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Abstract
For some time-dependent structures, their failure states may be fuzzy rather than clear, leading to the so-called time-dependent 
profust reliability analysis. However, the studies on time-dependent profust reliability analysis are very limited at this stage. 
Therefore, this paper presents a novel and efficient method for estimating time-dependent profust failure probability. Firstly, 
a mixed efficient global optimization (MEGO) algorithm is developed to approximate the extreme values at all collocation 
points of sparse grid numerical integral (SGNI). This method treats both collocation points and time variables as input 
variables of the Kriging model so that their interaction effects are considered. Then, extreme value moments are efficiently 
estimated by MEGO-based SGNI (MEGO-SGNI). Finally, time-dependent profust failure probabilities can be obtained 
by a one-dimensional numerical integral on the first four moments-based failure probability, which does not require any 
additional functional evaluations. Four numerical examples involving different types of membership functions, implicit limit 
state functions and non-Gaussian random processes are investigated to testify the effectiveness of the proposed method.

Keywords Fuzzy state · Time-dependent profust reliability analysis · Extreme value moments · MEGO · Sparse grid 
numerical integral

1 Introduction

The reliability analysis is to evaluate the probability that 
a product performs its intended performance under the 
given conditions. In the past decades, quite a lot of reli-
ability analysis methods have been well developed such as 
the approximate methods, simulation methods and surrogate 
model-based methods [1, 2]. Most of the existing reliability 
analysis methods are based on the binary state assumption, 
where the boundary between the failure and safe domains 
is clearly defined. However, in some cases, this assumption 
may violate the reality. For example, different damage states 
are usually considered for seismic fragility analysis, such 
as slight damage, moderate damage, extensive damage and 

complete damage. And the failure threshold for each dam-
age state is subjectively set [3]. For another example, the 
failure process of plastic materials often has four stages, 
i.e., elasticity, plasticity, necking, and fracture [4], which 
means that there is no clear distinction between success and 
failure, and the boundary between them is rather blurred. 
Under this context, the profust reliability theory was well 
established [5–7].

The profust reliability theory replaces the original binary 
state assumption by the fuzzy state assumption, i.e., there is 
a fuzzy failure domain between the failure and safe domains. 
The fuzzy state can be described by the membership func-
tion of the limit state function (LSF) to the fuzzy failure 
domain. However, the introduction of the membership func-
tion makes the profust reliability analysis (PRA) more com-
plicated than the traditional reliability analysis. Some PRA 
methods [8, 9] based on the simple linear regression and 
numerical integral have been proposed, however they are not 
applicable to complicated problems. Feng et al. [10] trans-
formed profust failure probability into an integral of classi-
cal failure probability. Then the profust failure probability 
was calculated by Gauss-Hermite quadrature in conjunction 
with crude Monte-Carlo simulation (MCS) or other smart 
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simulation methods. This method is essentially a double-
loop strategy, which was further improved by Ling et al. [11] 
by introducing the adaptive Kriging-based Monte Carlo sim-
ulation (AK-MCS) [12]. Zhang et al. [13] transformed this 
double-loop strategy into a single-loop version and proposed 
a more concise AK-MCS method. On basis of their works, 
Yang et al. [14] developed a novel active learning method 
based on the Kriging model to minimize the number of LSF 
evaluations in PRA.

However, most existing PRA methods are only applicable 
to time-independent problems. In fact, the performance 
of a structure will also vary with time when considering 
deterioration of structural resistance and material 
performance and the time-dependent environmental actions. 
Up to now, many effective time-dependent reliability 
analysis (TRA) methods have been developed under binary 
state assumption. The mainstream methods include the 
outcrossing rate-based methods [15–17], the extreme value 
methods [18–20], equivalent Gaussian process methods 
[21–23], and surrogate model-based methods [24–27]. 
Recently, Hu et al. [28] defined the time-dependent profust 
reliability analysis (TPRA) under fuzzy state based on the 
basic principle of PRA. Based on this new definition, it is 
imperative to develop an effective method for TPRA.

Therefore, the aim of this paper is to develop a novel 
TPRA method with fuzzy state. Firstly, a mixed efficient 
global optimization (MEGO) algorithm is developed to 
capture extreme values at all collocation points of sparse grid 
numerical integration (SGNI), where both collocation point 
and time variable are treated as input variables of Kriging 
model. Then, extreme value moments can be efficiently 
estimated by MEGO-based SGNI (MEGO-SGNI). Finally, 
the time-dependent profust failure probability is obtained by 
one-dimensional integral on the first four moments-based 
time-dependent failure probability. The innovations of this 
paper are concluded as follows:

1. Up to the authors’ knowledge, there is no work about 
estimating time-dependent profust failure probability 
using extreme value moments.

2. MEGO-SGNI algorithm is developed to estimate 
extreme value moments, which greatly saves the 
computational costs.

3. Time-dependent profust failure probability is 
reformulated as one-dimensional integral of the first 
four moments-based time-dependent failure probability, 
which permits estimating time-dependent profust failure 
probability by reusing the extreme value moment 
information.

Four numerical examples covering different types of 
membership functions, implicit LSFs and non-Gaussian 
random processes, are investigated, and the results indicate 

that the proposed method can equip engineers an effective tool 
to deal with time-dependent profust reliability problems with 
fuzzy state.

2  Time‑dependent profust reliability 
analysis

For time-dependent problems, there are two kinds of 
probability inputs, i.e., random variable and random process, 
the latter of which is usually represented by standard 
normal random variables and time parameter based on the 
expansion optimal linear estimation (EOLE) method [29], the 
Karhunen–Loève (K–L) expansion [30, 31] or other strategies. 
Therefore, for the sake of simplicity, this paper unifies the input 
random variables and those random variables representing the 
input random process as input random vector X = [X1, X2, …, 
Xn]T. Let G(X, t) be the time-dependent LSF and its extreme 
value Ge(X) over the time interval of interests [0, T] can be 
expressed as follows [19, 20]:

In the traditional TRA, the state of the time-dependent 
structure is clearly classified as the safety one or the failure 
one. Let S = {G(X, t) > 0} denote the safe domain of time-
dependent structure, F = {G(X, t) < 0} denote the failure 
domain of time-dependent structure, and B = {G(X, t) = 0} 
denote the boundary between safety domain S and failure 
domain F. Then, the time-dependent failure probability Pf(0, 
T) under binary state is defined by:

where fX() is the joint probability density function (JPDF) 
of X; and I(·) is an indicator function of an event with value 
1 if the event is true and 0 otherwise.

