
Vol.:(0123456789)1 3

Engineering with Computers (2023) 39:3577–3591
https://doi.org/10.1007/s00366-022-01768-6

ORIGINAL ARTICLE

Development of an equation‑based parallelization method
for multiphase particle‑in‑cell simulations

Mino Woo1,2  · Terry Jordan1 · Tarak Nandi1 · Jean François Dietiker3 · Christopher Guenther1 · Dirk Van Essendelft1

Received: 18 May 2022 / Accepted: 21 November 2022 / Published online: 22 December 2022
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

Abstract
Manufacturers have been developing new graphics processing unit (GPU) nodes with large capacity, high bandwidth memory
and very high bandwidth intra-node interconnects. This enables moving large amounts of data between GPUs on the same
node at low cost. However, small packet bandwidths and latencies have not decreased, which makes global dot products
expensive. These characteristics favor a new kind of problem decomposition called “equation decomposition” rather than
traditional domain decomposition. In this approach, each GPU is assigned one equation set to solve in parallel so that the
frequent and expensive dot product synchronization points in traditional distributed linear solvers are eliminated. In exchange,
the method involves infrequent movement of state variables over the high bandwidth, intra-node interconnects. To test this
theory, our flagship code Multiphase Flow with Interphase eXchanges (MFiX) was ported to TensorFlow. This new product
is known as MFiX-AI and can produce near identical results to the original version of MFiX with significant acceleration
in multiphase particle-in-cell (MP-PIC) simulations. The performance of a single node with 4 NVIDIA A100s connected
over NVLINK 2.0 was shown to be competitive to 1000 CPU cores (25 nodes) on the JOULE 2.0 supercomputer, leading
to an energy savings of up to 90%. This is a substantial performance benefit for small- to intermediate-sized problems. This
benefit is expected to grow as GPU nodes become more powerful. Further, MFiX-AI is poised to accept native artificial
intelligence/machine learning models for further acceleration and development.

Keywords  High-performance computing · Computational fluid dynamics · Parallel computation · Multiphase flow ·
TensorFlow · GPU acceleration

1  Introduction

Recent advances in high-performance computing (HPC),
including those in both multi-central processing units
(CPUs) and graphics processing units (GPUs), have greatly
improved the speed of numerical computations in areas
like computational fluid dynamics (CFD) [1, 2], molecular
dynamics [3, 4], lattice-Boltzmann methods [5], and deep
learning [6, 7]. Computationally expensive CFD compu-
tations requiring high mesh resolution have significantly

benefited from these advances. However, developing par-
allel computer codes to utilize multicore architecture is
still challenging, as it requires rewriting and optimization
of existing serial codes, particularly when both CPUs and
GPUs are used in a collaborative manner [8, 9], where the
GPU to CPU memory transfer can be a serious bottleneck
[10]. Although parallel computing has been widely used in
a variety of CFD applications [11, 12], development of a
computer code to fully utilize multicore HPC capabilities on
heterogeneous systems is still challenging [13].

TensorFlow (TF) [14] is an open-source software
library capable of utilizing both CPU and GPU architec-
tures and can potentially help accelerate CFD compu-
tations. TF was the most popular and well-documented
framework at the beginning of this project and is an
effective tensor algebra library, which makes it useful for
many scientific computing challenges. In TF, numerical
computations are represented as a graph of connected
operations [14] that can be executed on multiple devices

 *	 Dirk Van Essendelft
	 dirk.vanessendelft@netl.doe.gov

1	 National Energy Technology Laboratory, Morgantown,
WV 26505, USA

2	 Oak Ridge Institute for Science and Education, Oak Ridge,
TN 37830, USA

3	 Leidos Research Support Team, Pittsburgh, PA 15236‑0940,
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01768-6&domain=pdf
http://orcid.org/0000-0002-6799-6223

3578	 Engineering with Computers (2023) 39:3577–3591

1 3

including multicore CPUs, general purpose GPUs, and
custom-designed application-specific integrated circuits
(ASICs). This enables TF-based applications to be run on
a wide variety of hardware and to scale well from powerful
GPU servers down to mobile devices [15]. In addition, TF
offers multiple levels of abstraction and operates on multi-
ple languages and operating systems [14]. These features
allow TF to substitute or supplement the existing CFD
frameworks to accelerate computations. At its heart, TF
is an extremely powerful math library that allows for both
hardware agnostic programming and hardware-specific
optimization depending on the requirements. Recently,
Zhao et al. [16] reported that a TF-based CFD simulation
with GPU acceleration required almost ten times less com-
putational time compared to the same simulation carried
out on CPUs using a Fortran code.

The MFiX (Multiphase Flow with Interphase
eXchanges) CFD code was chosen as the base develop-
ment platform to investigate GPU acceleration using TF.
MFiX is an open-source multiphase flow solver developed
at the National Energy Technology Laboratory (NETL)
and employs the two-fluid model (TFM), the discrete ele-
ment model (DEM), and the multiphase particle-in-cell
(MP-PIC) model for modeling a wide range of multiphase
flows [17]. MFiX has been widely used for more than three
decades and is well validated, particularly for gas–solid
fluidized beds, by TFM [18, 19], DEM [20–22] and MP-
PIC models [23–25]. In industrial-scale semi-dense mul-
tiphase flows, where the focus is more on trends than solu-
tion precision, the MP-PIC model is best suited because it
uses a statistical averaging technique that enables simula-
tions to be quickly advanced with minimal particle-level
overhead [17]. In addition, using solid-phase normal stress
for particle interactions rather than direct consideration of
particle collisions can remarkably accelerate computation
speed on CPU–GPU hybrid computing platforms [26].

The present study aims to develop an equation-based
parallelization method toward efficient and effective GPU
acceleration. The TF-based platform allows independent
computations for each transport equation by assigning var-
iables into separate processor devices. This enables mem-
ory- and computation-efficient, intuitive parallelization of
solution procedures depending on the computation load
for each equation. The developed MFiX-AI code has been
rigorously verified by comparing the number of matching
digits in the results, and a dramatic increase in speed was
established by using a single GPU node rather than dozens
of multicore parallel CPU nodes. Furthermore, MFiX-AI
with multiple GPUs can natively deploy arbitrary artificial
intelligence and machine learning (AI/ML) models at any
point within the CFD code, which allows further optimiza-
tion in performance.

