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Abstract
Predicting pediatric spinal deformity (PSD) from X-ray images collected on the patient’s initial visit is a challenging task. 
This work builds on our previous method and provides a novel bio-informed framework based on a mechanistic machine 
learning technique with dynamic patient-specific parameters to predict PSD. We provide a geometry-based bone growth 
model that can be utilized in a range of applications to enhance the bio-informed mechanistic machine learning framework. 
The proposed technique is utilized to examine and predict spine curvature in PSD cases such as adolescent idiopathic sco-
liosis. The best fit of a segmented 3D volumetric geometry of the human spine acquired from 2D X-ray images is employed. 
Using an active contour model based on gradient vector flow snakes, the anteroposterior and lateral views of the X-ray 
images are segmented to derive the 2D contours surrounding each vertebra. Using minimal user input, the snake parameters 
are calibrated and automatically computed over the dataset, resulting in fast image segmentation and data collection. The 
2D segmented outlines of each vertebra are transformed into a 3D image segmentation result. The Iterative Closest Point 
mesh registration technique is then used to establish a mesh morphing approach and creates a 3D atlas spine model. Using 
the comprehensive 3D volumetric model, one can automatically extract spinal geometry data as inputs to the mechanistic 
machine learning network. Moreover, the proposed bio-informed deep learning network with the modified bone growth model 
achieves competitive or even superior performance against other state-of-the-art learning-based methods.

Keywords Mechanistic bio-informed machine learning · X-ray images · Dynamic model · Pediatric spinal deformity · 
Adolescent idiopathic scoliosis · Mesh registration · 3D reconstruction

1 Introduction

Deformities in the spine may cause pain, numbness, tin-
gling sensation, loss of function, and even pulmonary and 
cardiac difficulties. If the spine loses its usual, graceful 
S-shape (when seen from the side), or if the spine loses its 
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straightness, deformities may arise (viewed from front to 
rear). The term Pediatric Spinal Deformity (PSD) refers to 
such malformations of the spine in children, namely, sco-
liosis, kyphosis, and spondylolisthesis [1]. Scoliosis and 
kyphosis are conditions characterized by aberrant curvature 
of the spine, while spondylolisthesis is characterized by the 
displacement of vertebrae. PSD is caused by a variety of fac-
tors, the most important of which is bone growth, which con-
trols the curvature and advancement of the deformity. There 
is still more to learn about the underlying etiology of PSD. 
Affecting roughly 7 million people in the United States, 
scoliosis is one of the most prevalent spinal abnormalities. 
Adolescent Idiopathic Scoliosis (AIS) is used to describe 
the condition in children and adolescents. AIS accounts for 
around 80% of all pediatric scoliosis cases, while affecting 
approximately 3% of adolescents under the age of 16 in the 
USA [2].

The treatment of scoliosis is mainly reliant on the shape 
and extent of spinal curvature, and specific treatment choices 
are usually determined by the surgeon’s expertise. As a 
result, the development of a clinically validated, patient-spe-
cific model of the spine to assist surgeons in the prognosis of 
early-stage PSD would guide optimum surgical and non-sur-
gical treatment options. For both screening and monitoring 
in present clinical practice, the lack of an appropriate safe, 
inexpensive, and accurate measuring technology is a major 
bottleneck. To track the evolution of deformities throughout 
adolescent growth, frequent imaging is essential [3] and the 
extracted features from medical images such as Cobb angle 
determine the severity of spinal deformity. The Cobb angle 
is the most often utilized measurement for determining the 
severity of spinal deformities.

It is common practice in spine surgery to use computer-
aided procedures, such as determining the best path for the 
insertion of pedicle screws [4–6], as well as improved sur-
gical navigation and a more comprehensive pre-operative 
surgical plan [7, 8]. One of the greatest barriers to incorpo-
rating these technologies into clinical practice is the time 
and effort necessary to generate patient-specific functional 
models from medical imaging. It entails a number of manual 
procedures and is time intensive, even for seasoned special-
ists [9, 10]. For example, image segmentation is both time-
consuming and user-dependent [11, 12] because it requires 
to locate and segment vertebrae ahead of time [14]. Generat-
ing 3D detailed geometry of the spine from a 2D set of X-ray 
images is also a challenging task. Various manual processes 
are required to segment the obtained volumetric mesh in 
order to detect hard and soft tissue once the 3D model has 
been formed.

Machine learning (ML) approaches need a large amount 
of data to be trained and provide reliable results [14, 15]. 
The absence of reliable medical data for a given individual 
over time is one of the challenges in implementing ML for 

prognosis spinal deformity. Furthermore, these models are 
referred to as “data-hungry” approaches since they can-
not forecast outside of the range of the training data [16]. 
Recent publications show that by including physics into the 
system, one may enhance the model’s predictability range 
[17]. However, for spinal curve progression including bone 
formation, patient-specific governing physical equations 
with time-varying and geometric-based coefficients are 
unavailable.

Previously published research from our group has used 
X-ray imaging data to develop a prognostic framework for 
AIS [18]. This framework predicted spine morphology by 
combining clinical data acquired from X-ray images with 
mechanistic features such as stress distribution on the grow-
ing surface of the vertebrae extracted from a spine surrogate 
model along with the bone growth model. Although this 
unique framework used mechanistic data science for fore-
casting spine deformity, the previous method had a num-
ber of limitations that impede deploying this framework in 
real-world scenarios. One restriction is the manual param-
eter adjustment for image segmentation of each vertebra. 
The presented 3D reconstruction and geometry generation 
technique requires considerable labor since each tissue is 
generated separately and all tissues are assembled together. 
Moreover, the bone growth model has constant parameters 
throughout all patients and time steps. However, these 
assumptions are unrealistic since bone formation differs 
across ages and vertebrae.

The proposed framework (Fig. 1) in this paper builds on 
our previous work [18], with each step in the framework 
improved to meet real-world needs. Both the limitations of 
the previous framework and the contributions of the current 
framework are summarized in Table 1.

The organization of the paper is as follows: After discuss-
ing related works in Sect. 2, we describe the framework to 
create the patient-specific 3D geometry from X-ray images 
in Sect. 3. In Sect. 4, we present our novel bio-informed 
mechanistic machine learning model for prognosis of pedi-
atric spinal deformity. Lastly, we end with some conclusions 
and discuss future directions of this work.

2  Related works

2.1  Vertebrae image segmentation

Precisely segmenting the vertebrae is critical for subsequent 
analysis in an injury detection system. Statistical shape 
model (SSM)-based techniques have dominated previous 
work in vertebral segmentation [19, 20]. Based on a train-
ing set, these approaches capture statistical information 
on the shape and/or appearance of the vertebra. The mean 
shape is then manually or semi-automatically set close to the 



4063Engineering with Computers (2022) 38:4061–4084 

1 3

real vertebra, and a search process is used to converge the 
shape on the true vertebral boundaries. Latest evidence has 
used random forest-based machine learning (ML) models to 
achieve shape convergence [20–23]. These approaches, how-
ever, are only efficient and accurate for the restricted data 
reported in the literature and cannot be applied to patient-
specific datasets.

