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Abstract
In this article, we first present a unified scheme to apply nonlinear dynamic time integration methods. The unified scheme covers many 
existing time integration methods as exceptional cases. This paper has investigated time integration methods, including the Newmark, 
Wilson, Houbolt, and �

∞
-Bathe method. We then implement the multi-point methods as the nonlinear solution schemes along with 

the direct time integration methods in nonlinear dynamic analysis. Also, a unified scheme for applying single-point and multi-point 
methods is presented. Finally, we demonstrate with numerical examples that the unified scheme provides a framework for comparing 
direct time integration methods. We also investigate the performance of multi-point methods as nonlinear solution methods in detail.

Keywords Direct time integration · Implicit schemes · Multi-point methods · Unified scheme · Nonlinear dynamic analysis

1 Introduction

Direct time integration methods constitute a well-established 
component of computational structural mechanics [1–4]. The 
importance of accurate dynamic analysis has led to various 
time integration methods appearing in recent decades. The time 
integration methods are classified into two types: explicit and 
implicit. A variety of explicit methods for dynamic analysis 
have been proposed. It should be noted that explicit methods 
are conditionally stable and require a tiny time step to achieve 
accurate results in most of the analyses. Mainly the implicit meth-
ods have unconditional stability, and the time intervals in these 
methods depend on the characteristics of the problem. Hence, 
the implicit methods can be much more effective for many 

problems, especially for structural frequency analysis. Follow-
ing Houbolt method [5] and Newmark method [6], a series of 
single-step methods such as Wilson method [7] was introduced. 
These single-step methods show the second-order accuracy, and 
they have controllable numerical damping [8–13]. Spatial discre-
tization leads to the creation of spurious high-frequency modes. 
The numerical dissipation of implicit methods removes the effect 
of these spurious modes. Also, the numerical dissipation brings 
numerical stability to the method when applied to nonlinear sys-
tems. On the other hand, improvement of the dissipation capabil-
ity is associated with the reduction of their accuracy [14–19], and 
then, high-order time-marching procedures have been developed 
for dynamic analysis [20–22]. Implicit methods are used widely 
in the nonlinear dynamic analysis of systems. Initially, nonlinear 
dynamic analyses were performed using implicit time integration 
methods without inner iterative loops, and the tangential stiff-
ness matrices were calculated only at the beginning of each time 
step. Then, the importance of using iterative loops to achieve the 
appropriate response was identified [23]. The iterative process is 
the method of choice to find the solution for nonlinear systems 
[1]. The single-point and multi-point methods are two categories 
of iterative procedures to solve the nonlinear systems [24]. The 
single-point methods use one evaluated point to approximate the 
next point. The multi-point methods do not throw away informa-
tion about previously computed points. Multi-point methods are a 
family of efficient root-finding techniques for nonlinear problems 
[25]. In recent decades, due to the ability of multi-point methods 
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to overcome the theoretical limits of single-point methods, inter-
est has been prompted in applying and developing these tech-
niques. The multi-point methods have been utilized to solve the 
nonlinear systems that arise in many problems, such as approxi-
mation of artificial satellites’ preliminary orbits [26], plasticity 
problems [27], power flow equations [28], fracture analysis [29], 
and path-following methods [30–33].

Finding a tight path of dynamic equilibrium in discrete time 
steps by iteration can be very important [23]. In studies on non-
linear dynamic analysis of structures, the Newton–Raphson 
method is widely used for establishing a dynamic equilibrium 
at the time steps. This study focuses on decreasing the number 
of iterations of the time integration methods at the time steps 
by improving the order of convergence of the iteration methods. 
Therefore, we replace the multi-point methods (order of con-
vergence higher than two) with the Newton-Raphson method 
(order of convergence two) and evaluate the performance of the 
time integration methods by the iteration methods with differ-
ent orders of convergence. Numerous techniques have emerged 
due to the development of direct time integration methods for 
nonlinear dynamic analysis. In order to compare old and emerg-
ing methods, it is required to model the problems using each 
time integration method. In this study, we proposed a unified 
scheme to avoid repeating the problem’s modeling process for 
each method.

The main structure of this paper is organized as follows: Sev-
eral implicit time integration methods are mentioned in Sect. 2. 
Several iteration methods are proposed in Sect. 3. A unified 
scheme for the implicit time integration methods and the unified 
scheme for nonlinear solvers in the dynamic analysis is presented 
in Sect. 4. We investigate the application of direct time integra-
tion methods along with multi-point methods using numerical 
examples in Sect. 5. Finally, we summarize and draw conclusions 
in Sect. 6.

2  Implicit direct time integration methods

The equation of motion of a nonlinear system under the force 
vector �t can be expressed as:

where � is the mass matrix, � is the damping matrix, � is 
the vector of nodal displacements/rotations and � denotes 
the vector of nodal forces corresponding to the element 
internal stresses.

The exact analytical solution of Eq. (1) is difficult or almost 
impossible for most practical problems. Direct time integration is a 
method for solving nonlinear dynamic problems. In these methods, 

(1)��̈
t
+ ��̇

t
+ �(�

t
) = �

t ,

the equilibrium equations are satisfied at discrete time points. The 
dynamic equations at discrete time points are similar to static equa-
tions. Therefore, all the solution techniques used in the static analy-
sis can also be applied effectively in the time integration methods.

2.1  Newmark method

Newmark [6] developed step-by-step methods based on the follow-
ing equations for the approximation of velocity and displacement 
for finding the dynamic response of a system [1, 2]:

� provides a linearly varying weighting between the influ-
ence of the initial and the final accelerations on velocity, and 
� similarly adjusts the effect of the initial and final accelera-
tions on the displacement [4]. We can substitute Eqs. (2) and 
(3) in the equation of motion in the linear case (Eq. (1)) and 
compute displacement at time t + Δt as follows:

where �̂t+Δt and �̂t+Δt are the effective stiffness matrix and 
effective load vector at the time t + Δt , respectively. They 
are calculated as follows:

�t+Δt is stiffness matrix of the structure at the time t + Δt , 
and is constant in linear equations. � and � are dynamic 
components of the effective load vector and effective stiff-
ness matrix, respectively. These dynamic components are 
affected by the mass and damping of the structure and are 
computed by the corresponding time integration method. 
The dynamic components are considered in the Newmark 
method as follows:

While �t+Δt is known, the velocity �̇t+Δt and acceleration 
�̈t+Δt could be computed by Eqs. (2) and (3).

(2)�̇
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The average acceleration and linear acceleration methods are 
two exceptional cases of the Newmark method. Figure 1 shows 
the average acceleration and linear acceleration methods. The 
average acceleration method (Fig. 1a) is obtained by the New-
mark equations (Eqs. (2) and (3)) with � =

1

2
 and � =

1

4
 . The 

average acceleration method is unconditionally stable for all val-
ues Δt

T
 . The Newmark method can be linearized by setting � =

1

2
 

and � =
1

6
 in the Newmark equations, as shown in Fig. 1b. In 

contrast to the average acceleration method, the linear accelera-
tion method is conditionally stable. It is stable only for Δt

T
⩽

√

3

�
 

[3].

