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Abstract
Manufacturers have been developing new graphics processing unit (GPU) nodes with large capacity, high bandwidth memory 
and very high bandwidth intra-node interconnects. This enables moving large amounts of data between GPUs on the same 
node at low cost. However, small packet bandwidths and latencies have not decreased, which makes global dot products 
expensive. These characteristics favor a new kind of problem decomposition called “equation decomposition” rather than 
traditional domain decomposition. In this approach, each GPU is assigned one equation set to solve in parallel so that the 
frequent and expensive dot product synchronization points in traditional distributed linear solvers are eliminated. In exchange, 
the method involves infrequent movement of state variables over the high bandwidth, intra-node interconnects. To test this 
theory, our flagship code Multiphase Flow with Interphase eXchanges (MFiX) was ported to TensorFlow. This new product 
is known as MFiX-AI and can produce near identical results to the original version of MFiX with significant acceleration 
in multiphase particle-in-cell (MP-PIC) simulations. The performance of a single node with 4 NVIDIA A100s connected 
over NVLINK 2.0 was shown to be competitive to 1000 CPU cores (25 nodes) on the JOULE 2.0 supercomputer, leading 
to an energy savings of up to 90%. This is a substantial performance benefit for small- to intermediate-sized problems. This 
benefit is expected to grow as GPU nodes become more powerful. Further, MFiX-AI is poised to accept native artificial 
intelligence/machine learning models for further acceleration and development.

Keywords  High-performance computing · Computational fluid dynamics · Parallel computation · Multiphase flow · 
TensorFlow · GPU acceleration

1  Introduction

Recent advances in high-performance computing (HPC), 
including those in both multi-central processing units 
(CPUs) and graphics processing units (GPUs), have greatly 
improved the speed of numerical computations in areas 
like computational fluid dynamics (CFD) [1, 2], molecular 
dynamics [3, 4], lattice-Boltzmann methods [5], and deep 
learning [6, 7]. Computationally expensive CFD compu-
tations requiring high mesh resolution have significantly 

benefited from these advances. However, developing par-
allel computer codes to utilize multicore architecture is 
still challenging, as it requires rewriting and optimization 
of existing serial codes, particularly when both CPUs and 
GPUs are used in a collaborative manner [8, 9], where the 
GPU to CPU memory transfer can be a serious bottleneck 
[10]. Although parallel computing has been widely used in 
a variety of CFD applications [11, 12], development of a 
computer code to fully utilize multicore HPC capabilities on 
heterogeneous systems is still challenging [13].

TensorFlow (TF) [14] is an open-source software 
library capable of utilizing both CPU and GPU architec-
tures and can potentially help accelerate CFD compu-
tations. TF was the most popular and well-documented 
framework at the beginning of this project and is an 
effective tensor algebra library, which makes it useful for 
many scientific computing challenges. In TF, numerical 
computations are represented as a graph of connected 
operations [14] that can be executed on multiple devices 
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including multicore CPUs, general purpose GPUs, and 
custom-designed application-specific integrated circuits 
(ASICs). This enables TF-based applications to be run on 
a wide variety of hardware and to scale well from powerful 
GPU servers down to mobile devices [15]. In addition, TF 
offers multiple levels of abstraction and operates on multi-
ple languages and operating systems [14]. These features 
allow TF to substitute or supplement the existing CFD 
frameworks to accelerate computations. At its heart, TF 
is an extremely powerful math library that allows for both 
hardware agnostic programming and hardware-specific 
optimization depending on the requirements. Recently, 
Zhao et al. [16] reported that a TF-based CFD simulation 
with GPU acceleration required almost ten times less com-
putational time compared to the same simulation carried 
out on CPUs using a Fortran code.

The MFiX (Multiphase Flow with Interphase 
eXchanges) CFD code was chosen as the base develop-
ment platform to investigate GPU acceleration using TF. 
MFiX is an open-source multiphase flow solver developed 
at the National Energy Technology Laboratory (NETL) 
and employs the two-fluid model (TFM), the discrete ele-
ment model (DEM), and the multiphase particle-in-cell 
(MP-PIC) model for modeling a wide range of multiphase 
flows [17]. MFiX has been widely used for more than three 
decades and is well validated, particularly for gas–solid 
fluidized beds, by TFM [18, 19], DEM [20–22] and MP-
PIC models [23–25]. In industrial-scale semi-dense mul-
tiphase flows, where the focus is more on trends than solu-
tion precision, the MP-PIC model is best suited because it 
uses a statistical averaging technique that enables simula-
tions to be quickly advanced with minimal particle-level 
overhead [17]. In addition, using solid-phase normal stress 
for particle interactions rather than direct consideration of 
particle collisions can remarkably accelerate computation 
speed on CPU–GPU hybrid computing platforms [26].

The present study aims to develop an equation-based 
parallelization method toward efficient and effective GPU 
acceleration. The TF-based platform allows independent 
computations for each transport equation by assigning var-
iables into separate processor devices. This enables mem-
ory- and computation-efficient, intuitive parallelization of 
solution procedures depending on the computation load 
for each equation. The developed MFiX-AI code has been 
rigorously verified by comparing the number of matching 
digits in the results, and a dramatic increase in speed was 
established by using a single GPU node rather than dozens 
of multicore parallel CPU nodes. Furthermore, MFiX-AI 
with multiple GPUs can natively deploy arbitrary artificial 
intelligence and machine learning (AI/ML) models at any 
point within the CFD code, which allows further optimiza-
tion in performance.

2 � Methodology

2.1 � MP‑PIC model

The MP-PIC model in MFiX consists of a Eulerian model 
for continuous fluid phase and a Lagrangian model to track 
the position and trajectory of solid particles. Instead of 
resolving each individual particle, MP-PIC uses the concept 
of “parcels,” wherein groups of identical particles are repre-
sented by parcels that are tracked in a Lagrangian manner. 
A parcel’s volume is defined by Vparcel = �Vparticle where � 
is the statistical weight, representing the average number of 
particles per parcel. Several assumptions are involved in the 
MFiX MP-PIC model [17], for example, particles within a 
computational parcel are assumed to be spherical in shape. 
Also, instead of considering particle collisions or using any 
Newtonian mechanics to calculate the individual particle 
displacement and velocity, the MP-PIC model creates an 
aggregated solids stress momentum source term that directly 
affects local solids velocity. Furthermore, the parcels are 
assumed to maintain a mean density and not experience any 
rotation. With these assumptions, the three-dimensional gas 
phase continuity and momentum equations can be written 
as follows [23]:

and the equations for parcel motion can be represented as

where �G and �P are the volume fraction of gas and parcel, 
�G and �P are gas density and parcel density, and �G and �P 
are three-dimensional velocity vectors for gas and parcel, 
respectively. � denotes the gravity vector. �G in Eq. (2) is the 
fluid shear stress tensor and �P in Eq.(4) is a frictional stress 
term proposed by Snider [27] as

Here, �CP is the close pack volume fraction, and � , � and 
ps are scalar model parameters. The fluid–particle momen-
tum exchange is represented by the interphase drag force 
terms � and �P in Eqs. (2) and (4), respectively, where � 
is the interpolated force from the parcel location to the 

(1)
�

�t
(�G�G) + ∇ ⋅ (�G�G�G) = 0,

(2)

�

�t
(�G�G�G) + ∇ ⋅ (�G�G�G�G) = −�G∇p + ∇ ⋅ �G − � + �G�G�.
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corresponding fluid cell, and �P is the force at the parcel 
position. The Syamlal–O’Brien model [28] was employed 
among the various types of drag models tested to form the 
force terms. Further discussions on drag models, numerical 
scheme and discretization are beyond the scope of this study, 
and interested readers may refer to the MFiX Theory Guide 
[17] for more details.