2.2  3D model development and computational 
simulation

Compared to MRI and computational tomography (CT) scan-
ners, X-ray images are more commonly employed due to their 

accessibility, lower cost, shorter scanning time, and lower 
ionizing radiation levels particularly for adolescent patients. 
Statistical Shape Models (SSM) [24–27] or Statistical Shape 
and Intensity Models (SSIM) were used to reconstruct bones 
from X-ray images. To prevent local maxima while optimiz-
ing the deformable model parameters, it is important to select 
a reasonable starting point [28, 29]. Recent years have seen 
the use of deep learning to recognize landmarks and triangu-
late them [28]. However, performing 3D reconstruction from 
two or more 2D photographs using a deep learning technique 
remains a tough problem due to the complexity of describing a 
dimensional expansion in multi-view circumstances. The EOS 
imaging system (formerly, Biospace Med, Paris, France), the 

Table 1  Contributions of proposed framework with respect to previous framework [18]

 Steps of framework Limitations of previous framework Contributions of current framework

1 2D image segmentation Manual parameter adjustment Calibrated parameters and semi-manual adjustment to expedite the process
2 3D reconstruction 

from bi-planar data 
and volumetric mesh 
generation

Labor intensive Fast and robust

3 Mechanistic deep learn-
ing method using bone 
growth model

Constant parameters which are inde-
pendent of time and position

Patient-specific, position-sensitive and dynamic bio-informed mechanistic 
deep learning parameters

Fig. 1  The overall workflow of the proposed framework. The geomet-
ric data of vertebrae is retrieved from 2D X-ray time-series images 
using an image segmentation algorithm whose parameters are cali-
brated through sensitivity analysis. The 2D data is then translated 

to 3D data where patient-specific features are extracted. The imag-
ing data (clinical) and the mechanistic aspects such as the dynamic 
patient-specific bone growth model are passed through the bio-
informed mechanistic neural network to predict spinal deformity
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DIERS formetric scanner, and ultrasonography are examples 
of recent breakthroughs in diagnostic imaging for AIS [3]. The 
EOS imaging system is made up of two orthogonal pairs of 
X-ray tubes and detector units that allow for the simultaneous 
capture of anteroposterior (AP) and lateral (LAT) X-ray pic-
tures while standing. EOS imaging can quickly scan the spine 
in 8–15 s, depending on the patient’s height. From the EOS 
anteroposterior and lateral pictures, the software system sterEOS 
(EOS Imaging, Paris, France) can generate a highly accurate 3D 
model of the spine [30–32]. However, this technology is unable 
to divide distinct tissues in order to account for the many biologi-
cal organs. Due to its expensive cost, it is not widely available in 
many medical centers.

To gain a better knowledge of load distribution and other 
mechanical features, the 3D generated patient-specific geometry 
may be utilized to construct a finite element model. There is no 
comprehensive automated workflow for anatomically correct FE 
simulations of the spine based on 2D X-ray data. A lot of work 
has been done on parametric FE models or a mix of statistical 
and FE models [33, 34]. However, those models either ignore 
essential patient-specific features or require a lot of manual 
labor, which necessitates a certain level of operator experience. 
Although efforts to automate the construction of FE models of 
the healthy spine have been performed [10, 35], the technique 
has never been integrated with deep learning-based segmenta-
tion algorithms or applied to diseased situations.

2.3  Implementing ML for studying spinal deformity

The application of ML in medical research has skyrocketed 
in recent decades. When it comes to applying ML for medical 
image analysis, there has always been the challenge on how to 
accurately integrate ML for disease diagnosis, prognosis, and 
therapy. A framework with such characteristics should always 
be able to capture the biological governing equation in order 
to offer extra information to the lacking training data. Recent 
studies have attempted to use AI to predict spinal deformities 
[36–39]. These frameworks, however, cannot be applied to other 
disciplines. Recently, research has shown that by incorporating 
the system’s underlying physical equations, the framework may 
forecast data outside of the projected range [18, 40]. Neverthe-
less, there are certain processes in between that need manual 
parameter adjustment and, as a result, cannot be implemented 
for real-time prognosis framework.

3  Patient‑specific image segmentation 
and data generation

3.1  Image segmentation and parameter fitting

Image segmentation of clinical X-ray images is carried out 
to extract features for the prognosis framework [41]. The 

corner points of each vertebra are identified and used as 
reference points to monitor variations in spine shape and 
bone formation over time. We implement semi-automated 
image segmentation using active contour, also known as, 
the snakes method [42]. A rectangular contour consisting 
of four corner points is initialized manually around each 
vertebra and evolved to capture the shape. We define the 
four corner points of each vertebra as landmarks. These are 
the key points which help in describing the spine geometry. 
The segmentation is carried out in 2D for both AP and LAT 
images. The evolution of the active contour is carried out 
iteratively through minimization of image energy, allowing 
it to converge at the edges of features. Snakes are considered 
energy-minimizing splines which are defined in a parametric 
form. The total energy functional proposed in [42] considers 
both image and external constraint energy terms (described 
in detail in Appendix A).

Active contour model is fast and is able to accurately seg-
ment each vertebra in the X-ray images. However, there are 
a few drawbacks. The accuracy of segmentation depends on 
how accurately the active contour is initialized. The energy 
functional which is minimized consists of many weighting 
parameters which are set empirically at the beginning of 
the segmentation. The optimized parameters of the snakes 
method which provides the contour around each vertebra are 
generally obtained through a trial and error process, which 
is time-consuming. We propose an improved technique to 
obtain optimum parameters for the accurate segmentation 
of clinical X-ray images. The parameters of the Snake algo-
rithm are categorized into two groups: geometric parameters 
and fitting parameters.

Geometric parameters For each vertebra, we initialize the 
active contour as a rectangle and define geometric param-
eters such as the width ( wn ), height ( hn ) and rotation angle 
( �n ) from the horizontal axis. n is the vertebra level number 
where n = 1 ∼ 12 corresponds to the thoracic vertebra (T1, 
T2, … , T12) and n = 13 ∼ 17 represent lumbar vertebra (L1, 
L2, … , L5). From the T1 to the L5 vertebra, we assume a 
linear relationship between each vertebra size and vertebra 
level, with L5 vertebra having the largest size. The length 
and width of T1 and L5 can be used to determine the cor-
responding length and width of other vertebrae. The user 
chooses three reference corner points (top right, bottom right 
and bottom left) for T1 ( w1 and h1 ) and L5 ( wm and hm ) 
vertebrae as shown in Fig. 2a, and the parameters for the 
remaining vertebrae are computed using

(1)
hn = h1 +

(
hm − h1

N − 1

)
(n − 1),

wn = w1 +

(wm − w1

N − 1

)
(n − 1).
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For each vertebra, the user manually selects the center 
point. The rotation angle can be obtained by

where �n is the rotation angle of the vertebra n, x⃗ is the vec-
tor of horizontal axis and 𝜙n is the bisector of the vector that 
connects the two adjacent vertebrae as shown in Fig. 2b. 
It is worth noting that the framework may be used for any 
number of vertebrae in any regions of interest, including 
cervical, thoracic, lumbar, or a combination of all three. By 
estimating geometric parameters for the lumbar spine, Fig. 3 
compares the ground truth and the modified snake method. 
The findings are in excellent accord with the ground truth, 

(2)𝜃n = cos−1

(
𝜙n.x⃗

|𝜙n|.|x⃗|

)

as shown. The ground truth segmentation result is evaluated 
using the snakes method in which the parameters are manu-
ally adjusted and the initialization of the contour is done 
manually for each vertebra.

Fitting parameters The weighting coefficients in the 
active contour model are set in order to move the contour 
around each vertebra. � and � are the weights associated 
with the first-order and second-order regularizing terms of 
the internal spline energy (Eq. (2) in [42]) that control the 
tension and rigidity of the snake, respectively. � is the step 
size associated with the iterative update of the active con-
tour and � is the weighting coefficients associated with the 
derivatives of the external force terms (Eq. (17) in [42]). wl , 
we and wt are the weighting coefficients associated with the 
image, edge and terminal energy functionals, respectively 

Fig. 2  a Approximating length 
and width of vertebrae by pick-
ing reference corner points of 
T1 and L5; and b the approxi-
mation of angle of rotation for 
each vertebra

Fig. 3  Segmentation of the X-ray images. a Lateral (LAT) and b 
anteroposterior (AP) view of the image obtained from X-ray data. 
Comparison between two segmented lumbar spine: c ground truth 

(the output of the snakes algorithm in which the parameters are man-
ually adjusted) and d by estimating geometric parameters (angle of 
rotations, length and width of each vertebra)
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[42]. More details on the fitting parameters are provided 
in Appendix A. By identifying the optimal sets of these 
parameters, one may precisely determine the curvature of 
the spine.