However, for some time-dependent structures, the bound-
ary B between safety domain S and failure domain F may be 
time-dependent and fuzzy [28]. In this paper, the fuzzy domain 
F̃ is assumed to be time-independent, whose degree of belong-
ing to failure or safety is measured by a membership func-
tion uF̃[G(�,t)] . Three types of commonly-used membership 
functions, including linear membership function uL

F̃
[G(�,t)] , 

normal membership function uN
F̃
[G(�,t)] and Cauchy member-

ship function uC
F̃
[G(�,t)] are defined in Eqs.(3)–(5) and their 

specific diagrams are depicted in Fig. 1.

(1)Ge(�) = min
t∈[0,T]

G(�, t)

(2)Pf (0, T) = ∫ I[Ge(�) < 0]f
�
(�)d�

(3)uL
F̃
[G(�,t)] =

⎧⎪⎨⎪⎩

1, G(�,t) ≤ a1
a2−G(�,t)

a2−a1
,a1 ≤ G(�,t) < a2

0,G(�,t) ≥ a2
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where a1 and a2, b1 and b2, and c1 and c2 are respectively 
the position and shape parameters of the linear, normal and 
Cauchy membership functions derived from the statistical 
data by the expert.

Based on the membership function uF̃[G(�,t)] , Hu et al. 
[28] derived time-dependent profust failure probability as 
follows:

By introducing an auxiliary variable λ ∈ [0, 1], it can be 
proved that [9, 11]

Substituting Eq. (7) into Eq. (6) yields:

Since uF̃[Ge(�)] is a monotonically decreasing function 
with respect to Ge(x), it can be easily obtained that

(4)uN
F̃
[G(�,t)] =

⎧
⎪⎨⎪⎩

1, G(�,t) ≤ b1

exp

�
−
�

G(�,t)−b1

b2

�2
�
,G(�,t) ≥ b1

(5)uC
F̃
[G(�,t)] =

{
1, G(�,t) ≤ c1

c2

c2+10[G(�,t)−c1]
2
,G(�,t) ≥ c1

(6)P̃f (0, T) = ∫ uF̃[Ge(�)]f�(�)d�

(7)
uF̃[Ge(�)] = ∫

uF̃[Ge(�)]

0
1d� + ∫

1

uF̃[Ge(�)]
0d�

= ∫

1

0
I{� − uF̃[Ge(�)]}d�

(8)
P̃f (0, T) = ∫

1

0 ∫ I{� − uF̃[Ge(�)]}f�(�)d�d�

= ∫

1

0
P{� < uF̃[Ge(�)]}d�

If λ is treated as a standard uniform random variable, 
Eq. (9) can be rewritten as

where fΛ(�) is the PDF of λ.
It can be seen from Eq. (10) that the time-dependent profust 

failure probability is transformed into a traditional time-
dependent failure probability under binary state. According to 
Eqs. (6) and (10), there are two kinds of MCS methods 
available for estimating the time-dependent profust failure 
probability. The main procedures of the first kind of MCS 
method are shown as follows: Firstly, NMCS samples of X are 
generated according to fX(x). Then, evaluate extreme value at 
each sample by the time-discrete method, i.e., 
Ge(�) = min

j=1,2,…,NT

G(�, tj) , where NT is the number of discrete 

time nodes. Finally, the time-dependent profust failure 
probability is approximated by:

The first two steps of the second kind of MCS method are 
similar to those of the first kind, excluding that NMCS sample 
points of standard uniform variable λ are also required to 
generate. In the end, the time-dependent profust failure 
probabilities at all time nodes are given by:

For either of these two kinds of MCS methods, its total 
number of LSF calls is Ncalls = NMCS × NT, which is computa-
tionally inefficient. Therefore, a more efficient method based 
on the extreme value moment information of LSF will be 
proposed in the next section.

(9)P̃f (0, T) = ∫
1

0

P[Ge(�) <u
−1

F̃
(𝜆)]d𝜆

(10)P̃f (0, T) = ∫ I[Ge(�) <u
−1

F̃
(𝜆)]f

�
(�)fΛ(𝜆)d𝜆d�

(11)P̃f (0, T) ≈
1

NMCS

NMCS∑
i=1

uF̃[Ge(�i)]

(12)P̃f (0, T) ≈
1

NMCS

NMCS∑
i=1

I[Ge(�i) <u
−1

F̃
(𝜆i)]

(a) Linear               (b) Normal              (c) Cauchy

Fig. 1  Three types of membership functions
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3  Proposed approach for TPRA

3.1  Estimating extreme value moments using 
MEGO‑SGNI

Routinely, the kth raw moment of extreme values can be 
defined as follows:

However, the multidimensional integral in Eq. (13) is 
intractably evaluated by direct numerical integration due 
to its complicated and multidimensional integral function. 
In this study, the sparse grid numerical integration (SGNI) 
[32, 33] is adopted herein to calculate it because of its good 
tradeoff between efficiency and accuracy. Based on the 
Smolyak algorithm [34], the sparse grid quadrature formulas 
for estimating vkGe

 can be derived as follows:

where Ge(x
i1
j1
,… , x

in
jn
) is the extreme value at the collocation 

point xi1
j1
,… , x

in
jn
 and given by:

and pii
ji
=

1√
�
�
ii
ji
 and xii

ji
=
√
2�

ji
ji
 are the weights and abscis-

sas, in which � ii
ji
 and �ii

ji
 are the weights and abscissas in the 

Gauss-Hermite quadrature formula; ji = 1, …, mii
 ; 

i = (i1,… , in) ∈ Nn
+
 ; q denotes the accuracy level; and the 

sparse gird H(q, n) is defined by:

