a simple face only. However,
holes that lie across multiple faces may also exist and com-
plicate the face type recognition problem. Therefore, the

= Transition face type = Ridge face type

(a) (b)

(d)(c)

(e)

Fig. 2 Five types of transition faces, a simple transition, b step, c open step, d extruded ridge, and e depressed ridge

499Engineering with Computers (2024) 40:493–525

1 3

issues related to fillets and holes should be addressed and
solved also.

In this study, an enhanced inner and outer faces recog-
nition algorithm is developed to cover all kinds of thin-
shell CAD models, as mentioned above. Figure 4 shows
the overall flowchart of the proposed face type recognition
algorithm. It can mainly be divided into the following two
steps: preliminary functions and face type recognition. The
input is a boundary representation (B-rep) model of the

thin-shell part, and the output is the composition of faces
both on the inside and outside. The main improvement of
this study, compared with that in [22], is that the enhanced
method can cover five types of transition face, fillets, com-
plex holes, and concave and non-concave types both on
outer wall and bottom faces. This study primarily focuses
on the development of the face type recognition. However,
preliminary functions are briefly described below for com-
pleteness of the method.

Flange face Outer wall faceOuter bottom face Outer protrusion face

(a)

(c)

(b)

Fig. 3 Three types of wall and bottom faces on the outside, a concave wall, b non-concave wall, and c concave bottom

500 Engineering with Computers (2024) 40:493–525

1 3

In preliminary functions, the edge and face databases are
computed first. Each database records the geometric and
topological data of the associated entity. Fillet recognition is
implemented next, which outputs the compositions of edge
blended faces (EBF) and vertex blended faces (VBF). Fillet
data enable the evaluation of faces across any EBF or VBF.
Next, hole recognition is implemented. Hole recognition
allows all blind and through holes on the B-rep model to be
recognized. Coaxial holes can also be detected by this algo-
rithm. More importantly, holes that lie across multiple faces
are also recognized. It relies on the recognition of virtual and
multi-virtual loops first. A virtual loop is a closed contour
formed by multiple faces that connect at least G1 continu-
ous, whereas a multi-virtual loop is also a closed contour
by multiple faces, but with some junctions G0 continuous.

In face type recognition (Figs. 140, 150, 160), inner and
outer faces are separated first. It can normally yield a closed
loop of parting line representing the transition of inner and
outer faces. Transition faces are next determined. For “simple
transition” (Fig. 2a), the transition faces are directly adjacent
to the parting line. However, to cover the other four types of
transition face (Fig. 2b–e), an algorithm is employed to search
the faces that can represent the cross section of transition faces
and determine the transition type. The face types on inner and

outer faces are next recognized, respectively. For inner faces, a
smooth face is often partitioned into many pieces owing to the
complex structure of protrusions on the inside. Fillets may also
appear at the junction of two or several faces and complicate
the determination of the face type. Specific rules are provided
to recognize wall and bottom faces in sequence. With transi-
tion, wall and bottom faces recognized, protrusion faces can
be recognized and divided into groups based on the adjacency
relationship. For outer faces, wall, bottom and flange faces are
recognized in sequence. Both outer wall and bottom faces are
divided into two types: concave and non-concave types. The
distinction of concave and non-concave bottom types is used
for the recognition of wall, bottom and flange faces; while the
distinction of concave and non-concave wall types is used for
the recognition of protrusion faces.

4 Proposed face type recognition method

4.1 Separation of inner and outer faces

Consider that the part model is aligned so that the mold
opening direction is along + Z, and the two axes of its
horizontal plane are parallel to the X and Y directions,

Fig. 4 Flowchart of the pro-
posed face type recognition
method for thin-shell CAD
models

Separation of inner and outer faces

Transition faces recognition

Inner and protrusion faces recognition

Input B-rep model

Edge
database

Face
database

Fillet recognition Fillet
data

Hole
data

AAG databases computation

Hole recognition

P
re

li
m

in
ar

y
 f

u
n

ct
io

n
s

F
ac

e
ty

p
e

re
co

g
n

it
io

n

Output composition of faces

both on the inside and outside

Outer and protrusion faces recognition

501Engineering with Computers (2024) 40:493–525

1 3

respectively. The other five faces on the bounding box of
the part model are perpendicular to + X, − X, + Y, − Y and
− Z, respectively. Based on the definition on inner and outer
faces previously, the outer faces are visible from the out-
side, whereas the inner faces are invisible. The visibility of
a face could be detected by projecting lines from this face
onto the boundary planes and checking the intersection of
these lines with the other faces [22]. However, this concept
could be valid for simple shape, but may not be applicable
for complex geometry, especially when protrusion features
exist on outer faces. Figure 5 shows the flowchart of inner
and outer faces separation. The faces are initially divided
into three types based on the visibility from + Z. Some of
the face types are modified in accordance with the adjacency
relationship. One or several loops of transition edges that
represent the boundary of inner and outer faces can then
be obtained. The inner and outer faces are finally separated
based on the main loop of transition edges. The detailed
algorithm is described below.

4.1.1 Step 1: Divide faces into three types

The faces are initially divided into candidate inner, wall
and outer faces by checking the intersection with the
boundary box. Consider one face fi on the model. If fi
meets the following conditions, then it is regarded as a
candidate outer face: (1) 𝜃f > 170◦ , where �f is the angle
between the surface normal nf and + Z; (2) Lf does not
intersect any face on the model, where Lf is a line from
the centroid of fi towards nf ; and (3) fi is not a hole face
of through holes. When fi is neither a candidate outer face
nor a hole face of through holes, it is assigned to one of
the following two regions: (1) Region I: 0◦ ≤ �f ≤ 90◦ + � ,
and (2) Region II: 90◦ + 𝜀 < 𝜃f ≤ 180◦ , where � is a draft
angle, 3◦ in this study.

When fi is in Region I, the candidate inner and wall
faces are determined based on a projecting-line intersec-
tion check and face adjacency relationship. Define two
parameters Max

(

nb

)

 and C2 , where Max
(

nb

)

 denotes one
of the six directions ± X, ± Y, ± Z that is closest to the
direction of nf , and C2 is the status of intersection. Pro-
ject a line from the centroid of fi towards the direction
Max

(

nb

)

 and check if it intersects any face on the model.
If an intersection occurs, then set C2 as true, otherwise set
C2 as false. The face type of fi is determined based on face
adjacency relationship, as follows:

(1) If fi is not adjacent to any candidate outer face, then
regard fi as a candidate inner face.

(2) If fi is adjacent to a candidate outer face,
Max

(

nb

)

≠ +Z , and C2 = false, then regard fi as a
candidate wall face

(3) Otherwise, regard fi as a candidate inner face. Also,
mark fi.

The reason to apply such complex rules is because some
special cases cannot be judged by the angle �f only. The
faces marked in Condition (3) will later be used to help
determining the parting line. The left plot in Fig. 6a shows
two faces that satisfy Conditions (1) and (2), respectively.

When fi is in Region II, the candidate inner and wall
faces are determined by projecting a line from the target
face and check the number of intersections. Different face
type has different number of intersections. Define a param-
eter C5 , where C5 denotes the status of the intersection.
Project a line from the centroid of fi towards ± X, ± Y and
-Z, respectively, and check if it intersects any face on the
model. If an intersection occurs, then C5 is increased by 1
(The values of C5 : 0–5). The face type of fi is determined
as follows:

(1) If C5 = 5, then regard fi as a candidate inner face.
(2) Otherwise, regard fi as a candidate wall face.

Divide faces into three types

Compute candidate transition edges

Separate inner and outer faces, and

compute transition edges

Modify inner and outer faces based on

loops of transition edges

Generate bounding box

Modify candidate inner and

wall faces

B-rep model, hole data,

fillet data

Inner & outer faces,

parting line

End

Step 1

Step 4

Step 3

Step 5

Step 2

Fig. 5 Flowchart of inner and outer faces separation

502 Engineering with Computers (2024) 40:493–525

1 3

C2=true & adjacent to

candidate outer face

Not adjacent to
any outer face

C5=4

C5=5

(a) Step 1

(c) Step 3

Case 3

Case 1

Case 4

Case 2

1
4

(e) Step 5 Parting line

Divided into 7 groups by candidate
transition edges

Divided into inner and outer faces

(d) Step 4
Before After

(b) Step 2
After

4

Before After Before

: not adjacent to outer face

Fig. 6 Immediate results for inner and outer faces separation, a Step 1, b Step 2, c Step 3, d Step 4, and e Step5

503Engineering with Computers (2024) 40:493–525

1 3

The right plot in Fig. 6a shows two faces that are assigned
as candidate wall (C5 = 4) and inner (C5 = 5) faces,
respectively.

4.1.2 Step 2: Modify candidate inner and wall faces

Some groups of candidate inner and wall faces may wrongly
be recognized in previous step. They are detected and modi-
fied in accordance with face adjacency relationship, as
follows:

1. Group candidate inner faces Gci : all candidate inner
faces that are adjacent to each other are regarded as a
group Gci.

2. Check and modify candidate inner faces: Let fi be
one face in Gci . Project a line from the centroid of Gci
towards nf and check if it intersects any face in Gci . Let
mci be the intersection count for faces in Gci . When an
intersection occurs, mci is increased by 1. If any group
Gci with mci < 4 , then all faces in Gci are changed to
candidate wall faces.

3. Group candidate wall faces Gcw : all candidate wall faces
that are adjacent to each other are regarded as a group
Gcw.

4. Check and modify candidate wall faces: if all faces in
Gcw are not adjacent to any candidate outer face, then all
faces in Gcw are changed to candidate inner faces.