A sensitivity analysis [43, 44] is performed on each pair 
of fitting parameters, namely �-�,�-� , wl-we and wt-iterations, 
as illustrated in Fig. 4a–d, to provide a better estimate on the 
optimized parameters. Here, for a particular pair of fitting 
parameters, the segmentation result is compared with the 
ground truth result and the average value of the normalized 
mean squared error is calculated for all the images in the 
dataset. The normalized mean squared error is given as

where Ns , Nv and Nl are the number of images, number of 
vertebra and number of landmarks associated with each ver-
tebrae. xs

v,l
 and ys

v,l
 are the positions of landmarks obtained by 

the current approach, whereas x̄s
v,l

 and ȳs
v,l

 are the positions of 
the landmarks obtained from ground truth result.

To obtain the optimized parameters throughout the data-
set, each pairwise parameter with the least normalized mean 
squared error is the initial value in the Simplex optimization. 
The final set of optimized parameters are used to segment 
the images, as shown in Fig. 4e. We observe that the method 

(3)

1
||Ns

||.||Nv
||.||N�

||
Ns∑
s=1

Nv∑
v=1

N�∑
�=1(

(xs
v,�

− x̄s
v,�
)2 + (ys

v,�
− ȳs

v,�
)2
)

is not very sensitive to the parameter values, which is desir-
able for practical applications, since there is no need for fine 
tuning of parameters in order to achieve satisfactory results.

Figure 5 shows the segmented spine in AP view, tak-
ing into account both the geometric and fitting parameters. 
First, the reference points of the T1 and L5 vertebrae will 
be identified and then the program will identify the contour 
around each vertebra.

3.2  3D shape reconstruction from bi‑planar 2D data

Serial X-ray images from two orthogonal perspectives 
known as anteroposterior (AP) and lateral (LAT) are used 
in this study to gather patient-specific data (Fig. 3). Patient-
specific characteristics are retrieved from X-ray images to 
assess spinal deformity prognosis. After performing seg-
mentation and obtaining the contours from AP and LAT 
images, we perform 3D reconstruction from the 2D seg-
mented contours in order to get the volumetric spine geom-
etry. The different coordinate systems associated with the 
AP and LAT images present a challenge that needs to be 
addressed. Furthermore, it is challenging to keep track of the 
various coordinate systems of these images that have been 
longitudinally taken over time.

The initial step should be to calibrate the camera location 
in order to make all data consistent and comparable in scale. 
Here are the assumptions for the camera calibration step:

Fig. 4  a–d Sensitivity analysis on the fitting parameters of the snakes 
algorithm to be provided as initial values for multi-variable optimiza-
tion. e Optimized multi-variables of the snakes method for the lum-
bar spine. The dashed line denotes the ground truth manually picked 

four corner points of the vertebrae, and solid lines are the optimized 
configuration. The normalized mean square error is 0.0187 corre-
sponding to � = 0.25 , � = 0.25 , � = 12 , � = 0.2 , w

l
= 0.5 , w

e
= 0.5 , 

w
t
= 0 , and iteration = 50
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• Reference of the coordinate system: The coordinate sys-
tem’s reference point in AP and LAT perspectives is the 
center point of L5 ( 5th lumbar vertebra).

•  Angle between AP and LAT views: the angle between AP 
and LAT views is 90◦.

• Scaling criterion: The images are taken with different 
scales. Images need to be scaled such that the heights 
of the spine in these two X-ray views are the same. It is 
assumed that AP view is fixed and the LAT view will be 
calibrated accordingly. The scaling factor between two 
pairs of images is calculated as 

(4)s =
zAP
max

− zAP
min

zLAT
max

− zLAT
min

,

 where zAP
max

 and zAP
min

 are the maximum and minimum of z 
coordinates of landmarks in AP, respectively. Similarly, 
zLAT
max

 and zLAT
min

 are the maximum and minimum of z coor-
dinates of landmarks in LAT, respectively.

As seen in Fig. 6, the scaled data is subsequently fed into a 
3D reconstruction procedure. The size of the bounding box 
for each vertebra is calculated by identifying the minimum 
and maximum in each direction, and the nodes in 3D space 
corresponding to that region are identified. The nodes on the 
boundary will also be detected using the MATLAB convhull 
function [45] (Convex hull of the 3D reconstructed region). 
The 3D reconstruction geometry will be obtained as well 
as the boundary points for every vertebrae by performing 

Fig. 5  Three steps for image 
segmentation. a Picking the ref-
erence points of each vertebra, 
b picking the center points of 
all vertebrae and c segmented 
data by implementing optimized 
geometric and calibrating 
parameters using the snakes 
algorithm

Fig. 6  Flowchart of 3D reconstruction of vertebrae using 2D data
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the described technique and utilizing the scaled landmarks 
received from the X-ray images (Fig. 7).

3.3  Volumetric mesh generation

The 3D reconstructed shape shown in Fig. 7 cannot be 
directly used in to generate 3D volumetric mesh of an esti-
mated spine from the 2D views, and we use a twisting reg-
istration for the spine on the source mesh introduced in [46]. 
In our previous work [18], we used free-form deformation 
based on truncated hierarchical B-splines (THB-splines) for 
registration [47–49]. During registration, the detailed source 
geometry is taken from the atlas 3D geometry model which 
includes 128,205 vertices as explained in [18]. The 3D volu-
metric mesh composes of three components: intervertebral 
discs, lumbar vertebrae and thoracic vertebrae. The volu-
metric mesh of each vertebra is then segmented into growth 
plate, cortical bone and cancellous bone regions. Similarly, 
the volumetric mesh of each intervertebral disc is partitioned 
into Annulus Fibrosus and Nucleous Pulposus regions.

The employed registration method is based on the Itera-
tive Closest Point (ICP) technique [50] which is extensively 
explained in Appendix B. In this method, we use the central 
points of each estimated vertebra and 8 corner points of the 
corresponding bounding box as the target points. Then we 

define the point cloud as a surface and perform the nonrigid 
registration method in Appendix B with high stiffness i.e., 
high � in Eq. (B9), to register the mentioned corresponded 
points from source mesh (the Atlas 3D geometry in [18]) to 
the target mesh (generated in Sect. 3.2). The stiffness term 
prohibits the unfavourable rotation and causes in logical 
twisting instead. After finding the limited number of the 
transformation matrix as outcome of the registration method 
(17 (vertebra) × 8 (bounding box) + 17 (central of vertebra) 
= 153 transformation matrices in total), each point on the 
source mesh among the 128,205 vertices will be transformed 
based on the transfer matrix of each of the 153 points which 
is the closest to the vertex before registration. As shown 
in Fig. 8a, b, the central points of the vertebra on the tar-
get spine and the source spine are depicted before and after 
registration respectively. Using the found transformation 
matrix of these 153 points, the complete volumetric spine 
is deformed from Fig. 8c to d which matches all the 8 land-
marks of each vertebra.

Practically, the registration method allows us to gener-
ate a time-series mesh morphing of a patient’s spine using 
the output of Sect. 3.2 where the X-ray images are serial 
images taken at different time steps from the spine. Through 
the approach introduced in Sect. 3.2, we have a low-qual-
ity time-series 3D point clouds of the spine. Here, we use 
each of the reconstructed spines in each time interval as 

Fig. 7  3D reconstruction of vertebrae using 2D data. The camera 
parameters are calibrated before reconstruction based on the explana-
tion in Sect.  3.2. a The segmented data of the AP and LAT views, 
b the 3D reconstructed geometry shaded in blue (obtained from the 

multiple inner volume blue points) using the bounding box algorithm; 
the magenta points denote the boundary (outer) surface and the blue 
points denote the inner volume, c and d zoomed-in views of the inner 
and boundary points of the third thoracic vertebra (T3)
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a template for the mesh registration method explained in 
Appendix B, which gives us a mesh morphing 4D (3D + 
time) [51, 52] data of the spine.