2.2  Wilson method

Wilson [7] proposed a time integration technique similar to the 
linear acceleration method. As it is shown in Fig. 2, Wilson 
assumed that the acceleration varies linearly over an extended 
interval (Eq. (9)). In the Wilson method, parameter � should be 
more than 1.37 to satisfy unconditional stability. The optimal 
value of � is 1.4 [3]. In this study, we considered two values 1.4 
and 2 for �.

The fundamental relations used in the Wilson method are 
similar to the linear acceleration method. The main difference is 
to replace Δt in the linear acceleration method with �Δt to obtain 
the Wilson method.

Equations (5) and (6) calculate the effective stiffness matrix 
and effective load vector at the time t + �Δt . The dynamic 
components in the Wilson method are as follows:

(9)�̈
t+Δt

= �̈
t
+

�̈t+𝜃Δt
− �̈t

𝜃
, The exciting force is assumed to vary linearly over the same 

time interval. Thus, the force vector at time t + �Δt is com-
puted as:

�t+�Δt can be obtained by Eq. (4), and then, �t+Δt is calcu-
lated as follows:
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3
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� +

6
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� ,
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,
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t
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�t+Δt
− �t

Δt
�Δt = �

t
(1 − �) + �

t+Δt
� ,

Fig. 1  Newmark’s method

Fig. 2  Wilson method
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The velocity and acceleration are calculated by setting � =
1

2
 

and � =
1

6
 in Eqs. (2) and (3).

2.3  Houbolt method

Houbolt method [5] uses a four-point finite difference expression to 
approximate the acceleration and velocity components. The back-
ward difference equations in the Houbolt method are employed by 
the following (Fig. 3):

Equations (5) and (6) calculate the effective stiffness and effec-
tive load vector, and the dynamic components in the Houbolt 
method can be expressed:

(13)
�

t+Δt
=

1

𝜃3
�

t+𝜃Δt
+

(

1 −
1

𝜃3

)

�
t
+ Δt

(

1 −
1

𝜃2

)

�̇
t

+

(Δt)2

2

(

1 −
1

𝜃

)

�̈
t,

(14)�̇
t+Δt

=

1

6Δt
(−2�t−2Δt

+ 9�t−Δt
− 18�t

+ 11�t+Δt
),

(15)�̈
t+Δt

=

1

(Δt)2
(−�

t−2Δt
+ 4�t−Δt

− 5�t
+ 2�t+Δt

),
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11
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2
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� ,

�t+Δt is calculated by Eqs. (4)–(6), (16) and (17) , which 
requires the knowledge of �t , �t−Δt and �t−2Δt . Therefore, 
�0 , �̇0 and �̈0 are required to start the Houbolt method. 
However, it is more accurate to calculate �Δt and �2Δt by 
one of the other methods described. We applied the average 
acceleration method for the start of the Houbolt method. 
This method belongs to the implicit method class and is 
unconditionally stable [1].

2.4  �
∞

‑Bathe method

In the �
∞

-Bathe method [15, 16] the unknown displacements, 
velocities, and accelerations are calculated by consider-
ing the time step to consist of two sub-steps Δt = Δt1 + Δt2 . 
The first sub-step is Δt1 = �Δt and the second sub-step is 
Δt2 = (1 − �)Δt . In the first sub-step, the trapezoidal rule is used 
for the equilibrium at time t + Δt1:

In the second sub-step, the following relations are used for 
the equilibrium at time t + Δt:

where q0 , q1 , q2 , s0 , s1 , s2 and � could be computed in the �
∞

-Bathe method to achieve unconditional stability in linear 
analysis and second-order accuracy as follows [15]:
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,
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2
,

s1 = q1,

Fig. 3  Houbolt method
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A relation is defined to assign the amount of numerical dis-
sipation in the high-frequency range as follows [15]:

where

The �
∞

-Bathe method has two free parameters � and �
∞

 in 
Eqs. (22) and (23). This scheme provides the same effective 
stiffness matrix for each sub-step by �

∞
∈ [0, 1] . The local 

maximum of amplitude decay and the global minimum of 
period elongation are calculated as follows [16]:

The effective stiffness matrices and the effective load vectors 
in the first and second time sub-steps could be computed 
by Eqs. (5) and (6), and the dynamic components in the �

∞

-Bathe method can be expressed:

Noh and Bathe [15, 16] investigated three characteristics 
including period elongation, amplitude decay and spectral 
radius for the �

∞
-Bathe method. According to studies, the 

�
∞

-Bathe method with �
∞
→ 1 and � = �0 has a minimum 

period elongation, and for �
∞
→ 1 and � → 0 has the least 

amount of amplitude decay. The spectral radius will be close 
to one at low frequencies and zero at high frequencies by 
selecting �

∞
→ 0 and � → 0 , also the response will have a 

reasonable period elongation by selecting � = �0.
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3  Solutions of nonlinear equations 
in dynamic analysis

In nonlinear analysis, F as the resisting force is a nonlinear func-
tion of unknown U. A nonlinear solution method should be 
used during the analysis. This is a typical requirement of the 
direct time integration methods. Here, we first develop the New-
ton–Raphson method of iteration for nonlinear dynamic analysis. 
Then, we clarify how to implement the multi-point methods as 
the nonlinear solution method in dynamic analysis.

In dynamic analysis of a one degree of freedom system, we 
intend to determine the response quantities Ut+Δt , U̇t+Δt and Üt+Δt 
at time t + Δt that satisfy Eq. (1), which can be expressed as:

where

According to Eq. (31), the effective resisting force F̂ in 
dynamic analysis includes the inertia and damping forces, 
and F corresponds to the element internal stresses. In fact, 
the dynamic analysis Eq. (30) at the time t + Δt is similar to 
the static analysis. Therefore, Eq. (30) can be solved by the 
Newton–Raphson method for the multi-degree of freedom 
systems [2]:

�̂
t+Δt
T

 in nonlinear analysis is the effective tangent stiffness 
matrix, and �̂t+Δt

(j)
 is the effective residual force vector of 

iteration jth at time t + Δt . The residual force can be calcu-
lated by substituting Eq. (31) in the right side of Eq. (32):

� and � are dynamic components of the effective load vec-
tor and effective stiffness matrices, respectively, which are 
computed according to the time integration methods in the 
Sect. 2. The residual force vector can be rewritten by com-
bining Eq. (6) with Eq. (33) as follows:
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Now, we can use the left side of Eq. (32) to obtain the value 
of Δ�t+Δt

(j)
 , and the response will be determined in the next 

iteration as:

The iteration process continues until the solution error is less 
than or equal to the tolerance threshold. In this study, we 
consider the Euclidean norm of (Δ�t+Δt

(n)
)
T�̂

t+Δt
(n)

 for measur-

ing the solution error, and � = 10−20 as tolerance threshold. 
Figure 4 provides a geometric interpretation of the applica-
tion of the Newton–Raphson as a nonlinear solution method. 
This method converges with quadratic rate to find the exact 
response in Table 2.