Figure 6b shows two groups of faces that meet the condi-
tions in Procedures (2) and (4), respectively.

4.1.3 Step 3: Compute candidate transition edges

Transition edges represent the common boundary of inner
and outer faces. The edges on all candidate inner faces are
checked one by one to determine candidate transition edges.
Let fi be a candidate inner face and eci be an edge on fi . The
conditions for determining candidate transition edges are
as follows:

(1) If eci is adjacent to a candidate outer face and convex,
and fi is marked, then eci is regarded as a candidate
transition edge.

(2) If eci is adjacent to a candidate wall face and convex,
then eci is regarded as a candidate transition edge.

(3) If eci is adjacent to a candidate wall face and one of its
neighboring faces is a fillet, then eci is regarded as a
candidate transition edge.

(4) If eci is adjacent to a candidate wall face and concave,
then the following algorithm is implemented: search
the neighboring faces of the candidate wall face in all
directions. If the boundary edge is convex or the face is
not a candidate wall face, then stop search in that direc-

tion. It finally yields a set of neighboring candidate wall
faces that are convex in all boundary edges. The bound-
ary edges are regarded as candidate transition edges.

Figure 6c shows four edges that represent the above-men-
tioned four conditions, respectively.

4.1.4 Step 4: Separate inner and outer faces, and compute
transition faces

Separate all faces into two types: inner and outer faces,
except through hole faces. The common boundaries of inner
and outer faces are regarded as transition edges. Transition
edges will form one or several loops. For a group of inner
faces that are adjacent to each other, it should have at least
one face that is facing up and has a projecting line that does
not intersect any face on the model. The algorithm to sepa-
rate inner and outer faces and evaluate transition edges is
as follows:

(1) Divide faces into groups by candidate transition edges
and edges of through holes: Faces that are adjacent
to each other are regarded as a group, with candidate
transition edges and edges of through holes being the
boundary. It can yield multiple groups of face Gf .

(2) Divide faces (except transition hole faces) into inner
and outer faces: All faces in each group Gf are checked.
Consider that fi is a face in Gf . Generate a line Li from
the centroid of fi towards + Z. If the following two con-
ditions are satisfied, then all faces in Gf are regarded as
inner faces:

(a) At least a face fi that is nearly horizontal and fac-
ing up, i.e. �f ≤ �.

(b) At least a line Li that does not intersect any face
on the model.

Otherwise, all faces in Gf are regarded as outer faces.

(C) Compute transition faces: When an edge is the common
boundary of an inner and outer faces, it is regarded as
a transition edge.

Figure 6d shows an example divided into 7 groups by can-
didate transition edges. Only one group of faces are assigned
as inner faces in this step.

4.1.5 Step 5: Modify inner and outer faces based on loops
of transition edges

One or several loops of transition edges can be formed.
By checking the number of loops and geometric and face

504 Engineering with Computers (2024) 40:493–525

1 3

adjacency conditions on each loop of faces, the face type can
be determined. The procedures are as follows:

(1) Evaluate loops of transition edges: each set of adja-
cent transition edges that form a loop are recorded. It
can yield one or several loops of transition edges Gte .
Denote mte as the number of loops.

(2) Modify inner and outer faces based on mte:

(a) mte = 0 : ideally, at least one loop of transition
edges can be found. If mte = 0 , it indicates that a
model with ambiguous transition edges between
inner and outer faces exists. The step in Sect. 4.1.3
must be implemented again, with Condition (1)
modified as: (1’) The edge exists between a can-
didate outer and inner face and is convex.

(b) mte = 1 : only one loop of transition edges is found.
It is the typical case. No modification of the inner
or outer face is needed. The corresponding loop of
transition edges is called the parting line herein.

(c) mte > 1 : at least two loops of transition edges
are found. The one with the longest length is the
parting line, while the remaining loops must be
checked. Consider that Gte is one of the remaining
loops. Find all outer faces that are adjacent to Gte .
All such outer faces are expanded outside to form
a face group FGte until it reaches another loop
of transition edges or through holes. Whether Gte
should be preserved or not is determined as fol-
lows:

 (i) If FGtr contains at least a candidate outer
face, then Gte is preserved.

 (ii) If FGte does not contain any candidate outer
face, then Gte is deleted.

If Gte is preserved, then it indicates that a large through
hole (or pocket) exists on the model. On the contrary, if Gte
is deleted, all faces inside this loop should be changed to
inner faces.

Figure 6e shows two examples with mte = 1 and 4,
respectively. The parting lines and final inner faces are also
displayed.

4.2 Transition faces recognition

As Fig. 2 depicts, transition faces are divided into the follow-
ing five types: simple transition, step, open step, depressed
ridge and extruded ridge. The “step” type may involve some
faces from outer faces, while the faces on the other four
types are all from inner faces. Therefore, the algorithm
described below is used for detecting four types of transi-
tion faces only. The “step” type will be detected later in outer

faces recognition. Figure 7 shows the flowchart of recog-
nizing four types of transition faces, where the open step,
extruded ridge and depressed ridge are detected in sequence.
When none of the above three types is satisfied, it is regarded
as a simple transition. In this algorithm, inner faces that are
adjacent to the parting line are put into a group Gdtr first. The
“open step” type has a sudden jump on neighboring transi-
tion faces. Therefore, it is detected by checking the edge
concavity between neighboring transition faces in Gdtr . For
the “extrude ridge” and “depressed ridge” types, the faces in
Gdtr are grown along the thickness direction to find a set of
neighboring faces that can describe the cross-sectional shape
of the transition. The detection of each transition type should
be implemented individually as each has its own procedures
of determining transition faces.

4.2.1 Open step type

Consider that fz is the open bounding plane perpendicular
to + Z. For each fi in Gdtr , if it is parallel to fz , then the dis-
tance between fi and fz is computed. Denote the minimum
distance among them as dmin . All other inner faces that are
parallel to fz are then checked to find faces with a distance
smaller than dmin . All such faces are put into a group Gut ,
called upper transition faces. Check all faces fn that are adja-
cent to the faces in Gut and divide them into two groups.
Generate a line fn from the centroid of fn towards its surface
normal nf . If Ln intersects with a bounding plane, then put
fn into a group Gout . Otherwise, if Ln intersects with an inner
face, then put fn into another group Gin . The conditions for
determining the “open step” type is as follows:

(a) If Gut is empty, then the transition is not an “open step”
type.

(b) If Gut is not empty, then

– If all faces in Gout are adjacent to Gdtr and all faces in Gin
are not adjacent to Gdtr , then the transition is an “open
step” type.

– Otherwise, the transition is not an “open step” type.

When the transition is an “open step” type, the faces in
Gdtr , Gout and Gut are regarded as transition faces. Figure 8a
shows the definition of Gdtr , Gout , Gut and Gin , and transition
faces for the “open step” type.

4.2.2 Extruded ridge type

For recognizing extruded and depressed ridge types, a
threshold dw for the maximum width of the ridge allowed
must be assigned. An extruded ridge can be detected by
searching neighboring faces that are connected convexly.

505Engineering with Computers (2024) 40:493–525

1 3

Put all faces in Gdtr into a face set Frs . For each of the faces
in Frs , its neighboring faces are searched recursively along
the thickness direction on both sides. Consider that fi is a
face in Frs and fn is one of the neighboring faces. If fn meets
the following conditions, then fn is put into Frs : (1) fi and fn
are connected convexly, and (2) 0◦ < 𝜃f ≤ 90◦ , where θf is
the angle between the surface normal of fn and + Z. Other-
wise, the search stops on fn . The search is continued for all
faces in Frs until all neighboring faces have been checked.
The conditions for determining the “extruded ridge” type
are as follows:

(a) Check every pair of vertical and parallel faces in Frs
and compute its distance, namely frs and fre in Fig. 8b.
For example, if there are four side walls on the thin
shell, it will yield four pairs of vertical faces, and hence
four distances. If all distances are smaller than dw , then
the transition is an “extruded ridge” type.

(b) Otherwise, the transition is not an “extruded ridge”
type.

When the transition is an “extruded ridge” type, the tran-
sition faces are divided into three regions: (1) ridge faces:
all faces in Frs . The fillets that are adjacent to the faces in
Frs are also included as ridge faces; (2) the horizontal face
outside and its neighboring fillet; and (3) the horizontal face
inside and its neighboring fillet. Figure 8b shows the defi-
nition of Gdtr , Frs , frs and fre , and transition faces for the
“extruded ridge” type.

4.2.3 Depressed ridge type

Like the case of “extruded ridge”, the detection of a
“depressed ridge” is also started by searching neighboring
faces convexly. However, it can only reach half of the cross-
sectional shape as concave edges exist at the bottom of the
depressed ridge. Start from a face fi in Gdtr , put all neighbor-
ing faces that are connected convexly into a face set Frs . In
Frs , find a face frs with a face angle 90◦ ± � , where ε is the
draft angle. Generate a line from the centroid of frs towards

Fig. 7 Flowchart of transition
faces recognition B-rep model, inner and outer

data, parting line

Put inner faces adjacent to the parting

line into a group Gdtr

Transition type & transition

faces

Is open step type?
Transition faces recognition

for open step type

Transition faces recognition

for extruded ridge type

Transition faces recognition

for simple type

Is extruded ridge
type?

Is depressed ridge
type?