4  Bio‑informed mechanistic machine 
learning

In this section, we propose our bio-informed mechanistic 
machine learning model that incorporates clinical data as 
well as mechanistic knowledge such as bone growth model 
and finite element results. We propose three machine learn-
ing models for prognosis of PSD: 3D-Clinical Neural Net-
work; Bio-informed Clinical Neural Network; and Bio-
informed Mechanistic Neural Network. The Bio-informed 
Clinical Neural Network is a stand-alone model that utilizes 
only the clinical data (i.e., X-ray images). Each of the latter 
two models is divided into two parts where both of them 
share the first part, called Center Point Predictor Neural Net-
work. The Center Point Predictor Neural Network returns the 
center point of each vertebra, and this output is fed into the 
second part of the respective model.

The major difference between the Bio-informed Clinical 
Neural Network and the Bio-informed Mechanistic Neural 
Network is the loss function of the second part. The for-
mer uses the bone growth parameters in the loss function, 
whereas the latter takes both geometric features (position of 
landmarks and center points) and bone growth parameters 
into the loss function. This will be explained in detail in the 
following Sect. 4.3.

4.1  Introduction to bone growth model

One way to address the scarcity of patient-specific data is to 
incorporate the governing physical equation since it provides 
insights into the expected data. There are several aspects 
to consider when employing governing physical equations. 
The model must be validated over a large population, and 
some patient-specific time-dependent constants must be cali-
brated for each individual patient at each time step if these 
models are used in computational simulations as well as ML 
frameworks.

The underlying physical equation that governs the pro-
gression of the spine is the bone growth model, because 
the AIS occurs during adolescence when bone growth is 
at its peak [53]. It is believed that bone formation is a con-
sequence of the stress imposed on each vertebra’s growth 
plate [54] located on the top and bottom of each vertebra. 
This assumption, however, may not be adequate to correctly 
depict bone growth, since other factors such as age, sex, 
and bone mineral density also affect bone formation. In the 
presented approach, we describe bone growth as follows:

where G = [GX ,GY ,GZ] are the growth rates along three 
normal directions and �̄� is the von Mises stress. There are 
two advantages of implementing von Mises stress. First, all 
stress components are taken into account and second, the 
definition of the stress is independent of the coordinate sys-
tem. Vectors A and B are patient-specific parameters that 
should be calibrated for each patient, where A = [AX ,AY ,AZ] 
are considered as growth rate for non-scoliotic spine 

(5)G = A + B�̄�

Fig. 8  Volumetric mesh regis-
tration on a point cloud includ-
ing reconstructed landmarks 
from X-ray images. Before 
registration: a center line, c 
volumetric mesh; After registra-
tion: b center line, d volumetric 
mesh
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and B = [BX ,BY ,BZ] are the regulating growth model 
parameters.

4.2  Modified growth model

We aim to make the most use of all available data by exploit-
ing medical features acquired from X-ray data, mechanistic 
features extracted from computational models, and address-
ing data scarcity while leveraging the underlying physical 
equation. The objective of the bio-informed mechanistic 
machine learning method is to reconstruct the curvature of 
the spine throughout time. However, the calibrated param-
eters generated by the system may be implemented into a 
computational model for monitoring and assessing bone 
formation on a local level.

4.2.1  Framework explanation and notation

The parameters of the physical growth equation are patient-
specific, time-dependent, and position-dependent. Thus, Eq. 
(5) for any arbitrary landmarks on the growth plates for time 
t and vertebra v can be rewritten as

where Atv = [Atv
X
,Atv

Y
,Atv

Z
] and Btv = [Btv

X
,Btv

Y
,Btv

Z
] are patient-

specific time-dependent, position-dependent parameters that 
should be calibrated for each patient at a given time to cal-
culate growth rates Gtv = [Gtv

X
,Gtv

Y
,Gtv

Z
] using the von Mises 

stress at time t for vertebra v using the von Mises stress field 
from the surrogate finite element model explained in [18]. 
The loads, boundary conditions and material properties are 
the function of time t and is updated accordingly based on 
the age of the patient. The finite element model’s output will 

(6)Gtv = Atv + Btv�̄�tv

contain the von Mises stress that corresponds to the growth 
landmarks’ position. Indices X, Y and Z correspond to the 
global coordinate system shown in Fig. 7. In plain terms, 
the modified growth equation describes the directional 
growth of a specific vertebra of a particular patient over a 
span of time. The spatiotemporal parameters of the equation 
track the co-ordinates of the vertebra over the time. One 
can imagine a bounding box around a vertebra that deforms 
in three dimensions. The growth equation tracks the three 
orthonormal components of the growth through the param-
eters. Hence, once solved, the modified growth equation can 
specify the later position of the bounding box.

Local and global coordinate systems To obtain the growth 
model parameters that correspond to the growth deformation 
of the vertebrae without taking into account the rigid body 
motion caused by the movement of the bottom vertebrae, a 
local coordinate system is set up at the center point of each 
vertebra. The axes of the local coordinates have the same 
direction as the axes of the global coordinate system (as 
mentioned in Sect. 3, the center of global coordinate system 
is at the center point of L5 (the fifth lumbar vertebra)). Fig-
ure 9a shows the global coordinate systems corresponding 
to the time t and the local coordinate system for the vertebra 
L3 at the same time (Fig. 9b). The landmarks that surround 
each vertebra are divided into two categories: those that are 
positioned on the growth plates ( XG ) and those that dictate 
the vertebra’s side shape ( XS ) as shown in Fig. 9c.

Growth parameters The growth landmarks with com-
parable motion directions (due to growth) within the same 
vertebra should be analyzed together to represent the growth 
deformation of XG landmarks. In the first step, nodes that 
behave similarly in each direction will be grouped together, 
as indicated in Table 2.

Fig. 9  Description of the coor-
dinate systems and landmarks. 
a Global coordinate system in 
AP view, b labeling landmarks 
to growth ( X

G
 ) and side ( X

S
 ), c 

local coordinate system of the 
vertebra L3 in AP view (the yel-
low dots are the 16 landmarks 
and the blue dots are the 4 
corner landmarks), d labeling of 
the growth landmarks on verte-
brae in local coordinate system 
in 3D view and e labeling of the 
growth landmarks on the L3 in 
local coordinate system in 2D 
view using the 4 corner points
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In the y-axis, for example, landmarks 1, 3, 5 and 7 have 
the same growth order (positive local y), whereas landmarks 
3, 4, 7 and 8 have the same growth direction in the z-axis 
(negative local z) as visualized in Fig. 9. The growth equa-
tion of each landmark (j) in local coordinates (x, y, z) for 
time (t) and vertebra (v) can be written as:

where Atv

j
= [Atv

xj
,Atv

yj
,Atv

zj
] and Btv

j
= [Btv

xj
,Btv

yj
,Btv

zj
] are patient-

specific time dependent, position dependent parameters for 
landmark (j) that should be calibrated for each patient at a 
given time for every vertebra. Indices x, y and z represent the 
three directions of local coordinate system shown in Fig. 9. 
It should be noted that �̄�tv

j
 is the von-Mises stress on land-

mark j which is independent of the coordinate system.

4.2.2  Calculating growth parameters

Nodes with comparable growth behavior have the same 
growth parameters, as listed in Table 2. These parameters 
are considered to be the same for each vertebra. The first step 
in determining growth parameters for each vertebra v is to 
create growth equations for all nodes as presented in Eq. (7).