2 � Methodology

2.1 � MP‑PIC model

The MP-PIC model in MFiX consists of a Eulerian model
for continuous fluid phase and a Lagrangian model to track
the position and trajectory of solid particles. Instead of
resolving each individual particle, MP-PIC uses the concept
of “parcels,” wherein groups of identical particles are repre-
sented by parcels that are tracked in a Lagrangian manner.
A parcel’s volume is defined by Vparcel = �Vparticle where �
is the statistical weight, representing the average number of
particles per parcel. Several assumptions are involved in the
MFiX MP-PIC model [17], for example, particles within a
computational parcel are assumed to be spherical in shape.
Also, instead of considering particle collisions or using any
Newtonian mechanics to calculate the individual particle
displacement and velocity, the MP-PIC model creates an
aggregated solids stress momentum source term that directly
affects local solids velocity. Furthermore, the parcels are
assumed to maintain a mean density and not experience any
rotation. With these assumptions, the three-dimensional gas
phase continuity and momentum equations can be written
as follows [23]:

and the equations for parcel motion can be represented as

where �G and �P are the volume fraction of gas and parcel,
�G and �P are gas density and parcel density, and �G and �P
are three-dimensional velocity vectors for gas and parcel,
respectively. � denotes the gravity vector. �G in Eq. (2) is the
fluid shear stress tensor and �P in Eq.(4) is a frictional stress
term proposed by Snider [27] as

Here, �CP is the close pack volume fraction, and � , � and
ps are scalar model parameters. The fluid–particle momen-
tum exchange is represented by the interphase drag force
terms � and �P in Eqs. (2) and (4), respectively, where �
is the interpolated force from the parcel location to the

(1)
�

�t
(�G�G) + ∇ ⋅ (�G�G�G) = 0,

(2)

�

�t
(�G�G�G) + ∇ ⋅ (�G�G�G�G) = −�G∇p + ∇ ⋅ �G − � + �G�G�.

(3)
d�P

dt
= �P,

(4)�P�P
d�P

dt
= −�P∇p + �P + �P�P� − ∇�P,

(5)�P =
ps�

�

P

max
[
�CP − �P, �(1 − �P)

] .

3579Engineering with Computers (2023) 39:3577–3591	

1 3

corresponding fluid cell, and �P is the force at the parcel
position. The Syamlal–O’Brien model [28] was employed
among the various types of drag models tested to form the
force terms. Further discussions on drag models, numerical
scheme and discretization are beyond the scope of this study,
and interested readers may refer to the MFiX Theory Guide
[17] for more details.

2.2 � Code structure

This section introduces the coupling strategy to establish
MFiX-AI and its basic code structure. This study is based on
MFiX version 19.3.1 (available at https://​mfix.​netl.​doe.​gov/​
doc/​mfix/​19.3.​1/​about.​html) and TF version 1 or 2 (with TF
2.x behavior deactivated in the latter).

2.2.1 � Coupling strategy

In MFiX-AI, the core solution procedure occupying the most
computation time was rewritten using TF, while miscellane-
ous functions such as computational domain handling, ini-
tial particle population and post-processing remained in the
basic Fortran of classic MFiX. Figure 1 demonstrates the
workflow within MFiX-AI. The mfix.f file is placed on the
top level of the code hierarchy in MFiX. This file controls
major code behavior such as initialization, time marching,
and calls the fluid and PIC solvers. A flag ‘USE_TF_SOLV-
ERS’ was introduced to activate the use of the tf_solver.f

file for MFiX-AI instead of following the classic MFiX
workflow. There are two calls—the first call INITIALIZE_
TF is used to initialize the TF graph, and the second call
SOLVE_TF is used to take a separate timestep inside the
TF graph. The INITIALIZE_TF subroutine in the tf_solver.f
file gathers the required model parameters and truth tables
defined during MFiX pre-processing and passes them into
the MFiX-AI code. The data exchange between the Fortran-
based MFiX code and the Python-based MFiX-AI code is
established by the additional C wrapper code tfpywrapper.c.
The wrapper code is used to directly transfer memory from
Fortran to TF. The Python functions are defined in the tf_
loading_nn.py file that feeds the placeholders in MFiX-AI
and runs the TF graph. The body of the CFD computations
are handled within the mfixTF_mod.py file and associated
modules. For visualization and data recall, the field variables
of interest are transferred back to the Fortran code through
the same call chain in the reverse direction. Aside from
initialization and data recall, no memory transfers into or
out of TF during the solution procedure except the timestep
value. Further, the entire graph is GPU compatible and can
be executed with no host/GPU data transfer except for the
desired timestep at the head of every timestep.

2.2.2 � Parallel computing strategy

MFiX-AI is a direct port from Fortran to the TF Python
ecosystem and was designed to run on GPUs. As such, the

Fig. 1   Code structure of the data exchange process between MFiX and MFiX-AI

https://mfix.netl.doe.gov/doc/mfix/19.3.1/about.html
https://mfix.netl.doe.gov/doc/mfix/19.3.1/about.html

3580	 Engineering with Computers (2023) 39:3577–3591

1 3

solution procedure used in MFiX was rewritten using graph
representation in TF. MFiX-AI employs placeholders, ten-
sors, and variables supported by TF. Placeholders are used
for data input, tensors are immutable data structures within
graphs, and variables are mutable data structures. The main
part of MFiX-AI is initialized by using placeholders that
store values in variables for later recall. A TF variable is
designed to maintain a shared, persistent state manipulated
by a program [14], so the variables in MFiX-AI are used
for the data that should remain on the device between ses-
sion run calls. Tensors are immutable data structures used
for intermediate data that does not need to persist between
session run calls. Initialization flows from placeholders
through tensors and ends in variable assignment. For calcu-
lation of timesteps, the graph flows from reads of variables
through tensor calculations to variable updates. Because it
is only safe to update variables once per session run call, it
was decided to create a graph that does a single complete
timestep and to make repeated calls into TF to advance the
time from the Fortran base code. This method also allows
for easy matrix construction and solving without the need for
repeated field variable and/or matrix data transfers between
host and device.

An equation-based parallelization scheme that can utilize
multiple GPUs was developed. First, required variables for
each component of the momentum equations were declared
independently on individual devices (referred to as Udev,
Vdev and Wdev), which allowed simultaneous solutions of
the momentum equations. If other transport equations such
as species and energy are needed, they can also be solved

simultaneously on different devices. Next, a set of devices
were utilized to solve for pressure, which is a dependent
variable dictated by the momentum equation. In the current
version of the code, a multi-GPU linear solver feature can
be used for pressure. A PICdev was assigned to calculate
MP-PIC particle motion and flow. For simplicity, the PICdev
is always GPU 1 and Pdev for pressure is also GPU 1 when
the multi-GPU linear solver mode is disabled. Currently, the
PIC equations are solved over a single GPU, which creates a
serial workload. Future versions of the code will distribute
this across all available devices.