3.1  Multi‑point methods

The multi-point methods are the other accepted method to solve 
the system of nonlinear equations. The multi-point methods show 
higher-order convergence than the Newton–Raphson method. 
The important characteristic of multi-point methods is that they 
achieve a higher-order convergence rate without requiring higher-
order derivatives. This article applies four multi-point methods 
as the nonlinear solution technique to improve the convergence 
rate of the iterative process of the nonlinear direct time integra-
tion method. However, the algorithmic implementations of these 
four multi-point techniques are carefully described in the next 
section to be easy to extend to other multi-point methods. In this 
paper, we implement four multi-point methods including: (1) 
Weerakoon–Fernando method [34], (2) Homeier method [35], 
(3) Jarratt method [36] and (4) Darvishi–Barati method [37]. The 
Weerakoon–Fernando and Homeier methods have two stages at 
each iteration with the third order of convergence. Jarratt and 
Darvishi–Barati methods are the fourth-order techniques.

(35)�
t+Δt
(j+1)

= �
t+Δt
(j)

+ Δ�
t+Δt
(j)

,

Let f (x) = 0 be a nonlinear equation, and f �(x) is the first 
derivative of f(x). Weerakoon and Fernando proposed the follow-
ing relation for the solution of the nonlinear equation:

This method was derived by applying numerical integration 
[34], whereas this cubic scheme was initially proposed by 
Traub [38].

Another cubic method as a solver of nonlinear equations was 
presented by Homeier [35]. This two-point method is given as:

First, this method was developed for the univariant case [39] 
and then applied to find the root of multi-variable cases [35].

Another implemented iterative method in this paper is Jarratt 
procedure [36] which is defined as follows:

where Jarratt presented it for the univariant cases, and then, 
it was applied for many multi-variant problems [40, 41].

The Darvishi–Barati method is defined as follows:

(36)xj+1 = xj − 2
[

f �
(

xj −
1

2
f �(xj)

−1f (xj)
)

+ f �(xj)
]−1

f (xj) ,

(37)xj+1 = xj −
[

f �
(

xj −
1

2
f �(xj)

−1f (xj)
)]−1

f (xj) ,

(38)∗xj = xj −
2

3
f �(xj)

−1f (xj) ,

(39)
xj+1 = xj −

1

2

[

3f �
(

∗xj
)

− f �(xj)
]

−1[

3f �
(

∗xj
)

+ f �(xj)
]

f �(xj)
−1f (xj) ,

(40)∗xj = xj − f �(xj)
−1
[

f (xj) + f
(

xj − f �(xj)
−1f (xj)

)]

,

Fig. 4  Newton–Raphson method

Table 1  Abbreviation for each of the iteration methods

Single-point (SP) Newton–Raphson method SP

Multi-point (MP) Weerakoon and Fernando method MP1
Homeier method MP2
Jarratt method MP3
Darvishi and Barati method MP4

Table 2  The order of convergence of the iteration methods

Methods SP [27] MP1 [27] MP2 MP3 MP4

log10(|f |) ... ... ... ...
− 8.1264 − 3.8067 − 5.043 − 11.274 − 1.387
− 16.5 − 11.733 − 15.76 − 40.283 − 6.036
− 33.248 − 35.511 − 47.89 − 156.042 − 24.58

rc 2 3 3 4 4
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where this fourth-order method was a modification of the 
third-order methods proposed by Fortini and Sormani [42]. 
The abbreviations of the iteration methods are represented 
in Table 1.

In solving nonlinear equations, increasing the order of con-
vergence is one of the topics that has gained much attention. 
However, the derivatives of order greater than one are usually 
difficult to evaluate, especially for multivariate cases. The itera-
tion methods can achieve higher convergence by the first deriva-
tive. The order of convergence in different methods can be cal-
culated by the information of the last three iterations. The order 
of convergence ( rc ) for a method is obtained using the following 
expression [27, 29]:

The order of convergence of the iteration methods provided 
in Eqs. (36), (37), (39) and (41) is determined by finding a 
single root of Eq. (43), where the iteration process can be 
started by an initial guess x0 = 0.5 , and the root of the equa-
tion is xroot = 0 [27].

Table 2 shows the logarithm of the function value at every 
iteration and the order of convergence for the iteration 
methods.

3.1.1  Weerakoon–Fernando method of iteration 
in dynamic analysis

According to Eq. (36), the Weerakoon–Fernando method is used 
to find the solution to Eq. (30) as follows:

We move the sub-iteration index behind each quantity to 
reduce clutter. Therefore, (1)(�̂T ) and (1)(�̂) are the effec-
tive tangent stiffness matrix and the effective residual force 
vector at the first stage of the iteration method, respectively. 
The solution of linearized Eq. (44) 

(

(1)
Δ�

)

 is used to make 
a better estimation of displacement as:

(41)

xj+1 = xj −

[

1

6
f �(xj) +

2

3
f �(

xj +
∗xj

2
) +

1

6
f �(∗xj))

]−1

f (xj),

(42)rc =
log10

(

|f (xj+1)∕f (xj)|
)

log10
(

|f (xj)∕f (xj−1)|
)

(43)f (x) = e−x sin x + log10(x
2
+ 1)

(44)
(

(1)
Δ�

t+Δt
(j)

)

=

[

(1)
(�̂T )

t+Δt
(j)

]

−1[
(1)
�̂

t+Δt
(j)

]

,

(45)
(

(2)
�

t+Δt
(j)

)

=

(

(1)
�

t+Δt
(j)

)

+

(

(1)
Δ�

t+Δt
(j)

)

,

The effective tangent stiffness is calculated by (2)�t+Δt
(j)

 for 
solving the second linearized equation as follows:

where (�̂sec)
t+Δt
(j)

 is the effective secant stiffness matrix and 
is an equivalent approximation of the effective tangent stiff-
ness matrices:

The final solution, according to the Weerakoon–Fernando 
method, is estimated as:

The iterative process of the Weerakoon–Fernando method 
for a system is illustrated in Fig. 5.

(46)
(

(2)
Δ�

t+Δt
(j)

)

=

[

(�̂sec)
t+Δt
(j)

]

−1[

2
(

(1)
�̂

t+Δt
(j)

)]

,

(47)(�̂sec)
t+Δt
(j)

≅

(

(1)
(�̂T )

t+Δt
(j)

)

+

(

(2)
(�̂T )

t+Δt
(j)

)

,

(48)
(

(3)
�

t+Δt
(j)

)

=

(

(2)
�

t+Δt
(j)

)

+

(

(2)
Δ�

t+Δt
(j)

)

,

Fig. 5  Weerakoon–Fernando method

Fig. 6  Homeier method
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3.1.2  Homeier method of iteration in dynamic analysis

The process of solving the Homeier method is similar to the 
Weerakoon–Fernando method, except that the force vector in 
the Homeier method is half the force vector in the Weera-
koon–Fernando method. In other words, in Eqs. (44) and (46), 
[

1

2

(

(1)�̂
t+Δt
(j)

)]

 and 
[

(1)�̂
t+Δt
(j)

]

 are used instead of 
[

(1)�̂
t+Δt
(j)

]

 and 
[

2
(

(1)�̂
t+Δt
(j)

)]

 , respectively. Also, the approximation of the 
effective secant stiffness matrix in the Homeier method is 
(�̂sec)

t+Δt
(j)

≅

(

(2)
(�̂T )

t+Δt
(j)

)

 . Figure 6 illustrates the details of 
the iterative process of the Homeier method for a system.