Transition faces recognition

for depressed ridge type

End

506 Engineering with Computers (2024) 40:493–525

1 3

(a) Open step type

Recognition Phase Assigning transition faces

(b) Extruded ridge type

(c) Depressed ridge type

(d) Simple transition type

Assigning Transition Faces

Gdtr

Recognition Phase Assigning Transition Faces

Ridge faces

Outer Inner

Recognition Phase Assigning Transition Face

Ridge faces

Outer Inner

Fig. 8 Immediate results for transition faces recognition, a open step, b extruded ridge, c depressed ridge, and d simple transition

507Engineering with Computers (2024) 40:493–525

1 3

its surface normal to intersect with a face fre . The conditions
for determining the “depressed ridge” type is as follows:

(a) Check every pair of frs and fre along the loop of side
walls and evaluate a distance for each pair. If all dis-
tances are smaller than dw , then the transition is a
“depressed ridge” type.

(b) Otherwise, the transition is not a “depressed ridge”
type.

When the transition is a “depressed ridge” type, the tran-
sition faces are divided into three regions: (1) ridge faces:
the faces between frs and fre are regarded as ridge faces,
where frs and fre are included. The fillets that are adjacent to
frs and fre are also included as ridge faces; (2) the horizontal
face outside and its neighboring fillet; and (3) the horizontal
face inside and its neighboring fillet. All three regions of
faces can be obtained by using the adjacency relationship
of frs and fre . Figure 8c shows the definition of Gdtr , Frs , frs
and fre , and transition faces for the “depressed ridge” type.

4.2.4 Simple transition

When a model does not belong to any of the above three
types, it is regarded as a simple transition. Ideally, a simple
transition only involves a face along the thickness direction.
However, fillets may exist on one or both sides. When fil-
lets exist, they should be included as transition faces also.
Figure 8d shows the definition of Gdtr and transition faces
for the “simple transition” type.

4.3 Inner face recognition

Inner faces are divided into transition, wall, bottom and pro-
trusion faces. When multiple-layer wall exists, the faces can
further be divided into wall and step-wall faces. As transition
faces have been recognized, the remaining faces, including
wall, bottom, step-wall and protrusion faces are recognized
in sequence. When fillets exist, they must be regarded as
either wall, bottom or protrusion faces in accordance with
the adjacency relationship. When a fillet is adjacent to two
different types of face, the priority of the face type that it is
assigned is protrusion, bottom and wall face in sequence.

4.3.1 Recognition of wall faces

Wall faces are generally connected to transition faces by
convex edges and are perpendicular to the open bounding
plane. However, not all wall faces are necessarily connected
to transition faces. For example, when a wall face is com-
posed of several faces, only one of them is connected to a
transition face, while the others are not. Also, not all wall
faces are exactly perpendicular. Some of them may be tilted

slightly. Therefore, the procedures for detecting wall faces
are described below:

(1) Assign initial wall faces: For all inner faces, except
transition faces, the faces that connect to transition
faces by convex edges are assigned as initial wall faces
Grw.

(2) Determine the other wall faces recursively: Consider
that fi is an inner face whose face type hasn’t been
determined. If it meets the following conditions, then
it is regarded as a wall face: (a) fi is adjacent to a face
in Grw by a convex edge, and (b) 𝜃f > 𝜃t , where �f is
the angle between nf and + Z, nf is the surface normal
of fi and �t is the inclined angle allowed, 10° in this
study. This step is repeated for all remaining inner faces
recursively. Whenever a face is regarded as a wall face,
it is put into Grw.

(3) Check wall faces: Some faces may be wrongly recog-
nized as wall faces because a transition face may be
a virtual face that crosses over multiple features. The
procedures to detect and modify erroneous wall faces
are described below:

Consider that fw1 is a wall face in Grw . Generate a line
from the centroid of fw1 towards −nf , where nf is the sur-
face normal. Find a face fo that intersects with the line
and is the closest face of fw1.
If fo is not an outer face, then fw1 is not a wall face.
Remove fw1 from Grw.
If fo is an outer face, then record the distance d1 between
fw1 and fo.

This step is repeated for all faces in Grw.

(b) For all wall faces in Grw , check if several faces point to
the same outer face. Keep the one with the minimum
distance in Grw , while the others are removed from Grw

.

All faces in Grw are the final wall faces. Figure 9a shows
the results of Procedures (1) and (3) for two examples,
respectively.

4.3.2 Recognition of bottom faces

Bottom faces are located on the bottom of the inner faces,
mostly characterized by concave edges on the outer loop or
connecting with wall faces. Most bottom faces are horizon-
tal, but a small inclined angle is allowed. The procedures for
detecting bottom faces are described below:

508 Engineering with Computers (2024) 40:493–525

1 3

(a) Recognition of wall faces

(b) Recognition of bottom faces

(d) Recognition of protrusion faces

Transition

face

Assign initial bottom faces
Check bottom faces

Assign initial wall faces Check wall faces

Assign face groups

Blend faces

Protrusion Feature

Blend face evaluation

G0 continuity

Grw
fw1

fw2

fo

Gpi

Gpi

(c) Recognition of 2nd layer wall faces

Exclude candidate protrusion faces

ℎ
ℎ

ℎ ℎ

Assign step-wall faces

Transition

Wall

509Engineering with Computers (2024) 40:493–525

1 3

(1) Assign initial bottom faces: Consider that fi is an inner
face whose face type hasn’t been determined. If fi
meets the following conditions, then it is regarded as
an initial bottom face: (a) fi is not a fillet, (b) all edges
on the outer loop are concave, except the edge adjacent
to a hole face, and (c) 𝜃f > 𝜃t , where �f is the angle
between nf and + Z, nf is the surface normal of fi and
�t is the inclined angle allowed, 10° in this study. This
step is repeated for all inner faces recursively, except
transition and wall faces. Whenever a face is regarded
as a bottom face, it is put into Grb.

(2) Assign fillets as bottom faces: The fillets that are adja-
cent to initial bottom faces should be regarded as bot-
tom faces. Consider a face fi that is adjacent to a vertex
on the outer loops of the faces in Grb . If fi meets the fol-
lowing condition, then it is regarded as a bottom face:
(a) fi is a fillet, or (b) fi is not a fillet, but it connects
to a face in Grb convexly. Condition (b) is applied for
some tiny faces that are not considered as fillets. All
faces that are adjacent to the faces in Grb are checked
recursively. Whenever a face is regarded as a bottom
face, it is put into Grb.

(3) Assign isolated bottom faces separated by ribs: It may
occur that some isolated bottom faces are separated by
ribs. To overcome this issue, consider an inner face fi
whose face type hasn’t been determined. If fi meets the
following conditions, then it is regarded as a bottom
face: (a) fi is a fillet, (b) it is adjacent to a wall face,
and (c) it is adjacent to rib faces. Whenever a face is
regarded as bottom face, it is put into Grb.

(4) Check bottom faces: Some protrusion faces may
wrongly be regarded as bottom faces. When it hap-
pens, the common edge at two adjacent faces will be
concave and G0 continuous. Therefore, detect two adja-
cent faces in Grb that are G0 continuous and connected
concavely. Regard the one with a higher centroid along
the Z direction as a protrusion face, while the other one
with a lower centroid as a bottom face. Update the faces
in Grb . All neighboring faces in Grb with concave edges
should be checked in sequence.

All faces in Grb are the final bottom faces. Figure 9b
shows the results of Procedures (1) and (4) for one example.

4.3.3 Recognition of step‑wall faces

Till now, transition, wall (1st layer) and bottom faces on
inner faces have been recognized. When there is only one
layer of wall faces, the wall and bottom faces are directly

connected to each other. However, when there are multiple-
layer wall faces, some of the faces between wall and bottom
faces are still undetermined yet. The undetermined faces
may belong to either step-wall or protrusion face. To recog-
nize step-wall faces, a set of reference faces that connect to
wall faces are obtained first. The remaining faces are then
divided into groups. Protrusion faces are then recognized
and excluded from the groups. The final faces in the groups
are step-wall faces. Two algorithms are employed to detect
protrusion faces. First, most protrusion faces on a group have
at least a set of face pair that are parallel or nearly parallel
to each other. A face intersection check can be performed
to detect this kind of protrusion. Second, some protrusion
faces may not be detected by the first algorithm, but they
are higher than the neighboring wall faces. A check of the
heights can detect his kind of protrusion. The procedures of
step-wall face recognition are described as follows:

(1) Assign reference faces fr : for all inner faces, except
transition, wall and bottom faces, the faces that directly
connect to wall faces are evaluated, denoted as refer-
ence faces fr . The remaining inner faces that connect
convexly, beside fr , are divided into grouped Glw.

(2) Exclude candidate protrusion faces based on face inter-
section check: the next step is to check all faces in each
group Glw and exclude the groups that belong to candi-
date protrusion faces. Generate a line for every face fi
in Glw towards −nf , where nf is the surface normal, and
check the intersection between the line and the closest
face fc . The conditions for a group in Glw are as follows:

(a) If one of the closest faces fc is an inner face, then
exclude that group of faces from Glw.

(b) Otherwise, keep that group in Glw.
(c) Exclude candidate protrusion faces based on heights

and assign step-wall faces: for all groups of faces in
Glw , if the faces on a group belong to step-wall faces,
then all faces in that group should be lower than the
reference faces fr . On the contrary, if some of the faces
are higher than the reference faces fr , then all faces in
that group are considered as protrusion faces. Consider
that the maximum height of all centroids of the faces
in fr along the z direction is hr. Also, the maximum
height hg for all centroids of the faces in a group Glw is
evaluated. The faces in Glw are determined as follows:

(d) If hg < hr , then all faces in that group are step-wall
faces.