2.2 � Code structure

This section introduces the coupling strategy to establish 
MFiX-AI and its basic code structure. This study is based on 
MFiX version 19.3.1 (available at https://​mfix.​netl.​doe.​gov/​
doc/​mfix/​19.3.​1/​about.​html) and TF version 1 or 2 (with TF 
2.x behavior deactivated in the latter).

2.2.1 � Coupling strategy

In MFiX-AI, the core solution procedure occupying the most 
computation time was rewritten using TF, while miscellane-
ous functions such as computational domain handling, ini-
tial particle population and post-processing remained in the 
basic Fortran of classic MFiX. Figure 1 demonstrates the 
workflow within MFiX-AI. The mfix.f file is placed on the 
top level of the code hierarchy in MFiX. This file controls 
major code behavior such as initialization, time marching, 
and calls the fluid and PIC solvers. A flag ‘USE_TF_SOLV-
ERS’ was introduced to activate the use of the tf_solver.f 

file for MFiX-AI instead of following the classic MFiX 
workflow. There are two calls—the first call INITIALIZE_
TF is used to initialize the TF graph, and the second call 
SOLVE_TF is used to take a separate timestep inside the 
TF graph. The INITIALIZE_TF subroutine in the tf_solver.f 
file gathers the required model parameters and truth tables 
defined during MFiX pre-processing and passes them into 
the MFiX-AI code. The data exchange between the Fortran-
based MFiX code and the Python-based MFiX-AI code is 
established by the additional C wrapper code tfpywrapper.c. 
The wrapper code is used to directly transfer memory from 
Fortran to TF. The Python functions are defined in the tf_
loading_nn.py file that feeds the placeholders in MFiX-AI 
and runs the TF graph. The body of the CFD computations 
are handled within the mfixTF_mod.py file and associated 
modules. For visualization and data recall, the field variables 
of interest are transferred back to the Fortran code through 
the same call chain in the reverse direction. Aside from 
initialization and data recall, no memory transfers into or 
out of TF during the solution procedure except the timestep 
value. Further, the entire graph is GPU compatible and can 
be executed with no host/GPU data transfer except for the 
desired timestep at the head of every timestep.

2.2.2 � Parallel computing strategy

MFiX-AI is a direct port from Fortran to the TF Python 
ecosystem and was designed to run on GPUs. As such, the 

Fig. 1   Code structure of the data exchange process between MFiX and MFiX-AI

https://mfix.netl.doe.gov/doc/mfix/19.3.1/about.html
https://mfix.netl.doe.gov/doc/mfix/19.3.1/about.html
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solution procedure used in MFiX was rewritten using graph 
representation in TF. MFiX-AI employs placeholders, ten-
sors, and variables supported by TF. Placeholders are used 
for data input, tensors are immutable data structures within 
graphs, and variables are mutable data structures. The main 
part of MFiX-AI is initialized by using placeholders that 
store values in variables for later recall. A TF variable is 
designed to maintain a shared, persistent state manipulated 
by a program [14], so the variables in MFiX-AI are used 
for the data that should remain on the device between ses-
sion run calls. Tensors are immutable data structures used 
for intermediate data that does not need to persist between 
session run calls. Initialization flows from placeholders 
through tensors and ends in variable assignment. For calcu-
lation of timesteps, the graph flows from reads of variables 
through tensor calculations to variable updates. Because it 
is only safe to update variables once per session run call, it 
was decided to create a graph that does a single complete 
timestep and to make repeated calls into TF to advance the 
time from the Fortran base code. This method also allows 
for easy matrix construction and solving without the need for 
repeated field variable and/or matrix data transfers between 
host and device.

An equation-based parallelization scheme that can utilize 
multiple GPUs was developed. First, required variables for 
each component of the momentum equations were declared 
independently on individual devices (referred to as Udev, 
Vdev and Wdev), which allowed simultaneous solutions of 
the momentum equations. If other transport equations such 
as species and energy are needed, they can also be solved 

simultaneously on different devices. Next, a set of devices 
were utilized to solve for pressure, which is a dependent 
variable dictated by the momentum equation. In the current 
version of the code, a multi-GPU linear solver feature can 
be used for pressure. A PICdev was assigned to calculate 
MP-PIC particle motion and flow. For simplicity, the PICdev 
is always GPU 1 and Pdev for pressure is also GPU 1 when 
the multi-GPU linear solver mode is disabled. Currently, the 
PIC equations are solved over a single GPU, which creates a 
serial workload. Future versions of the code will distribute 
this across all available devices.

Figure 2 shows schematic diagrams of parallel computing 
strategies in MFiX and MFiX-AI. The parallel computing 
strategy for multicore CPU computations in MFiX is a typi-
cal MPI-based approach that requires domain decomposi-
tion and significant MPI communications to transfer data 
among the subdomains. The need for MPI communications 
is often a bottleneck in HPC. In particular, the latencies to 
communicate dot products often limit the minimum itera-
tion time. Several dot product updates are required at every 
iteration of the linear solver for every SIMPLE solver itera-
tion. Frequent small communications such as dot products 
are not advantageous, as many studies have shown that as 
much as 80% of the computation time in modern HPC codes 
is spent waiting for data to arrive [29–31]. This creates a 
situation where time to solution does not decrease as pro-
cessor workload decreases past a certain point, as is seen in 
most strong scaling curves. The situation can be even more 
complicated with GPU based solvers because the device effi-
ciency also depends on having enough workload to balance 

Fig. 2   Parallel computing strategy for MFiX on multicore CPUs and MFiX-AI on multi-GPUs. a Typical MPI process for the decomposed com-
putational domain used in MFiX, b multi-GPU data communication used in MFiX-AI in the TF graph
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the processing relative to the device global memory access. 
Even without latency limitations, performance does not 
scale to small workloads on GPUs, which limits minimum 
time to solution in parallel workloads as well.

