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Abstract
Quadrilateral meshes offer certain advantages compared to triangular ones, such as reduced number of elements and align-
ment with problem-specific directions. We present a pipeline for the generation of quadrilateral meshes on complex geom-
etries. It is based on two key components: robust surface meshing and efficient indirect conversion of a triangular mesh to an 
all-quad one. The input is a valid geometric surface mesh, i.e., a triangulation that accurately represents the geometry of the 
model. A right-angled triangular surface mesh is initially created by continuously modifying the input mesh while always 
preserving its topological validity. The main advantages of our local mesh modification-based approach are to (i) allow the 
generation of meshes that are globally aligned with a given direction field and (ii) to reliably handle non-manifold feature 
edges (in multi-volume models) and small features. The final quadrilateral mesh is obtained by merging pairs of triangles 
into quadrilaterals. We develop a novel bipartite labeling scheme in order to identify and correct inconsistent pairings. The 
procedure is based on local operations and is much more efficient than previous global strategies for tri-to-quad conversion. 
The whole pipeline is tested on a large number of models with diverse characteristics.
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1  Introduction

Quadrilateral meshes are often preferable to triangular ones 
for numerical simulations. They have fewer elements for the 
same number of vertices, they are ideally capable of pro-
viding a block-structure and they can provide better align-
ment to geometric features, as well as to problem-specific 
features, providing better numerical behavior for specific 
physical phenomena (a typical example is the demand for 
structured and aligned boundary layers in Computational 

Fluid Dynamics). Yet, the automatic generation of quadri-
lateral meshes is still regarded as a challenging problem in 
mesh generation. Even though a lot of different approaches 
exist, there is not to date a conclusive method, analogous 
to triangular meshing which is considered highly mature 
and for which there exist robust algorithms based on strong 
mathematical foundations.

The purpose of this work is to address the problem of 
generating quadrilateral meshes for complex 3D models. We 
strive for generality in our approach; our input is simply a 
triangulation of the model. The triangulation can be an STL 
representation of the geometry, triangulation of scanned 
data or a mesh generated from a CAD model with standard 
meshing techniques (Fig. 1). The input meshes may be of 
bad quality and contain non-manifold feature edges. Our 
goal is to design a pipeline satisfying the following design 
goals: (i) robustness, i.e., guarantee of termination regard-
less of the complexity/bad quality of input data, (ii) feature 
preservation, i.e., the persistence of user-defined internal 
and boundary curves, (iii) high element quality, and (iv) 
efficiency, i.e., providing a quad meshing algorithm with a 
running time comparable to or faster than conventional tri-
to-quad technologies.
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To generate a high-quality unstructured quadrilateral 
mesh that preserves user-defined features, we develop three 
independent steps: (i) we sample points on the model curves 
and surfaces, guided from a metric field (cross-field and an 
associated size-map), (ii) we use local mesh modifications 
to continuously remove points of the initial triangulation 
and add the new ones, leading to a right-angled triangular 
mesh and (iii) we convert the triangular mesh into an all-
quad mesh using a novel approach based on a topological 
labeling scheme.

When it comes to mesh generation, the expected reliabil-
ity rate of industrial-grade algorithms is essentially 100%. 
The input data supplied to our meshing algorithms are often 
noisy. Inputs may be huge, with a wide range of scales. It is 
not surprising that the most complex/tricky part of our work 
is related to robustness. We have given special attention to 
ensure that this mesh generator provides results regardless 
of the complexity of the input data, as long as it is correct 
(i.e., a watertight but possibly non-manifold triangulation, 
in the sense that no folded elements and edge intersections 
may be present).

In order to ensure reproducibility of this work, the whole 
implementation will be available in Gmsh, the open-source 
mesh generator [1]. To demonstrate the robustness of our 
algorithm, we applied it to a large number of models found 
in various datasets.

1.1 � Related work

Surface meshing Surface mesh generation poses various dif-
ficulties related to robustness and efficiency. Of the several 
methods proposed in the bibliography, we can identify two 
main categories [2, 3]: (i) Parametric approaches, where the 
surface mesh is generated in the parametric space, and (ii) 

Nonparametric (direct) approaches, where the surface mesh 
is generated directly in the 3D space.

In parametric approaches, the 3D surface is mapped to 
a 2D parametric space [2, 4–7]. Since the CAD surfaces 
(typically NURBS patches) have underlying u, v representa-
tion, it can be efficient to generate a mesh in the plane with 
standard meshing techniques and afterward map it back to 
the 3D space. Generating planar meshes in the parameter 
space is a robust approach that is usually able to provide 
high-quality meshes. Yet, approaches that use the parameter 
plane are able to consider surfaces that are isomorphic to a 
punctured disk. Meshing complex models with a parameter 
space approach do not allow to globally align a mesh with a 
cross-field, since each discrete patch of a CAD model may 
be equipped with an independent parametrization and the 
feature edges that separate those patches are not necessary 
aligned with the cross-field. Parametrization techniques can 
also be used to remesh triangulations [8, 9].