The equations are rewritten to represent the clustered 
label in each direction, using the same growth parameter 
assumption as mentioned before as

where xtv
j

 , ytv
j
 and ztv

j
 are the coordinates in the local system 

of landmark j for the vertebra v at time t. The vectors Atv and 
B
tv for a vertebra v at time t will be defined as

(7)Gtv

j
= Atv

j
+ Btv

j
�̄�tv
j

(8)Gtv
xj
=

{
Atv
xF

+ Btv
xF
�̄�tv
j

xtv
j
< 0,

Atv
xB

+ Btv
xB
�̄�tv
j

xtv
j
≥ 0,

(9)Gtv
yj
=

{
Atv
yR

+ Btv
yR
�̄�tv
j

ytv
j
< 0,

Atv
yL
+ Btv

yL
�̄�tv
j

ytv
j
≥ 0,

(10)Gtv
zj
=

{
Atv
zU

+ Btv
zU
�̄�tv
j

ztv
j
< 0,

Atv
zD

+ Btv
zD
�̄�tv
j

ztv
j
≥ 0

to define the patient-specific, time-dependent, and position-
dependent scalar value of growth parameters for each verte-
bra. To discretize the growth parameters in each direction, 
the vectors

are defined corresponding to the growth parameters in each 
direction for all the growth landmarks. In the presented 
frame work, the number of growth landmarks is XG = 8 , 
corresponding to 8 corner points shown in Fig. 9. The 
post-processed data of serial X-ray images (described in 
Sect. 3.2) are used to directly assess the growth parameters 
by monitoring the locations of the growth landmarks in the 
two consecutive images. To represent the matrix form of 
growth parameters for each vertebra, matrices � and � are 
developed as

The dimension of �tv and �tv are 8 × 3 corresponding to 8 
growth landmarks and 3 local coordinate directions (x, y and 
z).

4.3  Spinal deformity prognosis framework

A bio-informed machine learning framework is introduced 
by incorporating our knowledge from clinical data (X-ray 
images) and the modified bone growth computational model 
explained in Sect. 4.2. The landmark position X is related 
to the features I at a given time by an unknown bio-physics 
equation which can be generically defined as a mapping. 
Note that I is referring to general features for now. It will be 
specified in the following sections depending on the choice 
of the model. The overall structure of a neural network can 
also be described as a mapping, i.e.:

where FFFNN is the feed forward neural network (FFNN) 
that uses clinical and mechanistic features I as input, and 

(11)
A

tv = [Atv
F
,Atv

B
,Atv

R
,Atv

L
,Atv

U
,Atv

D
],

B
tv = [Btv

F
,Btv

B
,Btv

R
,Btv

L
,Btv

U
,Btv

D
],

(12)

⎧
⎪⎨⎪⎩

A
tv
x
= [Atv

F
,Atv

F
,Atv

F
,Atv

F
,Atv

B
,Atv

B
,Atv

B
,Atv

B
],

A
tv
y
= [Atv

R
,Atv

L
,Atv

R
,Atv

L
,Atv

R
,Atv

L
,Atv

R
,Atv

L
],

A
tv
z
= [Atv

U
,Atv

U
,Atv

D
,Atv

D
,Atv

U
,Atv

U
,Atv

D
,Atv

D
],

⎧
⎪⎨⎪⎩

B
tv
x
= [Btv

F
,Btv

F
,Btv

F
,Btv

F
,Btv

B
,Btv

B
,Btv

B
,Btv

B
],

B
tv
y
= [Btv

R
,Btv

L
,Btv

R
,Btv

L
,Btv

R
,Btv

L
,Btv

R
,Btv

L
],

B
tv
z
= [Btv

U
,Btv

U
,Btv

D
,Btv

D
,Btv

U
,Btv

U
,Btv

D
,Btv

D
],

(13)
�

tv = [[Atv
x
]
T
[Atv

y
]
T
[Atv

z
]
T
], and

�
tv = [[Btv

x
]
T
[Btv

y
]
T
[Btv

z
]
T
].

(14)

{
Unknown bio-physics equation∶ X = FUnknown-BioPhy(I)

Neural network mapping∶ X = FFFNN(I)

Table 2  Landmarks with the same growth behavior are clustered into 
the same group. The numbers are clarified in Fig. 9d

Local growth direction Clustered landmarks

x F = [1, 2, 3, 4] B = [5, 6, 7, 8]

y R = [1, 3, 5, 7] L = [4, 2, 6, 8]

z U = [1, 2, 5, 6] D = [3, 4, 7, 8]
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generates landmark coordinates X as the output. The nota-
tion used throughout this section is defined in Table 3. To 
predict the position of a landmark, the input neurons would 
be clinical and mechanistic features and the hidden neu-
rons would act as a multiplicative, functional decomposi-
tion of the unknown bio-physics equation that estimates the 
unknown function required to map input features to coor-
dinates in the output neurons. In this project, MATLAB 
is used to build the FFNN and to train the neural network 
parameters [55].

Each neuron within every layer of a generic FFNN 
receives the output value from each neuron in the previous 
layer as input and produces a single output. This procedure is 
carried out for each layer. For an arbitrary number of layers 
and neurons per layer, the value of the jth neuron in layer 
l for the sth sample (either a training sample or prediction) 
may be written as:

where A  is an activation function. In the training part, this 
research uses ReLU (Rectified Linear Unit) function defined 
as  the  posi t ive  par t  of  i ts  argument ,  [56] : 
f (x) = x+ = max(0, x) , and each neuron is computed using 

(15)

al
j,s
=

⎧⎪⎨⎪⎩

Ij,s, if l = 1 (input layer)

A(bl
j
+
∑NN (l−1)

i=1
Wl−1

ji
al−1
i,s

), if 1 < l < NL (hidden layers)

bl
j
+
∑NN (l−1)

i=1
Wl−1

ji
al−1
i,s

, if l = NL (output layer)

a different weight Wl=1
ij

 and bias bl=2
j

 , where i is the neuron 
in the previous layer. Finally, the overall response—the pre-
dicted landmark coordinates—is given by:

The FFNN can learn the unknown governing bio-physics 
equation based on the loss function and input and output 
features. The loss function may be constructed to train the 
FFNN to offer accurate estimates while also supplying 
patient-specific parameters that can be considered as the 
network’s hyperparameter. Multiple FFNN approaches are 
presented in the next section, each with a distinct loss func-
tion and input-output features.

4.3.1  Machine learning framework explanation

3D-clinical neural network (FFNNCL ): Given the coordi-
nates of a vertebra’s landmarks at time t, the clinical neural 
network attempts to predict the vertebra’s landmark coor-
dinates at time t + Δt ; see Fig. 10. The input vectors are 
It
s
= [X̄

t

s
,�t

s
, t,Δt] , where X̄t

s
 indicates the landmark coordi-

nates of sample s at time t and �t
s
 denotes the global angles 

(described in [18]) characterizing the 3D shapes of the spine 
at that time. The outputs are vectors Ot

s
= [Xt+Δt

s
] , where 

Xt+Δt
s

 denotes the expected 3D coordinates of the vertebra’s 
corner points at time t + Δt.

(16)X
predicted

j,s
= a

NL

j,s
.
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The relative approximation error for this model is cal-
culated as (18)𝛿CL =

1

H ⋅ NT ⋅ Nm

NT∑
s=1

Nm∑
m=1

‖‖‖X
t+Δt
sm

− X̄
t+Δt

sm

‖‖‖
2

,

Fig. 10  The structure of the 
3D-clinical feed-forward neural 
network FFNN

CL
 developed to 

predict the coordinates of the 
landmarks at time t + Δt

Fig. 11  The structure of 
the center point prediction 
feed-forward neural network 
FFNN

CR
 developed to predict 

the location of the center point 
of the vertebra at time t + Δt
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where �CL denotes the relative error of the clinical neural 
network, Xt+Δt

sm
 is the coordinates of the landmark m of ver-

tebra s predicted by the neural network, and X̄t+Δt

sm
 is from 

clinical dataset.