Figure 2 shows schematic diagrams of parallel computing
strategies in MFiX and MFiX-AI. The parallel computing
strategy for multicore CPU computations in MFiX is a typi-
cal MPI-based approach that requires domain decomposi-
tion and significant MPI communications to transfer data
among the subdomains. The need for MPI communications
is often a bottleneck in HPC. In particular, the latencies to
communicate dot products often limit the minimum itera-
tion time. Several dot product updates are required at every
iteration of the linear solver for every SIMPLE solver itera-
tion. Frequent small communications such as dot products
are not advantageous, as many studies have shown that as
much as 80% of the computation time in modern HPC codes
is spent waiting for data to arrive [29–31]. This creates a
situation where time to solution does not decrease as pro-
cessor workload decreases past a certain point, as is seen in
most strong scaling curves. The situation can be even more
complicated with GPU based solvers because the device effi-
ciency also depends on having enough workload to balance

Fig. 2   Parallel computing strategy for MFiX on multicore CPUs and MFiX-AI on multi-GPUs. a Typical MPI process for the decomposed com-
putational domain used in MFiX, b multi-GPU data communication used in MFiX-AI in the TF graph

3581Engineering with Computers (2023) 39:3577–3591	

1 3

the processing relative to the device global memory access.
Even without latency limitations, performance does not
scale to small workloads on GPUs, which limits minimum
time to solution in parallel workloads as well.

MFiX-AI utilizes an equation-based parallel computing
strategy. This kind of strategy is ideal for modern GPUs
nodes like the DGX A100 with the NVLink switch. This
strategy requires very infrequent communication of entire
field variables and no dot product synchronization points in
the linear solver unless the parallel pressure solver is turned
on. This software architecture trades very frequent small
data transfers for infrequent large data transfers. Modern
GPU nodes have exceptionally high inter-device bandwidths
of up to 7.2 terabyte/s for NVLink version 3.0, which makes
this software architecture tractable since the time to move
large data sets between GPUs on the same node is minimal.
The inter-device data transfer rates are over 144 times the
fastest 400 Gb/s inter-node transfer rates. While this is a sub-
stantial increase in bandwidth, latencies have not improved
much and are still on the order of 10–30 µs. Thus, the equa-
tion-based parallelization methodology is expected to work
very well on problem scales that can fit in the memory space
of a single node. MFiX-AI also has an advantage because
formation and solve performed on device and host/device
data transfers are all but eliminated. The equation-based
parallelization strategy can also be more efficient than the
current block partitioning in MFiX, where load imbalance
can severely affect parallel efficiency. Finally, the equation-
based strategy is expected to continue to pay dividends in
future HPC systems where GPUs become larger with more
memory, as inter-device bandwidth grows significantly
(especially relative to inter-node bandwidth) and communi-
cation latencies only make marginal improvements.

The parallelization strategy for the pressure equation
works well provided that the work per GPU is high and that
enough iterations are needed for convergence to overcome
the setup overhead. However, the synchronization latencies
and workload utilization efficiencies are expected to limit
how many GPUs can effectively be used at a given problem
scale. This strategy could be extended to transport equations,
but these equations usually converge in just a few iterations
and it is difficult to make up the costs of setting up the solver
for parallel work.

Depending on the available number of GPUs, users
can specify GPUs for each Udev, Vdev, Wdev, and Pdev.
PICdev is always on GPU 1 in the current version of the
code. For example, when only a single GPU is avail-
able, all equations are assigned to one GPU, which can
be symbolized as 111[1] representing UVW[P] device
where PICdev is always assigned to 1. Figure 2b shows an
example case of a parallel run with four GPUs (234[1234]
decomposition) where three GPUs are assigned to the
three velocity components and one GPU is assigned to

PICdev. The four numbers in the square bracket denote the
workload for pressure distributed to the four GPUs. This
configuration is currently the most memory and computa-
tionally efficient way to run the code.

For fluid–particle coupling, PICdev is used at least
twice in the solution procedure of both the codes depend-
ing on whether implicit or explicit coupling is used. At
the head of the SIMPLE iteration, coupling from particle
to fluid is achieved where the momentum exchange terms
� in Eq. (2) are calculated. In explicit coupling (PIC expl.
in Fig. 2), the particle to fluid terms are calculated before
the first SIMPLE iteration and are not updated during
subsequent SIMPLE iterations. In implicit coupling (PIC
impl. In Fig. 2), those terms are updated at the begin-
ning of every SIMPLE iteration. Thus, calculation times,
which are compared in the performance analysis in Sect. 4,
depend on the coupling method. The second PICdev uti-
lization comes after the SIMPLE iteration and is used to
update parcel positions and velocities. The interpolation
between particle positions and Eulerian grid values is a
known area for further parallel development. The com-
putations could be spread over multiple devices using
the high bandwidth available between GPUs on the same
node, much like the fluid solver.

2.2.3 � Use of TF graph and custom operator

MFiX-AI uses TF in graph execution mode, where an effi-
cient computational graph is created before carrying out
the actual calculations. A computational graph represents
a series of prearranged TF operations that manipulate ten-
sors or tensor-like objects. MFiX-AI employs rank-1 tensors
for variables used in calculations and for indices indicating
the positions of the computation cells corresponding to the
variables. Instead of using element-wise looping, a combi-
nation of merge, gather, and scatter operations is used for
vector arithmetic. To avoid conditional statements, truth
tables are predefined in Fortran, fed into the graph as rank-1
tensors, and converted to compressed int64 representations
to save memory. Although most calculations in MFiX can
be done with combinations of standard TF operations, a few
complex calculations containing many irregular conditional
statements and performance-critical operations are handled
through custom operators. Custom operators (or custom
ops) in TF allow users to develop functionality that is not
defined as default TF operators. The custom ops are written
in C +  + and whatever language is compatible with other
supported devices (such as CUDA for NVIDIA devices and
HIP for AMD). The use of custom ops can also be beneficial
for reducing the number of kernel calls, optimizing memory
usage during the operations, and optimizing memory access
patterns.

3582	 Engineering with Computers (2023) 39:3577–3591

1 3

3 � Code verification

MFiX-AI was verified by conducting a code-to-code com-
parison against the classic MFiX code. Figure 3 shows the
schematics of the verification case. The test case was an
isothermal simulation of a fluidized bed in a rectangular
cuboid geometry with dimensions of 12 cm, 72 cm, 12 cm
in x, y, and z direction, respectively. The computational
domain was discretized using a structured mesh with 27,
162 and 27 cells in x, y, z direction, respectively, such that
the total number of cells is 137,924. The constant density
and viscosity of the gas phase were set to 1.093 kg/m3 and
1.9×10−5 Pa s, respectively. Gravity acts in the - y direc-
tion. The domain inlet was set at the bottom ( y = 0), with
gas flow velocity ranging between 0.3 and 1.0 m/s, and
the outlet at the top ( y = 72cm) . The vertical planes were
treated as no-slip walls. The particles were assumed to
be of identical size with diameter of 400 μm and density
of 2000 kg/m3 . The initial bed height was set to 12 cm
with the gas volume fraction set to 0.42 for the bed area.
With a statistical weight of 10 (the number of particles per
parcel), the total number of parcels present in the domain
was 2,983,447. The initial timestep was set to 1 ms and
varied depending on the convergence of SIMPLE itera-
tions with the given tolerance and maximum number of
iterations. The average Courant number according to the
initial timestep is in the range of 6.75 × 10–4 to 2.25 × 10–3
depending on the gas flow velocity. No preconditioners
were used for the linear solvers in either of the codes to
ensure that the solver settings are identical.