(e) Otherwise, all faces in that group are not.

Figure 9c shows the results of Procedures (2) and (3) for
two examples, respectively.

Fig. 9 Immediate results for inner face types recognition, a recogni-
tion of wall faces, b recognition of bottom faces, c Recognition of
2nd layer wall faces, and d recognition of protrusion faces

◂

510 Engineering with Computers (2024) 40:493–525

1 3

4.3.4 Recognition of protrusion faces

Inner faces can be divided into transition, wall, bottom
and protrusion faces. Once transition, wall and bottom
faces are recognized, the remaining faces are grouped in
accordance with the adjacency relationship. Most of the
groups can be regarded as protrusion faces, but there are
still minor groups that must be regarded as either wall or
bottom faces. Fillets should be assigned as one face type
too. When a fillet is connected to a protrusion face, it is
regarded as part of that protrusion group. The procedures
are described below:

(1) Assign face groups: All remaining inner faces whose
face type hasn’t been determined are grouped in accord-
ance with the adjacency relationship. The faces on each
group are adjacent to each other. If the faces of a blind
hole are adjacent to those of a group, then the faces of
this hole are included to the group also. It is noted that
some small fillets which haven’t been assigned yet will
be recognized as individual groups. It results in protru-
sion groups Gpi.

(2) Check face intersection on each group: For a face fi
in a group Gpi , generate a line from the centroid of fi
towards −nf . Find a face fc that intersects the line and
is closest to fi . It is noted that all faces on the same
group must be checked. Based on the type of fc , some
protrusion groups are determined, as follows:

(a) If any intersection face fc is an inner face or hole face,
then regard the faces in Gpi as protrusion faces.

(b) Otherwise, proceed to next step.
(c) Determine a flag k for each group: The faces on each of

the remaining groups may belong to protrusion, wall or
bottom faces depending on the status of a flag k on each
group. Check the number of faces on each group first.

(d) If the number of faces is less than 2, then set k as true.
(e) Otherwise, proceed to check the intersection by gener-

ating a line along the surface normal for each fi.
(f) If all fi intersect with any face, then set k as true.
(g) If there is one fi on the group that does not intersect

any face, then check the neighboring face of fi . If a
bottom face is the neighboring face, then set k as true.
Otherwise, set k as false.

(h) Check the remaining face groups: Based on the status
of k, the face type for each group are determined.

(i) If k is false, then assign all faces on the group as protru-
sion faces.

(j) Otherwise, check neighboring faces of the group.
(k) If the group has a wall face as its neighboring face, then

sort some of the faces on the group to be either wall or

bottom. Vertical faces will be assigned as wall faces,
while the remaining faces will be bottom faces.

(l) If there is no wall face as its face neighboring, then
convert faces on the group as bottom faces.

Figure 9d shows the results of Procedures (1) and (4)
for two examples, respectively.

4.4 Outer faces recognition

Figure 10 shows the flowchart of the face types evaluation
for outer faces, where the inputs are the holes, fillets, inner
faces and parting line, and the outputs are the composition of
faces on the outer faces. The faces are initially divided into
outer wall and bottom faces. The model is then divided into
concave and non-concave bottom types. For the non-concave
bottom type, some of the transition, outer bottom and outer
wall faces are modified in accordance with the adjacency
relationship. The flange faces are then recognized. Outer
wall and bottom faces are finally determined. The model is
then divided into concave and non-concave wall types for
evaluating protrusion faces. For the concave bottom type,
outer wall and bottom faces are modified first. It follows the
recognition of flange faces. The remaining procedure is the
same as that of non-concave bottom type. A detailed descrip-
tion of the procedures is shown below.

4.4.1 Initially separate outer wall and bottom faces

Outer wall and bottom faces are initially evaluated by check-
ing the intersection with the boundary box and inner faces.
The procedures are as follows:

(1) Set the outer faces that are adjacent to the parting line
as outer wall faces: most of the faces that are adjacent
to the parting line are vertical or nearly vertical, and
hence can be considered as outer wall faces.

(2) Separate the outer faces into two regions by �f : consider
an outer face fi with an angle �f between nf and + Z.
It is assigned to one of the following two regions:
(1) Region I: 0◦ ≤ �f ≤ 90◦ + � , and (2) Region II:
90◦ + 𝜀 < 𝜃f ≤ 180◦ , where � is a draft angle, 3° in this
study.

When a face fi is in Region I, the outer wall and bottom
faces are determined by projecting a line from the target face
and check the number of intersections. Different face type
has different number of intersections. Compute a parameter
C5, where C5 denotes the status of the intersection. Project a
line from the centroid of fi towards ± X, ± Y and ± Z, respec-
tively, and check if it intersects any face on the model. If an
intersection occurs, C5 is increased by 1 (The values of C5:

511Engineering with Computers (2024) 40:493–525

1 3

0 ~ 5). Rules of determining whether fi is an outer wall or
bottom face is as follow:

(1) if C5 = 5 , then regard fi as an outer bottom face.
(2) Otherwise, regard fi as an outer wall face.

The left plot in Fig. 11a shows two faces that are
assigned as outer bottom (C5 = 4) and outer wall (C5 = 3),
respectively.

When a face fi is in Region II, the outer wall and bottom
faces are determined in a way like that of Region I. Compute
a parameter C4 , where C4 denotes the status of the intersec-
tion. Project a line from the centroid of fi along ± X and ± Y,

respectively, and check if it intersects any inner face on the
model. If an intersection occurs, C4 is increased by 1 (The
values of C4 : 0 ~ 4). Rules of determining whether fi is an
outer wall or bottom face is as follow:

(1) If C4 = 0 , then regard fi as an outer bottom face.
(2) If C4 = 1 , then
(3) If 𝜃f > 170◦ , then regard fi as an outer bottom face.
(4) Otherwise, regard fi as an outer wall face.
(5) If C4 = 2 to 4, then
(6) If C5 = 5 , then regard fi as an outer bottom face.
(7) Otherwise, regard fi as an outer wall face.

Fig. 10 Flowchart of the face
types evaluation for outer faces

N

B-rep model, hole data, fillet data,

inner faces, parting line

Evaluate outer wall

and flange faces from

outer bottom faces

Initially separate outer wall and bottom faces

Check concave or non-concave bottom type

Concave bottom
type?

Y

Update transition faces

Modify outer bottom and wall faces

Recognize flange faces

Determine final outer wall and bottom faces

Check concave or non-concave wall type

Concave wall

type?

Determine protrusion faces

for concave wall type

Y

N

Determine protrusion faces for

nonconcave wall type

Outer wall, bottom, flange

and protrusion faces

End

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9-1

Step 9-2

512 Engineering with Computers (2024) 40:493–525

1 3

5
5

5
3

4
1 & 170

4
0

4
4 &

5
5

Outer wall in group

Outer bottom in group Concave wall faces
in group

(a) Step 1

(b) Step 2

Result in Step 1

Gf Parting line

(c) Step 3

:
/

1/4

(d) Step 4

Candidate flange

Flange Flange

(e) Step 5

Before After

Before AfterretfAerofeB

Before After

Gwi meets 3 cond.

Fig. 11 Immediate results for outer face types recognition, a Step 1, b Step 2, c Step 3, d Step 4, and e Step 5

513Engineering with Computers (2024) 40:493–525

1 3

The right plot in Fig. 11a shows three faces that are
assigned as outer bottom ((C4 = 0) and (C4 = 4 amd
C5 = 5)) and outer wall (C4 = 1 and 𝜃f < 170◦), respectively.

4.4.2 Check concave or non‑concave bottom type

A model is divided into concave or non-concave bottom
type. For the concave bottom type, the bottom face is sunken
compared with its neighboring wall faces; while for the non-
concave bottom type, the bottom face is convexly connected
to its neighboring wall faces. Therefore, non-concave bottom
faces are normally facing down and can form an individual
loop, while concave bottom faces can further be divided into
two types of faces: concave bottom and concave wall faces.
The procedures for detecting concave and non-concave bot-
tom types are as follows:

(1) Group outer wall faces: Start from an outer wall face
that is adjacent to the parting line, find all outer wall
faces that are adjacent to each other. Put these faces
into a group Gow.

(2) Group outer bottom faces and determine non-concave
bottom type: An outer bottom face fi is put into a
group Gcb if it meets the following two conditions: (1)
𝜃f > 170◦ , and (2) fi is connected to any face in Gow .
The remaining outer bottom faces are put into a group
Gncb . Check the boundary loops of the faces in Gcb.

(3) If there is only a loop, then the model is regarded as a
non-concave bottom type. Stop the process.

(4) On the contrary, if there is more than one loop, then the
faces in Gcb are called concave bottom faces. Proceed
Step 3.

(5) Determine concave bottom type: Find an outer bottom
face fi that is in Gncb and is adjacent to a face in Gcb .
Generate a line Li at the centroid of fi and along −nf . If
Li intersects an outer wall face in Gow , then put fi into a
group Gcw . Start from fi , keep checking the other faces
in Gncb by neighboring until Li does not intersect any
face in Gow . Put all faces with Li intersecting a face in
Gow into Gcw . Once all faces in Gncb are tested, check
the faces in Gcw . If Gcw is not empty, then the model is
regarded as a concave bottom type, and the faces in Gcw
are called concave wall faces. Otherwise, the model is
regarded as a non-concave bottom type.

Figure 11b shows the results of outer wall grouping, outer
bottom grouping and concave wall evaluation for a model of
concave bottom type.

4.4.3 For nonconcave bottom type

4.4.3.1 (A) Step 3: Update transition faces In general, a
parting line separates the faces into inner and outer faces.