Center point predictor neural network (FFNNCR ): Given 
the set of landmarks’ coordinates X̄t

s
 , global angles �t

s
 , and 

von Mises stress �̄t
s
 at landmarks at time t, FFNNCR pre-

dicts the coordinates of the center of the sample at time 
t + Δt ; see Fig. 11. More formally, the input to FFNNCR 
is It

s
= [X̄

t

s
,�t

s
, t,Δt, �̄t

s
] and its output vector is Ot

CR,s = [Ct+Δt
s ] , 

where Ct+Δt
s

 denotes the center coordinates of the sample s 
at time t + Δt . The results of this network are used in the 
following neural networks.

Bio-informed clinical neural network (FFNNBC ): Using 
the clinical data to predict bone growth parameters, FFNNBC 
predicts the parameters of the physical growth equation 
given the set of landmark coordinates, global angles, and 
von Mises stress at the landmarks; see Fig. 12. Input vec-
tors are It

s
= [X̄

t

s
,�t

s
, t,Δt, �̄t

s
] , where X̄t

s
 is the landmarks’ 

coordinates at time t, �t
s
 is the set of global angles, and �̄t

s
 

is the set of von Mises stress. The outputs of the network 
are vectors Ot

s
= [At+Δt

s
,Bt+Δt

s
] predicting the growth model 

parameters in 3D for each landmark. Combining the results 
of FFNNBC with the center points resulted from FFNNCR , 
we are able to predict the coordinates of the landmarks of 
the sample at time t + Δt.

Table 3  Notation table of variables used in the feed forward neural 
network

t Counting index for number of time steps
It
s

Vector of input , s = 1, ...,N
T

Ij,s jth entry of I vector of input , s = 1, ...,N
T

Ot

s
Vector of output , s = 1, ...,N

T

s Counting index for number of samples (training or valida-
tion, depending on context)

m Counting index for number of landmarks on each vertebra
Nm Number of landmarks on each vertebrae
l Counting index for number of layers
i Counting index for neurons in a given layer
j Counting index for neurons in another layer
N
T

Number of training samples
N
L

Number of layers in the neural network
N
N
(l) Number of neurons in layer l

al
j,s

Neuron value for jth neuron in lth layer and for sth sample

Wl
ji

Weight connecting the ith neuron in layer l to the jth 
neuron in layer l + 1

bl
j

Bias of the jth neuron in layer l
A Activation function
F

FFNN
Feedforward neural network function

H The height of the spine

Fig. 12  The architecture of a 
neural network for predicting 
the physical growth equation 
parameters. This structure 
is used in both FFNN

BC
 and 

FFNN
BM

 by defining two sepa-
rate loss functions (one mecha-
nistic and one non-mechanistic)
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For any sample s and any landmark m on s, define the land-
mark Xt+Δt

BC
 predicted by FFNNBC as

where �t+Δt
BC

 and �t+Δt
BC

 are obtained from At+Δt
s

 and Bt+Δt
s

 , 
which are the outputs of the second model, X̄t

BC
 is the coor-

dinates of landmark m of sample s at time t obtained from 
clinical dataset, and ΔCt

s
 is the change in the center of sam-

ple s from time t to time t + Δt , obtained from the results 
of the first neural network. By this definition, this model’s 
relative approximation error, �BC , is calculated as

(21)Xt+Δt
BC

= X̄
t

BC
+ ΔCt

s
+ (�t+Δt

BC
+ �

t+Δt
BC

𝜎t
BC
)Δt,

(22)𝛿BC =
1

H ⋅ NT ⋅ Nm

NT∑
s=1

Nm∑
m=1

‖‖‖X
t+Δt
sm

− X̄
t+Δt

sm

‖‖‖.

Bio-informed mechanistic neural network (FFNNBM ): Simi-
lar to FFNNBC , in the first step of this model, FFNNCR pre-
dicts the coordinates of the center point of the vertebra at 
time t + Δt , followed by computing the transition vector 
from the center point of the sample from time t to t + Δt . 
The neural network FFNNBM then predicts the set of growth 
model parameters as an output using a mechanistic loss func-
tion; see Fig. 12. The input vectors are It

s
= [X̄

t

s
,�t

s
, t,Δt, �̄t

s
] 

with the same definitions for X̄t

s
,�t

s
 , and �̄t

s
 . The output of 

FFNNCR is Ot
CR,s

= [Ct+Δt
s

] which remains the same and the 
output vectors to the second step is Ot

s
= [At+Δt

s
,Bt+Δt

s
] , with 

A
t+Δt
s

 and Bt+Δt
s

 representing the parameters of the physical 
growth equation.
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Similar to the FFNNBC , we define the predicted landmark m 
of sample s, for each m and s, as

The definitions are identical to those stated in the FFNNBC 
formulation. The relative approximation error for FFNNBM 
model, represented by �BM , is calculated using

(25)Xt+Δt
BM

= X̄
t

BM
+ ΔCt

s
+ (�t+Δt

BM
+ �

t+Δt
BM

𝜎t
BM

)Δt.

(26)𝛿BM =
1

H.NT.Nm

NT�
s=1

Nm�
m=1

‖Xt+Δt
BM

− X̄
t+Δt

BM
‖2.

4.3.2  Implementing bio‑informed mechanistic machine 
learning frameworks

Data collection and feature selection The database is com-
prised of clinical X-ray images. The snakes algorithm 
is capable of generating an infinite number of landmarks 
around each vertebra using X-ray images. Landmarks are 
classified into two types: those located on growth plates 
( XG ) and those that determine the vertebral sides ( XS ), as 
illustrated in Fig. 9. The number of XG landmarks on each 
2D plane in this application is four, signifying the corner 
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points that are expected to be on the growth plates. As a 
result, in the 3D framework presented ( XG = 8 and XS = 8 ) 
as shown in Fig. 13. At t0 = 124 months, the patient’s first 
X-ray image is obtained. The next four X-ray images are 
obtained at t = 139, 149, 156, 168 months and used to train 
the neural network. The remaining three X-ray images, 
collected at t = 160, 179, 187 months, are utilized to com-
pare with the neural network findings as shown in Table 5. 
Each X-ray image depicts the form of the patient’s spine 
at a specific age. Based on the explained machine learning 
framework explained in Sect. 4.3.1 FFNNCL , FFNNCR-BC 
and FFNNCR-BM are setup as explained in Table 4. The num-
ber of training samples, 68, corresponds to the 4 training 
datasets (Table 5), with each dataset containing 17 verte-
brae. Depending on the NN methodology, each sample has 
a different size. The three test datasets listed in Table 5 are 
represented by the number of test samples ( 17 × 3 = 51 ) in 
Table 4. It should be noted that the growth landmarks are 

tested for each framework, and the relative approximation 
error indicated in Table 6 is determined for all landmarks, 
including growth and side landmarks. The data are normal-
ized before being fed to the model since the range and units 
of the input matrix are not the same.