Nonparametric (also referred to as direct surface meshing 
in the literature, creating some ambiguity with the terms of 
direct/indirect approaches commonly used in quad meshing) 
approaches to surface meshing can be based on quad trees 
[10, 11], advancing front [12, 13] or Delaunay strategies 
[14, 15]. One of the main advantages of the direct approach 
is its usefulness for models where an underlying parametri-
zation is not available or when it is degraded. Local mesh 
modification strategies to remesh models described by STL 
triangulations are proposed in Refs. [16, 17]. One of the 
main difficulties of this class of methods is that the manipu-
lation of geometry directly on the 3D space is a challenging 
task that may lead to geometric or topological ambiguities.

Quadrilateral meshing Initial efforts to automatically 
generate quadrilateral meshes include grid-based and pav-
ing algorithms. Grid-based methods start with the genera-
tion of a background Cartesian or a quad-tree grid with the 

Fig. 1   Quadrilateral meshes 
produced by our algorithm with 
input a CAD model (left) and an 
STL triangulation (right)
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subsequent snapping of elements to the domain boundaries 
[18–20]. The paving algorithm, first introduced by Ref. 
[21] generates quadrilateral elements in an advancing-front 
fashion, propagating from the boundary to the interior. Both 
classes of methods suffer from a degraded quadrilateral 
quality and high node irregularity on specific regions of the 
domain: the latter on the domain boundaries and the former 
on the front collisions on the interior. In Ref. [22], a bichro-
matic Delaunay quadrangulation method is presented, with 
our current work building upon a similar concept.

On the other hand, quad conversion or indirect methods 
are based on the merging of pairs of adjacent triangles of 
an input mesh to quadrilaterals [23, 24]. In Q-Morph [25], 
triangles are transformed into quadrilaterals with an advanc-
ing-front algorithm. Blossom-Quad algorithm [26] computes 
a perfect matching to optimally pair triangles, while [27, 28] 
produce meshes better suited for triangle pairing by generat-
ing aligned right-angled triangles.

Cross-fields Cross-fields are nowadays commonly used 
in the context of mesh generation, a line of research stem-
ming from the computer graphics community and global 
parametrization methods [29]. For quad/hex meshing, cross-
fields define preferred orthogonal directions on the domain 
to guide creation of optimal elements [30–32]. Cross-fields 
should be as smooth as possible (except at singular points) 
and aligned with the boundary of the domain.

1.2 � Contributions

The quad meshing pipeline that is proposed follows a modu-
lar approach, with each of the steps being an independent 
algorithm that can be re-used in various situations (Fig. 2). 
As stated before, our main concern is to provide a reliable 
solution, i.e., we want the quad meshing pipeline to be resil-
ient to complex/ill-conditioned inputs.

The two main contributions of this work are: 

1.	 Robust surface meshing. In our procedure, we follow 
the idea of Ref. [28] of separating the generation of 
points and the creation of the elements. The main nov-
elty of this work is our direct approach. In this work, an 
input triangular mesh is continuously modified through 
robust local mesh modifications. The word continuous 
is chosen on purpose: each local mesh modification that 
is performed guarantees the topological integrity of the 
current triangular mesh. At the end of the remeshing 
process, most of the points of the initial triangular mesh, 
and in most cases all those points are removed from the 
triangulation and replaced by the ones created to accom-
modate the cross-field and size field characteristics.

2.	 Straightforward and efficient all-quad meshing. We 
propose a bipartite labeling scheme that propagates 
topology information on the vertices during point gen-

eration. By using this information on the right-angled 
triangular mesh, we are able to optimally place new 
Steiner points to fix topological inconsistencies (odd-
bounded regions on the interior) and recover a bipartite, 
all-quad mesh. The approach is very efficient since it 
converts a global problem to a local one.

2 � Overview

Our algorithm takes as input a watertight, possibly non-man-
ifold triangulation T0 . The input triangulation T0 is classi-
fied: the word classified indicates the fact that the triangles 
are grouped into colors and interfaces between colors are 
considered as feature edges that must be conserved in the 
remeshing process. Internal feature edges may also exist that 
lie inside a group of triangles with the same color. Note that 
feature edges can also be detected based on the dihedral 
angle, given a user-defined threshold. We take into account 
two special categories of feature edges in T0 : (i) non-man-
ifold feature edges with two or more adjacent surfaces and 
(ii) internal (embedded) feature edges inside surfaces (e.g., 
a crack for solid modeling)

All the necessary topological information is available 
in the initial mesh. Surfaces are bounded by closed feature 

Fig. 2   Schematic outline of the pipeline proposed for quadrilateral 
meshing
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edges and those feature edges by feature points. Consecutive 
feature edges form feature curves. Feature curves must be 
preserved during the continuous mesh modification process. 
An important property of our method is the ability to handle 
the model as a whole and thus take advantage of the global 
nature of the guiding cross-field. We do not follow a patch-
wise approach where we handle each surface independently, 
followed by a connection of curves to ensure conformity. 
A half-edge data structure [33] is used to get connectivity 
information, and an array of boundary edges that define fea-
ture curves is stored. We extend this data structure by stor-
ing the type of boundary edge (manifold or non-manifold), 
along with the triangles connected to each (one triangle for 
open boundary edges, two triangles for manifold edges, and 
a larger than two number for non-manifold ones). This fea-
ture enables us to efficiently treat boundaries during surface 
meshing.

The scheme provides the flexibility to preserve the topo-
logical characteristics of the input mesh, such as ‘hard’ edges 
or user-defined feature curves, without relying on extensive 
a priori knowledge of domain characteristics or a compli-
cated feature recognition preprocess [34–37]. Furthermore, 
by utilizing an appropriate data structure on top of the half-
edge one, we can handle non-manifold configurations that 
may occur in industrial multi-volume CAD models.