3.1.3  Jarratt method of iteration in dynamic analysis

The iterative process of the Jarratt method is the same as the 
Weerakoon–Fernando method and the Homeier method. There 
are only differences in the effective force vector and the effec-
tive secant stiffness matrix. For using the Jarratt method, the 
effective force vector should be changed from 

[

(1)�̂
t+Δt
(j)

]

 and 
[

2
(

(1)�̂
t+Δt
(j)

)]

 to 
[

2

3

(

(1)�̂
t+Δt
(j)

)]

 and 
[

1

2

(

(1)�̂
t+Δt
(j)

)]

 in Eqs. (44) 
and (46), respectively. Also, the approximation of the effective 
secant stiffness matrix in the Jarratt method is as follows:

Figure 7 provides a geometric interpretation of the iterative 
process of the Jarratt method for a system.

(49)

(�̂sec)
t+Δt
(j)

≅

(

(1)
(�̂T )

t+Δt
(j)

)[

3
(

(2)
(�̂T )

t+Δt
(j)

)

−

(

(1)
(�̂T )

t+Δt
(j)

)]

[

3
(

(2)
(�̂T )

t+Δt
(j)

)

+

(

(1)
(�̂T )

t+Δt
(j)

)] ,

3.1.4  Darvishi–Barati method of iteration in dynamic 
analysis

The process of solving the Darvishi–Barati method in each 
iteration consists of three sub-steps, which has one sub-step 
more than the previous multi-point iteration methods. The 
first and second sub-steps for the Darvishi–Barati method can 
be obtained using Eqs. (44)–(46) and (48) in which Eq. (46) 
should be changed as follows:

(2)�̂
t+Δt
(j)

 is computed by (2)�t+Δt
(j)

 . The approximation of effec-
tive secant stiffness matrix in the third sub-iteration is as 
follows:

The approximated matrix is employed to make a better esti-
mation of the displacement vector as follows:

The final sub-step of iteration according to the Darvi-
shi–Barati method is estimated as:

The iterative process of Darvishi–Barati method for a system 
is illustrated in Fig. 8.

(50)
(

(2)
Δ�

t+Δt
(j)

)

=

[

(1)
(�̂T )

t+Δt
(j)

]

−1(
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�̂

t+Δt
(j)

+
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�̂

t+Δt
(j)

)

,

(51)
(�̂sec)
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(j)

≅

1

6

(

(1)
(�̂T )

t+Δt
(j)

)

+

2

3

(

(1,3)
(�̂T )

t+Δt
(j)

)

+

1

6

(

(3)
(�̂T )

t+Δt
(j)

)

(52)
(

(3)
Δ�

t+Δt
(j)

)

=

[

(�̂sec)
t+Δt
(j)

]

−1(
(1)
�̂

t+Δt
(j)

)

,

(53)
(

(4)
�

t+Δt
(j)

)

=

(

(3)
�

t+Δt
(j)

)

+

(

(3)
Δ�

t+Δt
(j)

)

,

Fig. 7  Jarratt method

Fig. 8  Darvishi–Barati method
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4  Unified scheme

In this study, the four time integration methods and the five 
iteration methods are comparatively studied for satisfying the 
equilibrium equations at discrete time intervals. Each of the 
time integration methods is coupled with the iteration methods 
to evaluate the performance of the methods, which necessitates 
a significant number of problems modeled. Therefore, a unified 
scheme was provided to avoid repeating modeling, save time, 
and switch between the methods. In the unified scheme, the 
iteration methods are subroutines in the main program (time 
integration method). This section obtains a unified scheme to 
extract different methods by changing the coefficients without 
the need for re-programming. The main advantages of the uni-
fied scheme are comprehensive programming and improved 
software efficiency, especially in commercial applications.

4.1  A unified scheme for direct time integration 
methods

The time integration method includes a set of coefficients, vec-
tors, and matrices. These sets have differences and similarities 
with each other. A unified set can be obtained by the intersection 
of the set’s similarities and the union of the set’s differences and 
can be introduced as a unified scheme. The following two main 
sections obtained the unified scheme (Algorithm 1) :

• Unifying the time sub-steps in each time step
  We considered the time sub-steps as a unified loop because 

time integration methods have at least one time sub-step. The 
number of time sub-steps (nss) equals the number of loop rep-
etitions. The Newmark method, the Wilson method, and the 
Houbolt method are called the simple methods ( nss = 1 ), and 
the �

∞
-Bathe method is considered as a composite method 

( nss = 2 ). The repetition loops are connected in series as fol-
lows: 

(54)hssi =

ssi
∑

i=0

Δti ; Δt0 = 0 ,

 where ssi is the current sub-step number, Δti is the 
time intervals of sub-step ith and hssi is the sum of time 
intervals of sub-steps ( hnss = Δt ). In time integration 
methods, an adequate time step Δt ensures an accu-
rate response for structural modes. The value of Δt is 
a multiple of T ( Δt = ΩT  ). T is the structure’s natural 
period, which is calculated based on the stiffness matrix 
and mass matrix. The accuracy of the time integration 
method will be increased by selecting the low value of 
Ω , but on the other hand, it will also increase the cost of 
calculations. Therefore, the value of Ω should be deter-
mined according to the required accuracy of the problem. 
Some temporal integration methods have conditional sta-
bility, and Ω should be less than the stability limit of the 
method.

• Unifying coefficients and parameters due to each method
  The response of the time integration methods is calculated 

step by step, where the outputs of each time step are counted 
as inputs for the next step. Therefore, since the response in the 
time integration methods is obtained by sequences (effective 
loads, displacements, velocities, and accelerations) described 
in Sect. 2, we attempted to formulate the methods in as simi-
lar a pattern as possible. In these sequences, coefficients (inte-
gration constants) are obtained by special relations of the time 
integration methods. For example, in the Newmark method, 
the coefficients are obtained by relations in terms of vari-
able parameters ( � , � ). For unifying coefficients, all variable 
parameters of the methods ( � , � , �

∞
 , � , � ) should be placed in 

a unified relation. Choosing any of the methods for analysis 
causes the effect of the variable parameters of other methods 
to be neutralized in the unified relation. For example, if the 
Newmark method is used as the analysis method, the variable 
parameters of the other methods ( �

∞
 , � , � ) are used as neu-

tral constant parameters, and the unified relation is obtained 
only in terms of the variable parameters of this method ( � , 
� ). In the unified scheme, the parameter �

∞
 for the composite 

method is a variable parameter, whereas the values of �
∞

 do 
not affect the coefficients in other methods.

The variable and constant parameters in Algorithm 1 are 
defined in Table 3. As a sample, how to obtain coefficient a0 

Table 3  Constant and variable parameters in the unified scheme for direct time integration methods (Algorithm 1)

aUse special starting procedure to calculate �Δt and �2Δt

Methods Constants Variables

Newmark nss = 1, H = 0, � = 1, � = 1 � and �

Wilson nss = 1, H = 0, � = 1, � =
1

2
, � =

1

6
�

Houbolt nss = 1, H = 1, � = 1, � = 1, � =
1

2
, � =

1

4

(

�Δt and�2Δt
)a

�
∞

-Bathe nss = 2, H = 0, � = 1, � =
1

2
, � =

1

4
� and �

∞
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in the unified scheme is described in Appendix 1. This process 
can be generalized to obtain other coefficients of Algorithm 1.