3.1 � Verification for a single timestep

The test case was conducted using both codes in 64-bit
precision to maintain conformity between the MFiX and
MFiX-AI simulations. Usually, the initial positions of the
particles are set in a randomized manner that precludes an
exact comparison of the time evolution of the two codes’
simulations. Hence, both simulations were restarted from an
MFiX calculation where the bubbling particle motion was
active. Residuals of the velocity components and pressure
calculated from both codes were in excellent agreement as
presented in Fig. 4, and a converged solution was obtained
in 33 SIMPLE iterations for both codes with the same toler-
ance for the SIMPLE iterations. In addition, both codes were
modified to write the same field variables to file for every
cell and every particle at the same point in the solution pro-
cess. This allowed a comparison of the number of matching
significant digits by using the following equation for the field
variable � from each code.

This is a very restrictive comparison method as the error
is relative to the order of magnitude, and not the absolute
difference.

Figure 5 displays histograms for the matching number of
digits for the selected variables from both codes at differ-
ent steps in the solution procedure. The matching number
of digits for the velocity components and pressure at the
first SIMPLE iteration are shown in Fig. 5a. The velocity

(6)

Number of digits matching = − log10

||�MFiX − �MFiX - AI
||

||�MFiX
||

.

Fig. 3   Computational domain and boundary conditions for the verifi-
cation case

Fig. 4   Residual plots of velocity and pressure from MFiX-AI (solid
lines) and MFiX (dashed lines) during SIMPLE iterations at the first
timestep

3583Engineering with Computers (2023) 39:3577–3591	

1 3

components match within 10 digits and most cells have 14
matching significant digits. However, the pressure matches
with fewer digits of precision as it is a quantity derived from
the velocity components. In MFiX-AI, the pressure used in
the SIMPLE iterations is gauge pressure while absolute pres-
sure was used in MFiX, which allows MFiX-AI to maintain
five more digits of precision than MFiX. Also, the linear
equations for pressure generally take many more iterations
to converge than those of the velocity components, which
may contribute to error accumulation. Hence, the corrected
velocity field at the end of the first SIMPLE iteration (that
includes contributions from the predicted pressure field) also
shows fewer matching significant digits (similar to that for
pressure). That said, most cells match within nine significant
digits and the worst cell matched with four. Even with the
worst number of digits matching, they are still in very good
agreement as it represents less than 0.01% relative differ-
ence, given that the two simulations were carried out on
different hardware. Note that the pressure values used in
Fig. 5a, b represent absolute pressure.

Figure 5c shows that the variables related to the fluid–par-
ticle momentum transfer can also influence error propaga-
tion. The solid volume fraction �P is calculated using the
bilinear numerical interpolation scheme based on the given
particle positions from MFiX, but it only matches within
eight significant digits. The solids shear stress, �P , lost one
more matching significant digit after Eq. (5) presumably due
to the power function of �P in the numerator. Fx,Fy and Fz

represent the components of the particle force vector � in
Eq. (2). Although the particle-related variables in Fig. 5c
did not significantly affect the gas velocity components
as shown in Fig. 5a, those errors further propagated into
the MP-PIC model’s calculation of solid motion. Another
significant divergence in behavior was observed during the
treatment of parcel reflections at the boundary. The problem
stems from hard conditionals that determine the occurrence
of parcel reflections, which are affected by very small dif-
ferences in position. A bit perfect match is needed to ensure
the same conditional execution in both codes, and this may
not be possible because the computations were performed
on different hardware. This unavoidable difference resulted
in negative values in Fig. 5d. Apart from the discrepancies
observed on a few particles, the velocity of most particles
matched within 11 significant digits and the position of most
particles matched within 14 digits, while in the worst case,
they matched within 4 and 6 digits, respectively.

3.2 � Validation of bed characteristics

Despite very good agreement observed at the first timestep,
the accumulation of bitwise differences leads both results
to quickly diverge after a few timesteps. This is not a con-
cern as results are expected to be non-deterministic; how-
ever, making a side-by-side comparison at every timestep is
impossible. Therefore, instead of instantaneous differences
between the predicted variables, the physical behavior of

Fig. 5   Histograms for the number of matching digits for non-zero
quantities obtained from MFiX-AI and MFiX. a Comparison of
velocity and pressure at the first SIMPLE iteration, b at the first

timestep, c variables affecting fluid–particle momentum exchange at
the first SIMPLE iteration, and d particle position and velocity after
PIC calculation

3584	 Engineering with Computers (2023) 39:3577–3591

1 3

the fluidized bed was time averaged at a variety of gas inlet
velocities. To obtain sufficiently time-independent mean
fields, the simulations were run for 102 s (in physical time)
starting from the initial conditions. The first two seconds
were discarded to eliminate the influence of the initial condi-
tions on the time averaged field. A fast Fourier transform of
the time series of gas volume fraction at a point (located at
the middle of the initial bed at [x,y,z] = [6 cm, 6 cm, 6 cm])
was carried out to obtain a bubble frequency spectrum.

Figure 6 demonstrates the results of the fluidized bed
simulations from MFiX and MFiX-AI. Figure 6a, b compare
the instantaneous and mean fields of gas volume fraction
and gas velocity magnitude from both codes at two gas inlet
velocities: 0.5 and 1.0 m/s. As expected, the instantaneous
comparisons do not match, but the mean fields from both
codes are qualitatively almost identical. Figure 6c com-
pares both mean gas volume fraction and gas velocity mag-
nitude profiles at the center of the domain in y direction.

The maximum differences between the two code profiles are
only 0.02 for gas volume fraction and 0.15 m/s for gas veloc-
ity magnitude. Moreover, Fig. 6d shows a similar dominant
frequency and bubble frequency spectrum, which indicates
that the bubbling phenomena obtained from the two cases
are in excellent agreement. Hence, the series of evidence
supports that the bubbling flow dynamics from both codes
are very similar.

In addition, Fig. 7 exhibits the pressure drop obtained
from both codes for inlet velocity of 0.3–1.0 m/s. The pres-
sure drop obtained from the two codes agree very well, with
the relative difference being less than 1%. Those values are
also close to the bed pressure representing the total weight
of the particle bed. The series of verification and valida-
tion tests conducted in this section concludes that MFiX-AI
can successfully replicate the predictions from the MFiX
code, which is already well validated with physical systems
[23–25].