The input triangulation T0 is the geometric model. Two 
other inputs are required for running the algorithm: (i) a 
unit cross-field � and (ii) a size field h(�) that are both used 
for guiding the point insertion process. A cross-field � is 
a field defined on a surface S with values in the quotient 
space S1∕Q , where S1 is the circle group and Q is the group 
of quadrilateral symmetry. It associates to each point of a 
surface S to be meshed a cross made of two unit vectors 
orthogonal to one another in the tangent plane of the surface 
and their opposites (Fig. 3a). Although T0 , � and h can be 
independent, it is beneficial to have (i) a cross-field � that 
is aligned with the feature edges of T0 and (ii) a size field 
h that takes into account both the local change of direction 

of the cross-field and small features of the geometry. In this 
work, � and h are precomputed using T0 as support with the 
algorithms described in Ref. [38].

The transformation of the triangulation T0 into the final 
quad mesh Tq is done in three sequential steps: 

1.	 Point generation (Sect. 3) Points of the final mesh Tq are 
generated in a frontal fashion starting from the feature 
curves and guided by both the cross and the size field. 
This set of points is embedded on the triangles of the 
base/initial mesh T0.

2.	 Point replacement (Sect. 4) The initial mesh T0 is con-
tinuously transformed into another triangular mesh T1 by 
connecting the newly generated points on T0 and subse-
quently removing the initial mesh points, utilizing local 
mesh modifications.

3.	 From triangles to quads (Sect. 5) Mesh T1 is transformed 
into a quad mesh by combining pairs of triangles. Using 
a binary labeling scheme for the points during frontal 
generation allows us to instantly extract a valid all-quad 
topology.

The simple model of Fig. 3 is used as an example to 
describe those three steps.

3 � Point generation

In this work, we take a standard surface-to-volume point of 
view of mesh generation on Gmsh [1] which essentially con-
sists of a bottom-up procedure. Model curves are discretized 
at first. Mesh edges on the model curves are used as bounda-
ries of model faces and mesh triangles on model faces are 
used as the boundary of model volumes if they exist.

A set P of points on surfaces is generated using a frontal 
point propagation algorithm that is similar to Ref. [28]. The 
main difference with Ref. [28] is that all the operations are 
performed here directly on T0 without using a parametric 

Fig. 3   Surface meshing steps. 
a Cross-field and size field 
computed on the input mesh. 
b Generated points embedded 
on the input mesh. c Inserting 
points to the triangulation with 
local mesh modifications. d 
Right-angled triangular mesh of 
the generated points
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space. The point sampling scheme has been implemented 
for the special case of the sphere [39]. It is extended here 
for general surfaces and we reiterate the whole process for 
completeness. Our frontal approach is enhanced with the 
use of a cross-field � that allows to structure the quad mesh 
and a size field h that allows taking into account the various 
feature sizes of a model as well as changes of directions of 
� (Fig. 3a).

3.1 � Curve point generation

Each feature curve is uniquely defined from a list of non-
intersecting connected edges. Given a size field h defined by 
a value at each point, we mesh the discrete representation of 
each curve by following the general guidelines of Ref. [40]. 
This leads to the set of points Pc = {�i ∣ i = 1,… ,Ngc} . It is 
important to note that at this step, we can control the genera-
tion to have an even number of points for each feature curve. 
This provides us with a topologically necessary condition for 
all-quadrilateral meshing.

3.2 � Surface point generation

Starting now from the Ngc generated points on mesh 
feature curves, we want to spawn a set of points 
Ps = {�i ∣ i = 1,… ,Ngs} on the surfaces in the directions 

provided by the cross-field � (�) and with respect to the 
underlying size field h(�) . The point set Ps , along Pc , will 
be used to generate a right-angled triangulation T1 that is 
well suited for combining triangles into quadrilaterals and 
form Tq.

The cross-field � gives Nd = 2 tangent orthogonal direc-
tions and their opposites. A priority queue is initially filled 
with the Ngc points ordered along the curves. The point �i at 
the top of the queue then tries to insert 4 new points �ij in 
the j = 1,… , 2Nd directions defined by �

(
�
j

i

)
 and at a dis-

tance h(�i) . In order to have points inserted ‘by layers,’ the 
priority queue that is chosen is a first-in, first-out queue. 
Ordering the boundary points along the domain allows 
smooth propagation on the interior.

Each seed point �i tries to spawn �ij, j = 1,… , 2Nd neigh-
bor points on T0 . Yet, there is no guarantee that point �ij is 
not too close to another point of the queue. Points �ij are 
hence filtered. A rectangular exclusion zone is defined by the 
cross-field orientation and the size field around each vertex 
�i in such a way that any point lying in this zone will not be 
inserted in the queue. Finally, seed points are removed from 
the queue, and accepted points are added to the end of the 
queue as well as in P . The procedure terminates when the 
queue is empty. Algorithm 1 describes the procedure. Fol-
lowing, we will focus in detail on the two main operations, 
i.e., the point insertion and the point filtering.
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3.2.1 � Intersection with triangulation

Assume a point �i that lies on one of the triangles of T0 , a 
direction �ij = �

(
�
j

i

)
 , i.e., a unit vector tangent to the surface 

and the mesh size hi = h(�i) at that point. The aim is to cre-
ate an edge of size hi . Therefore, the new point �ij can be 
computed as the intersection of the triangulated surface T0 
and a circle Ci with center �i and radius hi . Ci lies on the 
plane Pi that is formed by the direction vector �ij and the 
normal to the triangulation at our origin point, �i (Fig. 4).