The first layer of inner faces that are adjacent to the part
line are transition faces, whereas the first layer of outer faces
that are adjacent to the pat line are outer wall faces. The first
layer of outer wall faces is typically vertical or nearly verti-
cal. However, it may occur that the first layer of outer wall
faces is close to horizontal. In such a situation, the parting
line should be moved outward to cover this layer of faces as
transition faces. The procedures to detect such a situation
and update transition faces are as follows:

(1) Get faces that are adjacent to the parting line: The outer
faces that are adjacent to the parting line are put into a
group Gf .

(2) Get outer wall faces that are adjacent to the faces in
Gf: Let fi be an outer face that is adjacent to a face in
Gf . If fi meets the following two conditions, then it is
regarded as a transition face:

(3) fi and all faces in Gf are outer wall faces.
(4) fi is adjacent to all faces in Gf .

When fi is changed into a transition face, all faces in
Gf are also changed into transition faces. The left plot in
Fig. 11c indicates the parting line and Gf for an example,
while the right plots indicate the situation of outer wall
faces before and after the modification.

4.4.3.2 (B) Step 4: Modify outer bottom and wall
faces Some of the outer bottom and wall faces may
wrongly be recognized. They are detected and modified
based on geometric and face adjacency criteria. The pro-
cedures are as follows:

 (1) Group outer bottom faces GBi : All outer bottom faces
that are adjacent to each other are regarded as a group,
yielding GBi . The group with the maximum area is
denoted ���

(

GBi

)

.
 (2) Check and modify outer bottom faces: For a face fi

in ���
(

GBi

)

 , compute two parameters Rbf∕nf and
Lw∕all , where the former denotes the ratio between the
number of outer bottom faces neighboring to fi and
the number of faces neighboring to fi , and the latter
denotes the ratio between the length of edges neigh-
boring to outer wall faces and the length of all edges
neighboring to fi . The face type for fi is determined
in accordance with the following conditions:

 (3) If 𝜃f > 170°, fi is kept no change.
 (4) If �f ≤ 170°,
 (5) If Rbf∕nf > 0.5 , fi is kept no change.
 (6) If Rbf∕nf < 0.5 , fi is modified as an outer wall face.
 (7) If Rbf∕nf = 0.5 , then if Lw∕all < 0.5 , then fi is kept no

change. Otherwise, fi is modified as an outer wall
face.

514 Engineering with Computers (2024) 40:493–525

1 3

 (8) Group outer wall faces GWi : All outer wall faces that
are adjacent to each other are regarded as a group,
yielding GWi.

 (9) Check and modify outer wall faces: For an outer wall
face fi that is adjacent to the faces in ���

(

GBi

)

 ,
check if it meets the following conditions:

 (10) fi is not a fillet.
 (11) fi is not adjacent to the parting line.
 (12) A line at the centroid of fi and along nf intersects the

boundary plane on –Z.

If yes, then regard fi as an outer bottom face and put it
into ���

(

GBi

)

 . On the contrary, if no, then stop the search
along fi.

(E) Regroup outer bottom and wall faces: Outer bottom and
wall faces that are adjacent to each other are respec-
tively grouped again.

The left example in Fig. 11d shows a situation in Proce-
dure (2), where outer bottom is modified as outer wall; while
the right example in Fig. 11d shows a situation in Procedure
(4), where outer wall is modified as outer bottom.

4.4.3.3 (C) Step 5: Recognize flange faces Search flange
faces both from transition faces and outer bottom faces.
Most flange faces are parallel to transition faces, and hence
can be evaluated by checking the intersection of lines pro-
jected from transition faces. However, not all flange faces
can be obtained. Therefore, lines projected from outer bot-
tom faces are also checked, which can yield the residual
flange faces. The procedures are as follows:

(1) Evaluate candidate flange and flange faces using transi-
tion faces: Generate one or two lines along − Z direc-
tion on each transition face and find faces that intersect
with the lines. If a transition face has at most 4 edges,
apply one line for the intersection check. Otherwise
(i.e. more than 4 edges), apply two lines for the inter-
section. For each transition face fti , a line Li from a
face point (Pi) along –Z is generated. If there are two
face points, then two lines will be generated. The faces
that intersect with any of the lines are obtained. The
one with the shortest distance is regarded as fc . Define
two parameters dz and dt , where the former denotes 0.5
length of the boundary box along Z direction, and the
latter denotes the shortest distance between fti and fc
(along − Z direction). If fc meets the following criteria,
then it is regarded as a flange face:

(a) fc is an outer face
(b) dt < dz

(c) �f ≥ 170◦ (i.e. fc is almost facing down).

In addition, if fc meets the following criteria, then it is
regarded as a candidate flange face:

(a) fc is an outer face
(b) dt < dz
(c) 100◦ < 𝜃f < 170◦ (i.e. fc is an inclined face).

Because fc is an inclined face, further rules must be
applied later to determine if fc is a flange face.

(B) Evaluate candidate flange and flange faces using outer
bottom faces: For some cases, applying transition faces
only cannot obtain all flange faces. Outer bottom faces
are mostly facing down, and flange faces also fit this
feature. Therefore, a line from an outer bottom face
is also tested to check if it can intersect any transition
face. If an intersection occurs, the outer bottom face is
also regarded as a flange face. For each outer bottom
face fbi , a line Li from a face point (Pi) along + Z is
generated. If there are two face points, then two lines
will be generated. The faces that intersect with any of
the lines are obtained. The one with the shortest dis-
tance is regarded as fc . Define two parameters dz and
db , where the former denotes 0.5 length of the boundary
box along Z direction, and the latter denotes the short-
est distance between fbi and fc (along + Z). If fc meets
the following criteria, then it is regarded as a flange
face:

(C) fc is an outer bottom face (not in Max(GBi))
(D) db < dz
(E) �f ≥ 170◦ (i.e. fc is almost facing down).

In addition, if fc meets the following criteria, then it is
regarded as a candidate flange face:

(a) fc is an outer bottom face (not in Max(GBi))
(b) db < dz
(c) 100◦ < 𝜃f < 170◦ (i.e. fc is an inclined face).
(d) Group candidate flange faces: In Steps 1 and 2, some

faces are already regarded as flange faces. However,
some other faces are regarded as candidate flange faces.
All candidate flange faces that are adjacent to each
other are regarded as a group, yielding GFi.

(e) Modify candidate flange faces: If any candidate flange
face in a group GFi is adjacent to a flange face, then
all faces in that group are changed into flange faces.
Otherwise, all faces in that group are returned to the
original face type (i.e. either outer wall or bottom face
type)

515Engineering with Computers (2024) 40:493–525

1 3

(f) Regroup outer wall, bottom and flange faces: All types
of faces are regrouped again. It yields GWi, GBi and
GFi.

The example in Fig. 11e shows two faces that are ini-
tially detected as flange and candidate flange faces, respec-
tively. The candidate flange face is finally modified as a
flange face as it is adjacent to a flange face.

4.4.3.4 (D) Step 6: Determine final outer wall and bottom
faces All outer wall and bottom faces are divided into
separate groups now. However, some of the face types are
still wrong and must be corrected. The procedures are as
follows:

(1) Compute Max(GBi), where the number of outer bottom
faces is the largest: Some of the outer wall faces will
separate outer bottom faces into different groups. If all
faces in a group GWi do not connect with any flange
or transition face, then all faces in GWi are changed
to outer bottom faces. All outer bottom faces are re-
grouped again. The one with the largest number of
faces is called Max(GBi).

(2) Check outer bottom faces: There are several groups of
outer bottom faces GBi. Keep the faces in Max(GBi)
as outer bottom faces, whereas the faces on the other
groups are changed to outer wall faces.

(3) Check outer wall faces: All outer wall faces in a group
GWi are checked.

(4) If any of the faces in GWi is adjacent to both flange and
transition faces, then all faces in GWi are regarded as
flange faces.

(5) If all faces in GWi are not adjacent to any flange face,
transition face or bottom face, then all faces in GWi are
regarded as outer bottom faces.

Figure 12a shows some erroneous bottom and wall faces
detected in this step and the correction of them.

4.4.3.5 (E) Step 7: Check concave or non‑concave wall
type Till now, outer protrusion faces are regarded as either
outer wall, bottom or flange faces. The model is further clas-
sified as two types for the recognition of protrusion faces.
For the concave wall type, substantial protrusions exist on
outer faces and divide wall faces into many regions. It looks
like many concave regions exist on outer faces. On the con-
trary, for the non-concave wall type, protrusions may exist
on outer faces, but are distributed individually. Most of the
outer wall faces are not divided.

During the recognition of inner and outer faces, there is a
stage that generates several groups of potential inner faces.
Only one group of faces is finally regarded as inner faces,
while the other groups are located on outer faces, which are

called candidate inner faces Gcif here. Consider that fi is a
face in Gcif and ncif is the intersection count for faces in Gcif .
Project a line from the centroid of each fi along its nf . If it
intersects with any face in Gcif then ncif is increased by 1. All
groups of candidate inner faces Gcif are checked one by one.
If any group meets the following criteria, then the model is
regarded as a “concave wall type”:

(1) There exists a face fc that is nearly horizontal and facing
up, i.e. ncif ≤ � , where ε is the draft angle.

(2) At least three faces intersect with other faces on the
same group, i.e. ncif > 2.

If all groups Gcif do not meet the above criteria, then the
model is regarded as a “non-concave wall type”. The left
plot in Fig. 12b shows an example of non-concave wall type.
The right plot in Fig. 12b shows an example with 33 groups
of candidate inner faces in Gcif . This example is regarded as
a concave wall type as some of the groups meet the above-
mentioned conditions.