MFiX-AI utilizes an equation-based parallel computing 
strategy. This kind of strategy is ideal for modern GPUs 
nodes like the DGX A100 with the NVLink switch. This 
strategy requires very infrequent communication of entire 
field variables and no dot product synchronization points in 
the linear solver unless the parallel pressure solver is turned 
on. This software architecture trades very frequent small 
data transfers for infrequent large data transfers. Modern 
GPU nodes have exceptionally high inter-device bandwidths 
of up to 7.2 terabyte/s for NVLink version 3.0, which makes 
this software architecture tractable since the time to move 
large data sets between GPUs on the same node is minimal. 
The inter-device data transfer rates are over 144 times the 
fastest 400 Gb/s inter-node transfer rates. While this is a sub-
stantial increase in bandwidth, latencies have not improved 
much and are still on the order of 10–30 µs. Thus, the equa-
tion-based parallelization methodology is expected to work 
very well on problem scales that can fit in the memory space 
of a single node. MFiX-AI also has an advantage because 
formation and solve performed on device and host/device 
data transfers are all but eliminated. The equation-based 
parallelization strategy can also be more efficient than the 
current block partitioning in MFiX, where load imbalance 
can severely affect parallel efficiency. Finally, the equation-
based strategy is expected to continue to pay dividends in 
future HPC systems where GPUs become larger with more 
memory, as inter-device bandwidth grows significantly 
(especially relative to inter-node bandwidth) and communi-
cation latencies only make marginal improvements.

The parallelization strategy for the pressure equation 
works well provided that the work per GPU is high and that 
enough iterations are needed for convergence to overcome 
the setup overhead. However, the synchronization latencies 
and workload utilization efficiencies are expected to limit 
how many GPUs can effectively be used at a given problem 
scale. This strategy could be extended to transport equations, 
but these equations usually converge in just a few iterations 
and it is difficult to make up the costs of setting up the solver 
for parallel work.

Depending on the available number of GPUs, users 
can specify GPUs for each Udev, Vdev, Wdev, and Pdev. 
PICdev is always on GPU 1 in the current version of the 
code. For example, when only a single GPU is avail-
able, all equations are assigned to one GPU, which can 
be symbolized as 111[1] representing UVW[P] device 
where PICdev is always assigned to 1. Figure 2b shows an 
example case of a parallel run with four GPUs (234[1234] 
decomposition) where three GPUs are assigned to the 
three velocity components and one GPU is assigned to 

PICdev. The four numbers in the square bracket denote the 
workload for pressure distributed to the four GPUs. This 
configuration is currently the most memory and computa-
tionally efficient way to run the code.

For fluid–particle coupling, PICdev is used at least 
twice in the solution procedure of both the codes depend-
ing on whether implicit or explicit coupling is used. At 
the head of the SIMPLE iteration, coupling from particle 
to fluid is achieved where the momentum exchange terms 
� in Eq. (2) are calculated. In explicit coupling (PIC expl. 
in Fig. 2), the particle to fluid terms are calculated before 
the first SIMPLE iteration and are not updated during 
subsequent SIMPLE iterations. In implicit coupling (PIC 
impl. In Fig. 2), those terms are updated at the begin-
ning of every SIMPLE iteration. Thus, calculation times, 
which are compared in the performance analysis in Sect. 4, 
depend on the coupling method. The second PICdev uti-
lization comes after the SIMPLE iteration and is used to 
update parcel positions and velocities. The interpolation 
between particle positions and Eulerian grid values is a 
known area for further parallel development. The com-
putations could be spread over multiple devices using 
the high bandwidth available between GPUs on the same 
node, much like the fluid solver.

2.2.3 � Use of TF graph and custom operator

MFiX-AI uses TF in graph execution mode, where an effi-
cient computational graph is created before carrying out 
the actual calculations. A computational graph represents 
a series of prearranged TF operations that manipulate ten-
sors or tensor-like objects. MFiX-AI employs rank-1 tensors 
for variables used in calculations and for indices indicating 
the positions of the computation cells corresponding to the 
variables. Instead of using element-wise looping, a combi-
nation of merge, gather, and scatter operations is used for 
vector arithmetic. To avoid conditional statements, truth 
tables are predefined in Fortran, fed into the graph as rank-1 
tensors, and converted to compressed int64 representations 
to save memory. Although most calculations in MFiX can 
be done with combinations of standard TF operations, a few 
complex calculations containing many irregular conditional 
statements and performance-critical operations are handled 
through custom operators. Custom operators (or custom 
ops) in TF allow users to develop functionality that is not 
defined as default TF operators. The custom ops are written 
in C +  + and whatever language is compatible with other 
supported devices (such as CUDA for NVIDIA devices and 
HIP for AMD). The use of custom ops can also be beneficial 
for reducing the number of kernel calls, optimizing memory 
usage during the operations, and optimizing memory access 
patterns.
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3 � Code verification

MFiX-AI was verified by conducting a code-to-code com-
parison against the classic MFiX code. Figure 3 shows the 
schematics of the verification case. The test case was an 
isothermal simulation of a fluidized bed in a rectangular 
cuboid geometry with dimensions of 12 cm, 72 cm, 12 cm 
in x, y, and z direction, respectively. The computational 
domain was discretized using a structured mesh with 27, 
162 and 27 cells in x, y, z direction, respectively, such that 
the total number of cells is 137,924. The constant density 
and viscosity of the gas phase were set to 1.093 kg/m3 and 
1.9×10−5 Pa s, respectively. Gravity acts in the - y direc-
tion. The domain inlet was set at the bottom ( y = 0), with 
gas flow velocity ranging between 0.3 and 1.0 m/s, and 
the outlet at the top ( y = 72cm) . The vertical planes were 
treated as no-slip walls. The particles were assumed to 
be of identical size with diameter of 400 μm and density 
of 2000 kg/m3 . The initial bed height was set to 12 cm 
with the gas volume fraction set to 0.42 for the bed area. 
With a statistical weight of 10 (the number of particles per 
parcel), the total number of parcels present in the domain 
was 2,983,447. The initial timestep was set to 1 ms and 
varied depending on the convergence of SIMPLE itera-
tions with the given tolerance and maximum number of 
iterations. The average Courant number according to the 
initial timestep is in the range of 6.75 × 10–4 to 2.25 × 10–3 
depending on the gas flow velocity. No preconditioners 
were used for the linear solvers in either of the codes to 
ensure that the solver settings are identical.