To compute �ij our goal is to find the intersection point 
of circle Ci with the triangulation T0 (Fig. 4). We start from 
the triangle of the base mesh T0i on which �i lies. First, we 
compute the intersection line of the plane Pi and the plane 
of the triangle PT0 i

 . Then, we find the intersection points 
of this line with the circle Ci and choose the one that lies in 
direction �ij . Finally, the barycentric coordinates �0, �1, �2 of 
this point with respect to the current triangle are calculated. 
In this way, we determine whether the intersection point 
lies on the triangle, and therefore if we have a successful 
intersection with this triangle.

In the case where the current triangle is not intersected, 
we move forward to another triangle. Since we have already 
computed the barycentric coordinates with respect to the 
current triangle T0i , we know where on the plane PT0 i

 the 
intersection point lies (Fig. 5, left). The next triangle to be 
searched for an intersection is thus given from the computed 
barycentric coordinates and the adjacency information of the 
input mesh. This procedure continues until a valid intersec-
tion point is retrieved.

Essentially, we perform a walk in the triangulation [41] in 
the desired direction until we obtain the intersection point. 
Our experience shows that this method is efficient since it 
utilizes the underlying mesh as a space searching structure. 
For the same order of magnitude of mesh sizes on input and 
desired meshes, intersection points are found after a little 
less than two triangle visits on average.

3.2.2 � Filtering procedure

Each point generates �ij points for j = 1,… , 2Nd direc-
tions. We have to ensure that new points are not too close to 
already generated points. Therefore, after each point �ij is 
generated, a filtering procedure should follow. To this end, 
we use RTrees as a spatial search structure [42].

For every candidate point �ij , we define a large enough 
search box (typically 2 times the mesh size). We find then 
the set of points Pf = {�f , k = 1,… , nf } in the vicinity of �ij . 
Since our objective is to create right-angled triangles, i.e., 
equilateral triangles in the L∞ norm, we compute the distance 
between the candidate point and its surrounding ones as 
‖�ij − �f‖∞ = max{�xij − xk�, �yij − yk�, �zij − zk�} The point 
is accepted for insertion if condition ‖�ij − �f‖∞ > 𝛼 ⋅ h(�ij) 
holds for all �f ∈ Pf .

Fig. 4   Computation of point �ij , given a direction �ij , the normal 
�i and the size hi (the radius of the circle Ci ). With green color, we 
denote the generated points while with red the initial mesh ones. Here 
the seed point �i coincides with a red point (color figure online)

Fig. 5   Indication of the position 
of intersection point according 
to barycentric coordinates (left) 
and computation of point �ij by 
walking in the triangulation in 
specific direction (right)
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4 � Surface meshing

The objective now is to create a surface mesh with the 
set of optimal points P = {�i ∣ i = 1,… ,Ng} (where 
Ng = Ngc + Ngs ) that have been generated on curves and 
surfaces. The idea is straightforward: connect the generated 
points P on the initial mesh T0 , and subsequently remove 
the initial mesh points (Fig. 6). A similar idea but in a dif-
ferent context has been used in Ref. [43], leading to a quad-
dominant mesh.

Robustness is of crucial interest in our method, since 
modifying geometric aspects of general surfaces in 3D space 
is a delicate task. With our approach, the main goal is to 
preserve the topological integrity of the mesh through each 
step of the process, while not compromising the accuracy of 
the geometric representation of the surface.

We can identify two complementary sets of generated 
points �i : 

i	 Ngc points lying on curves (feature edges)
ii	 Ngs points lying purely on surface triangles

with a corresponding unique parent element (feature edge 
or mesh triangle, respectively) already stored for each of 
these points. Correspondingly, there are Nr points from the 
initial mesh: Nrc points of the feature edges and Nrs points of 
the ‘interior’ surface. This division enables us to perform a 
bottom-up procedure where topological entities are handled 

independently (first mesh curves and then surfaces). We can 
therefore ensure that each step will have a well-defined ‘pre-
decessor’ mesh to build upon.

4.1 � Local mesh modifications

The basic operations utilized to locally modify the mesh 
follow:

Split triangles

Given a surface point and its parent triangle, split it by 
replacing it by three triangles. This operation is trivial to 
implement since it cannot change the geometry or the topol-
ogy of the mesh.

Split edges

Given a point that lies on a mesh edge, split this edge. For 
points on boundary edges, we already know the parent edge, 
while for points on triangles it is easy to compute if the point 
lies on a triangle edge (given a user-defined threshold value 
� ). For non-manifold boundary edges, we split all the corre-
sponding triangles connected to this edge (Fig. 7, left). This 
set of triangles is readily accessible from the extended data 
structure for boundary edges.