Fig. 6   Result of fluidized bed simulations from MFiX and MFiX-AI
codes for inlet gas velocity of 0.5 and 1.0 m/s. Instantaneous and time
mean fields of gas volume fraction and gas velocity magnitude from
both codes for inlet gas velocity of a 0.5 m/s and b 1.0 m/s. c Com-

parison of mean gas volume fraction and mean gas velocity magni-
tude profiles at the center of the reactor. d Comparison of bubble fre-
quency spectrum from both codes

3585Engineering with Computers (2023) 39:3577–3591	

1 3

4 � Parallel scaling performance

The performance enhancement of MFiX-AI against
MFiX was evaluated by running identical example cases
on Nvidia A100 GPUs (NVLink connected on a DGX
A100), each with 80 GB memory for multi-GPU runs
(A100-SXM-80 GB). The JOULE 2.0 supercomputer at
NETL, utilizing Xeon Gold CPU (6148 20C 2.4 GHz) with
Intel Omni-Path 100Gbit interconnect, was used for the
MPI-based multicore CPU runs. The performance analy-
sis consists of strong scaling analysis with fixed problem
size, and weak scaling analysis with problem size fixed per
CPU node or GPU. First, single-phase calculations without
particles were conducted to investigate the speed gains
solely for solving the steps in the SIMPLE algorithm. A
backward-facing step (BFS) flow case was chosen as the
test case for the single-phase calculations. Figure 8 shows
the computational domain spanned 9.8 cm, 4.9 cm and
98 cm in x, y, z directions where an internal block with
dimensions of 4.9 cm, 4.9 cm, and 9.8 cm was used to
construct the step. Fluid viscosity and density were set
to 1.8 × 10−5 Pa s and 1.0 kg/m3 , respectively, and the
inlet velocity (directed along the + z direction) was set to

1 m/s. Secondly, a PIC example case was also used for
performance analysis, although the domain was slightly
different from that used in the validation study. The com-
putational domain was a cuboid as for the verification case
shown in Fig. 3. The dimensions are 12 cm, 12 cm, 36 cm
in the x, y and z directions, and the initial bed height was
set to 12 cm. For efficient parallel computation, the longest
side was aligned along the z direction, and gravity acts in
the - z direction. The density and viscosity were the same
as those in the performance analysis study. The inlet gas
velocity was set to 0.15 m/s, and the particle diameter
and density were specified as 200 μm and 2000 kg/m3 ,
respectively. For both single-phase and PIC examples, the
number of cells and particles varied depending on the scal-
ing methods. For both cases, Norm_g, which is a factor to
normalize the gas continuity equation residual in MFiX,
was set to unity.

4.1 � Strong scaling

Strong scaling analyses for single- and multiphase cases
were conducted to compare the speed gains and scalability
of both MFiX-AI and MFiX codes. Figure 9a, b exhibits
the results of strong scaling for single-phase BFS calcula-
tions. While the number of cells was fixed as 10,001,880
(10 M), 23,708,160 (20 M) and 30,802,500 (30 M) in this
analysis, the number of GPUs used for MFiX-AI calcula-
tions varied from 1 to 8, and the number of nodes for MFiX
calculations varied from 1 to 25, where one node consists
of 40 CPU cores. The timestep was initially set to 10−4 s
to guarantee convergence from the initial condition, and
gradually increased to the maximum timestep of 5 × 10−4
s. The physical time for calculations was 0.5 s. Figure 9a
compares the average computation time per SIMPLE itera-
tion of MFiX and MFiX-AI with regards to the size of test
problem and the number of CPU nodes or GPUs. MFiX-AI
showed a dramatic boost in performance compared to MFiX
for all three cases. Figure 9b shows the speed gain of MFiX-
AI against MFiX for three combinations of the number of
GPUs and the number of CPU nodes. The speed gain gener-
ally increased as the computation size increased. The maxi-
mum speed gain was 12.4, which corresponds to the use of
a single GPU node against a single CPU node for the 10 M
case. It should be noted that the calculation times for four
GPUs were even slightly faster than the computation times
for 25 nodes corresponding to 1,000 MPI ranks on the CPU.
Scaling for MFiX-AI stopped improving with four GPUs,
as this problem involves only four equations. If more equa-
tions were used, the scaling may continue provided that the
parallel solver for pressure can continue to efficiently scale.

Figure 9c, d show the results of strong scaling for a
benchmark case of PIC calculations with a fixed number

Fig. 7   Comparison of pressure drop obtained from the results of both
codes running with the gas inlet velocity ranging from 0.3 to 1.0 m/s

Fig. 8   Computational domain and boundary conditions for the BFS
benchmark case

3586	 Engineering with Computers (2023) 39:3577–3591

1 3

of cells (10,125,000; ~ 10 M) and a fixed number of par-
cels (47,853,435; ~ 47 M). The initial timestep was set to
5 × 10−4 s, and the 0.5 s (physical time) long calculation was
used for the strong scaling analysis. The number of GPUs
and CPU nodes employed are identical to those used in the
single-phase strong scaling analysis. However, instead of
comparing the cases with different computation sizes, this
comparison focuses on computation times depending on the
coupling method. The time per SIMPLE iteration was esti-
mated by dividing the total wall time spent in the SIMPLE
routine by the total number of SIMPLE iterations. Thus,
the time for PIC computations in both explicit and implicit
coupling were included. The difference in calculation times
for implicit and explicit coupling is only dictated by the dif-
ferent number of calculations for the momentum exchange
terms � in Eq. (2). In explicit coupling, this is calculated
once before the start of the SIMPLE loop, while, in implicit
coupling, the calculation is performed at the start of every
SIMPLE iteration. In Fig. 9c, the average computation time
per SIMPLE iteration for MFiX-AI with a single GPU is
much less than MFiX with a single CPU node and is com-
parable to MFiX with 25 CPU nodes. This dramatic boost
in the MFiX-AI computation speed is more clearly shown in
Fig. 9d, which presents the speed gain of MFiX-AI against

MFiX. The speed gain of single GPU compared to a single
CPU node is approximately 14. The optimal case of MFiX-
AI using four GPUs shows excellent performance compared
to MFiX using multiple CPU nodes. The computation time
for the optimal case is very close to that for MFiX using 25
nodes (= 1000 CPU cores); for the explicit case, MFiX-AI
is 10% faster than MFiX while for the implicit case MFiX-
AI is only 30% slower than MFiX. The observations in both
single- and multiphase computations clearly show the dra-
matic reduction in computation time for MP-PIC calcula-
tions using MFiX-AI compared to MFiX. It can be further
improved by parallelizing the MP-PIC solver, optimizing the
custom operations for hardware-specific implementations,
and applying machine learning algorithms for initial guesses
of SIMPLE iteration.