Let the number of all collocation points of SGNI be 
NSGNI, which depends on the accuracy level q and dimen-
sion n. Then, a total of NSGNI extreme values need to be 
evaluated at all collocation points. Recently, Zhao et al. 
[20] proposed an adaptive independent Kriging modelling 
method to approximate the extreme value responses at all 
collocation points of SGNI. In this method, time points are 
sampled independently from the collocation points, thus it 
does not consider the interaction effects of the collocation 
points and time during the Kriging modelling. Inspired by 
Hu and Du [25], a MEGO algorithm is proposed herein 
to evaluate these extreme values with high computational 
efficiency. Its main procedures are elaborated as follows:

(13)vkGe
= ∫ Ge(�)f�(�)d�

(14)

vkGe
=

∑

i∈H(q,n)
(−1)q+n−|i|

(

n − 1
q + n − |i|

)

×
mi1
∑

j1=1
⋯

min
∑

jn=1
[Ge(x

i1
j1
,… , xinjn )]

kpi1j1 ⋯ pinjn

(15)Ge(x
i1
j1
,… , x

in
jn
) = min

t∈[0,T]
G(x

i1
j1
,… , x

in
jn
, t)

(16)H(q, n) =

{
i ∈ Nn

+
, i ≥ 1 ∶ q + 1 ≤

n∑
i=1

ii ≤ q + n

}

Step 1: Generate a NSGNI-size initial time training 
set �s = [t1, t2,… , tNSGNI

]T  by Latin hypercube sampling 
(LHS) method [35]. The NSGNI-size collocation 
point set is regarded as the initial sample training set 
�s = [�1, �2,… , �NSGNI

]T  . Then, the following initial 
combined training set [xs, ts] can be obtained:

Step 2: Evaluating LSF at the initial combined 
t ra in ing  se t  [x s ,  t s]  y ie lds  a  response  se t 
�s = [G(�1, t1),G(�2, t2),… ,G(�NSGNI

, tNSGNI
)]T.

Step 3:  Regard Gs as the initial solution of 
�e = [Ge(�1),Ge(�2),… ,Ge(�NSGNI

)]T.
Step 4: Let i = 1.
Step 5: Construct the mixed Kriging model Ĝ(�, t) 

based on [xs, ts] and Gs, where Ĝ(�, t) is called the mixed 
Kriging model because it is the function of X and t not 
just t.

Step 6: Based on the expected improvement (EI) 
function, identify the best training time point:

where the EI function EI (∙) is given by [36]:

Step 7: Determine whether the following condition are 
fulfilled:

where εEI is the error coefficient and usually taken as 1% 
or 0.1%.

If the condition is met, terminate the training process, 
and output the current solution of Ge(xi). Otherwise, add [xi, 
t*] and G(xi, t*) into the current training set [xs, ts] and Gs, 
respectively, and update the current solution of Ge(xi) by:

Then, go back to Step 5.
Step 8: Determine whether i = NSGNI. If so, output the 

current solution of Ge. Otherwise, let i = i + 1 and go back 
to Step 5.

(17)

[�s, �s] =

⎡⎢⎢⎢⎣

�1 t1
�2 t2
⋮ ⋮

�NSGNI
tNSGNI

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋱ ⋮

xNSGNI1
xNSGNI2

⋯ xNSGNIn

t1
t2
⋮

tNSGNI

⎤⎥⎥⎥⎦

(18)t∗ = argmax
t∈[0,T]

[EI(t)]

(19)
EI(t) = [Ge(�i) − �Ĝ(�i, t)]Φ

(Ge(�i) − �Ĝ(�i, t)
�Ĝ(�i, t)

)

+ �Ĝ(�i, t)�
(Ge(�i) − �Ĝ(�i, t)

�Ĝ(�i, t)

)

(20)EI(t∗) ≤ |Ge(�i)|�EI

(21)G
e
(�

i
) =

{
G(�

i
, t∗),

G
e
(�

i
),

if G(�
i
, t∗) < G

e
(�

i
)

otherwise
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After obtaining these extreme values, their first four raw 
moments, i.e., v1Ge

 , v2Ge
 , v3Ge

 and v4Ge
 , can be evaluated based 

on Eq.  (14) and further converted to its first four central 
moments by the following Eq. (22):

For the optimization problem in Eq.  (18), differential 
evolution algorithm [37] is used to find the global optimal 
solution. In MEGO-SGNI, the total number of LSF calls 

Ncalls = NSGNI +
NSGNI∑
i=1

Ni , where Ni is the number of LSF calls 

required in Step 4 to Step 7 for each collocation point.

3.2  Computation of time‑dependent profust failure 
probability

For the given u−1
F̃
(𝜆) , the first four moment-based time-

dependent reliability index can be determined by:

where 𝛽2M(𝜆) =
𝜇Ge

−u−1
F̃
(𝜆)

𝜎Ge

 is the second order reliability 

index; and S–1[·] is the inverse Hermite polynomial model, 
whose detailed information is provided in Appendix 1.

Accordingly, the first four moment-based time-dependent 
failure probability is given:

(22)

⎧
⎪⎪⎨⎪⎪⎩

�Ge
= v1Ge

�Ge
=
�

v2Ge
− v2

1Ge

�3Ge
= [v3Ge

− 3v2Ge
v1Ge

+ 2v3
1Ge

]∕�3
Ge

�4Ge
= [v4Ge

− 4v3Ge
v1Ge

+ 6v2Ge
v2
1Ge

− 3v4
1Ge

]∕�4
Ge

(23)�4M(�) = −S−1[ − �2M(�)]

(24)Pf (0, T) = Φ[−�4M(�)]

Based on Eqs. (9) and (24), time-dependent profust fail-
ure probability can be reformulated as:

It can be found that once the first four moments of 
extreme values are available, time-dependent profust failure 
probability can be easily estimated by one-dimensional 
numerical integral of Eq.  (25) without any extra LSF 
evaluations. Thus, the effectiveness of the proposed method 
is independent of the fuzzy state described by membership 
function, only relying on using MEGO-SGNI to estimate 
extreme value moments.

3.3  Detailed procedures of the proposed method

The concrete steps of estimating time-dependent profust 
failure probability by the proposed method are summarized 
as follows. The corresponding flowchart is shown in Fig. 2.