Collapse edges

Remove points from the triangulation by collapsing an edge. 
Collapsing an edge is not always a valid operation since 
it can create flipped or degenerate elements. We check the 
fan of n triangles connected to the vertex in question and 
choose an edge that can be collapsed. The resulting n − 2 
triangles should not intersect with neighboring ones. Again, 
non-manifold edges can be collapsed if all corresponding 
‘half-fans’ pass the validity test (Fig. 7, right).

Swap edges
Given an appropriate quality criterion, swap the edge if 

the topology is not violated. Obviously, a feature edge can-
not be swapped. Edge swaps have a significant role during 
collapsing of edges, since it is not always feasible to col-
lapse all unnecessary vertices at the first pass. Edge swaps 
serve at this point to create improved conditions for the next 

Fig. 6   Generated points (green)—initial mesh (red points to be 
removed) (color figure online)

Fig. 7   Splitting (left) and col-
lapsing (right) a non-manifold 
feature edge
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collapsing iteration. Collapsing numerous mesh vertices 
leads to steep angles; therefore we swap edges if it does not 
result to bigger dihedral angles. At the final step, swaps can 
be performed based only on quality criteria.

A quality improvement with edge swaps can be performed 
here, though it is not a necessary condition to continue to 
the next step.

4.2 � Outline

The procedure consists of the following (Algorithm 2). All 
generated points are flagged to be inserted while all initial 
points are flagged to be removed. Starting from the model 
curves, each generated point splits its corresponding parent 
feature edge, which can be manifold or non-manifold. Each 
point has a unique parent feature edge and the splitting is 
done based on its parameter t ∈ [0, 1] , thus defined in an 
unambiguous way. If a point to be inserted is ‘close’ (w.r.t to 
� ) to an initial mesh point, we flag the latter to be preserved 
instead of the former in order to avoid small-scale geometric 
ambiguities that may occur. The procedure follows until all 
points on model curves are inserted into the mesh. Follow-
ing, points on surfaces are inserted by splitting triangles. 
These points have a unique parent triangle, and the splitting 
is based on the barycentric coordinates. If a point is ‘close’ 
w.r.t to � on one of the triangle’s edges, we split the edge, 
and if a point lies ‘close’ to an initial point, it gets disre-
garded (as explained for points on lines).

At this stage, we have an ‘enhanced’ intermediate mesh 
Ti containing the initial (red) and generated (green) points 
(Fig. 3c). This mesh is of low quality, but our interest here 
is that it represents as accurately as possible the underly-
ing surface and respects the topology of the initial mesh. 

We want now to remove the initial mesh points. Starting 
again from model curves, we iterate for all feature points to 
be removed and examine if one of the two connected bound-
ary edges can be collapsed. Similarly with the procedure of 
splitting feature edges, we can collapse non-manifold feature 
edges without compromising the conformity of the mesh. 
Subsequently, points on surfaces are removed by collaps-
ing interior edges. Since not all points are guaranteed to be 
removed in the first pass, the two discrete loops for points 
are encapsulated in a while loop that terminates when no 
point to be removed remains or breaks if the remaining ‘red’ 
points cannot be removed at all. This is a crucial part since 
it prevents the algorithm from producing invalid topology. 
When an initial mesh vertex cannot be collapsed, it can sim-
ply remain in the final mesh. In practice, we observe that no 
more than two iterations are necessary to remove unwanted 
vertices for most of the models tested. While inserting points 
in the triangulation by split edge/triangle operators is trivial, 
robustly implementing the collapsing step proved be a fairly 
strenuous task for the general case.
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5 � Bipartite quadrilateral labeling

At this point, we have obtained a mesh T1 that is right-angled 
and ready to be transformed to an all-quad mesh by triangle 
pairing. A necessary condition for an all-quad mesh to exist 
is to have an even number of edges on the boundary of each 
surface of the model. In this work, we trivially impose this 
condition on the feature curves that bound the surfaces dur-
ing the first step of the pipeline (Sect. 3.1). Dividing each 
curve into an even number of segments is not sufficient to 
ensure the existence of a perfect matching, i.e., a triangle 
pairing that involves all triangles of T1 . This is a typical 
obstacle of triangle-pairing methods, leading to isolated 
triangles that cannot be locally removed. A naive way to 
eliminate those triangles is to perform a Catmull–Clark 

subdivision [44], converting a quad-dominant mesh to an 
all-quad at the expense of vastly increasing the number 
of elements as well as the number of irregular vertices. In 
Blossom-Quad [26] a more sophisticated solution is pro-
posed by computing a minimum-cost perfect matching of 
the dual graph to offer a global solution. Still, ensuring a 
graph to contain at least one perfect matching remains quite 
complicated.

We propose here a new idea for constructing one perfect 
matching in a triangular mesh: all edges of the matching 
will be used to combine their two neighboring triangles and 
form a quad mesh.

Let us first recall some elements of graph theory. A graph 
labeling is the assignment of labels to the nodes of the graph. 
A graph coloring is a special case of graph labeling; it is an 
assignment of labels traditionally called colors to the nodes 
of the graph with the constraint that the graph contains no 
monochromatic edge, i.e., no edge connecting two nodes 
with the same color.

A bipartite graph G is a graph that can be 2-colored. 
An important property of a bipartite graph is that it does 
not contain any odd-cycles (an odd-cycle is a cycle of odd 
length).