4.2 � Weak scaling of MFiX vs. MFiX‑AI with a fixed
number of GPUs

A weak scaling analysis for MFiX with a fixed number of
cells and/or parcels per number of CPU cores was compared
to the MFiX-AI calculations with a fixed number of GPUs
for single-phase BFS flow, PIC with a constant number of
parcels, and PIC with a variable number of parcels. The test

Fig. 9   Strong scaling analysis for a, b single-phase backward-facing
step flow computations and c, d MP-PIC fluidized bed computations
obtained by MFiX-AI with multiple A100 GPUs and MFiX with mul-
ticore CPU nodes. The average time per SIMPLE iteration of both

codes for a single phase in terms of cell counts, and c those for MP-
PIC computations in terms of particle coupling method. Speed gain
of MFiX-AI against MFiX for three pairs of GPU/CPU node combi-
nations for b single-phase computations and d MP-PIC computations

3587Engineering with Computers (2023) 39:3577–3591	

1 3

conditions were identical to those used for the strong scaling
analysis, with different initial timesteps and physical times
for calculation, which were 10−3 s, 50 s for the BFS case and
5 × 10−4 s, and 1 s for both PIC cases. For MFiX, the cell
per node is fixed to approximately 400,000. For PIC with
constant parcels, the number of parcels is set to 3,998,062
(4 M), and for PIC with variable parcels, the number of par-
cels per node is set to approximately 4 M. For comparison,
identical calculations were employed in MFiX-AI, but with
a constant number of GPUs.

Figure 10 shows the results of the three scaling analy-
ses. In the BFS case, as shown in Fig. 10a, the time per

SIMPLE iteration for MFiX-AI increased almost linearly as
the number of cells increased, while for MFiX it showed a
gentler increasing trend. The increasing trend for MFiX-AI
was expected, given that the workload increased per device.
However, the scaling curves for MFiX should be nearly flat
in an ideal case. However, almost 2% of the volume was
taken out for the step, resulting in a load imbalance, which
led to less-than-ideal scaling.

If more than 8 M cells are used for MFiX-AI with two
GPUs, the computation time will be larger than MFiX for
the single-phase calculations (since the MFiX runs were not
restricted by the maximum wall time). The MFiX-AI runs

Fig. 10   Weak scaling analysis of MFiX for a single-phase BFS flow,
b MP-PIC fluidized bed calculation with constant 4 million (M) par-
cels, and c variable parcels with 4 M parcels per node. Identical cases
of MFiX-AI with fixed number of GPUs were compared. The number

of cells is 400,000 per node for all three cases. d The ratio of incre-
ments of time per SIMPLE iteration and workload for MFiX-AI com-
putations. e Comparison of speed gain of MFiX-AI against MFiX for
three weak scaling cases

3588	 Engineering with Computers (2023) 39:3577–3591

1 3

with four GPUs were almost consistently faster than MFiX,
with a difference in time per iteration of approximately
0.02 s (corresponding to total wall time of 1 h) for all test
conditions in this study. It is interesting to note that MFiX-
AI with four GPUs scaled almost as well through increased
load as MFiX in weak scaling with a slight load imbalance.

Figure 10b displays the weak scaling results for PIC
calculations with constant parcels. As the number of cells
increases, the MFiX time per iteration dramatically decreases
until 3 M cells due to the decreasing number of parcels per
CPU. The benefit of continued mesh refinement is lost
because of particle load balancing in the fluid bed. However,
this behavior is not observed with MFiX-AI because the PIC
calculations are carried out in a single device (PICdev) and
there is no spatial domain decomposition. The computation
time for MFiX-AI increases approximately linearly with the
cell count. There is almost no difference between computa-
tion times of explicit and implicit coupling in MFiX. For
MFiX-AI, the computation times for implicit and explicit
coupling shifted by an approximately constant value, where
the offset represents the additional amount of work in
PICdev in SIMPLE iterations. This illustrates the need to
parallelize the PIC workloads in future versions of the code.
It is noted that MFiX-AI is faster than MFiX for all explicit
workloads tested as the increased serial workload for explicit
coupling was negligible in performance.

Figure 10c exhibits the same type of scaling analysis for
PIC with variable parcels and cells. In this case, the com-
putation times for MFiX-AI show a linear increasing trend,
while those for MFiX are almost flat with a slight increase.
For explicit coupling, MFiX-AI is always faster than MFiX,
while, for implicit coupling, MFiX-AI is only faster than
MFiX for less than 7 M cells and 70 M parcels. The rapidly
increasing computation time in the implicitly coupled weak
scaling shows the incredible expense involved in interpolat-
ing between the Lagrangian particles/parcels and the Eule-
rian grid, especially in MFiX-AI. This workload scales in
proportion to both grid size and particle/parcel count. In
general, implicit coupling should not be used unless there
is a clear need for accuracy or advantage for it. Further this
illustrates the need to parallelize this workload effectively
in future versions of MFiX-AI as the current version of the
code only uses one GPU for the PIC portions of the code.
That said, the explicit coupling in MFiX-AI is very competi-
tive to the CPU-based MFiX version.

Figure 10d shows the ratio between time spent for SIM-
PLE iterations and workload in MFiX-AI computations. The
ratios for different cases vary depending on the problem size
per number of GPUs employed. A ratio of unity implies
GPU workload saturation. In general, workloads become
saturated in the 2–5 million cells/parcel range, which is
consistent with other reported saturation limits for stencil
problems on GPUs [32]. Figure 10e compares the speed gain

of MFiX-AI against MFiX for the three weak scaling cases.
For the single-phase BFS case, the maximum speed gain is
approximately three times and it almost linearly decreases
with increasing number of nodes for MFiX runs. Including
the PIC calculation, the maximum speed gain for constant
parcels and variable parcels is approximately seven for both
implicit and explicit coupling. Speed gain steeply decreases
until ten nodes and further decreases linearly as the number
of nodes increases. It is noted that the PIC calculation of
MFiX-AI with constant parcels carried out on a single GPU
is even faster than the corresponding calculation in MFiX
on 25 nodes. MFiX-AI runs with variable parcels are still
beneficial as compared to the corresponding cases in MFiX
on less than 15 nodes and almost equivalent to those on 22
and 25 nodes. In most cases, MFiX-AI with just four GPUs
scales almost as well as weak scaling on CPU nodes with
MFiX. The performance in MFiX-AI on four GPUs is simi-
lar to MFiX runs carried out on many hundreds to thousands
of CPU cores.