4.4.4 For concave bottom type

The difference between concave bottom and non-concave
bottom is that there are two layers of outer wall for the for-
mer, while there is only one layer of outer wall for the lat-
ter. The concave wall separates outer bottom faces into two
regions, where the first region has been detected in Step
2, while the second region has not. Figure 12c shows an
example of concave bottom type, where the left and middle
plots indicate the results of Steps 1 and 2, respectively. As
the middle plot indicates, the 1st region outer bottom is just a
simple face, while the 2nd region outer bottom is a complex
structure. The faces on the 2nd region must be analyzed
again to separate outer wall, outer bottom and flange faces.
The algorithm is similar to those used in Steps 1, 4 and 5,
and is not addressed again. The right plot in Fig. 12c shows
the results of outer wall, outer bottom and flanged faces
obtained for the 2nd region of outer bottom faces.

4.4.5 Determine protrusion faces

4.4.5.1 Step 9–1: For concave wall type Extract protrusion
faces from outer faces, including bottom, wall and flange
faces. The procedures are as follows:

 (1) Extract protrusion faces from outer faces: For each
outer face fi , a line Li along −nf is generated, where nf
denotes the surface normal of fi . The faces that inter-
sect with the line are obtained and the one that has
the shortest distance is regarded as fc . If fc is an outer
face, then regarded fi as a protrusion face. Otherwise,
fi is kept no change.

516 Engineering with Computers (2024) 40:493–525

1 3

One group meets both

conditions

(d) Step 9-1

Fillet
Li intersects an

outer face

Before After(a) Step 6

33

(b) Step 7

Concave wall typeNon-concave wall type

(c) Step 8

Outer wall faces

Flange face

Outer bottom obtained

in Step 1 Flange and wall faces recognized

Concave bottom type

Concave wall obtained

in Step 2

1st region

2nd region

(e) Step 9-2

Generate protrusions by convex edges

retfAerofeB

Fig. 12 Immediate results for outer faces recognition, a Step 6, b Step 7, c Step 8, d Step 9–1, and e Step 9–2

517Engineering with Computers (2024) 40:493–525

1 3

 (2) Check and modify outer wall faces: In previous step,
some outer wall faces that are on the top of protrusion
faces have not been recognized correctly. The convex-
ity of the neighboring edges can be used to check the
correctness of these faces. Consider an outer wall face
fw . Define two parameters cv as the number of convex
edges between fw and its adjacent protrusion faces,
and cc as the number of concave edges between fw and
its adjacent protrusion faces. If fw is on the top of a
protrusion, cv should be larger than cc . Otherwise, cv
should be smaller than cc . That is

 (3) If cv ≥ cc , then change fw as an outer protrusion face.
 (4) Otherwise, fw is kept no change.
 (5) Check and modify fillets: When a fillet exists between

a protrusion and other types of faces, it is regarded
as a protrusion face. Consider a fillet face ff . Define
four parameters cp, cw, lp and lw as follows: (1) cp is
the number of protrusions faces that are adjacent to
ff , (2) cw is the number of outer wall faces that are
adjacent to ff , (3) lp is the total length of the edges
of protrusions that are adjacent to ff , and (4) lw is the
total length of the edges of outer wall faces that are
adjacent to ff . The fillet face ff is determined accord-
ing to the following rules:

 (6) If cp < cw , then ff is kept no change.
 (7) If cp > cw , then change ff as an outer protrusion face.
 (8) If cp = cw
 (9) If lp < lw , then ff is kept no change.
 (10) If lp ≥ lw , then change ff as an outer protrusion face
 (11) Check and modify protrusion faces: All outer protru-

sion faces that are adjacent to each other are regarded
as a group, yielding GPi. Each group needs to be
checked as follows: Define a parameter ci as follows.
Consider a protrusion face fi in GPi. A line Li along
−nf is generated. If this line intersects with any pro-
trusion face in GPi, then the flag ci is true, otherwise
ci is false.

 (12) If ci is true, then all faces in GPi are kept no change.
 (13) If ci is false, then change all faces in GPi as outer bot-

tom faces

The three plots highlighted in Fig. 12d show a situation
in Procedures (1), (2) and (3), respectively.

Step 9–1 is a stage for detecting protrusion features in
concave wall type where the protrusion features cover part
of the outer wall. Concave wall types are classified based
on the presence of a protrusion on the outer wall, which
serves as a reinforcement for the model. In step 9–1(2), two
parameters, cv and cc, are used to analyze the faces on the
top of the protrusion feature. Generally, a single-layer pro-
trusion formed in concave wall type is cv ≥ cc, as shown in
Fig. 13a. However, for multi-layer protrusions, there could
exist concave faces with cv < cc, such as the case in Fig. 13b.
We have not found any concave protrusion on the concave
wall type for the test cases we used. However, Step 9–1(2)
must be modified if multi-layer protrusions exist on concave
wall type.

4.4.5.2 Step 9–2: For non‑concave wall type Extract pro-
trusion faces from outer faces, including bottom, wall and
flange faces.

(1) Extract candidate protrusion faces from outer faces: For
each outer face or outer hole face fi , a line Li along −nf
is generated, where nf denotes the surface normal of
fi . The faces that intersect with Li are obtained. The
one with the shortest distance is regarded as fc . Put
fi in different stacks in accordance with the following
conditions:

(a) If fi is an outer face and is not adjacent to any transition
face

(b) If fc is an outer face, then put fi into the stack G1.
(c) If fc and fi are equal, then put fi into the stack G1.
(d) If fi is a hole face and fc is an outer face, then put fi into

the stack G2.
(c) Otherwise, skip fi.

The faces in each stack will further be checked next.

(B) Extract protrusion faces from candidate protrusion
faces: For each face fi in G1, generate a line Li along
−nf . If Li intersects with any face in Gi , then regard all

Fig. 13 Two types of protrusion
on outer wall face, a single-
layer protrusion, and b multi-
layer protrusion

518 Engineering with Computers (2024) 40:493–525

1 3

faces in G1 as protrusion faces. Perform the same check
for all faces in G2 too.

(C) Generate protrusion faces by convex edges: Start from
a face fi that is adjacent to a protrusion face, but not a
protrusion face. Search its neighboring faces that are
convexly connected. Continue this process until no
more face is found. All these faces are regarded as outer
protrusion faces.

The example in Fig. 12e shows a situation in Procedure
(3), where erroneous outer wall faces are modified as pro-
trusion faces.

5 Results and discussion

A program, written in C + + and based on the Rhino CAD
platform and the openNURBS functions, was implemented
to test the feasibility of the proposed inner and outer faces
recognition algorithm for thin-shell parts. The input data
is a B-rep model of the part. The program will recognize
fillets and holes first, and then recognize inner and outer
faces, transition faces, inner face types, and outer face
types in sequence. As the dimension of the parts may be
different, three parameters lmax , rmax and ε in the proposed
algorithm are provided for adjusting. The parameter lmax
denotes the maximum perimeter of the hole or pocket that
will be recognized. The parameter rmax denotes the maxi-
mum radius of the fillets. And, the parameter ε denotes
the draft angle. The default values for lmax , �max and �are
100 mm, 6.5 mm and 3°, respectively, in this study.

The results of the proposed method for 25 thin-shell
parts are divided into four groups, as shown in Figs. 14,
15, 16, 17 respectively, for discussion. In each part, four
intermediate results are displayed, including separation
of inner and outer faces, transition faces, wall, bottom
and protrusion faces on the inside, and wall, bottom and
protrusion faces on the outside. Figure 14 shows seven
of the parts that are complex on the internal structure,
while simple on the outside. Most of the ribs on the inside
are connected together, and may even connect to other
tubes or bosses (e.g. Cases 1–5). By isolating internal wall
and bottom faces first, the remaining protrusion faces can
easily be divided into groups. A protrusion classification
algorithm can later be implemented to recognize different
types of protrusion, e.g. ribs, tubes, columns, and symmet-
ric extrusions [22]. In Cases 6 and 7, substantial through
holes exist on bottom faces. If some of the through holes
are not recognized, it may affect the recognition of bot-
tom faces. In particular, in Case 6, several holes are lying
across multiple faces. It needs the introduction of virtual
loop (edges on a loop are G1 continuous) [39] in order to

recognize the loops that cross multiple faces, and hence
the corresponding holes.

Figure 15 shows six of the parts that are freeform on
the shape or complex on translation and wall faces. In
Cases 8 and 9, substantial freeform surfaces exist on the
wall or bottom faces. When freeform surfaces exist on the
wall, they are usually not perpendicular. This inclination
cannot be compensated by the draft angle ε. Therefore,
in Sect. 4.3.1, an allowable inclined angle �t , 10° in this
study, is employed to compensate for the inclination of
freeform surfaces. When the inclined angle of a freeform
surface is larger than �t , it may become difficult to distin-
guish from the wall and bottom faces, which is considered
as another type of thin-shell part and will be discussed
elsewhere. In Cases 10 and 11, the transition faces belong
to “simple translation” although some of the faces are
inclined along the X or Y direction. The faces on each side
along the thickness direction are composed of three faces,
a main face and two fillets that connect to the main face.
It is noted that if the proposed algorithm is not employed,
part of the fillets may easily be regarded as wall faces,
instead of transition faces, In Case 12, substantial through
holes exist on the bottom faces. In particular, several holes
are lying on more than three faces, including a fillet. When
these holes are not recognized correctly, some of the bot-
tom faces would not be detected correctly. In addition,
the fillet on the outer wall is difficult to deal with as it has
a large inclined angle. This fillet is correctly recognized
as an outer wall face here. Case 13 should be regarded as
one of the most difficult cases as it has a very complex
wall structure and many through holes of irregular types.
It needs the recognition of multi-virtual loops (edges on
a loop are G0 continuous) [39] in order to recognize all
irregular holes correctly. The results also show that all
inner and outer face types are recognized correctly.