3.1 � Verification for a single timestep

The test case was conducted using both codes in 64-bit 
precision to maintain conformity between the MFiX and 
MFiX-AI simulations. Usually, the initial positions of the 
particles are set in a randomized manner that precludes an 
exact comparison of the time evolution of the two codes’ 
simulations. Hence, both simulations were restarted from an 
MFiX calculation where the bubbling particle motion was 
active. Residuals of the velocity components and pressure 
calculated from both codes were in excellent agreement as 
presented in Fig. 4, and a converged solution was obtained 
in 33 SIMPLE iterations for both codes with the same toler-
ance for the SIMPLE iterations. In addition, both codes were 
modified to write the same field variables to file for every 
cell and every particle at the same point in the solution pro-
cess. This allowed a comparison of the number of matching 
significant digits by using the following equation for the field 
variable � from each code.

This is a very restrictive comparison method as the error 
is relative to the order of magnitude, and not the absolute 
difference.

Figure 5 displays histograms for the matching number of 
digits for the selected variables from both codes at differ-
ent steps in the solution procedure. The matching number 
of digits for the velocity components and pressure at the 
first SIMPLE iteration are shown in Fig. 5a. The velocity 

(6)

Number of digits matching = − log10

||�MFiX − �MFiX - AI
||

||�MFiX
||

.

Fig. 3   Computational domain and boundary conditions for the verifi-
cation case

Fig. 4   Residual plots of velocity and pressure from MFiX-AI (solid 
lines) and MFiX (dashed lines) during SIMPLE iterations at the first 
timestep
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components match within 10 digits and most cells have 14 
matching significant digits. However, the pressure matches 
with fewer digits of precision as it is a quantity derived from 
the velocity components. In MFiX-AI, the pressure used in 
the SIMPLE iterations is gauge pressure while absolute pres-
sure was used in MFiX, which allows MFiX-AI to maintain 
five more digits of precision than MFiX. Also, the linear 
equations for pressure generally take many more iterations 
to converge than those of the velocity components, which 
may contribute to error accumulation. Hence, the corrected 
velocity field at the end of the first SIMPLE iteration (that 
includes contributions from the predicted pressure field) also 
shows fewer matching significant digits (similar to that for 
pressure). That said, most cells match within nine significant 
digits and the worst cell matched with four. Even with the 
worst number of digits matching, they are still in very good 
agreement as it represents less than 0.01% relative differ-
ence, given that the two simulations were carried out on 
different hardware. Note that the pressure values used in 
Fig. 5a, b represent absolute pressure.

Figure 5c shows that the variables related to the fluid–par-
ticle momentum transfer can also influence error propaga-
tion. The solid volume fraction �P is calculated using the 
bilinear numerical interpolation scheme based on the given 
particle positions from MFiX, but it only matches within 
eight significant digits. The solids shear stress, �P , lost one 
more matching significant digit after Eq. (5) presumably due 
to the power function of �P in the numerator. Fx,Fy and Fz 

represent the components of the particle force vector � in 
Eq. (2). Although the particle-related variables in Fig. 5c 
did not significantly affect the gas velocity components 
as shown in Fig. 5a, those errors further propagated into 
the MP-PIC model’s calculation of solid motion. Another 
significant divergence in behavior was observed during the 
treatment of parcel reflections at the boundary. The problem 
stems from hard conditionals that determine the occurrence 
of parcel reflections, which are affected by very small dif-
ferences in position. A bit perfect match is needed to ensure 
the same conditional execution in both  codes, and this may 
not be possible because the computations were performed 
on different hardware. This unavoidable difference resulted 
in negative values in Fig. 5d. Apart from the discrepancies 
observed on a few particles, the velocity of most particles 
matched within 11 significant digits and the position of most 
particles matched within 14 digits, while in the worst case, 
they matched within 4 and 6 digits, respectively.

3.2 � Validation of bed characteristics

Despite very good agreement observed at the first timestep, 
the accumulation of bitwise differences leads both results 
to quickly diverge after a few timesteps. This is not a con-
cern as results are expected to be non-deterministic; how-
ever, making a side-by-side comparison at every timestep is 
impossible. Therefore, instead of instantaneous differences 
between the predicted variables, the physical behavior of 

Fig. 5   Histograms for the number of matching digits for non-zero 
quantities obtained from MFiX-AI and MFiX. a Comparison of 
velocity and pressure at the first SIMPLE iteration, b at the first 

timestep, c variables affecting fluid–particle momentum exchange at 
the first SIMPLE iteration, and d particle position and velocity after 
PIC calculation
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the fluidized bed was time averaged at a variety of gas inlet 
velocities. To obtain sufficiently time-independent mean 
fields, the simulations were run for 102 s (in physical time) 
starting from the initial conditions. The first two seconds 
were discarded to eliminate the influence of the initial condi-
tions on the time averaged field. A fast Fourier transform of 
the time series of gas volume fraction at a point (located at 
the middle of the initial bed at [x,y,z] = [6 cm, 6 cm, 6 cm]) 
was carried out to obtain a bubble frequency spectrum.

Figure 6 demonstrates the results of the fluidized bed 
simulations from MFiX and MFiX-AI. Figure 6a, b compare 
the instantaneous and mean fields of gas volume fraction 
and gas velocity magnitude from both codes at two gas inlet 
velocities: 0.5 and 1.0 m/s. As expected, the instantaneous 
comparisons do not match, but the mean fields from both 
codes are qualitatively almost identical. Figure 6c com-
pares both mean gas volume fraction and gas velocity mag-
nitude profiles at the center of the domain in y direction. 

The maximum differences between the two code profiles are 
only 0.02 for gas volume fraction and 0.15 m/s for gas veloc-
ity magnitude. Moreover, Fig. 6d shows a similar dominant 
frequency and bubble frequency spectrum, which indicates 
that the bubbling phenomena obtained from the two cases 
are in excellent agreement. Hence, the series of evidence 
supports that the bubbling flow dynamics from both codes 
are very similar.

In addition, Fig. 7 exhibits the pressure drop obtained 
from both codes for inlet velocity of 0.3–1.0 m/s. The pres-
sure drop obtained from the two codes agree very well, with 
the relative difference being less than 1%. Those values are 
also close to the bed pressure representing the total weight 
of the particle bed. The series of verification and valida-
tion tests conducted in this section concludes that MFiX-AI 
can successfully replicate the predictions from the MFiX 
code, which is already well validated with physical systems 
[23–25].