Step 1: Choose the suitable accuracy level q. In general, 
the choice of q depends on the nonlinearity of the LSF 
considered. For slightly nonlinear problems, one may 
set q = 1. For strong nonlinear problems, it is usual to 
set 2 ≤ q ≤ 4 in practical applications to keep the balance 
between the numerical accuracy and computational 
efficiency [33].

Step 2: Generate NSGNI collocation points using the 
Smolyak algorithm.

Step 3: Evaluate extreme values at collocation points 
using MEGO.

Step 4: Estimate the first four moments of extreme values 
using SGNI.

(25)P̃f (0, T) = ∫
1

0

Pf (0, T)d𝜆 = ∫
1

0

Φ[−𝛽4M(𝜆)]d𝜆

Generate the NSGNI-size  collocation point set xs using Smolyak algorithm

Generate the NSGNI-size time point set ts using LHS

Estimate the first four moments of extreme values using SGNI

Calculate the first four moments-based failure probability 

using the inverse Hermite polynomial model

Integrate the first four moments-based failure probability over [0, 1]

Output time-dependent profust failure probability 

Initialize fX(x),                  and q[ ( )]eF Gµ x%

Evaluate extreme values at xs using MEGO

Evaluate LSF at [xs, ts] to obtain Gs

Let i = 1

Regard Gs as the initial solution of Ge

Identify the training time point t* using Eq. (18)

Construct the Kriging model based on [xs, ts] and Gs

EI(t*)<|Ge(xi)|εEI

Update xs=[xs;xi], ts=[ts;t*] and Gs=[Gs;G(xi,t*)]

Update Ge(xi) using Eq. (21)

i=NSGNI

MEGO

i=i+1

YES

YES

No

No

MEGO-SGNI

Fig. 2  Flowchart of the proposed method for TPRA
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Step 5: Compute the first four moments-based time-
dependent failure probability using the inverse Hermite 
polynomial model.

Step 6: Integrating the first four moments-based time-
dependent failure probability over [0, 1] yields time-
dependent profust failure probability.

4  Numerical examples and investigations

In this section, four examples are provided to demonstrate 
the efficiency and accuracy of the proposed method for 
TPRA. Each of the examples is solved using the following 
five methods:

• The first kind of MCS method: Eq. (11)
• The second kind of MCS method: Eq. (12)
• TD-EVMM: time-discrete-based extreme value moment 

method
• MEGO-DL-AK: MEGO-based double-loop adaptive 

Kriging method (See Appendix 2)
• Proposed: the method proposed in this paper

Their accuracy is measured by the relative error with 
respect to the solution from the first kind of MCS method.

4.1  Example 1: a numerical example

This numerical example considers the following time-
dependent LSF:

where X1 and X2 are two independent normal variables 
with mean values �X1

= �X2
= 3.5 and standard deviations 

�X1
= �X2

= 0.3.
In this example, the time interval of interest [0, T] is 

considered as [0, 1]. Five methods, including two kinds of 
MCS methods, TD-EVMM, MEGO-DL-AK and the 
proposed method, are used to solve time-dependent profust 
failure probability. In two kinds of MCS methods and 
TD-EVMM, [0, T] is discretized into 21 time nodes with 
time step Δt = 0.05. A total of  105 samples are used in these 
two kinds of MCS methods, thus both of their number of 
LSF calls is 21 ×  105. In MEGO-DL-AK, the inner loop aims 
to estimate the extreme values using MEGO, and the outer 
loop solves time-dependent profust failure probability based 
on AK-MCS [12]. Thus, the total cost entailed in MEGO-
DL-AK is from the functional evaluations required to 
evaluate extreme values at all training samples of X with 
MEGO. In TD-EVMM and the proposed method, the 
accuracy level q of SGNI is taken as 2 and a total of 17 
collocation points are generated. In the former, LSF is 

(26)G(�, t) = X2
1
X2 − 5X1t + (X2 + 1)t2 − 20

evaluated at all discrete time nodes to estimate extreme value 
of each collocation point, thus the required LSF calls are 
21 × 17 times. In the latter, extreme values at all collocation 
points are evaluated by the proposed MEGO, then the com-

putational overhead is equal to 17 +
17∑
i=1

Ni . For comparison, 

the extreme values at collocation points evaluated by two 
methods are listed in Table 1. From Table 1, it can be seen 
that the results of the proposed method are totally the same 
as those of time-discrete method, but the former is much 
highly efficient than the latter.

Firstly, fuzzy state is described by linear membership 
function (as shown in Eq. (3)), where three different sets of 
parameters a1 and a2 are considered. The results from five 
methods are shown in Table 2. For three different cases, 
the results of five methods are quite consistent. In terms of 
efficiency, the number of LSF calls required in the proposed 
method is the least among all methods.

Next, normal membership function (as shown in 
Eq. (4)) is employed to describe fuzzy state. Again, three 
different sets of parameters b1 and b2 are considered, under 
which the results of five methods are presented in Table 3. 
It can be seen from Table 3 that the results of the proposed 
method are still consistent with those of other four meth-
ods, while the computational efficiency of the proposed 
method is higher than others.

Finally, fuzzy state described by Cauchy membership 
function (as shown in Eq. (5)) with three different sets of 
parameters c1 and c2 is also investigated. Table 4 gives the 

Table 1  Extreme values at all collocation points in Example 1

X1 X2 Time-discrete 
method

Proposed

2.6429 3.5000 − 4.2672 − 4.2672
2.9804 2.9804 − 4.4477 − 4.4477
2.9804 3.5000 0.6875 0.6875
2.9804 4.0196 5.8227 5.8227
3.0933 3.5000 2.5235 2.5235
3.5000 2.6429 − 1.4815 − 1.4815
3.5000 2.9804 2.9901 2.9901
3.5000 3.0933 4.4864 4.4864
3.5000 3.5000 9.8750 9.8750
3.5000 3.9067 15.2636 15.2636
3.5000 4.0196 16.7599 16.7599
3.5000 4.3571 21.2315 21.2315
3.9067 3.5000 18.3843 18.3843
4.0196 2.9804 12.0373 12.0373
4.0196 3.5000 20.9525 20.9525
4.0196 4.0196 29.8677 29.8677
4.3571 3.5000 29.1594 29.1594
Ncalls 357 33
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time-dependent profust failure probabilities obtained by 
five methods. From Table 4, we can find that compared to 
other four methods, the proposed method has still desir-
able accuracy level with high efficiency.