Algorithm 1 A unified scheme for direct time integration methods for
nonlinear systems

Require: Form the mass matrix M, and damping matrix C
Require: InitializeU0, U̇0, Ü0, (fs)0, and K0

Require: Select the time step∆t and then according to the desired direct

time integration method select the parameters nss, α, β, γ, ρ∞, θ,H

from Table 3.
1: for each time step do
2: for each time sub-step (ssi=1:nss) do
3: Calculate integration constants:

q1 = (ρ∞+1)ssi−1

2γ(ρ∞−1)(ssi−1)+2ssi , q0 = (γ + 1− ssi)q1 + ssi−1
ssi ,

q2 = γq1(−1)ssi−1 + ssi−1
ssi , a0 = 1

4β(q2θ∆t)2 (−
H
2 + 1),

a1 = α
2βq2θ∆t (−

H
12 +1), a2 = 1

4β(q2θ∆t)2 (
H
4 +1), a3 = α

2βq2θ∆t (
H
2 +1),

a4 = (q0+q2)(1−H)
4β(q2)2θ∆t , a5 = q0(1−H)

q2
( 1
2β − 1), a6 = q0(1−H)

q2
(αβ − 1),

a7 = q2θ∆t(αβ − 2), a8 = 1−H
2αq2∆t , a9 = q0(1−H)

q2
( 1
α − 1),

a10 = q1(ssi−1)
(q2)2θ∆t , a11 = q1(ssi−1)

q2
, a12 = −2a0H, a13 = −a3H

2 ,

a14 = a0H
2 , a15 = a3H

9 , a16 = 1
θ3 , a17 = (1− 1

θ3 ),

a18 = ∆t(1− 1
θ2 ), a19 = ∆t2

2 (1− 1
θ ), a20 = a0H, a21 = a2H,

a22 = a1θ, a23 = a3θ, a24 = a7
θ

4: Compute hssi by Eq. (54)
5: Compute effective loads:

Pt+θhssi = (1− θ)Pt + θPt+hssi

P̂t+θhssi = Pt+θhssi +C[a3Ut + a6U̇t + a7Üt + a11U̇t+hssi−1+

a13Ut−hssi + a15Ut−2hssi ] +M[a2Ut + a4U̇t + a5Üt + a10U̇t+hssi−1+

a11Üt+hssi−1 + a12Ut−hssi + a14Ut−2hssi ]
6: Go to Algorithm 2 to obtain the convered response (1)U(n)

Ut+θhssi ←(1) U(n)
7: Calculate the displacements at time t+ hssi:

Ut+hssi = a16Ut+θhssi + a17Ut + a18U̇t + a19Üt

8: Compute velocities and accelerations at time t+ hssi:

U̇t+hssi = a22Ut+hssi − a23Ut − a6U̇t − a24Üt − a11U̇t+hssi−1−

a13Ut−hssi − a15Ut−2hssi

Üt+hssi = a20Ut+hssi + a8(U̇t+hssi − U̇t)− a21U
t − a9Üt−

a11Üt+hssi−1 − a12Ut−hssi − a14Ut−2hssi

9: Compute Kt+hssi according to Ut+hssi

10: end for
11: Determine∆t according to Kt+∆t and M
12: end for

4.2  A unified scheme for methods of iteration

Iteration methods are observed in Sect. 3 as the nonlinear solver 
in dynamic analysis. Algorithm 2 presents a unified scheme 
for iteration methods that allows the single-point and multi-
point methods to be used easily with time integration methods. 
Another important feature of the unified scheme is its ability to 
be extended to other iteration methods. Table 4 is used to select 

the type of desired iteration method at the start of Algorithm 2. 
The sub-steps of the algorithm are equal to the points of iteration 
methods (NP) used to find the equilibrium path. NP is different 
for various iteration methods. The corresponding value of NP for 
each method is presented in Table 4.

Algorithm 2 A unified scheme for the iteration methods

Require: Initialize j = 1 and PI = 1,
(PI)U(j) = Ut+hssi−1 , δssi = a0M+ a1C

Require: Select NP from Table 4,
1: for each iteration (j = 1 : n) do
2: for each sub-step of iteration (PI = 1 : NP ) do
3: (PI)U(j) =

∑PI
i=1(bi)(j); Set (bi)(j) according to Table 4

4: Determine (PI)(KT )(j) and (PI)(fs)(j) based on (PI)U(j)

(PI)(K̂T )(j) =(PI) (KT )(j) + δssi

(PI)R̂(j) = P̂t+θhssi − (PI)(fs)(j)
)
− δssi

(PI)U(j)
)

5: end for
6: Set

(
λ, (K̂sec)(j)

)
by Table 4

7: (1)U(j+1) =(1) U(j) + λ
(
(1)R̂(j)

) [
(K̂sec)(j)

]−1
,

8: Check the convergence criterion; If the error is less than or equal to the
tolerance threshold, stop the iterative process.

9: end for
10: The convergent response ((1)U(n)) is calculated.

5  Numerical examples

We conduct a comparison study that shows the performance of 
time integration methods along with multi-point methods as solv-
ers of nonlinear equations. A variety of time integration methods 
have been employed for solving numerical examples. Each tech-
nique is shortened in Table 5 to provide a better representation. 
In this study, numerical exercises are conducted by computation 
equipment with a Core-5i processor running at 2.5 GHz and 4GB 
of RAM.

Toggle truss [43] and space truss [43, 44] were used to ana-
lyze the proposed methods. In the first example, the toggle truss 
is motivated by a step load. In the second and third examples, 
the trusses are subjected to the El-Centro earthquake load [43].

5.1  Toggle truss under step load

The toggle truss, shown in Fig. 9, is subjected to a vertical step 
load of P = 20 KPa at node 2. The moment of inertia, the mod-
ulus of elasticity and the cross-sectional area of members are 
19630 cm4 , 2 × 105 MPa and 314 cm2 , respectively. The lumped 
mass of each node is 5 × 104 Ns2/mm [43].

The exact solution of the truss under the step load is expressed 
in Eq. (55) [2]. The time integration methods obtain the dynamic 
response, and the results are compared with the exact solution 
in Fig. 10.
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where T, � and ust are the natural period, damping and static 
response of the truss, respectively.

In Fig. 10, the dynamic response fluctuates around the static 
response of the truss, which is half of the maximum dynamic 
response ( ust = 0.5umax ). The SM4 and SM5 methods exhibit 
significant numerical damping compared to the other methods. 
These methods are matched at the start of the analysis, but as 
time passes, the gap between the responses of methods gradu-
ally widens. Figure 10b, d illustrate that decreasing the time step 
improves the response of time integration methods. Tables 6 and 
7 provide information on the maximum displacement of the time 
integration methods. It is revealed that the CMs frequently have 
more accurate results than the SMs. Also, the SM2 method in 
simple methods and the CM3 method in composite methods 
provide more accurate responses for the maximum displacement.