Let us now look at the quadrilateral mesh of a domain Ω 
as a graph G . We assume here that the boundary �Ω of Ω is 
divided into n separated sub-boundaries �Ωi , i = 1… n , with 
each of the sub-boundaries �Ωi forming a boundary cycle Ci 
in G . We assume that each Ci is an even-cycle. Under these 
conditions, it is easy to see that G is bipartite. We consider a 
cycle C of G : C bounds a quadrilateral mesh and it is known 
[32] that every quadrilateral mesh has an even number of 
boundary vertices. If the domain D that is enclosed by C 
is simply connected, then C is its only boundary and C is 
an even-cycle. If D is not simply connected, its boundary 
contains other boundary cycles Cl that are by hypothesis 
even-cycles. Thus, ensuring that every boundary cycle Ck 
is even is sufficient to ensure that any other cycle C is even 
as well. Figure 8 illustrates the aforementioned reasoning. 
It should be noted that not all quad meshes are bipartite: it 
only holds when every boundary cycle is even.

Fig. 8   Every cycle C is even so the graph is bipartite and is 2-color-
able. Starting from one 2-colored boundary Ck , it is possible to find 
the color of any vertex v ∉ Ck by 2-coloring any path P between Ck 
and v (color figure online)

Fig. 9   Bipartite topological correction. a Initial labeling on the even-sided boundary. b Splitting topologically inconsistent triangle. c reposition 
of vertex according to opposite labeled stencil. d recovery of quadrilaterals (defined by same-labeled edges)
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It should be noted as well that, starting from the 2-color-
ing of one of the boundary cycle Ck , the 2-coloring of the 
rest of the graph is unique: the color of any vertex v ∉ Ck is 
found by coloring any path P between any vertex of Ck and 
v (see Fig. 8).

We consider now a triangulation of Ω and a bipartite labe-
ling of its vertices. The graph of a triangulation is obviously 
not a bipartite graph since every triangle forms an odd-cycle 
and therefore it cannot be 2-colored.

Assume that the labeling is done in such a way that there 
exists no monochromatic triangle (a triangle is monochro-
matic if its three vertices have the same label). Then, the 
set of monochromatic edges of the triangulation forms a 
perfect matching and removing monochromatic edges leads 
to the desired quadrangulation. The proof is simple: every 
triangle of the mesh has exactly one monochromatic edge, 
which means that each triangle will be chosen exactly once 
for creating a quad: this is by definition a perfect matching. 
The only possible issue would be the existence of monochro-
matic edges on �Ω . This issue is avoidable if every boundary 
cycle is even: coloring should be done at first on �Ω and then 
be propagated inside.

Now the last question: is it possible to avoid monochro-
matic triangles? The answer is no, at least not without modi-
fying the triangulation. We start by analyzing the simplest 
possible case of an even triangulation without perfect match-
ing (see Fig. 9a). In this example, all labelings leave the 
internal triangle monochromatic so there exists no perfect 
matching in this graph. In other words, merging any of the 
three possible pairs of triangles would leave two non-con-
nected triangles ‘hanging.’ In general, picking edges in the 
graph while constructing a matching may split the graph into 
disconnected sub-graphs with an odd number of edges on 

their boundaries, thus not allowing a perfect matching. This 
condition is a special form of a well-known graph theory 
theorem from Tutte [45]. By inserting an additional Steiner 
point of the opposite label (by splitting one edge of the tri-
angle in question) our condition is met (Fig. 9b). A perfect 
matching actually exists and is composed of all monochro-
matic edges as demonstrated above (see Fig. 9d).

5.1 � Random labeling

We start by 2-coloring the boundary cycles Ck of Ω and 
assign a random label to all internal vertices. Figure 10a 
shows this initial random labeling. Random labeling is not 
the worst-case scenario: it typically produces 25% of mono-
chromatic triangles. Yet, this number is too big because the 
number of Steiner points that should be added to remove all 
the monochromatic triangles is sufficiently large to damage 
the mesh size field.

It is possible to dramatically decrease the number of mon-
ochromatic triangles by applying the following smoothing 
algorithm. Each internal vertex is re-labeled if changing its 
label reduces the number of (its adjacent) monochromatic 
triangles. The smoothing usually ends with monochromatic 
triangles that are either isolated or form adjacent pairs (see 
Fig. 10b). In this specific example, no pairs are observed but 
they cannot be avoided in the general case.

Then, bipartite topological correction is performed. When 
monochromatic triangles appear in pairs, their common edge 
is split. When they are isolated, we choose to split their long-
est edge, to not degrade the accordance with the size field. 
This process continues until all monochromatic triangles are 
eliminated. Figure 10c shows the final labeling without any 
monochromatic triangle.

Fig. 10   Different stages of the 
quadrangulation process. a 
Random labeling of the internal 
vertices, monochromatic 
triangles are colored. b Local 
label smoothing. c Splitting 
of remaining isolated mono-
chromatic triangles. d Merging 
triangles using monochromatic 
edges and obtention of a 2-col-
oring. e Final quad mesh after 
topological optimization (color 
figure online)
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The triangular mesh of Fig. 10c can then be transformed 
into a quadrilateral mesh by removing its monochromatic 
edges as depicted in Fig. 10d. Mesh of Fig. 10d is not of 
high quality. We had to use all Gmsh’s heavy optimization 
weaponry to obtain the final mesh of Fig. 10e.