Through Tables  2, 3, 4, it is found that the results 
of TD-EVMM and the proposed method are highly 
consistent. This is because the accuracy of the proposed 
MEGO algorithm in capturing extreme values at all 
collocation points is comparable to that of the time-
discrete method, as shown in Table 1. In addition, in terms 
of Ncalls, the proposed method is more robust than MEGO-
DL-AK. These results reveal that the proposed method has 
a better performance than TD-EVMM and MEGO-DL-AK 
and no limitation for the type of membership function.

4.2  Example 2: a corrosion‑forced beam structure

The second example presents a corrosion-forced beam 
under external load as shown in Fig. 3 [28]. Due to the 
influence of corrosion on the beam structure, the width 
b(t) and height h(t) of its cross-section has the following 
linear decaying with respect to time variable t:

where k = 0.25 mm/year is the decaying rate.
The law of the external load subjected to the midpoint 

of the beam is sin(t/4)F, which varies with t. The failure 
event is considered as the bending moment M(t) at the 
midpoint of the beam exceeding its ultimate value Mu(t). 
Thus, the time-dependent LSF is defined as follows:

where ρst = 78.5kN/m3 is the density of the beam; and 
L = 9 m is the total length of the beam (Table 5).

In this example, b0, h0, σu and F are regarded as random 
input variables, whose statistical information is given in 
Table 10. The linear membership function with the param-
eters a1 = 0 and a2 = 1 is used to describe fuzzy state here. 
The results from five methods are exhibited in Table 6. 
In two kinds of MCS methods and TD-EVMM, the time 

(27)b(t) = b0 − 2kt, h(t) = h0 − 2kt

(28)
G(�, t) =

Mu(t) −M(t)
1000

=
[

b(t)h(t)2�u
4

−
(

sin(t∕4)FL
4

+
�stb0h0L2

8

)]

× 1
1000

Table 2  Time-dependent profust failure probability under uL
F̃
[G(�,t)] 

in Example 1

Parameters Methods P̃
f
(0,T) COV (%) Relative 

error 
(%)

Ncalls

a1 = 0, a2 = 1 1st kind of 
MCS

0.0740 1.12 – 21 ×  105

2nd kind of 
MCS

0.0732 1.13 1.08 21 ×  105

TD-EVMM 0.0743 – 0.41 357
MEGO-

DL-AK
0.0726 1.13 1.89 36

Proposed 0.0743 – 0.41 34
a1 = 0, a2 = 2 1st kind of 

MCS
0.0890 1.01 – 21 ×  105

2nd kind of 
MCS

0.0883 1.02 0.79 21 ×  105

TD-EVMM 0.0881 – 1.01 357
MEGO-

DL-AK
0.0870 1.02 2.25 34

Proposed 0.0878 – 1.35 33
a1 = 1, a2 = 2 1st kind of 

MCS
0.1022 0.94 – 21 ×  105

2nd kind of 
MCS

0.1018 0.94 0.39 21 ×  105

TD-EVMM 0.1020 – 0.20 357
MEGO-

DL-AK
0.1018 0.94 0.39 42

Proposed 0.1020 – 0.20 34

Table 3  Time-dependent profust failure probability under uN
F̃
[G(�,t)] 

in Example 1

Parameters Methods P̃
f
(0,T) COV (%) Relative 

error 
(%)

Ncalls

b1 = 0, 
b2 = 10

1st kind of 
MCS

0.4459 0.35 – 21 ×  105

2nd kind of 
MCS

0.4485 0.35 0.58 21 ×  105

TD-EVMM 0.4464 – 0.11 357
MEGO-

DL-AK
0.4431 0.35 0.63 34

Proposed 0.4464 – 0.11 34
b1 = 0, b2 = 1 1st kind of 

MCS
0.0850 1.04 – 21 ×  105

2nd kind of 
MCS

0.0835 1.05 1.76 21 ×  105

TD-EVMM 0.0847 – 0.35 357
MEGO-

DL-AK
0.0843 1.04 0.82 36

Proposed 0.0847 – 0.35 34
b1 = 0, 
b2 = 0.1

1st kind of 
MCS

0.0649 1.20 – 21 ×  105

2nd kind of 
MCS

0.0643 1.21 0.92 21 ×  105

TD-EVMM 0.0644 – 0.77 357
MEGO-

DL-AK
0.0654 1.20 0.77 36

Proposed 0.0644 – 0.77 34
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interval of interests [0, T] = [0, 10] years is divided into 
101 time nodes with time step Δt = 0.1 year. It can be seen 
from Table 6 that time-dependent profust failure probabili-
ties obtained by five methods are almost identical. How-
ever, the computational efficiency of the proposed method 
is greatly higher than other four methods. In the proposed 
method, once the extreme value moments are estimated 
by the proposed MEGO-SGNI, the profust failure prob-
abilities can be evaluated by one-dimensional integral on 
the first four moments-based failure probability without 
any extra functional evaluation.

4.3  Example 3: the lower extremity exoskeleton

The lower extremity exoskeleton [38] is a wearable robotic 
derive, which can provide walking assistance and reha-
bilitation training for people with lower-limb dysfunction. 
The simplified model of the lower extremity exoskeleton 
is shown in Fig. 4. The knee joint is taken as the object of 
this study and further magnified in Fig. 5, where k1, k2, k3 
and k4 are the lengths of the links and Lk(t) is the length 
of the hydraulic cylinder. The angle of the knee joint var-
ies as the human body moves. To ensure the safety of the 
human body and the effectiveness of rehabilitation train-
ing, the motions of the knee joint should follow the ideal 
movement θ(t), whose value is given as follows:

where aki, bki, cki, i = 1, …, 6, are coefficients given in 
Table 7.