Figure 16 shows seven of the parts that are complex
on the external structure. Cases 14 to 16 show the exam-
ples of nonconcave wall type, where protrusion faces are
sparsely distributed. In Cases 14 and 15, protrusion faces
exist on the inside too. In Case 16, flange faces exist on the
reverse side of transition faces. All three examples indicate
that all face types on the inside and outside are recognized
correctly. Cases 17 and 18 show the examples of concave
wall type. All faces on the outer faces are carefully checked,
especially protrusion faces colored in green and fillets that
exist between different types of faces. The result shows that
all protrusion faces and fillets on the outside are correctly
recognized. Cases 19 and 20 show two examples of con-
cave bottom type. The outer bottom faces on both cases are
sunken compared with their neighboring outer wall faces. In
Case 19, some protrusion faces are further extracted from
outer bottom faces; while in Case 20, some flange faces are

519Engineering with Computers (2024) 40:493–525

1 3

further extracted from outer bottom faces. All these results
are achieved automatically by the program.

Figure 17 shows five of the parts with different types
of transition faces, other than “simple transition”. The

transition faces in Cases 21 to 25 are “depressed ridge”,
“simple translation with holes”, “extruded ridge”, “step”,
and “open step”, respectively. All these examples show
that the proposed algorithm can detect different types of

1

2

3

4

5

6

7

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 14 Results of inner and outer faces recognition- complex structure outside

520 Engineering with Computers (2024) 40:493–525

1 3

translation faces accurately. Correct classification and recog-
nition of transition faces is very important as the remaining
inner and outer faces recognition all counts on the accuracy
of translation faces. In addition, the inner wall faces are
divided into multiple layers in Cases 22 to 24, where the wall
and step-wall faces are colored in blue and light blue, respec-
tively. Cases 22 and 23 show the typical situation on which
the wall and bottom faces are separated by step-wall faces.

Fillets existing between wall and step-wall faces can also
be detected correctly. However, Case 24 shows a particular
situation that part of the wall faces are connected to the bot-
tom face directly. All these results show that different kinds
of multi-layer wall faces can be recognized satisfactorily.

Table 1 summarizes the results of inner and outer faces
recognition for 25 cases, where the number of total faces,
through holes, inner faces and outer faces are listed to check

8

9

10

11

12

13

Separation of inner & outer Transition faces Inner faces Outer faces

Fillet

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 15 Results of inner and outer faces recognition- freeform surfaces and complex shape on translation and wall faces

521Engineering with Computers (2024) 40:493–525

1 3

the accuracy of the proposed algorithm. For inner faces, only
total number of faces are listed as the success rates for all
cases are 100%. Outer faces listed include wall, flange, bot-
tom and protrusion faces. The first and second values on
each field represent total number of faces and number of

faces not recognized correctly, respectively. Table 1 indi-
cates that the summation of through holes, inner and outer
faces is equal to total faces for all cases. This result is very
important as it indicates that all faces on a model have been
recognized as one of the face types. It would become easy to

14

16

17

19

20

15

18

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 16 Results of inner and outer faces recognition- complex structure outside

522 Engineering with Computers (2024) 40:493–525

1 3

look for the matching faces between the inside and outside
of the thin shell on a model. Of 25 cases tested, the success
rate for four of them, namely Cases 10, 14, 16 and 22, are not
100%, which is because the composition of the face types on
outer faces is more complex and variable. Figure 18 depicts
four examples of outer face types that are not recognized
correctly. In Fig. 18a, fi is a long and narrow surface lying
across outer wall and bottom faces. The surface normal is

changed across the entire surface. However, only one sam-
pling point is taken for the projecting-line intersection check.
It might be necessary to take more sampling points on a
surface and modify the criteria to determine the status of
the surface correctly. In Fig. 18b, fi is a fillet between outer
wall and bottom faces. As the fillet is also a surface, the
problem is like that of Fig. 18a. In Fig. 18c, the blending
faces between protrusion and flange faces are divided into

21

22

25

23

24

Separation of inner & outer Transition faces Inner faces Outer faces

Inner Transition/flange Ridge

ProtrusionBottomWallHole Step Wall

Fig. 17 Results of inner and outer faces recognition- different types of transition faces

523Engineering with Computers (2024) 40:493–525

1 3

multiple pieces. The face composition is too complex to be
recognized correctly. Similar situation occurs in Fig. 18d,
where the face composition on the highlighted region is too
complex, and hence the faces are not recognized correctly.

The CPU time required for the entire process for all
cases is also listed in Table 1. The CPU time required is not
fully proportional to total number of faces on the model.
Sect. 4.4.1, initially separate outer wall and bottom faces,
requires the maximum percentage of CPU time as this step
has a complex procedure to check each outer face one by
one. Therefore, Cases 16, 17 and 22 require more CPU time
as the outer/total face of them are 613/718, 403/845 and
718/873, respectively. The simulations were performed on a
personal computer with an Intel Core i7-9700 CPU 3.2 GHz
and 16 GB of RAM.

6 Conclusion

An enhanced approach for inner and outer faces recogni-
tion of thin-shell parts was proposed in this study. A thin-
shell part can be divided into a thin shell and protrusions
that locate both on the inside and outside of the thin shell.
The face types on the thin shell are recognized first. The
complexity of the parts that can be dealt with includes:
(1) five types of transition faces between inner and outer
faces are detected. The composition of faces on the top of
different thin-shell parts can be analyzed accurately; (2)
protrusion faces that distribute continuously or sparsely
both on the inside and outside of a part can be recognized;
(3) fillets are also assigned as appropriate face types in
accordance with the adjacency relationship. No simpli-
fication of fillets is necessary in this algorithm; and (4)
holes that locate across multiple faces are allowed. It can
enhance the applicability of the proposed algorithm for
cases that involve holes across multiple faces. With the
proposed method, all complex protrusion structures on the
inside and outside of a part can be divided into groups of

Table 1 Compositions of inner and outer faces and CPU time for 25 thin-shell parts

Case Total faces Through faces Inner faces
(Total/Fail)

Outer faces (Total/Fail) Success rate (%) CPU time (s)

Wall Flange Bottom Protrusion

1 134 0 127/0 6/0 0/0 1/0 0/0 100 0.16
2 620 86 387/0 8/0 0/0 13/0 126/0 100 2.708
3 330 40 285/0 4/0 0/0 1/0 0/0 100 0.602
4 107 20 78/0 8/0 0/0 1/0 0/0 100 0.243
5 95 0 92/0 2/0 0/0 1/0 0/0 100 0.151
6 362 151 159/0 28/0 0/0 24/0 0/0 100 1.975
7 384 95 189/0 8/0 0/0 63/0 29/0 100 1.099
8 292 17 226/0 48/0 0/0 1/0 0/0 100 1.585
9 411 89 279/0 18/0 0/0 13/0 0/0 100 2.074
10 681 4 232/0 237/0 45/7 14/0 149/5 98.2 4.064
11 245 0 45/0 8/0 0/0 10/0 182/0 100 1.397
12 415 384 17/0 5/0 0/0 6/0 0/0 100 1
13 287 69 165/0 34/4 0/0 19/0 0/5 100 1.005
14 367 0 82/0 18/0 0/0 13/8 254/0 97.8 2.44
15 193 26 133/0 10/0 0/0 10/0 14/0 100 0.688
16 718 80 19/0 508/0 18/0 1/0 92/16 97.8 14.395
17 845 432 10/0 76/0 24/0 1/0 302/0 100 5.843
18 383 16 18/0 32/0 32/0 9/0 276/0 100 3.421
19 185 4 67/0 47/0 0/0 1/0 54/0 100 0.768
20 259 0 121/0 16/0 112/0 1/0 0/0 100 2.568
21 269 14 108/0 13/0 0/0 134/0 0/0 100 2.088
22 873 96 59/0 44/0 35/24 9/0 630/0 97.3 12.514
23 50 0 41/0 4/0 0/0 5/0 0/0 100 0.212
24 140 12 71/0 24/0 0/0 9/0 24/0 100 0.458
25 366 19 282/0 53/0 0/0 12/0 0/0 100 1.84

524 Engineering with Computers (2024) 40:493–525

1 3

protrusion face. A protrusion classification algorithm can
later be used to recognize all types of protrusion [22].

The results of the face type recognition for the thin
shell can further be used in volume decomposition. The
primary task in volume decomposition is to decompose a
model into a series of sweepable sub-volumes so that each
of them can be meshed with better type of solid meshes.
In [23], an approach by evaluating the matching pairs of
inner and outer contours was proposed to decompose the
thin shell of a thin-shell part into sweepable sub-volumes.
It employs the face types on the inner and outer faces to
help the evaluation of inner and outer matching contours.
As mentioned previously, the composition of faces on a
thin-shell part could vary significantly. The face type rec-
ognition method proposed in this study can analyze the
composition of faces for complex thin-shell parts. It is now
possible to expand the capability of the method in [23] to
deal with more complex thin-shell parts.

Declarations

Conflict of interest The authors declare no relevant financial or con-
flict of interest to disclose.