5.2 � Cross‑field guided labeling

The triangular mesh of Fig. 10a is not suited to be trans-
formed into a quadrilateral mesh; obtaining a good mesh at 
the end heavily relies on advanced optimization. In Sect. 3.2, 
we proposed an advancing-front scheme where each point 
tries to add other points guided by the orthogonal direc-
tions provided by a cross-field. The cross-field guided point 
insertion process produces an excellent labeling scheme: 
new vertices added by a vertex v have the opposite label of 
the one of v (since the edges formed between these vertices 
will be the cross-field aligned ones that we want to have in 
the final quad mesh). Figure 11a shows the initial labeling 
after frontal point insertion. As few as 14 monochromatic 
triangles are present in the triangular mesh, leading to a very 
small number of Steiner points. More importantly, no Steiner 
point has been inserted at the vicinity of the boundary, lead-
ing to several perfect layers of quads (see Fig. 11d).

By inserting the Steiner points, we have constructed the 
underlying topological connectivity of an all-quad mesh 
(Fig. 11b). Mesh vertices can be repositioned at the center 
of the stencil of opposite labeled neighbors (essentially a 
single iteration Laplacian smoothing, e.g., Fig. 11c). In the 
case of non-planar surfaces, the repositioned vertices are 
projected onto the original triangulation. We can then trivi-
ally extract an all-quad mesh, since each pair of triangles 
whose common edge has two same labels defines a quad-
rilateral (Fig. 11d). At this point, the advancing labeling 
scheme is converted to the true 2-coloring of the final bipar-
tite quadrilateral mesh. Another way to see this is that the 
set of same-colored edges is perpendicular to the set of the 
edges of the perfect matching of the dual. It is interesting 
to note that forming the quads this way before inserting the 
additional vertices would lead to a quad-dominant mesh with 
non-quad polygonal regions that are even-sided due to the 
bipartite condition.

Finally, it must be noted that our algorithm is straight-
forward, and linear in time compared to the computation of 
an optimal perfect matching, which is quadratic in time and 
very complex. For the sake of completeness, the algorithm 
is presented on Algorithm 3.

Fig. 11   Bipartite all-quad meshing. a Topologically inconsistent triangles. b Insert vertices (Steiner points). c Reposition of vertices. d Bipartite 
all-quad mesh
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5.3 � Mesh optimization

The algorithm described is always able by construction to 
produce a topological quad mesh Tq . Moreover, Tq is also of 
high geometric quality (measured by the scaled Jacobian Q 
[46]) since it follows the cross-field directions.

In few cases, especially when the requested size field 
is much coarser than the geometric characteristics of the 
model, we may encounter minor defects where elements 
with Q ≤ 0 may occur, such as doublet quads (two quads 
connected only by one vertex) or flat quads on the boundary 
(since boundary vertices cannot be repositioned). Both cases 
can be locally handled, the former by merging the doublet 
into one quad and the latter by inserting additional vertices 
and thus ‘pushing’ the boundary irregular vertex inside the 
domain.

The only smoothing procedure used in this work is the 
Laplacian smoothing described in Sect. 5.2 for the repo-
sitioning of vertices. Further and more suited smoothing 
(e.g., Winslow smoothing [47]) can be performed on the 
final quadrilateral mesh.

The next step in our developments will be to complement 
our approach with the more sophisticated optimization pro-
cedure proposed in [38] that takes as input the quad mesh Tq , 
the cross-field � as well as the size field h. The main features 
of this optimization process are:

•	 All vertices of high valence are eliminated.
•	 All boundary vertices have their optimal valence in such 

a way that we can create a boundary layer mesh without 
effort.

•	 Isolated irregular vertices corresponding to the singulari-
ties of the cross-field are preserved.

•	 Advanced vertex relocation schemes are performed to 
obtain a geometry regular quad mesh.

6 � Results

To demonstrate the capabilities of our methodology, we 
have tested the whole pipeline on a variety of cases with 
diverse characteristics (Fig. 12). One of our main interests 
is to be able to produce meshes on any input, regardless of 
its complexity (Fig. 13). Reviewing the relevant literature, 
we observe that the majority of the works present results 
on relatively simple models. We work on large model data-
bases (that are recently becoming the common standard for 
validation purposes on bulk numbers of models), and we 
aim to have a close to 100% success rate on them. The mod-
els are obtained from the following sources: the ABC [48], 
MAMBO [49] and Thingi10k [50] datasets, and the supple-
mentary test data of LoopyCuts software [51].

We present statistics for all the models from MAMBO 
and LoopyCuts, since all their models are directly suited 
for meshing (Table 1). MAMBO contains three categories 
of CAD models: basic, simple, and medium, of which we 
use the latter two since they have more complex features of 
interest. LoopyCuts models are in general simpler models 
in terms of surface complexity (smooth surfaces, absence of 
very small features) oriented mostly for computer graphics 
research.
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A desired property of our mesh generation process is to 
keep user intervention at a minimum. Input parameters are a 
threshold value � to suppress potential discrepancies during 
local mesh modifications and the angle threshold to detect 
hard edges. The angle threshold � may be disregarded, and 
the algorithm can initiate from a random edge of the initial 
mesh instead of the model curves. We keep in mind that this 
may result in low-quality meshing on hard edges.