Considering the manufacturing error and assembly error, 
the practical angle α(t) of the knee joint can be presented by:

(29)
�(t) =

6∑
i=1

aki sin(bkit + cki)

180
�

Table 4  Time-dependent profust failure probability under uC
F̃
[G(�,t)] 

in Example 1

Parameters Methods P̃
f
(0,T) COV (%) Relative 

error 
(%)

Ncalls

c1 = 0, 
c2 = 0.1

1st kind of 
MCS

0.0660 1.19 – 21 ×  105

2nd kind of 
MCS

0.0663 1.19 0.45 21 ×  105

TD-EVMM 0.0661 – 0.15 357
MEGO-

DL-AK
0.0667 1.18 1.06 38

Proposed 0.0660 – 0.00 33
c1 = 0, c2 = 1 1st kind of 

MCS
0.0756 1.11 – 21 ×  105

2nd kind of 
MCS

0.0762 1.10 0.79 21 ×  105

TD-EVMM 0.0752 – 0.53 357
MEGO-

DL-AK
0.0741 1.12 1.98 36

Proposed 0.0752 – 0.53 34
c1 = 0, 
c2 = 10

1st kind of 
MCS

0.1107 0.90 – 21 ×  105

2nd kind of 
MCS

0.1090 0.90 1.54 21 ×  105

TD-EVMM 0.1094 – 1.17 357
MEGO-

DL-AK
0.1111 0.89 0.36 36

Proposed 0.1094 – 1.17 34

Fig. 3  Corrosion-forced beam in Example 2

Table 5  Statistical information of input random variables in Example 
2

Variables Distribution type Mean value Standard deviation

b0 (m) Normal 0.2 0.01
h0 (m) Normal 0.04 0.001
σu (Pa) Normal 2.4 ×  108 1 ×  107

F (N) Normal 3500 100

Table 6  Time-dependent profust failure probability in Example 2

Methods P̃
f
(0,T) COV (%) Relative 

error (%)
Ncalls

1st kind of MCS 0.1656 0.71 – 101 ×  105

2nd kind of MCS 0.1681 0.70 1.51 101 ×  105

TD-EVMM 0.1663 – 0.42 4949
MEGO-DL-AK 0.1654 0.71 0.12 161
Proposed 0.1659 – 0.18 98



431Engineering with Computers (2024) 40:423–436 

1 3

The length of the hydraulic cylinder is given by:

The failure event of the knee joint is defined as the dif-
ference between its practical and ideal angles exceeding 

(30)

�(t) = � − arctan
k1

k2
− arctan

k3

k2
− arctan

k2
1
+ k2

2
+ k2

3
+ k2

4
− [Lk(t)]

2

2

√
(k2

1
+ k2

2
)(k2

3
+ k2

4
)

(31)Lk(t) =

���������1.3877 × 105 − 5.9722 × 104 cos

⎡⎢⎢⎢⎢⎣
� − 0.1246 − 0.9157 −

6∑
i=1

aki sin(bkit + cki)

180
�

⎤⎥⎥⎥⎥⎦

the threshold ε = 10π/180. Thus, the time-dependent LSF 
is

In this example, k1, k2, k3 and k4 are regarded as four 
normal random variables and their statical information is 
listed in Table 8. The fuzzy state is described by Cauchy 

membership function with the parameters c1 = 0 and 
c2 =  10−4. The time-dependent profust failure probabilities 
obtained by five methods are shown in Table  9. The 

(32)G(�, t) = � − |�(t) − �(t)|

Fig. 4  Simplified model of the LEEX in Example 3

Fig. 5  Knee joint of the LEEX in Example 3

Table 7  Coefficients aki, bki and 
cki in Example 3

i aki bki cki

1 33.35 0.0253 0.2035
2 19.05 0.1541 − 2.4590
3 23.40 0.0712 2.2550
4 12.81 0.1776 − 0.1569
5 34.08 0.2856 0.6679
6 34.34 0.2835 − 2.3840

Table 8  Statistical information of input random variables in Example 
3

Variables Distribution type Mean value Standard 
deviation

k1 (mm) Normal 45.30 0.05
k2 (mm) Normal 350.53 0.35
k3 (mm) Normal 65.17 0.05
k4 (mm) Normal 50.07 0.05

Table 9  Time-dependent profust failure probability in Example 3

Methods P̃
f
(0,T) COV (%) Relative 

error (%)
Ncalls

1st kind of MCS 0.1254 0.84 – 101 ×  105

2nd kind of MCS 0.1251 0.84 0.24 101 ×  105

TD-EVMM 0.1248 – 0.48 4949
MEGO-DL-AK 0.1258 0.83 0.32 218
Proposed 0.1256 – 0.16 106
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considered time interval is [0, 100] seconds, which is 
divided into 101 time nodes in two kinds of MCS methods 
and DT-EVMM. From Table 9, it can be seen that the 
results of five methods are very close to each other. In 
the proposed method, the number of collocation points 
of SGNI is 49, however the total number of LSF calls is 
only 2 times of it, which fully proves the computational 
efficiency of the proposed method for complicated 
engineering problems.

4.4  Example 4: a CRTS II track slab structure

The last example considers the bending failure mode of a 
CRTS II track slab structure (as shown in Fig. 6a) under train 
load and environmental actions [20, 23]. The corresponding 
time-dependent LSF is given as follows:

where MR0 is the initial flexural bearing capacity of track 
slab; k1 = 0.015 and k2 = 5 ×  10−5 are the linear decaying coef-
ficients; MS(t) is the bending moment due to external loads, 
which consists of two parts: one is the bending moment MV 

(33)G(�, t) = (1 − k1t + k2t
2)MR0 −MS(t)

(34)

MR0 = (fsAs − f ′s A
′
s + fpAp)[h0 − (fsAs − f ′s A

′
s + fpAp)∕2fcb]

+ f ′s A
′
s(h0 − a′s)

(35)MS(t) = MV +MW , MW = KtT

under train load P(t), which is calculated by using a finite 
element model as shown in Fig. 6b, and another is the bend-
ing moment MW under temperature action; As = A�

s
 = 201 

 mm2 are cross-sectional area of non-prestressed tendons in 
tension zone and compression zone, respectively; fs and f ′

s
 

are the design values of tensile and compressive strength of 
non-prestressed tendons, respectively; fc is the design value 
of axial compressive strength of concrete; Ap = 471  mm2 and 
fp are the cross-sectional area and design value of tensile 
strength of prestressed tendons, respectively; b = 650 mm 
is the width of section of single sleeper; h0 = 130 mm is 
the sectional effective height; a′

s
 = 60 mm is the distance 

between the resultant point of non-prestressed tendons in 
compression zone and the top surface of track slab; T is 
the temperature gradient; and Kt is the temperature bending 
moment coefficient.