Fig. 6   Result of fluidized bed simulations from MFiX and MFiX-AI 
codes for inlet gas velocity of 0.5 and 1.0 m/s. Instantaneous and time 
mean fields of gas volume fraction and gas velocity magnitude from 
both codes for inlet gas velocity of a 0.5 m/s and b 1.0 m/s. c Com-

parison of mean gas volume fraction and mean gas velocity magni-
tude profiles at the center of the reactor. d Comparison of bubble fre-
quency spectrum from both codes
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4 � Parallel scaling performance

The performance enhancement of MFiX-AI against 
MFiX was evaluated by running identical example cases 
on Nvidia A100 GPUs (NVLink connected on a DGX 
A100), each with 80 GB memory for multi-GPU runs 
(A100-SXM-80 GB). The JOULE 2.0 supercomputer at 
NETL, utilizing Xeon Gold CPU (6148 20C 2.4 GHz) with 
Intel Omni-Path 100Gbit interconnect, was used for the 
MPI-based multicore CPU runs. The performance analy-
sis consists of strong scaling analysis with fixed problem 
size, and weak scaling analysis with problem size fixed per 
CPU node or GPU. First, single-phase calculations without 
particles were conducted to investigate the speed gains 
solely for solving the steps in the SIMPLE algorithm. A 
backward-facing step (BFS) flow case was chosen as the 
test case for the single-phase calculations. Figure 8 shows 
the computational domain spanned 9.8 cm, 4.9 cm and 
98 cm in x, y, z directions where an internal block with 
dimensions of 4.9 cm, 4.9 cm, and 9.8 cm was used to 
construct the step. Fluid viscosity and density were set 
to 1.8 × 10−5 Pa s and 1.0 kg/m3 , respectively, and the 
inlet velocity (directed along the + z direction) was set to 

1 m/s. Secondly, a PIC example case was also used for 
performance analysis, although the domain was slightly 
different from that used in the validation study. The com-
putational domain was a cuboid as for the verification case 
shown in Fig. 3. The dimensions are 12 cm, 12 cm, 36 cm 
in the x, y and z directions, and the initial bed height was 
set to 12 cm. For efficient parallel computation, the longest 
side was aligned along the z direction, and gravity acts in 
the - z direction. The density and viscosity were the same 
as those in the performance analysis study. The inlet gas 
velocity was set to 0.15 m/s, and the particle diameter 
and density were specified as 200 μm and 2000 kg/m3 , 
respectively. For both single-phase and PIC examples, the 
number of cells and particles varied depending on the scal-
ing methods. For both cases, Norm_g, which is a factor to 
normalize the gas continuity equation residual in MFiX, 
was set to unity.

4.1 � Strong scaling

Strong scaling analyses for single- and multiphase cases 
were conducted to compare the speed gains and scalability 
of both  MFiX-AI and MFiX codes. Figure 9a, b exhibits 
the results of strong scaling for single-phase BFS calcula-
tions. While the number of cells was fixed as 10,001,880 
(10 M), 23,708,160 (20 M) and 30,802,500 (30 M) in this 
analysis, the number of GPUs used for MFiX-AI calcula-
tions varied from 1 to 8, and the number of nodes for MFiX 
calculations varied from 1 to 25, where one node consists 
of 40 CPU cores. The timestep was initially set to 10−4 s 
to guarantee convergence from the initial condition, and 
gradually increased to the maximum timestep of 5 × 10−4 
s. The physical time for calculations was 0.5 s. Figure 9a 
compares the average computation time per SIMPLE itera-
tion of MFiX and MFiX-AI with regards to the size of test 
problem and the number of CPU nodes or GPUs. MFiX-AI 
showed a dramatic boost in performance compared to MFiX 
for all three cases. Figure 9b shows the speed gain of MFiX-
AI against MFiX for three combinations of the number of 
GPUs and the number of CPU nodes. The speed gain gener-
ally increased as the computation size increased. The maxi-
mum speed gain was 12.4, which corresponds to the use of 
a single GPU node against a single CPU node for the 10 M 
case. It should be noted that the calculation times for four 
GPUs were even slightly faster than the computation times 
for 25 nodes corresponding to 1,000 MPI ranks on the CPU. 
Scaling for MFiX-AI stopped improving with four GPUs, 
as this problem involves only four equations. If more equa-
tions were used, the scaling may continue provided that the 
parallel solver for pressure can continue to efficiently scale.

Figure 9c, d show the results of strong scaling for a 
benchmark case of PIC calculations with a fixed number 

Fig. 7   Comparison of pressure drop obtained from the results of both 
codes running with the gas inlet velocity ranging from 0.3 to 1.0 m/s

Fig. 8   Computational domain and boundary conditions for the BFS 
benchmark case
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of cells (10,125,000; ~ 10 M) and a fixed number of par-
cels (47,853,435; ~ 47 M). The initial timestep was set to 
5 × 10−4 s, and the 0.5 s (physical time) long calculation was 
used for the strong scaling analysis. The number of GPUs 
and CPU nodes employed are identical to those used in the 
single-phase strong scaling analysis. However, instead of 
comparing the cases with different computation sizes, this 
comparison focuses on computation times depending on the 
coupling method. The time per SIMPLE iteration was esti-
mated by dividing the total wall time spent in the SIMPLE 
routine by the total number of SIMPLE iterations. Thus, 
the time for PIC computations in both explicit and implicit 
coupling were included. The difference in calculation times 
for implicit and explicit coupling is only dictated by the dif-
ferent number of calculations for the momentum exchange 
terms � in Eq. (2). In explicit coupling, this is calculated 
once before the start of the SIMPLE loop, while, in implicit 
coupling, the calculation is performed at the start of every 
SIMPLE iteration. In Fig. 9c, the average computation time 
per SIMPLE iteration for MFiX-AI with a single GPU is 
much less than MFiX with a single CPU node and is com-
parable to MFiX with 25 CPU nodes. This dramatic boost 
in the MFiX-AI computation speed is more clearly shown in 
Fig. 9d, which presents the speed gain of MFiX-AI against 

MFiX. The speed gain of single GPU compared to a single 
CPU node is approximately 14. The optimal case of MFiX-
AI using four GPUs shows excellent performance compared 
to MFiX using multiple CPU nodes. The computation time 
for the optimal case is very close to that for MFiX using 25 
nodes (= 1000 CPU cores); for the explicit case, MFiX-AI 
is 10% faster than MFiX while for the implicit case MFiX-
AI is only 30% slower than MFiX. The observations in both 
single- and multiphase computations clearly show the dra-
matic reduction in computation time for MP-PIC calcula-
tions using MFiX-AI compared to MFiX. It can be further 
improved by parallelizing the MP-PIC solver, optimizing the 
custom operations for hardware-specific implementations, 
and applying machine learning algorithms for initial guesses 
of SIMPLE iteration.