5 � Energy consumption efficiency

The dramatic reduction in computation time leads to signifi-
cant energy savings. Multi-CPU MFiX computations were
conducted on the JOULE supercomputer equipped with Intel
Omni-Path interconnects. With 64 Omni-Path Edge and two
Omni-Path Director switches, each consuming 187 W and
229 W of electricity, respectively, the power consumed by
Omni-path interconnects corresponding to each of the 1856
nodes on JOULE is estimated as 6.7 W. Thus, the total power
per each node, defined by the sum of the CPU node (800 W)
power requirement and the interconnect per node (6.7 W)
power requirement, is 806.7 W. Energy consumption of
MFiX-AI is estimated from the maximum power requirement
of the DGX A100 system, which is 6.5 kW [33]. By using
four A100 GPUs (each of which consumes 400 W [34]) out
of eight GPUs, the estimated total power for running MFiX-
AI is 4.9 kW. Figure 11a, b compare the energy consump-
tion of both codes for single SIMPLE iteration in single-
phase and MP-PIC calculations. In strong scaling analysis,
the energy consumption of MFiX-AI with four GPUs is the
lowest for the single phase, while slightly increasing from
one to four GPUs for MP-PIC. This evidence consistently
shows that the use of four GPUs is optimal. The energy sav-
ing was estimated by comparing the energy consumption of
four GPUs against that of 25 CPU nodes. Despite the higher
power consumption rate of DGX A100 compared to a single
CPU node, the MFiX-AI highly benefits from fast computa-
tion time. The energy savings of four GPUs against 25 nodes
is 82% for the single phase and 67% for the MP-PIC calcula-
tions. In weak scaling, the energy consumption of both codes
increases monotonically with an increasing cell count. The

3589Engineering with Computers (2023) 39:3577–3591	

1 3

energy savings for weak scaling analysis is shown to be up to
82% for single phase and 90% for MP-PIC calculations. This
study indicates that there are distinct benefits of using multi-
GPU computations on a single node relative to as many as
25 CPU nodes. Although it is not straightforward to convert
a CPU-based CFD code to a new platform that enables effec-
tive GPU acceleration, the benefits in speed gain and energy
consumption will be a strong motivating factor to adopt the
new paradigm.

6 � Conclusion and outlook

This study is aimed at developing an equation-based GPU
parallelization strategy that enables acceleration of CFD
simulations with a multiphase PIC model. For this purpose,
MFiX, a well-established and thoroughly validated computer
code for multiphase flow, and TF, a powerful open-source
library for optimized matrix calculations on CPUs and
GPUs, were coupled by replacing the core of a CFD solution
procedure in MFiX by a TF-based computer code, MFiX-AI.
MFiX-AI distributes the variables into each assigned device,
which allows straightforward independent calculations for
each transport equation, simultaneously. Thus, an intuitive
equation-based parallelization was accomplished with no
domain decomposition. The developed MFiX-AI code pro-
duces results that are not bit perfect, but match within many
significant digits.

The equation-based parallelization strategy within MFiX-
AI was found to work exceptionally well. Time parities for
MFiX-AI were found to be above 15 CPU nodes in all cases
and were most typically well above 25 nodes. For single-
phase cases, MFiX-AI with just four GPUs with variable
work per device was found to scale almost as well as MFiX
in weak scaling at near optimal workload per core. MFiX-AI
is able to scale out to many tens of millions of cells in single
phase. At all tested conditions, MFiX-AI was faster than

MFiX by a significant margin. Extending the scaling curves
shows that MFiX-AI is preferrable to MFiX at scales all
the way up to approximately 15 million cells. As hardware
and code improvements are made, this balance will shift out
significantly.

For most multiphase simulations, particle/parcel load
imbalances greatly affect the time to solution for domain-
decomposed Eulerian Lagrangian software architectures.
When particles stack up or are naturally imbalanced, as
with a fluid bed simulation, fixed domain decomposition
methods struggle to scale well as some computing units
get overloaded with more particle calculations than others.
Load imbalance is even more severe in complex systems
such as recirculating fluidized beds. MFiX-AI does not have
this issue and shows promise to be an effective method for
multiphase calculations in a very similar manner to MFiX.
MFiX-AI is already a competitive software platform on
GPUs for explicit coupling with solids.

Acknowledgements  This work was supported by Science-based Arti-
ficial Intelligence (AI)/Machine Learning (ML) Institute—SAMI, and
the project, CFD for Advanced Reactor Design—CARD. We appreci-
ate NVIDIA providing access to NVIDIA Solutions Lab (NSL-B) for
computations on DGX A100s. We also thank Dr. Madhava Syamlal for
his inspiration and useful comments. Dr. Syamlal provided significant
inspiration, motivation, and support for this work. We congratulate
Dr. Syamlal on his retirement and wish him the very best on this new
chapter of his life. We will never forget all that he has done for us in
your long and prosperous career.

Funding  This project was funded by the Department of Energy,
National Energy Technology Laboratory, an agency of the United
States Government, through an appointment administered by the Oak
Ridge Institute for Science and Education. Neither the United States
Government nor any agency thereof, nor any of its employees, nor the
support contractor, nor any of their employees, makes any warranty,
expressor implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,

Fig. 11   a Estimated energy consumption for a single SIMPLE iteration in the strong scaling analysis for single phase with 10 M cells and MP-
PIC with implicit coupling. b The energy consumption of weak scaling analysis for MFiX and MFiX-AI with four GPUs

3590	 Engineering with Computers (2023) 39:3577–3591

1 3

manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Code availability  The MFiX-AI code is available as part of the MFiX
suite of codes that are provided through NETL’s Multiphase Flow Sci-
ence (MFS) web portal (https://​mfix.​netl.​doe.​gov).

Declarations 

Conflict of interest  The authors have no conflicts of interest to declare
that are relevant to the content of this article.

References

	 1.	 Howard M, Fisher T, Hoemmen M, Dinzl D, Overfelt J, Bradley
A, et al (2018) Employing multiple levels of parallelism for CFD
at large scales on next generation high-performance computing
platforms. In: Tenth International Conference on Computational
Fluid Dynamics (ICCFD10); ICCFD10–079

	 2.	 Appa J, Turner M, Ashton N (2021) Performance of CPU and
GPU HPC Architectures for off-design aircraft simulations. AIAA
Scitech 2021 Forum

	 3.	 Castagna J, Guo X, Seaton M, O’Cais A (2020) Towards extreme
scale dissipative particle dynamics simulations using multiple
GPGPUs. Comput Phys Commun 251:107159

	 4.	 Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand
S, Beberg AL et al (2009) Accelerating molecular dynamic
simulation on graphics processing units. J Comput Chem
30(6):864–872

	 5.	 Chen T, Ning Y, Amritkar A, Qin G (2018) Multi-GPU solution to
the lattice Boltzmann method: an application in multiscale digital
rock simulation for shale formation. Concurr Comput Pract Expe-
rience 30(19):e4530

	 6.	 Nguyen G, Dlugolinsky S, Bobák M, Tran V, López García Á,
Heredia I et al (2019) Machine learning and deep learning frame-
works and libraries for large-scale data mining: a survey. Artif
Intell Rev 52(1):77–124

	 7.	 Awan AA, Manian KV, Chu C-H, Subramoni H, Panda DK (2019)
Optimized large-message broadcast for deep learning workloads:
MPI, MPI+NCCL, or NCCL2? Parallel Comput 85:141–152