In this example, P(t) is assumed as a lognormal random 
process and simulated through a non-Gaussian process simu-
lation technique [31]. The parameters fs, f ′s  , fp, fc, Kt and T 
are regarded as random variables. The statistical informa-
tion of these random variables and process is summarized in 
Table 10. The fuzzy state described by Normal membership 
function with the parameters b1 = 0 and b2 =  103 is consid-
ered here. The time-dependent profust failure probabilities 
estimated by two kinds of MCS methods, TD-EVMM, 
MEGO-DL-AK and the proposed method are shown in 
Table 11. In the first three methods, the time interval of 
interests [0, T] = [0, 60] years is divided into 61 nodes with 
equal interval length Δt = 0.6 year. As can be observed from 

Fig. 6  CRTS II track slab struc-
ture in Example 4

(a) Schematic graph                       (b) Finite element model

Fastener

Rail

CA Mortar

Concrete Base

Subgrade

Track slab

Table 10  Statistical information 
of input random variables and 
processes in Example 4

Variable/process Distribution type Mean value Standard deviation ACF

fs (Mpa) Normal 435 36.975 –
f ′
s
(Mpa) Normal 410 61.5 –

fp (Mpa) Normal 1420 255.6 –
fc (Mpa) Normal 41.5 4.067 –
P(t) (kN) Lognormal process 300 30 exp[− (0.03Δt)2]
Kt Normal 162.5 5.6875 –
T(°C/m) Weibull 45 4.5 –
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Table 11, the results of TD-EVMM, MEGO-DL-AK and 
the proposed method are pretty consistent with those of 
two kinds of MCS methods. More importantly, the number 
of LSF calls required in the proposed method is only 118, 
while 6161 and 297 LSF calls are required in TD-EVMM 
and MEGO-DL-AK, respectively. Thus, for this problem 
with implicit LSF involved in finite element analysis, the 
proposed method still exhibits high computational efficiency 
and satisfactory accuracy.

5  Concluding remarks

This paper develops a novel and efficient method to address 
time-dependent reliability problem with fuzzy state. In 
the proposed method, a MEGO algorithm is developed to 
evaluate extreme values at all collocation points of SGNI. 
Different from the previous methods, which treats colloca-
tion points and time variables independently, the proposed 
method regards both of them as input variables of Kriging 
model to ensure the highly efficient modelling. By intro-
ducing an auxiliary variable, time-dependent profust failure 
probability is reformulated as a one-dimensional integral of 
the first four moments-based time-dependent failure prob-
ability. Solving this integral requires no additional functional 
evaluation. Four examples are utilized to investigate the per-
formance of the proposed method and some conclusions can 
be drawn:

1. Compared to TD-EVMM and MEGO-DL-AK, the pro-
posed method requires less computational cost with 
comparable accuracy, thus its performance is more supe-
rior.

2. The effectiveness of the proposed method is insensitive 
to the fuzzy state described by different membership 
functions.

3. Without considering the fuzzy state assumption, this 
method can still be degraded to an effective method for 
traditional TRA.

It is well acknowledged that the probability distribution 
determined from the given first four central moments is not 

a unique one, and the Hermite polynomial model utilized in 
this study is applicable for only unimodal random variables. 
In addition, the higher order moment information facili-
tates a higher quality distribution model [39]. The future 
work will consider both the other distribution models and 
the higher moment information to deal with more compli-
cated problems involving bimodal or even multi-peaked 
distributions. Moreover, Kriging model may show the poor 
approximation efficiency for high-dimensional problems. 
The applications of other kinds of surrogate models (such 
as support vector machine) in the proposed method will also 
be investigated in the future.

Appendix 1: Inverse Hermite polynomial 
model

With the known first four central moments �Ge
 , �Ge

 , �3Ge
 , and 

�4Ge
 , the extreme value Ge(�) can be approximated by the 

third order Hermite polynomial of a standard normal random 
variable U [20, 23]:

where h3Ge
 and h4Ge

 are the Hermite coefficients; and kGe
 is 

the scalar coefficient. These coefficients can be obtained by 
solving the following coupled equations system:

The complete inverse Hermite polynomial model 
S−1(−�2M)=S

−1(−�Ge

/
�Ge

) is provided in Table 12.
In Table 12, the relevant parameters can be calculated by 

Eqs. (40)–(43).

(36)

Ge(�, t) − �Ge

�Ge

= S(U) = kGe
[U + h3Ge

(U2 − 1) + h4Ge
(U3 − 3U)]

(37)1 = k2
Ge
(1 + 2h2

3Ge
+ 6h2

4Ge
)

(38)
�3Ge

= k
3

Ge

(6h3Ge
+ 36h3Ge

h4Ge
+ 8h3

3Ge

+ 108h3Ge
h
2

4Ge

)

(39)

�4Ge
= k

4

Ge

(3 + 24h4Ge
+ 60h

2

3Ge

+ 252h
2

4Ge

+ 576h
2

3Ge

h4Ge

+ 1296h
3

4Ge

+ 60h
4

3Ge

+ 2232h
2

3Ge

h
2

4Ge

+ 3348h
4

4Ge

)

(40)a =
h3Ge

3h4Ge

, q = −a3 +
1

2h4Ge

(
a −

�2M

kGe

)

(41)

p = −
h2
3Ge

9h2
4Ge

+
1

3h4Ge

− 1, Δ =
√
p3 + q2, � = arccos

q

�p�3∕2

Table 11  Time-dependent profust failure probability in Example 4

Methods P̃
f
(0,T) COV (%) Relative 

error (%)
Ncalls

1st kind of MCS 0.1258 0.83 – 101 ×  105

2nd kind of MCS 0.1293 0.82 2.78 101 ×  105

TD-EVMM 0.1267 – 0.72 6161
MEGO-DL-AK 0.1266 0.83 0.64 297
Proposed 0.1267 – 0.72 118
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Appendix 2: MEGO‑based double‑loop 
adaptive Kriging method for TPRA

The MEGO-DL-AK method, originally proposed by Hu and 
Du [25] for the traditional TRA, is extended herein to TPRA. 
The detailed procedures are described as follows:

Step 1: Generate the N0-size initial sample set xs and ts:

and evaluate LSF at [xs, ts] to obtain Gs.
Step 2: Compute the initial extreme value training set �s

e
 

using MEGO.
Step 2.1: Let �s

t
= �s and regard Gs as the initial solution 

of �s
e
.