4.2 � Weak scaling of MFiX vs. MFiX‑AI with a fixed 
number of GPUs

A weak scaling analysis for MFiX with a fixed number of 
cells and/or parcels per number of CPU cores was compared 
to the MFiX-AI calculations with a fixed number of GPUs 
for single-phase BFS flow, PIC with a constant number of 
parcels, and PIC with a variable number of parcels. The test 

Fig. 9   Strong scaling analysis for a, b single-phase backward-facing 
step flow computations and c, d MP-PIC fluidized bed computations 
obtained by MFiX-AI with multiple A100 GPUs and MFiX with mul-
ticore CPU nodes. The average time per SIMPLE iteration of both 

codes for a single phase in terms of cell counts, and c those for MP-
PIC computations in terms of particle coupling method. Speed gain 
of MFiX-AI against MFiX for three pairs of GPU/CPU node combi-
nations for b single-phase computations and d MP-PIC computations
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conditions were identical to those used for the strong scaling 
analysis, with different initial timesteps and physical times 
for calculation, which were 10−3 s, 50 s for the BFS case and 
5 × 10−4 s, and 1 s for both PIC cases. For MFiX, the cell 
per node is fixed to approximately 400,000. For PIC with 
constant parcels, the number of parcels is set to 3,998,062 
(4 M), and for PIC with variable parcels, the number of par-
cels per node is set to approximately 4 M. For comparison, 
identical calculations were employed in MFiX-AI, but with 
a constant number of GPUs.

Figure 10 shows the results of the three scaling analy-
ses. In the BFS case, as shown in Fig. 10a, the time per 

SIMPLE iteration for MFiX-AI increased almost linearly as 
the number of cells increased, while for MFiX it showed a 
gentler increasing trend. The increasing trend for MFiX-AI 
was expected, given that the workload increased per device. 
However, the scaling curves for MFiX should be nearly flat 
in an ideal case. However, almost 2% of the volume was 
taken out for the step, resulting in a load imbalance, which 
led to less-than-ideal scaling.

If more than 8 M cells are used for MFiX-AI with two 
GPUs, the computation time will be larger than MFiX for 
the single-phase calculations (since the MFiX runs were not 
restricted by the maximum wall time). The MFiX-AI runs 

Fig. 10   Weak scaling analysis of MFiX for a single-phase BFS flow, 
b MP-PIC fluidized bed calculation with constant 4 million (M) par-
cels, and c variable parcels with 4 M parcels per node. Identical cases 
of MFiX-AI with fixed number of GPUs were compared. The number 

of cells is 400,000 per node for all three cases. d The ratio of incre-
ments of time per SIMPLE iteration and workload for MFiX-AI com-
putations. e Comparison of speed gain of MFiX-AI against MFiX for 
three weak scaling cases
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with four GPUs were almost consistently faster than MFiX, 
with a difference in time per iteration of approximately 
0.02 s (corresponding to total wall time of 1 h) for all test 
conditions in this study. It is interesting to note that MFiX-
AI with four GPUs scaled almost as well through increased 
load as MFiX in weak scaling with a slight load imbalance.

Figure 10b displays the weak scaling results for PIC 
calculations with constant parcels. As the number of cells 
increases, the MFiX time per iteration dramatically decreases 
until 3 M cells due to the decreasing number of parcels per 
CPU. The benefit of continued mesh refinement is lost 
because of particle load balancing in the fluid bed. However, 
this behavior is not observed with MFiX-AI because the PIC 
calculations are carried out in a single device (PICdev) and 
there is no spatial domain decomposition. The computation 
time for MFiX-AI increases approximately linearly with the 
cell count. There is almost no difference between computa-
tion times of explicit and implicit coupling in MFiX. For 
MFiX-AI, the computation times for implicit and explicit 
coupling shifted by an approximately constant value, where 
the offset represents the additional amount of work in 
PICdev in SIMPLE iterations. This illustrates the need to 
parallelize the PIC workloads in future versions of the code. 
It is noted that MFiX-AI is faster than MFiX for all explicit 
workloads tested as the increased serial workload for explicit 
coupling was negligible in performance.

Figure 10c exhibits the same type of scaling analysis for 
PIC with variable parcels and cells. In this case, the com-
putation times for MFiX-AI show a linear increasing trend, 
while those for MFiX are almost flat with a slight increase. 
For explicit coupling, MFiX-AI is always faster than MFiX, 
while, for implicit coupling, MFiX-AI is only faster than 
MFiX for less than 7 M cells and 70 M parcels. The rapidly 
increasing computation time in the implicitly coupled weak 
scaling shows the incredible expense involved in interpolat-
ing between the Lagrangian particles/parcels and the Eule-
rian grid, especially in MFiX-AI. This workload scales in 
proportion to both grid size and particle/parcel count. In 
general, implicit coupling should not be used unless there 
is a clear need for accuracy or advantage for it. Further this 
illustrates the need to parallelize this workload effectively 
in future versions of MFiX-AI as the current version of the 
code only uses one GPU for the PIC portions of the code. 
That said, the explicit coupling in MFiX-AI is very competi-
tive to the CPU-based MFiX version.

Figure 10d shows the ratio between time spent for SIM-
PLE iterations and workload in MFiX-AI computations. The 
ratios for different cases vary depending on the problem size 
per number of GPUs employed. A ratio of unity implies 
GPU workload saturation. In general, workloads become 
saturated in the 2–5 million cells/parcel range, which is 
consistent with other reported saturation limits for stencil 
problems on GPUs [32]. Figure 10e compares the speed gain 

of MFiX-AI against MFiX for the three weak scaling cases. 
For the single-phase BFS case, the maximum speed gain is 
approximately three times and it almost linearly decreases 
with increasing number of nodes for MFiX runs. Including 
the PIC calculation, the maximum speed gain for constant 
parcels and variable parcels is approximately seven for both 
implicit and explicit coupling. Speed gain steeply decreases 
until ten nodes and further decreases linearly as the number 
of nodes increases. It is noted that the PIC calculation of 
MFiX-AI with constant parcels carried out on a single GPU 
is even faster than the corresponding calculation in MFiX 
on 25 nodes. MFiX-AI runs with variable parcels are still 
beneficial as compared to the corresponding cases in MFiX 
on less than 15 nodes and almost equivalent to those on 22 
and 25 nodes. In most cases, MFiX-AI with just four GPUs 
scales almost as well as weak scaling on CPU nodes with 
MFiX. The performance in MFiX-AI on four GPUs is simi-
lar to MFiX runs carried out on many hundreds to thousands 
of CPU cores.