We plot the maximum displacement ( umax ) vs Δt
T

 in Figs. 11 
and 12 for investigating the sensitivity of the time integration 
methods to the variation of Δt

T
 , as can be seen the response of 

SM2 loses stability at the high value of Δt
T

 and has response only 
for Δt

T
≤ 0.551 . Therefore, the SM2 method can be introduced 

as a time integration method with conditional stability. The 
rest of the time integration methods have acceptable responses 

(55)

u(t)

= −uste
−2�� t

T

{

cos(2�
√

1 − �2) t
T

+
�

√

1 − �2
sin(2�

√

1 − �2) t
T

}

,

Table 4  Parameters in the 
unified scheme for iteration 
methods (Algorithm 2)

Methods NP (�
�
)
(�)

� (�̂
sec
)
(j)

SP 1 (�1)(j) =
(1) �

(j)
1 (1)

(�̂T )(j)

MP1 2 (�1)(j) =
(1) �

(j)
2 (1)

(�̂T )(j) +
(2)

(�̂T )(j)

(�2)(j) =
(1) �̂

(j)[
(1)
(�̂T )(j)]

−1

MP2 2 (�1)(j) =
(1) �

(j)
1 (2)

(�̂T )(j)

(�2)(j) =
1

2

(

(1)�̂
(j)

)

[
(1)
(�̂T )(j)]

−1

MP3 2 (�1)(j) =
(1) �

(j)
1

2

[

3(
(2)
(�̂T )(j))−(

(1)
(�̂T )(j))

]

(
(1)
(�̂T )(j))

[

3((2)(�̂T )(j))+(
(1)
(�̂T )(j))

]

(�2)(j) =
2

3

(

(1)�̂
(j)

)

[
(1)
(�̂T )(j)]

−1

MP4 3 (�1)(j) =
(1) �

(j)
6 (1)

(�̂T )(j) + 4
(

(1,3)
(�̂T )(j)

)

+
(3)

(�̂T )(j)

(�2)(j) =
2

3

(

(1)�̂
(j)

)

[
(1)
(�̂T )(j)]

−1

(�3)(j) =

[

1

3

(

(1)�̂
(j)

)

+
(2) �̂

(j)

]

[
(1)
(�̂T )(j)]

−1

Table 5  Abbreviation for each of the time integration methods for 
solving dynamic equations

Simple method (SM) Newmark method-average accel-
eration

SM1

Newmark method-linear accelera-
tion

SM2

Wilson method ( � = 1.4)     SM3
Wilson method (� = 2)        SM4
Houbolt method SM5

Composite method (CM) �
∞

-Bathe method ( �∞ = 0, � = 0.01) CM1
�
∞

-Bathe 
method (�

∞
= 0, � = 0.5858)

CM2

�
∞

-Bathe method (�∞ = 1, � = 0.01) CM3
�
∞

-Bathe method (�
∞
= 1, � = 0.5) CM4

1

4m

3

2

[2][1]

�

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Ground

4m

Fig. 9  Toggle truss [43]
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Fig. 10  Time history of dynamic response using time integration methods: SMs with time step Δt = 0.1T  (a), SMs with time step Δt = 0.01T  
(b), CMs with time step Δt = 0.1T  (c) and CMs with time step Δt = 0.01T  (d)

Table 6  Comparison of 
maximum displacement of the 
SMs and the exact solution 
( ×10−5 m)

Methods u
max

 ( Δt = 0.1 T) Difference ( %) u
max

 (Δt = 0.01 T) Difference ( %)

Exact solution 4.42096 – 4.42096 –
SM1 4.319 2.3 4.4197 0.0281
SM2 4.386 0.785 4.4201 0.02
SM3 4.303 2.66 4.4195 0.032
SM4 4.169 5.71 4.4191 0.042
SM5 4.161 5.87 4.4170 0.089

Table 7  Comparison of 
maximum displacement of the 
CMs and the exact solution 
( ×10−5 m)

Methods u
max

 ( Δt = 0.1 T) Difference ( %) u
max

 (Δt = 0.01 T) Difference ( %)

Exact solution 4.42096 – 4.42096 –
CM1 4.34522 1.713 4.41983 0.0254
CM2 4.30626 2.594 4.41965 0.0296
CM3 4.42062 0.007 4.42096 4.6×10−5

CM4 4.39288 0.635 4.42041 0.012
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for various values of Δt
T

 that indicate these methods are stable 
regardless of Δt

T
 . Therefore, these methods are unconditionally 

stable. According to Figs. 11 and 12, the numerical results are 
entirely close to the exact response at the low values of Δt

T
 . On 

other hand, by increasing Δt
T

 , the maximum response of SM5 
and CM2 deviate from the exact method sooner than the other 
methods, whereas CM3 deviates later than the other methods. In 
high values of Δt

T
 , the Wilson method gives a closer response to 

the exact solution, although the deviation from the exact response 
increases when � changes from 1.4 (SM3) to 2 (SM4).

Fig. 11  Sensitivity of the simple methods to the variation of Δt
T

Fig. 12  Sensitivity of the �
∞

-Bathe method to the variation of Δt
T

Fig. 13  Random noise applied to the step load

Fig. 14  Normalized responses of the toggle truss under the step load 
polluted with random noise ( Δt = 0.01 T)
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The step load, inputted to the toggle truss, is polluted by 
considerable random noise, which is shown in Fig. 13. The tog-
gle truss was motivated by the load polluted with noise for 50 
s. In Fig. 14, the responses of the truss were calculated by the 
SM1 with the time step of Δt = 0.01 T, and the responses were 
normalized so that they could compare the effects of noise on 
acceleration, velocity, and displacement. The noise intensity on 
velocity and displacement is reduced due to the time integration 
process for calculating the responses so that there can be more 
noise in the acceleration than the velocity and displacement. In 
Fig. 15, the maximum vertical acceleration of node 2 of the truss 
was evaluated by the time integration methods. The time step 

of the methods Δt = 0.01 T, 0.1 T and 0.6 T was considered. It 
can be seen that the response of the truss under random noise is 
diverged (loss of stability) by the SM2 method with time step 
Δt = 0.6 T and, on the other hand, the response of other time 
integration methods maintains stability and has appropriate 
convergence.

5.2  Toggle truss under earthquake loading

The toggle truss is subjected to horizontal seismic load at nodes 
1 and 3 of the truss. The El-Centro earthquake record, as shown 
in Fig. 16. The viscous damping ratio of the truss is equal to 0.05 
[43]. The mechanical properties of the truss were stated in the 
previous example.

In this example, the time integration methods with time step 
Δt = 0.01 T and the iteration methods are used for the nonlinear 
dynamic analysis. The responses in Fig. 17a, b were validated by 
the response of reference [43].

The iteration methods were applied in the time integration 
methods for investigating the performance of the iteration meth-
ods as nonlinear solution methods in dynamic analysis. Using 
the time integration methods and iteration methods results in 125 
procedures for nonlinear dynamic analysis. The numerical results 
of the study based on these procedures are shown in Tables 8, 9, 
10, 11, 12. In these tables, SUMiter represents the total number 
of iterations for each analysis, and �iter is the average number of 
iterations, which is equal to the total number of iterations per 
number of time steps. According to Table 8, the SP method con-
verges with the maximum number of iterations, whereas the MP4 
method converges with the minimum number of iterations in the 
simple time integration methods. SUMiter and �iter of the other 
iteration methods are between methods SP and MP4.