Step 2.2: Construct the mixed Kriging model Ĝ(�, t) 
based on [�s

t
, �s] and Gs.

Step 2.3: Find the training sample and time maximining 
the EI function:

(42)

x0 = −kGe
h3Ge

−
kGe

4h3Ge

, x1 = kGe
h4Ge

[2|p1|3∕2 + 2a3] − kGe
a

(43)x2 = kGe
h4Ge

[−2|p1|3∕2 + 2a3] − kGe
a

(44)[�s, �s] =

⎡⎢⎢⎢⎣

�1 t1
�2 t2
⋮ ⋮

�N0
tN0

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋱ ⋮

xN01
xN02

⋯ xN0n

t1
t2
⋮

tN0

⎤⎥⎥⎥⎦

(45)[�i∗ , t
∗] = argmax

i=1,2,…,N0

{max
t∈[0,T]

[EI(�i, t)]}

(46)
EI(�i, t) = [�Ĝ(�i, t) − Ge(�i)]Φ

(�Ĝ(�i, t) − Ge(�i)
�Ĝ(�i, t)

)

+ �Ĝ(�i, t)�
(�Ĝ(�i, t) − Ge(�i)

�Ĝ(�i, t)

)

Step 2.4: If EI(�i∗ , t∗) ≤ |Ge(�i∗ )| ⋅ �EI , output the current 
solution of �s

e
 and turn to Step 3. Otherwise, update �s

e
:

Step 2.5:  Update �s
t
= [�s

t
;�i∗ ] ,  �s = [�s;t∗] and 

�s = [�s;G(�i∗ , t
∗)] . Go back to Step 2.2.

Step 3: Generate the NMCS-size sample pool of X and λ 
according to fX(x) and fΛ(λ).

Step 4: Construct the Kriging model Ĝe(�) based on xs 
and �s

e
.

Step 5: Output the prediction value 𝜇Ĝe
(�) , prediction 

standard deviation 𝜎Ĝe
(�) and U learning function 

U(�|𝜆) = |𝜇Ĝe
(�)−u−1

F̃
(𝜆)|

𝜎Ĝe
(�)

.

Step 6: If min
i=1,2,…,NMCS

U(�i|𝜆i) > 2 , compute time-depend-

ent profust failure probability using Eq. (10) and terminate 
this algorithm. Otherwise, identify the new training sample 
label i∗ = argmin

i=1,2,…,NMCS

U(�i|�i).
Step 7: Compute Ge(�i∗ ) using MEGO.
Step 7.1: Randomly and uniformly take a time point tr 

from [0, T] and evaluate LSF at [�i∗ , tr] . Update �s
t
= [�s

t
;�i∗ ] , 

�s = [�s;tr] and �s = [�s;G(�i∗ , tr)].
Step 7.2: Regard G(�i∗ , tr) as the initial solution of Ge(�i∗ ).
Step 7.3: Construct the mixed Kriging model Ĝ(�, t) 

based on [�s
t
, �s] and Gs.

Step 7.4: Identify the training time maximining the EI 
function:

(47)Ge(�i∗ ) =

{
G(�i∗ , t

∗), if G(�i∗ , t
∗) < Ge(�i∗ )

Ge(�i∗ ), Otherwise

(48)t∗ = argmax
t∈[0,T]

[EI(t)]

(49)
EI(t) = [�Ĝ(�i∗ , t) − Ge(�i∗ )]Φ

(�Ĝ(�i∗ , t) − Ge(�i∗ )
�Ĝ(�i∗ , t)

)

+ �Ĝ(�i∗ , t)�
(�Ĝ(�i∗ , t) − Ge(�i∗ )

�Ĝ(�i∗ , t)

)

Table 12  The complete 
monotonic expressions of 
S
−1(−�2M)

h4Ge
p �3Ge

Range of −�2M S
−1(−�2M)

(− ∞, 0) (− ∞, 0) (− ∞, + ∞) [x1, x2] −2 cos [(� + �)∕3] − a

0 None (− ∞, 0) (− ∞, x0] −1+

√
1+h3Ge

(
h3Ge−

𝛽2M

k
Ĝe

)

2kGe h3Ge

(0, + ∞) [x0, + ∞)
(0, + ∞) (0, + ∞) (− ∞, + ∞) (− ∞, + ∞) 3

√
q + Δ + 3

√
q − Δ − a

(− ∞, 0) [0, + ∞) [x1, + ∞) 3
√
q + Δ + 3

√
q − Δ − a

[x2, x1] 2
√
−p cos(�∕3) − a

(− ∞, 0) (− ∞, 0) [x2, x1] −2
√
−p cos[(� − �)∕3] − a

(− ∞, x2] 3
√
q + Δ + 3

√
q − Δ − a
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Step 7.5: If EI(t∗) ≤ |Ge(�i∗ )| ⋅ 1% , output the current 
solution of Ge(�i∗ ) and turn to Step 8. Otherwise, update �s

e
:

Step 7.6:  Update �s
t
= [�s

t
;�i∗ ] ,  �s = [�s;t∗] and 

�s = [�s;G(�i∗ , t
∗)] . Go back to Step 7.2.

Step 8: Update �s = [�s;�i∗ ] and �s
e
= [�s

e
;Ge(�i∗ )] . 

Return to Step 4.
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