5 � Energy consumption efficiency

The dramatic reduction in computation time leads to signifi-
cant energy savings. Multi-CPU MFiX computations were 
conducted on the JOULE supercomputer equipped with Intel 
Omni-Path interconnects. With 64 Omni-Path Edge and two 
Omni-Path Director switches, each consuming 187 W and 
229 W of electricity, respectively, the power consumed by 
Omni-path interconnects corresponding to each of the 1856 
nodes on JOULE is estimated as 6.7 W. Thus, the total power 
per each node, defined by the sum of the CPU node (800 W) 
power requirement and the interconnect per node (6.7 W) 
power requirement, is 806.7 W. Energy consumption of 
MFiX-AI is estimated from the maximum power requirement 
of the DGX A100 system, which is 6.5 kW [33]. By using 
four A100 GPUs (each of which consumes 400 W [34]) out 
of eight GPUs, the estimated total power for running MFiX-
AI is 4.9 kW. Figure 11a, b compare the energy consump-
tion of both codes for single SIMPLE iteration in single-
phase and MP-PIC calculations. In strong scaling analysis, 
the energy consumption of MFiX-AI with four GPUs is the 
lowest for the single phase, while slightly increasing from 
one to four GPUs for MP-PIC. This evidence consistently 
shows that the use of four GPUs is optimal. The energy sav-
ing was estimated by comparing the energy consumption of 
four GPUs against that of 25 CPU nodes. Despite the higher 
power consumption rate of DGX A100 compared to a single 
CPU node, the MFiX-AI highly benefits from fast computa-
tion time. The energy savings of four GPUs against 25 nodes 
is 82% for the single phase and 67% for the MP-PIC calcula-
tions. In weak scaling, the energy consumption of both codes 
increases monotonically with an increasing cell count. The 



3589Engineering with Computers (2023) 39:3577–3591	

1 3

energy savings for weak scaling analysis is shown to be up to 
82% for single phase and 90% for MP-PIC calculations. This 
study indicates that there are distinct benefits of using multi-
GPU computations on a single node relative to as many as 
25 CPU nodes. Although it is not straightforward to convert 
a CPU-based CFD code to a new platform that enables effec-
tive GPU acceleration, the benefits in speed gain and energy 
consumption will be a strong motivating factor to adopt the 
new paradigm.

6 � Conclusion and outlook

This study is aimed at developing an equation-based GPU 
parallelization strategy that enables acceleration of CFD 
simulations with a multiphase PIC model. For this purpose, 
MFiX, a well-established and thoroughly validated computer 
code for multiphase flow, and TF, a powerful open-source 
library for optimized matrix calculations on CPUs and 
GPUs, were coupled by replacing the core of a CFD solution 
procedure in MFiX by a TF-based computer code, MFiX-AI. 
MFiX-AI distributes the variables into each assigned device, 
which allows straightforward independent calculations for 
each transport equation, simultaneously. Thus, an intuitive 
equation-based parallelization was accomplished with no 
domain decomposition. The developed MFiX-AI code pro-
duces results that are not bit perfect, but match within many 
significant digits.

The equation-based parallelization strategy within MFiX-
AI was found to work exceptionally well. Time parities for 
MFiX-AI were found to be above 15 CPU nodes in all cases 
and were most typically well above 25 nodes. For single-
phase cases, MFiX-AI with just four GPUs with variable 
work per device was found to scale almost as well as MFiX 
in weak scaling at near optimal workload per core. MFiX-AI 
is able to scale out to many tens of millions of cells in single 
phase. At all tested conditions, MFiX-AI was faster than 

MFiX by a significant margin. Extending the scaling curves 
shows that MFiX-AI is preferrable to MFiX at scales all 
the way up to approximately 15 million cells. As hardware 
and code improvements are made, this balance will shift out 
significantly.

For most multiphase simulations, particle/parcel load 
imbalances greatly affect the time to solution for domain-
decomposed Eulerian Lagrangian software architectures. 
When particles stack up or are naturally imbalanced, as 
with a fluid bed simulation, fixed domain decomposition 
methods struggle to scale well as some computing units 
get overloaded with more particle calculations than others. 
Load imbalance is even more severe in complex systems 
such as recirculating fluidized beds. MFiX-AI does not have 
this issue and shows promise to be an effective method for 
multiphase calculations in a very similar manner to MFiX. 
MFiX-AI is already a competitive software platform on 
GPUs for explicit coupling with solids.

Acknowledgements  This work was supported by Science-based Arti-
ficial Intelligence (AI)/Machine Learning (ML) Institute—SAMI, and 
the project, CFD for Advanced Reactor Design—CARD. We appreci-
ate NVIDIA providing access to NVIDIA Solutions Lab (NSL-B) for 
computations on DGX A100s. We also thank Dr. Madhava Syamlal for 
his inspiration and useful comments. Dr. Syamlal provided significant 
inspiration, motivation, and support for this work. We congratulate 
Dr. Syamlal on his retirement and wish him the very best on this new 
chapter of his life. We will never forget all that he has done for us in 
your long and prosperous career.

Funding  This project was funded by the Department of Energy, 
National Energy Technology Laboratory, an agency of the United 
States Government, through an appointment administered by the Oak 
Ridge Institute for Science and Education. Neither the United States 
Government nor any agency thereof, nor any of its employees, nor the 
support contractor, nor any of their employees, makes any warranty, 
expressor implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, 

Fig. 11   a Estimated energy consumption for a single SIMPLE iteration in the strong scaling analysis for single phase with 10 M cells and MP-
PIC with implicit coupling. b The energy consumption of weak scaling analysis for MFiX and MFiX-AI with four GPUs



3590	 Engineering with Computers (2023) 39:3577–3591

1 3

manufacturer, or otherwise does not necessarily constitute or imply 
its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.

Code availability  The MFiX-AI code is available as part of the MFiX 
suite of codes that are provided through NETL’s Multiphase Flow Sci-
ence (MFS) web portal (https://​mfix.​netl.​doe.​gov).

Declarations 

Conflict of interest  The authors have no conflicts of interest to declare 
that are relevant to the content of this article.

References

	 1.	 Howard M, Fisher T, Hoemmen M, Dinzl D, Overfelt J, Bradley 
A, et al (2018) Employing multiple levels of parallelism for CFD 
at large scales on next generation high-performance computing 
platforms. In: Tenth International Conference on Computational 
Fluid Dynamics (ICCFD10); ICCFD10–079

	 2.	 Appa J, Turner M, Ashton N (2021) Performance of CPU and 
GPU HPC Architectures for off-design aircraft simulations. AIAA 
Scitech 2021 Forum

	 3.	 Castagna J, Guo X, Seaton M, O’Cais A (2020) Towards extreme 
scale dissipative particle dynamics simulations using multiple 
GPGPUs. Comput Phys Commun 251:107159

	 4.	 Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand 
S, Beberg AL et  al (2009) Accelerating molecular dynamic 
simulation on graphics processing units. J Comput Chem 
30(6):864–872

	 5.	 Chen T, Ning Y, Amritkar A, Qin G (2018) Multi-GPU solution to 
the lattice Boltzmann method: an application in multiscale digital 
rock simulation for shale formation. Concurr Comput Pract Expe-
rience 30(19):e4530

	 6.	 Nguyen G, Dlugolinsky S, Bobák M, Tran V, López García Á, 
Heredia I et al (2019) Machine learning and deep learning frame-
works and libraries for large-scale data mining: a survey. Artif 
Intell Rev 52(1):77–124

	 7.	 Awan AA, Manian KV, Chu C-H, Subramoni H, Panda DK (2019) 
Optimized large-message broadcast for deep learning workloads: 
MPI, MPI+NCCL, or NCCL2? Parallel Comput 85:141–152