4.4  Results and cross‑validation on the data

The findings obtained from the patient described in Table 5 
are presented here to illustrate the accuracy of the bio-
informed mechanistic neural network prediction. The NN 
reconstruction process is the same as that explained in 
Sect. 4.3.1. A breakdown of the data used for training and 
testing can be seen in Table 5. Figure  14 shows a com-
parison of the ground truth (actual data acquired from X-ray 
scans) and FFNNCL for the age of 160 months which is 
inside of the range of the training data and 179 and 187 for 
the outside of the range of the training data. The results are 
visualized for the eight corner points signifying the growth 
landmarks. Due to the 3D-Clinical NN’s nature, the frame-
work fails to forecast the ground truth. This framework is 
built on interpolation, and when it comes to the patient-
specific prediction, where the available data is insufficient, 
the model cannot learn from the available data, and hence 
it fails to predict the outcomes. Figure 15 shows the results 
for the FFNNCR-BC framework applied on the same dataset. 
The results are 3D reconstructed based on the growth param-
eters obtained by FFNNCR-BC (Fig. 15a, c and e), and the 
corresponding AP views are visualized in Fig. 15 b, d and 
f, respectively. Because the findings are recreated using the 
bone growth model, this framework delivers a more accurate 
prediction than FFNNCL . The data are next examined for 

Table 4  Neural network setup 
for neural networks

NN Components 3D-Clinical Bio-inf. Clinical Bio-inf. Mechanistic

FFNNCL FFNNCR FFNNBC FFNNCR FFNNBM

# training samples 68 68 68
Size of training samples 31 39 39
# test samples 51 51 51
Size of test samples 24 3 12 3 12
# Hidden layers 2 2 2 2 2
Neurons in layer 1 20 20 20 20 20
Neurons in layer 2 10 10 10 10 10
Activation function  ReLU function

Table 5  Data collection for FFNN
CL

 , FFNN
CR-BC

 and FFNN
CR-BM

 for 
a single patient whose X-rays images were collected serially over time

Identification of X-ray images Age of patient (months)

Initial X-ray image 124
Output training X-ray images {139, 149, 156, 168}

Output testing X-ray images {160, 179, 187}

Fig. 13  Illustration of the growth landmarks and side landmarks. 
There are 8 growth landmarks ( X

G
= 8 ) and 8 side landmarks 

( X
S
= 8)
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the FFNNCR-BM , as illustrated in Fig. 16. Due to the imple-
mentation of the mechanistic loss function, the results are 
the best when compared to the FFNNCL and FFNNCR-BC and 
are compatible with the ground truth obtained from X-ray 
images.

A cross-validation study is carried out to see how the 
input and output data impact the framework error, as shown 
in Table 6. The term “cross validation” refers to the process 

of determining how well a prediction model will work in 
practice [57]. We preserve the past two ages as test cases 
and rotate the test case inside the prior age span since we are 
more interested in prediction outside of the range. We can 
see from Table 6 that the prediction error of FFNNCR-BM is 
always lower than that of FFNNCL and FFNNCR-BC and that 
it can predict future spine curvature with a small error. The 
relative errors are calculated based on the Eqs. (18), (22) and 

Fig. 14  Differences between pure data science prediction (FFNN
CL

 ) 
and ground truth (the results obtained by X-ray images) at age of a 
160 months (inside of the range of the trained data), b 179 months 
(outside of the range of the trained data) and c 187 months (outside of 

the range of the trained data). The landmarks are eight corner points 
of each vertebra. It is obvious that FFNN

CL
 cannot predict the ground 

truth

Fig. 15  Differences between 
Bio-informed Clinical predic-
tion (FFNN

CR-BC
 ) and ground 

truth (the results obtained by 
X-ray images) at age of 160 
months (inside of the range of 
the trained data, a and b), 179 
months (outside of the range 
of the trained data, c and d), 
and 187 months (outside of the 
range of the trained data, e and 
f). Subpanels (a, c, e) show 
the 3D view and subpanels (b, 
d, f) show the 2D view on AP 
plane. The landmarks are eight 
corner points of each vertebra. 
It is obvious that FFNN

CR-BC
 

can predict the results close to 
ground truth
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(26) for FFNNCL , FFNNCR-BC and FFNNCR-BM , respectively. 
This observation can be explained by the fact that FFNNCL 
operates as an interpolation function and cannot provide 
accurate prediction when there is insufficient training data. 
Since FFNNCR-BC employs the bone growth equation to 
reconstruct the expected geometry, as explained in Eq. 20, it 
performs better than FFNNCL . Finally, FFNNCR-BM performs 
the best since it modifies the loss function as mentioned in 
Eqs. 23 and 24 while also rebuilding geometry using the bio-
logical bone growth model. Table 7 refers to the cross vali-
dation on the 2D data using the existing Mechanistic frame-
work [58] and FFNNCR-BM . As it is shown, for each testing 
case, the present structure is more efficient as the parameters 
for bone growth are calibrated taking into account the effects 
of time and position. The suggested FFNNCR-BM enhances 
prediction accuracy by 40% for the inside of the range and 
84.3% for the outside of the range.

5  Discussion and conclusion

In this study, we trained a bio-informed mechanistic deep 
learning model for prognosis of pediatric spinal deformity. 
The training data consist of clinical data and mechanistic 
features. The clinical data are extracted from anteroposterior 
and lateral views of the X-ray images using the active con-
tour image segmentation model whose parameters are cali-
brated through sensitivity analysis. Next, the personalized 
3D spine models are established through the mesh morphing 
technique which consists of registering a volumetric atlas 
spine model on each of the extracted clinical data. Thus, any 
geometry-dependant feature within the patient-specific mod-
els is detectable and trackable to calibrate the bone growth 
model parameters. The mechanistic features are obtained 
from the bone growth model which takes the stress distribu-
tions of the spine as inputs. A dynamic patient-specific bone 
growth model is proposed to enhance the accuracy of the 
model. To measure the stress distribution, a patient-specific 
3D finite element model is generated based on the 2D clini-
cal data and the 3D reconstruction algorithm. By merging 
medical data with a mechanistic model, the presented frame-
work can address the problem of limited data for the patient-
specific study. The proposed model is capable of predicting 
the spinal curve of a single patient, either inside or outside 
the training range. This study is unique in that it provides 
patient-specific, time-dependent, and position-dependent 
parameters that can be calibrated throughout the dataset. 
In addition, the proposed bio-informed deep learning net-
work with the modified bone growth model was shown to 
achieve competitive or even superior performance against 
other state-of-the-art learning-based methods.

In conclusion, the workflow described in this article can 
be a useful and innovative guide for the early detection and 

treatment planning of spinal illnesses such as scoliosis, lor-
dosis, and kyphosis. Furthermore, the framework may be 
used for dynamic finite element analysis of various tissues 
at a smaller scale. It can also be potentially extended to other 
image-based studies, including tumor progression and car-
diovascular applications. Future research will look at the 
same framework over a larger dataset to construct a real-
time, patient-specific, optimal treatment plan based on the 
first patient visit. Moreover, a virtual reality application will 
be developed to visualize the spine in 3D and guide surgical 
training in orthopaedic surgery.

Appendix A: Image segmentation using 
the Snakes method

Image segmentation using the Snakes method [42] is a fast 
and efficient technique to detect important object contours 
from images. The limitation of this method is that it requires 
initialization of the contour to be done manually. The ini-
tial contour determines the accuracy of the segmentation 
method. The framework involves a variational formulation 
in which the total energy functional consists of three main 
terms, namely the image energy term which attracts the 
contour to the salient features in the image, internal spline 
energy term which introduces smoothness and regularity 
in the evolving contour and external constrain term which 
aligns the contour near local minima. v(s) = (x(s), y(s)) is 
the parametric representation of a snake where parameter 
s ∈ [0, 1] . As s changes smoothly, a closed contour on a 
plane is traced. The total energy functional proposed in [42] 
considers both image and constraint forces is given as

where Eint(�(s)) , Eimg(�(s)) and Econ(�(s)) are the energy 
functionals associated with internal spline energy, image 
force and external constraint energy, respectively. The 
Eint(�(s)) term is given as

where � and � are weights associated with the first- and sec-
ond-order regularization terms which are elastic length and 
stiffness of the contour. Eimg(�(s)) is defined as

where wline , wedge and wterm are the weighting coefficients 
associated with the energy functionals Eline = I(x, y) , 

(A1)
E(�(s)) =∫

1

0

Eint(�(s)) + Econ(�(s))

+ Eimg(�(s)) ds,

(A2)Eint(�(s)) = �||��(s)||2 + �||���(s)||2,

(A3)
Eimg(�(s)) = wlineEline(�(s)) + wedgeEedge(�(s))

+ wtermEterm(�(s)),
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Eedge = −|▽I(x, y)|2 and Eterm =
CyyC

2
x
−2CxyCxCy+CxxC

2
y

(C2
x
+C2

y
)
2
3

 , I(x, y) 

is the image intensity, C(x, y) = G�(x, y) ∗ I(x, y) and G� is a 
Gaussian of standard deviation � [42].