	 8.	 Mudigere D, Sridharan S, Deshpande A, Park J, Heinecke A,
Smelyanskiy M et al (2015) Exploring shared-memory optimiza-
tions for an unstructured mesh CFD application on modern paral-
lel systems. IEEE International Parallel and Distributed Process-
ing Symposium 2015:723–732

	 9.	 Selvam M, Hoffmann K (2015) MPI/Open-MP Hybridization
of Higher Order WENO Scheme for the Incompressible Navier-
Stokes Equations

	10.	 Crespo AC, Dominguez JM, Barreiro A, Gómez-Gesteira M,
Rogers BD (2011) GPUs, a new tool of acceleration in CFD:
efficiency and reliability on smoothed particle hydrodynamics
methods. PLoS ONE 6(6):e20685

	11.	 Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial
approach to computational continuum mechanics using object-
oriented techniques. Comput Phys 12(6):620–631

	12.	 Fernandes C, Faroughi SA, Ribeiro R, Isabel A, McKinley GH
(2022) Finite volume simulations of particle-laden viscoelastic
fluid flows: application to hydraulic fracture processes. Eng Com-
put. https://​doi.​org/​10.​1007/​s00366-​022-​01626-5

	13.	 Afzal A, Ansari Z, Faizabadi AR, Ramis MK (2017) Paralleliza-
tion strategies for computational fluid dynamics software: state
of the art review. Arch Comput Methods Eng 24(2):337–363

	14.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
et al (2015) TensorFlow: Large-scale machine learning on het-
erogeneous systems

	15.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al
(2016) TensorFlow: a system for large-scale machine learning.
In: Proceedings of the 12th USENIX conference on Operat-
ing Systems Design and Implementation. Savannah, GA, USA:
USENIX Association, pp 265–283

	16.	 Zhao X-z, Xu T-y, Ye Z-t, Liu W-j (2020) A TensorFlow-based
new high-performance computational framework for CFD. J
Hydrodyn 32(4):735–746

	17.	 Clarke M, Musser J (2020) The MFiX Particle-in-Cell Method
(MFiX-PIC) Theory Guide. NETL Technical Report Series,
DOE/NETL-2020/2115. U.S. Department of Energy, National
Energy Technology Laboratory: Morgantown, WV

	18.	 Li T, Dietiker J-F, Shahnam M (2012) MFIX simulation of
NETL/PSRI challenge problem of circulating fluidized bed.
Chem Eng Sci 84:746–760

	19.	 Herzog N, Schreiber M, Egbers C, Krautz HJ (2012) A com-
parative study of different CFD-codes for numerical simulation
of gas–solid fluidized bed hydrodynamics. Comput Chem Eng
39:41–46

	20.	 Garg R, Galvin J, Li T, Pannala S (2010) Documentation of
open-source MFIX–DEM software for gas-solids flows

	21.	 Li T, Garg R, Galvin J, Pannala S (2012) Open-source MFIX-
DEM software for gas-solids flows: Part II — validation studies.
Powder Technol 220:138–150

	22.	 Garg R, Galvin J, Li T, Pannala S (2012) Open-source MFIX-
DEM software for gas–solids flows: Part I—verification studies.
Powder Technol 220:122–137

	23.	 Li F, Song F, Benyahia S, Wang W, Li J (2012) MP-PIC simula-
tion of CFB riser with EMMS-based drag model. Chem Eng Sci
82:104–113

	24.	 Kadyrov T, Li F, Wang W (2019) Impacts of solid stress model
on MP-PIC simulation of a CFB riser with EMMS drag. Powder
Technol 354:517–528

	25.	 Vaidheeswaran A, Musser J, Clarke MA (2020) Verification
and Validation of MFiX-PIC. NETL Technical Report Series,
NETL-TRS-2–2020. U.S. Department of Energy, National
Energy Technology Laboratory: Morgantown, WV

	26.	 Xiong Q, Li B, Chen F, Ma J, Ge W, Li J (2010) Direct numeri-
cal simulation of sub-grid structures in gas–solid flow—GPU
implementation of macro-scale pseudo-particle modeling. Chem
Eng Sci 65(19):5356–5365

	27.	 Snider DM (2001) An incompressible three-dimensional mul-
tiphase particle-in-cell model for dense particle flows. J Comput
Phys 170(2):523–549

	28.	 Syamlal M, O’Brien TJ (1989) Computer simulation of bubbles
in a fluidized bed. AIChE Symp Ser 85:22–31

	29.	 Isakov M, Rosario Ed, Madireddy S, Balaprakash P, Carns P,
Ross RB, et al (2020) HPC I/O throughput bottleneck analysis
with explainable local models. SC20. In: International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, pp 1–13

	30.	 Harrington P (2017) Diagnosing Parallel I/O Bottlenecks
in HPC Applications. SC17, The International Conference
for High Performance Computing, Networking, Storage and
Analysis

	31.	 Shantharam M, Tatineni M, Choi D, Majumdar A (2018) Under-
standing I/O bottlenecks and tuning for high performance I/O on
large HPC Systems: a case study. In: Proceedings of the Practice
and Experience on Advanced Research Computing. Pittsburgh,
PA, USA: Association for Computing Machinery; Article 54

https://mfix.netl.doe.gov
https://doi.org/10.1007/s00366-022-01626-5

3591Engineering with Computers (2023) 39:3577–3591	

1 3

	32.	 Magni A, Dubach C, O'Boyle M (2014) Exploiting GPU hard-
ware saturation for fast compiler optimization. In: Proceedings of
Workshop on General Purpose Processing Using GPUs

	33.	 NVIDIA DGX A100 THE UNIVERSAL SYSTEM FOR AI
INFRASTRU​CTU​RE; 2020. Available from: https://​www.​nvidia.​
com/​conte​nt/​dam/​en-​zz/​Solut​ions/​Data-​Center/​nvidia-​dgx-​a100-​
datas​heet.​pdf

	34.	 NVIDIA. Whitepaper: NVIDIA A100 Tensor Core GPU Archi-
tecture. 2020

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf

	Development of an equation-based parallelization method for multiphase particle-in-cell simulations
	Abstract
	1 Introduction
	2 Methodology
	2.1 MP-PIC model
	2.2 Code structure
	2.2.1 Coupling strategy
	2.2.2 Parallel computing strategy
	2.2.3 Use of TF graph and custom operator

	3 Code verification
	3.1 Verification for a single timestep
	3.2 Validation of bed characteristics

	4 Parallel scaling performance
	4.1 Strong scaling
	4.2 Weak scaling of MFiX vs. MFiX-AI with a fixed number of GPUs

	5 Energy consumption efficiency
	6 Conclusion and outlook
	Acknowledgements
	References