In composite methods, the iteration methods are applied as the 
loops for solving nonlinear equations in each sub-step of CMs. In 
the CM1 (Table 9), the minimum number of iterations is achieved 
by applying the MP4 method in the first time sub-step and the 
MP2 method in the second time sub-step. The minimum number 
of iterations in the CM3 (Table 11) occurs by applying the MP4 
method in the first time sub-step and the MP1 or MP3 methods in 
the second time sub-step. The iteration methods perform nearly 
identically in the CM2 and CM4, as shown in Tables 10 and 12. 
The minimum number of iterations occurs in the CM2 and CM4 
methods when applying the MP3 and MP4 methods as the non-
linear solution methods in both time sub-steps. The maximum 
number of iterations for the convergence in CMs occurs when 
using the SP in both time sub-steps. The MP methods have a 
significant impact on reducing the number of iterations when the 
value of � = �0 (Eq. (25)) is chosen in the CMs.

Section 3 states that the error in each iteration is crucial for 
arriving at the convergence of response. Therefore, the error 
analysis of the proposed method is discussed in Figs. 18 and 19. 
As a sample, the CM2 method with various iteration methods 

Fig. 15  Maximum acceleration of the toggle truss under the step load 
polluted with random noise

Fig. 16  El-Centro earthquake record [43]
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is considered. SP-SP in the figure means that the SP method 
is used in both time sub-steps of the time integration method. 
According to � = 10−20 , Fig. 18 shows each of the time sub-
steps is converged with the maximum of three iterations by the 
SP, MP1 and MP2 methods, and the maximum of two iterations 
by the MP3 and MP4 methods. It can also be seen that the aver-
age of error for the third iteration in the SP, MP1 and MP2 and 
the second iteration in the MP3 and MP4 is less than the toler-
ance threshold. Therefore, satisfying the tolerance threshold and 
the error is achieved by reducing or increasing the number of 

Fig. 17  Time history of nonlinear dynamic response using time integration methods: The response converged of SMs with time step Δt = 0.01 T 
(a),The response converged of CMs with time step Δt = 0.01 T (b)

Table 8  Number of iterations and average of iterations in SMs with 
different iteration methods ( �

iter
/SUM

iter
)

SP MP1 MP2 MP3 MP4

SM1 3/4773 2.912/4633 2.8994/4613 2.0879/3322 2/3182
SM2 3/4773 2.8837/4588 2.8642/4557 2.0541/3268 2/3182
SM3 3/4773 2.9088/4628 2.8975/4610 2.1075/3353 2/3182
SM4 3/4773 2.9484/4691 2.9321/4665 2.2834/3633 2/3182
SM5 3/4773 2.8925/4602 2.8799/4582 2.0666/3288 2/3182

Table 9  Number of iterations 
and average of iterations in 
CM1 with different iteration 
methods ( �

iter
/SUM

iter
)

Second sub-step First sub-step

SP MP1 MP2 MP3 MP4

SP 5.1118/8133 4.9214/7830 4.8837/7770 4.1112/6541 4.1156/6548
MP1 5.0069/7966 4.8158/7662 4.7787/7603 4.0075/6376 4.0081/6377
MP2 5.0044/7962 4.8183/7666 4.78/7605 4.0062/6374 4.0044/6371
MP3 5.0088/7969 4.8139/7659 4.7812/7607 4.0081/6377 4.0056/6373
MP4 5.0056/7964 4.8152/7661 4.7831/7610 4.0056/6373 4.0069/6375

Table 10  Number of iterations 
and average of iterations in 
CM2 with different iteration 
methods ( �

iter
/SUM

iter
)

Second sub-step First sub-step

SP MP1 MP2 MP3 MP4

SP 5.9919/9533 5.4965/8745 5.3865/8570 4.9962/7949 4.9962/7949
MP1 5.6637/9011 5.1678/8222 5.0572/8046 4.6675/7426 4.6675/7426
MP2 5.5575/8842 5.0622/8054 4.9522/7879 4.5619/7258 4.5613/7257
MP3 4.9962/7949 4.5009/7161 4.3903/6985 4/6364 4/6364
MP4 4.9962/7944 4.5003/7160 4.3909/6986 4/6364 4/6364
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iterations. Figure 19 analyzes the proposed method’s error by the 
maximum number of iterations in the time steps. We can see that 
reducing the tolerance threshold (reducing the error) increases the 
maximum number of iterations in time steps. In the MP4 method, 
the maximum number of iterations of time steps is less than in 
other methods, which indicates convergence is achieved sooner 
than in other methods. On the other hand, the SP method reacted 
the opposite to the MP4 method. The fractures of the diagrams 
in Fig. 19 can be considered as the sensitivity of the error of the 
iteration methods to the tolerance threshold. The SP method has 
the highest sensitivity, and the MP4 method has the lowest.

5.3  Space truss under earthquake loading

The space truss is a three-story structure with 12 free nodes. 
The elastic modulus of its members is 200 GPa, and the lumped 
mass at the node is 50 Ns2/mm. The El-Centro earthquake load 
is applied to nodes 1, 2, 3, and 4 of the truss [43, 44] (Fig. 20).

This example examines the four integration methods, includ-
ing the SM1, SM3, SM5, and CM2 methods, with the five 

Table 11  Number of iterations 
and average of iterations in 
CM3 with different iteration 
methods ( �

iter
/SUM

iter
)

Second sub-step First sub-step

SP MP1 MP2 MP3 MP4

SP 5.1119/8133 4.9221/7831 4.8856/7773 4.1087/6537 4.1119/6542
MP1 5.0038/7961 4.8196/7668 4.7788/7603 4.0082/6377 4.0057/6373
MP2 5.0069/7966 4.8158/7662 4.7794/7604 4.0094/6379 4.0094/6379
MP3 5.0057/7964 4.8177/7665 4.7788/7603 4.005/6372 4.0057/6373
MP4 5.005/7963 4.8171/7664 4.7788/7603 4.0057/6373 4.0075/6376

Table 12  Number of iterations 
and average of iterations in 
CM4 with different iteration 
methods ( �

iter
/SUM

iter
)

Second sub-step First sub-step

SP MP1 MP2 MP3 MP4

SP 5.9925/9534 5.5688/8860 5.4595/8686 4.9956/7948 4.9956/7948
MP1 5.5682/8859 5.1446/8185 5.0346/8010 4.5713/7273 4.5713/7273
MP2 5.4595/8686 5.0352/8011 4.9258/7837 4.462/7099 4.462/7099
MP3 4.9969/7950 4.5732/7276 4.4639/7102 4/6364 4/6364
MP4 4.9969/7950 4.5732/7276 4.4639/7102 4/6364 4/6364

Fig. 18  Average of error of each iteration of various iteration meth-
ods in the time sub-step of CM2 method

Fig. 19  Maximum number of iterations per time step for various tol-
erances threshold in CM2 method
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iteration methods. The response of the roof nodes in the x-direc-
tion is obtained by the methods and compared with reference 
[43] in Fig. 21.

The number of iterations for convergence of the iteration meth-
ods is obtained with various time steps of time integration methods, 
and the weighted average of iterations ( SUMiter ) is calculated by 
values Δt

T
 . In Eq. (56), twenty-two values ( n = 22 ) are considered 

as samples between 0.1 and 0.01 for Δt
T

 , which is obtained through 
arithmetic progression.

The common differences between terms and the first term in 
the sequence are d = 0.004 and 

(

Δt

T

)

0
= 0.01 , respectively. 