Appendix B: Point cloud registration

This section introduces the employed non-rigid ICP 
approach, where a concise description of the approach is 
given based on the conventional ICP algorithm [50].

B.1 The approach

In the registration process of the non-rigid ICP, the source 
surface S = (V, E) , consisting of n vertices in V and m edges 
in E , is registered to the target surface T  step by step. Fig. 17 
illustrates a step of the registration process. In the figure, the 
meshes are assumed to be triangular meshes, and the vertices 
are labeled by numbers. In this step, first, the correspond-
ences between vertices vi in the source surface S (green) 
and vertices ui in the target surface T  (red) are established.

In the use of a conventional ICP method, given a point on 
S , the closest point on T  is considered as its corresponding 

point [59]. Then vi is transformed by locally affine transfor-
mations ( Xi ) towards the target surface T  (red). The trans-
formed source surface is S(X) (blue). This procedure iterates 
till an optimal stable state [60–63] is obtained.

B.2 3D mesh registration

Here, based on the established correspondences ( vi, ui ), a 
cost function consisting of different terms is defined and 
then minimized with guaranteed stability, convergence, and 
robustness [50]. In the following, we introduce each term in 
the cost function first, and then we describe the optimization 
process based on the cost function.

For a non-rigid registration, the distance of the deformed 
source and the target should be minimized. Thus, a distance 
term is selected as the first component of the cost function 
to be minimised as

where wi is the weight of the distance term and X describes 
a set of transformations of displaced source vertices V(X) . 

(B4)Ed =
∑
vi∈V

wi
||Xivi − ui

||2,

Fig. 16  Differences between 
Bio-informed Mechanistic 
predictions (FFNN

CR-BM
 ) and 

ground truth (results obtained 
by X-ray images) at age of 160 
Months (inside of the range of 
the trained data, a, b and g), 179 
months (outside of the range 
of the trained data, c, d and h) 
and 187 Months (outside of the 
range of the trained data, e, f 
and i). Subpanels (a, c, e) show 
the 3D view, subpanels (b, d, f) 
show the 2D view on AP plane 
and subpanels (g, h, i) show 
the 3D reconstructed detailed 
geometry. The landmarks are 
eight corner points of each ver-
tebra. FFNN

CR-BM
 can clearly 

predict outputs that are close to 
ground truth
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The transformation matrix Xi for each vertex in the source 
is a 3 × 4 transformation matrix as:

(B5)Xi =

⎡⎢⎢⎣

rxx rxy rxz dx
ryx ryy ryx dy
rzx rzy rzz dz

⎤⎥⎥⎦
,

where r, and d define all afine transformations. The trans-
formation matrix X of all vertices is described in a 4n × 3 
matrix as X =

[
X1 …Xn

]T.

Table 6  Cross-validation study for three different neural networks. 
The table lists the relative approximation error of the predicted land-
marks ( X

G
 and X

S
 as shown in Fig. 13) of each vertebra using the dif-

ferent neural networks. Datasets are categorized by age (in months) of 
the tracked patient. For each trial case, the testing data are shown in 
blue cells and the training data are shown in white cells

NN
Age Prediction Error

139 149 156 160 168 179* 187*

FFNNCL 74.33 52.57 50.31
FFNNCR−BC 1.09 0.10 0.18
FFNNCR−BM 0.68 0.02 0.04

FFNNCL 66.49 52.34 50.10
FFNNCR−BC 0.19 0.05 0.13
FFNNCR−BM 0.10 0.02 0.03

FFNNCL 59.92 52.65 50.38
FFNNCR−BC 0.090 0.091 0.16
FFNNCR−BM 0.08 0.02 0.032

FFNNCL 57.64 52.51 50.26
FFNNCR−BC 0.03 0.08 0.18
FFNNCR−BM 0.01 0.02 0.03

FFNNCL 57.35 52.50 50.25
FFNNCR−BC 0.03 0.09 0.13
FFNNCR−BM 0.015 0.018 0.02

* Prediction at age outside of the range of trained data.
aPrediction at age outside of the range of trained data

Table 7  Cross-validation study for two different neural networks on 
2D data for AP view. The relative approximation error of the pre-
dicted landmarks ( X

G
 and X

S
 as shown in Fig.  13) of each vertebra 

was calculated using the different neural networks. Datasets are cat-
egorized by age (in months) of the tracked patient. For each trial 

case, the testing data are shown in blue cells and the training data are 
shown in white cells. The mechanistic framework FFNN

ME
 is bor-

rowed from [58]. For each trial case, the bio-informed mechanistic 
approach (FFNN

CR-BM
 ) had better performance

NN
Age Prediction Error

139 149 156 160 168 179* 187*

FFNNCR−BM 0.14 0.08 0.03
FFNNME 0.30 0.12 0.67

FFNNCR−BM 0.05 0.07 0.02
FFNNME 0.07 0.3 0.53

FFNNCR−BM 0.03 0.06 0.03
FFNNME 0.04 0.17 0.20

FFNNCR−BM 0.04 0.08 0.03
FFNNME 0.08 0.24 0.32

FFNNCR−BM 0.04 0.06 0.03
FFNNME 0.03 0.24 0.44

* Prediction at age outside of the range of trained data.
aPrediction at age outside of the range of trained data
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A canonical form of Eq. (B4) is addressed in Eq. (B6), 
introduced by swapping the position of transformation 
matrix, and correspondences (vi, ui) . The sparse matrix D is 
formed to facilitate the transformation of the source vertices 
with the individual transformations contained in X via matrix 
multiplication, and denoted as D = diag(vT

1
, vT

2
,… , vT

n
) . The 

corresponding points are also arranged as U =
[
u1 … un

]T 
and the distance term can be derived as:

where W is a diagonal matrix consisting of weights wi . To 
regularise the deformation, an additional stiffness term is 
employed. Using the Frobenius norm |.|F , the stiffness term 
penalizes difference of the transformations of neighboring 
vertices, through a weighting matrix G = diag(1, 1, 1, �) . We 
have

During the deformation, � is a parameter to stress differences 
in the skew and rotational part against the translational part 
of the deformation. The value of � can be specified based on 
data units and the types of deformation [50].

Addressing the function of the stiffness term to penalise 
differences of transformation matrices of the neighboring 
vertices, the node-arc incidence matrix M (e.g. Dekker [65]) 
of the template mesh topology is employed to convert the 
stiffness term functional into a matrix form. As the matrix 
is fixed for directed graphs, the construction is one row for 
each edge of the mesh and one column per vertex. To estab-
lish the node-arc incidence matrix of the source topology, 
the indices (i.e. the subscripts) of edges and vertices are 
addressed, for any edge of r which is connected to vertices 
(i, j) , in rth row of M, and the nonzero entries are Mri = −1 
and Mrj = 1 . Therefore, we formulate the stiffness term as

(B6)Ed = |W(DX − U)|2
F

(B7)Es =
∑
i,j∈E

|||
(
Xi − Xj

)
G
|||
2

F
.

(B8)Es = |(M ⊗ G)X|2
F
.

Briefly, the Amberg’s method accounts for an optimal step 
with non-rigid ICP approach being capable to employ differ-
ent regularisations, while they are using a range of lowering 
stiffness parameter. Thus, the cost function of Eq. (B6) and 
Eq. (B8) are changed to:
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