	 8.	 Mudigere D, Sridharan S, Deshpande A, Park J, Heinecke A, 
Smelyanskiy M et al (2015) Exploring shared-memory optimiza-
tions for an unstructured mesh CFD application on modern paral-
lel systems. IEEE International Parallel and Distributed Process-
ing Symposium 2015:723–732

	 9.	 Selvam M, Hoffmann K (2015) MPI/Open-MP Hybridization 
of Higher Order WENO Scheme for the Incompressible Navier-
Stokes Equations

	10.	 Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M, 
Rogers BD (2011) GPUs, a new tool of acceleration in CFD: 
efficiency and reliability on smoothed particle hydrodynamics 
methods. PLoS ONE 6(6):e20685

	11.	 Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial 
approach to computational continuum mechanics using object-
oriented techniques. Comput Phys 12(6):620–631

	12.	 Fernandes C, Faroughi SA, Ribeiro R, Isabel A, McKinley GH 
(2022) Finite volume simulations of particle-laden viscoelastic 
fluid flows: application to hydraulic fracture processes. Eng Com-
put. https://​doi.​org/​10.​1007/​s00366-​022-​01626-5

	13.	 Afzal A, Ansari Z, Faizabadi AR, Ramis MK (2017) Paralleliza-
tion strategies for computational fluid dynamics software: state 
of the art review. Arch Comput Methods Eng 24(2):337–363

	14.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, 
et al (2015) TensorFlow: Large-scale machine learning on het-
erogeneous systems

	15.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al 
(2016) TensorFlow: a system for large-scale machine learning. 
In: Proceedings of the 12th USENIX conference on Operat-
ing Systems Design and Implementation. Savannah, GA, USA: 
USENIX Association, pp 265–283

	16.	 Zhao X-z, Xu T-y, Ye Z-t, Liu W-j (2020) A TensorFlow-based 
new high-performance computational framework for CFD. J 
Hydrodyn 32(4):735–746

	17.	 Clarke M, Musser J (2020) The MFiX Particle-in-Cell Method 
(MFiX-PIC) Theory Guide. NETL Technical Report Series, 
DOE/NETL-2020/2115. U.S. Department of Energy, National 
Energy Technology Laboratory: Morgantown, WV

	18.	 Li T, Dietiker J-F, Shahnam M (2012) MFIX simulation of 
NETL/PSRI challenge problem of circulating fluidized bed. 
Chem Eng Sci 84:746–760

	19.	 Herzog N, Schreiber M, Egbers C, Krautz HJ (2012) A com-
parative study of different CFD-codes for numerical simulation 
of gas–solid fluidized bed hydrodynamics. Comput Chem Eng 
39:41–46

	20.	 Garg R, Galvin J, Li T, Pannala S (2010) Documentation of 
open-source MFIX–DEM software for gas-solids flows

	21.	 Li T, Garg R, Galvin J, Pannala S (2012) Open-source MFIX-
DEM software for gas-solids flows: Part II — validation studies. 
Powder Technol 220:138–150

	22.	 Garg R, Galvin J, Li T, Pannala S (2012) Open-source MFIX-
DEM software for gas–solids flows: Part I—verification studies. 
Powder Technol 220:122–137

	23.	 Li F, Song F, Benyahia S, Wang W, Li J (2012) MP-PIC simula-
tion of CFB riser with EMMS-based drag model. Chem Eng Sci 
82:104–113

	24.	 Kadyrov T, Li F, Wang W (2019) Impacts of solid stress model 
on MP-PIC simulation of a CFB riser with EMMS drag. Powder 
Technol 354:517–528

	25.	 Vaidheeswaran A, Musser J, Clarke MA (2020) Verification 
and Validation of MFiX-PIC. NETL Technical Report Series, 
NETL-TRS-2–2020. U.S. Department of Energy, National 
Energy Technology Laboratory: Morgantown, WV

	26.	 Xiong Q, Li B, Chen F, Ma J, Ge W, Li J (2010) Direct numeri-
cal simulation of sub-grid structures in gas–solid flow—GPU 
implementation of macro-scale pseudo-particle modeling. Chem 
Eng Sci 65(19):5356–5365

	27.	 Snider DM (2001) An incompressible three-dimensional mul-
tiphase particle-in-cell model for dense particle flows. J Comput 
Phys 170(2):523–549

	28.	 Syamlal M, O’Brien TJ (1989) Computer simulation of bubbles 
in a fluidized bed. AIChE Symp Ser 85:22–31

	29.	 Isakov M, Rosario Ed, Madireddy S, Balaprakash P, Carns P, 
Ross RB, et al (2020) HPC I/O throughput bottleneck analysis 
with explainable local models. SC20. In: International Confer-
ence for High Performance Computing, Networking, Storage 
and Analysis, pp 1–13

	30.	 Harrington P (2017) Diagnosing Parallel I/O Bottlenecks 
in HPC Applications. SC17, The International Conference 
for High Performance Computing, Networking, Storage and 
Analysis

	31.	 Shantharam M, Tatineni M, Choi D, Majumdar A (2018) Under-
standing I/O bottlenecks and tuning for high performance I/O on 
large HPC Systems: a case study. In: Proceedings of the Practice 
and Experience on Advanced Research Computing. Pittsburgh, 
PA, USA: Association for Computing Machinery; Article 54

https://mfix.netl.doe.gov
https://doi.org/10.1007/s00366-022-01626-5


3591Engineering with Computers (2023) 39:3577–3591	

1 3

	32.	 Magni A, Dubach C, O'Boyle M (2014) Exploiting GPU hard-
ware saturation for fast compiler optimization. In: Proceedings of 
Workshop on General Purpose Processing Using GPUs

	33.	 NVIDIA DGX A100 THE UNIVERSAL SYSTEM FOR AI 
INFRASTRU​CTU​RE; 2020. Available from: https://​www.​nvidia.​
com/​conte​nt/​dam/​en-​zz/​Solut​ions/​Data-​Center/​nvidia-​dgx-​a100-​
datas​heet.​pdf

	34.	 NVIDIA. Whitepaper: NVIDIA A100 Tensor Core GPU Archi-
tecture. 2020

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf

	Development of an equation-based parallelization method for multiphase particle-in-cell simulations
	Abstract
	1 Introduction
	2 Methodology
	2.1 MP-PIC model
	2.2 Code structure
	2.2.1 Coupling strategy
	2.2.2 Parallel computing strategy
	2.2.3 Use of TF graph and custom operator


	3 Code verification
	3.1 Verification for a single timestep
	3.2 Validation of bed characteristics

	4 Parallel scaling performance
	4.1 Strong scaling
	4.2 Weak scaling of MFiX vs. MFiX-AI with a fixed number of GPUs

	5 Energy consumption efficiency
	6 Conclusion and outlook
	Acknowledgements 
	References