(

Δt

T

)

i
 is the ith term in the sequence of arithmetic progres-

sion. Now, the weighted average of iterations ( SUMiter ) is 
calculated for the time sub-steps of the methods as 
follows:

(SUMiter)i is the number of iterations of the methods corre-
sponding to 

(

Δt

T

)

i
 . As can be seen in Fig. 22 the MP4 and 

MP3 methods cause the minimum value of SUMiter in the 
time integration methods. On the other hand, the SP method 
causes the maximum value of SUMiter.

The unified scheme has the ability to quickly alter the solving 
method of the problem by not duplicating the modeling for each 
of the methods and saving time for evaluating the problem using 
various methods. Now we show the computational efficiency of 
the unified scheme and the conventional methods by obtaining 

(56)
(

Δt

T

)

i
=

(

Δt

T

)

0
+ i.d i = 1, 2,… , n

(57)SUMiter =

∑i=n

i=1

�

Δt

T

�

i

�

SUMiter

nss

�

i

∑i=n

i=1

�

Δt

T

�

i

,

Fig. 20  Space truss [43]

Fig. 21  Time history of the nonlinear dynamic response of the roof 
nodes in the x-direction using time integration methods with the time 
step Δt = 0.1 T

Fig. 22  Weighted average of Iterations ( SUM
iter

 ) of the iteration 
methods
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the response of the space truss under earthquake loading. In 
this regard, we assume that the time integration and iteration 
methods are the same in these two states. As a sample, the SM1 
method is selected with the MP3 method. Figure 23 shows that 
the response of the SM1 inserted into the unified scheme (SM1-
IIUS) conforms with references [43] and the SM1 extracted from 
the unified scheme (SM1-EFUS). The computational costs of the 
SM1-IIUS and the SM1-EFUS method are shown in Table 13, 
which differ slightly from each other.

6  Conclusion

The first part of this study described a unified scheme for effi-
ciently implementing various implicit time integration meth-
ods and iteration methods. For the first time, we also provided 
a framework for multi-point iteration methods in nonlinear 
dynamic analysis of structures. The unified scheme is adjusted 

so that it can implement various other methods in this scheme in 
the future. The unified scheme made it possible to quickly imple-
ment new procedures and compare the performance of nonlinear 
implicit time integration methods. We observed, using numerical 
tests, that the composite time integration method could be more 
substantial than simple time integration methods in maintaining 
stability. Many nonlinear analyses are inferior due to the high 
number of iterations required by single-point methods. Using 
multi-point procedures as the solution algorithm in nonlinear 
direct time integration methods reduces the number of iterations 
required to reach convergence. The numerical results show that 
applying the MP4 method as a nonlinear solver in simple time 
integration methods causes the response to converge with the 
least number of iterations. The reduction of iterations in com-
posite time integration methods is determined by how the itera-
tion methods are placed in the time sub-steps and the interval 
of time sub-steps (in addition to the type of iteration methods). 
Using � = �0 in the composite time integration method allows 
multi-point iteration methods to reduce the number of iterations 
significantly. The convergence of a nonlinear dynamic response 
becomes problematic when the accuracy for convergence is set 
to be high. However, the multi-point method can reduce the dif-
ficulty of achieving convergence. The type of time integration 
methods may challenge the number of convergence iterations. 
The MP3 and MP4 methods have the lowest weighted averages 
of iterations and are more stable than other iteration methods 
for reducing the number of iterations in various time integra-
tion methods. We anticipate that a practically helpful frame-
work for nonlinear dynamic analysis provides a unified scheme 
of the existing methods for easy implementation and to ensure 
efficiency and robustness in structural problems beyond the 
benchmark scale. Whether our unified scheme described in this 
article can be extended to include other time integration methods 
remains to be seen.

Appendix 1: Unifying a
0
 in the unified 

scheme

The coefficient a0 in the unified scheme is as follows:

where is used in Eq. (59):

(58)a0 =
1

4�(q2�Δt)
2
(−

H

2
+ 1),

(59)�ssi = a0� + a1�,

Fig. 23  Response of the space truss by SM1-IIUS and SM1-EFUS 
with time step Δt = 0.1 T

Table 13  Elapsed time of SM1-IIUS and SM1-EFUS (s)

Δt

0.1 T 0.3 T 0.5 T

SM1-IIUS 123.39 62.05 24.73
SM1-EFUS 120.4 61.33 24.60
Difference 2.42% 1.15% 0.49%
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The unified scheme includes the four time integration meth-
ods, so we obtain the coefficient a0 according to the time 
integration methods:

Unifying a
0
 in �

∞
‑Bathe method

The �
∞

-Bathe method is a composite method. In this method, the 
values of dynamic components �1 and �2 are as follows:

where

By comparing Eqs. (60) and (61) with Eq. (59), the follow-
ing can be expressed:

Therefore, a0 =
1

(q2Δt)
2
 can be considered as the comprehen-

sive state of the coefficient a0 , when q2 be expressed as 
follows:

Now we require to obtain a unified equation for q2 in terms 
of ssi to satisfy Eq. (65):

We can express for q1 a unified equation in terms of y by 
comparing Eq. (65) with Eq. (66). Therefore, Eq. (63) is 
rewritten as follows:

Unifying a
0
 in Newmark method

The Newmark method is a simple method. Therefore, �1 in the 
unified scheme for the Newmark method is as follows:

(60)�1 =
4

(�Δt)2
� +

1

�Δt
�,

(61)�2 =
1

(q2Δt)
2
� +

1

q2Δt
�,

(62)q2 = −�q1 +
1

2
,

(63)q1 =
�
∞
+ 1

2�(�
∞
− 1) + 4

,

(64)

{

If ∶ ssi = 1 → a0 =
4

(�Δt)2
,

If ∶ ssi = 2 → a0 =
1

(q2Δt)
2
,

(65)

{

if ∶ ssi = 1 → q2 =
�

2
,

if ∶ ssi = 2 → q2 = −�q1 +
1

2
,

(66)q2 = �q1(−1)
ssi−1

+

ssi − 1

ssi
,

(67)q1 =
(�

∞
+ 1)ssi−1

2�(�
∞
− 1)(ssi − 1) + 2ssi

,

The dynamic component of �1 is compared between the �
∞

-Bathe and Newmark methods, and it is observed that the 
coefficient a0 in the Newmark method has no � . Therefore, 
we consider � as a constant and neutral parameter in the 
Newmark method ( � = 1). The coefficient a0 obtained in the 
previous step is written as follows to include both methods:

Unifying a
0
 in Wilson method

The Wilson method is a simple method and is similar to the linear 
acceleration method ( � =

1

2
, � =

1

6
 ). �1 in the unified scheme for 

the Wilson method is as follows:

Equation (69) can be rewritten by comparing Eqs. (59) and 
(69) with Eq. (70):

Unifying a
0
 in Houbolt method

The Houbolt method is a simple method. �1 in the unified scheme 
for the Houbolt method is as follows:

By choosing the Houbolt method for analysis in the uni-
fied scheme, the variables of other methods should 
be considered as constant and neutral parameters 
( � = 1, � = 1, � =

1

2
, � =

1

4
 ). Therefore, Eq. (71) can be 

rewritten by comparing Eqs. (59) and (71) with Eq. (72):

In the unified scheme can be selected the Houbolt method 
by H = 1 , and the coefficients of the Houbolt method can 
be activated.
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