References

 1. Lu Y, Gadh R, Tautges TJ (2001) Feature based hex meshing
methodology: feature recognition and volume decomposition.
Comput Aided Des 33:221–232

 2. Wu H, Gao S (2014) Automatic swept volume decomposition
based on sweep directions extraction for hexahedral meshing. 23rd
International Meshing Roundtable. Procedia Eng 82:136–148

 3. Huang J, Tong Y, Weu H, Bao H (2011) Boundary aligned smooth
3D cross-frame field. ACM Trans Graph 30(6):1–8

 4. Nieser M, Reitebuch U, Polthier K (2011) Cubecover- parameteri-
zation of 3D volumes. Computer Graph Forum 30(5):1397–1406

 5. Li Y, Liu Y, Xu W, Wang W, Guo B (2012) All-hex meshing using
singularity-restricted field. ACM Trans Graph 31(6):1–11

 6. Howalski N, Ledoux F, Frey P (2016) Smoothness driven frame
field generation for hexahedral meshing. Comput Aided Des
72:65–77

 7. Hu K, Zhang YJ (2016) Centroidal Voronoi tessellation based
polycube construction for adaptive all-hexahedral mesh genera-
tion. Comput Methods Appl Mech Eng 305:405–421

 8. Hu K, Zhang YJ, Liao T (2017) Surface segmentation for poly-
cube construction based on generalized centroidal Voronoi tessel-
lation. Comput Methods Appl Mech Eng 316:280–296

 9. Yu Y, Wei X, Li A, Liu JG, He J, Zhang YJ (2020) HexGen
and Hex2Spline: polycube-based hexahedral mesh generation
and spline modeling for isogeometric analysis applications in
LS-DYNA. In: Springer INdAM Serie: Proceedings of INdAM
Workshop "Geometric Challenges in Isogeometric Analysis”.

 10. Robinson TT, Armstrong CG, Fairey R (2011) Automated
mixed dimensional modelling from 2D and 3D CAD models.
Finite Elem Anal Des 47(2):151–165

Fig. 18 Four examples of incor-
rect outer face types recogni-
tion, a example 1, b example 2,
c example 3, and d example 4

(c) (d)

fi, wrong face type

(a) (b)

fi, wrong face type

fi, wrong

face type

fi, wrong face type

Wall FlangeProtrusionBottom Hole

525Engineering with Computers (2024) 40:493–525

1 3

 11. Makem JE, Armstrong CG, Robinson TT (2014) Automatic
decomposition and efficient semi-structured meshing of com-
plex solids. Eng Comput 30:689–701

 12. Nolan DC, Tierney CM, Armstrong CG, Robinson TT, Makem
JE (2013) Automatic dimensional reduction and meshing of
stiffened thin-wall structures. Eng Comput 30:689–701

 13. Sun L, Tierney CM, Armstrong CG, Robinson TT (2016) Auto-
matic decomposition of complex thin walled CAD models for
hexahedral dominant meshing. Proc Eng 163:225–237

 14. Sun L, Tierney CM, Armstrong CG, Robinson TT (2018) An
enhanced approach to automatic decomposition of thin-walled
components for hexahedral-dominant meshing. Eng Comput
34:431–447

 15. Yu Y, Liu JG, Zhang YJ (2021) HexDom: polycube-based hexa-
hedral dominant mesh generation. In: The Edited Volume of
Mesh Generation and Adaptation: Cutting-Edge Techniques for
the 60th Birthday of Oubay Hassan, SEMA-SIMAI Springer
Series.

 16. Woo Y (2003) Fast cell-based decomposition and applications to
solid modeling. Comput Aided Des 35:969–977

 17. Sundararajan V, Wright PK (2004) Volumetric feature recognition
for machining components with freeform surfaces. Comput Aided
Des 36:11–25

 18. Lim T, Medellin H, Torres-Sanchez C, Corney JR, Ritchie JM,
Davies JBC (2005) Edge-based identification of DP-features on
free-form solids. IEEE T Pattern Anal Mach Intell 27(6):851–60

 19. Sunil VB, Pande SS (2008) Automatic recognition of fea-
tures from freeform surface CAD models. Comput Aided Des
40:502–517

 20. Wang J, Wang Z, Zhu W, Ji Y (2010) Recognition of freeform
surface machining features. J Comput Inf Sci Eng 10(4):041006

 21. Lai JY, Wang MH, Song PP, Hsu CH, Tsai YC (2018) Automatic
recognition and decomposition of rib features in thin-shell parts
for mold flow analysis. Eng Comput 34:801–820

 22. Lai JY, Song PP, Hsiao AS, Tsai YC, Hsu CH (2021) Recogni-
tion and classification of protrusion features on thin-wall parts for
mold flow analysis. Eng Comput 37:833–854

 23. Lai JY, Wu JW, Song PP, Chou TY, Tsai YC, Hsu CH (2022)
Hybrid mesh generation for the thin shell of thin-shell plastic parts
for mold flow analysis. Eng Comput 38:4895–4917

 24. Joshi S, Chang TC (1988) Graph-based heuristics for recognition
of machined features from a 3D solid model. Comput Aided Des
20(2):58–66

 25. Corney J, Clark DER (1991) Method for finding holes and pockets
that connect multiple faces in 2 1/2D objects. Comput Aided Des
23(10):658–668

 26. Bruzzone E, Floriani LD (1991) Extracting adjacency relation-
ships from a modular boundary model. Comput Aided Des
23(5):344–355

 27. Waco DL, Kim YS (1994) Geometric reasoning for machin-
ing features using convex decomposition. Comput Aided Des
26(6):477–489

 28. Sakurai H, Dave P (1996) Volume decomposition and fea-
ture recognition, Part II: curved objects. Comput Aided Des
28(6–7):519–537

 29. Woo Y, Kim SH (2014) Protrusion recognition from solid
model using orthogonal bounding factor. J Mech Sci Technol
28(5):1759–1764

 30. Liu SS, Gadh R (1998) Basic logical bulk shapes (BLOBs) for
finite element hexahedral mesh generation to support virtual pro-
totyping. J Manu Sci Eng 120(4):728–735

 31. Gadh R, Prinz FB (1995) A computationally efficient approach
to feature abstraction in design-manufacturing integration. J Eng
Ind 117:16–27

 32. Sheen DP, Son TG, Myung DK, Lee SH, Lee K, Yeo TJ (2010)
Transformation of a thin-walled solid model into a surface model
via solid deflation. Comput Aided Des 42:720–730

 33. Zhu H, Shao Y, Liu Y, Zhao J (2016) Automatic hierarchical mid-
surface abstraction of thin-walled model based on rib decomposi-
tion. Adv Eng Softw 97:60–71

 34. White DR, Saigal S, Owen SJ (2004) CCSweep: automatic decom-
position of multi-sweep volumes. Eng Comput 20:222–236

 35. Cai S, Tautges TJ (2015) One-to-one sweeping based on har-
monic S-T mappings of facet meshes and their cages. Eng Comput
31:439–452

 36. Wu H, Gao S (2014) Automatic swept volume decomposition
based on sweep directions extraction for hexahedral meshing. 23rd
International Meshing Roundtable. Procedia Eng 82:136–148

 37. Luo XJ, Shephard MS, Yin LZ, O’Bara RM, Nastasi R, Beall
MW (2010) Construction of near optimal meshes for 3D curved
domains with thin sections and singularities for p-version method.
Eng Comput 26:215–229

 38. Liu L, Zhang Y, Liu Y, Wang W (2015) Feature-preserving
T-mesh construction using skeleton-based polycubes. Comput
Aided Des 58:162–172

 39. Lai JY, Wang MH, You ZW, Chiu YK, Hsu CH, Tsai YC, Huang
CY (2016) Recognition of virtual loops on 3D CAD models based
on the B-rep model. Eng Comput 32:592–606

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	An enhanced approach for inner and outer faces recognition of complex thin-shell parts
	Abstract
	1 Introduction
	2 Literature review
	3 Basic concept and method overview
	4 Proposed face type recognition method
	4.1 Separation of inner and outer faces
	4.1.1 Step 1: Divide faces into three types
	4.1.2 Step 2: Modify candidate inner and wall faces
	4.1.3 Step 3: Compute candidate transition edges
	4.1.4 Step 4: Separate inner and outer faces, and compute transition faces
	4.1.5 Step 5: Modify inner and outer faces based on loops of transition edges

	4.2 Transition faces recognition
	4.2.1 Open step type
	4.2.2 Extruded ridge type
	4.2.3 Depressed ridge type
	4.2.4 Simple transition

	4.3 Inner face recognition
	4.3.1 Recognition of wall faces
	4.3.2 Recognition of bottom faces
	4.3.3 Recognition of step-wall faces
	4.3.4 Recognition of protrusion faces

	4.4 Outer faces recognition
	4.4.1 Initially separate outer wall and bottom faces
	4.4.2 Check concave or non-concave bottom type
	4.4.3 For nonconcave bottom type
	4.4.3.1 (A) Step 3: Update transition faces
	4.4.3.2 (B) Step 4: Modify outer bottom and wall faces
	4.4.3.3 (C) Step 5: Recognize flange faces
	4.4.3.4 (D) Step 6: Determine final outer wall and bottom faces
	4.4.3.5 (E) Step 7: Check concave or non-concave wall type

	4.4.4 For concave bottom type
	4.4.5 Determine protrusion faces
	4.4.5.1 Step 9–1: For concave wall type
	4.4.5.2 Step 9–2: For non-concave wall type

	5 Results and discussion
	6 Conclusion
	References