Cross-fields are precomputed and considered input to 
the algorithm, or they can be taken as the unit axis direc-
tions for practical purposes. Size fields can be a uniform 
input size or computed from the curvature and geometric 
characteristics of the input mesh. Both cross and size fields 

impact considerably the output mesh quality, and we can 
observe that the directionality of the elements matches the 
input cross-field directions. It must be noted that our point 
generation module can have any kind of metric input. For 
example, we can use an anisotropic metric or a prescribed 
user-defined size field that is ‘incompatible’ with the com-
puted cross-field. In Fig. 14 (right), a size field of sinusoidal 
form is prescribed and we can observe that our algorithm 
can successfully handle it at the cost of lower element qual-
ity and an excess of irregular vertices to accommodate for 
the size transitions.

Our pipeline can succesfully produce a quad mesh in all 
the models that can be processed by GMSH for the initial 

Fig. 12   All-quad meshes on 
various models obtained from 
the following sources: ABC 
[48], MAMBO [49], Thingi10k 
[50] and LoopyCuts [51]
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triangulation. One of the most challenging aspects of our 
methodology is the removal of the initial mesh points by 
collapsing and testing multiple ‘extreme’ cases on that is an 
ongoing process. As desired, non-manifold features are well 
handled and conformity is preserved (Fig. 14, left). The final 
conversion to an all-quad mesh proves to be straightforward 
and efficient, given that the input respects the fundamental 
topological condition (i.e., even number of edges on each 
curve). The quad meshes exhibit high quality Q, computed 
as the scaled Jacobian (Table 1). Minimum quality over all 
LoopyCuts models is 0.22 with the vast majority of the mod-
els having over 0.50. On the other hand, we observe similar 
outputs on the MAMBO models except of a few cases where 
very thin sliver regions result to almost flat quad elements 
with Q ≃ 0 . These kind of features are common in ‘real-life’ 
models and element quality there could be improved with 

further optimization. The output meshes shown here con-
sist of the ‘raw’ quadrilateral meshes, without heavy further 
optimization (an example of further optimizing a quad mesh 
is presented in Fig. 15).

One of our main interests is the computational efficiency 
of the method. The majority of operations are local and the 
algorithms of linear complexity. The most time-consuming 
parts of our pipeline is the (inevitable) use of spatial search 
structures (involved in filtering and also in projection of 
points onto the triangulation during surface meshing and 
all-quad conversion). The performance of the algorithm is 
heavily dependent on the input mesh, specifically its num-
ber of triangles and colored surfaces. More triangles lead 
to more spatial searches during point generation and filter-
ing as well as more local mesh modifications during sur-
face meshing. Spatial searches and projections are the most 

Fig. 13   Left: Quadrilateral 
mesh on a B-rep model of a 
motorbike. Right: Quadrilat-
eral mesh from a triangulated 
surface of scanned data

Fig. 14   Left: CAD model with 
multiple volumes, leading to 
non-manifold feature curves. 
Right: A quadrilateral mesh 
with a prescribed sinusoidal 
non-uniform size field

Table 1   Average quality and 
timings values for MAMBO and 
LoopyCuts models

Nq is the average number of quadrilaterals of the output meshes. The quality metric Q is the scaled Jaco-
bian and tpoints , tsurf and tquad are the timings in seconds for the three pipeline steps, respectively: point gen-
eration, surface meshing and quad conversion

Dataset (#) Nq Q tpoints(s) tsurf(s) tquad(s) ttotal(s)

MAMBO (39) 23730 0.988 0.907 0.723 0.366 2.112
LoopyCuts (70) 12748 0.985 0.305 0.351 0.197 0.953
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important bottlenecks on the performance of our pipeline 
and we consider that we can speed up with more efficient 
procedures. In Table 1, we present the average time for each 
part of our pipeline, using a single-thread on a laptop with 
2.6 GHz CPU.

7 � Conclusions

We have presented a method for the creation of quadrilateral 
surface meshes on general complex geometries. One of the 
important aspects of our pipeline is its modular nature. Each 
step can be independently used, for example, a more efficient 
point sampling method could be used, or a typical CAD 
meshing algorithm to generate the mesh with these points.

The surface meshing algorithm proposed is used to pro-
duce right-angled triangles, but it can be repurposed as a 
remeshing tool for triangulations, given appropriate input 
(i.e., an ‘asterisk’ field [32, 39]). The proposed two-step 
method for surface meshing aims at balancing the trade-off 
between output quality and robustness. One of its strengths 
is the ability to handle the model as a whole and thus cre-
ate cross-aligned elements globally. While producing high-
quality elements in this aspect, we always respect the topol-
ogy and succeed at meshing small-scale and non-manifold 
features as shown in the results demonstrated (Sect. 6).

As stated, scaled cross-fields are beneficial for quad mesh 
generation. We have mainly used here size fields obtained 
from the scaling of cross-fields. In practice though, a user 
would commonly prefer prescribing a size field that is a 
better fit for the problem in hand, and unfortunately this is 
currently an open problem. One of the advantages of our 
approach is that our pipeline can produce meshes regardless 
of the topological integrity of the input metric, for example 
with a user-defined size field that is incompatible with the 
computed cross-field (Fig. 14, left). Nevertheless, adapting a 
direction field to an input size field would vastly improve the 
results. Regarding highly anisotropic metrics (for example 
for the generation of structured boundary layer meshes), it 
is straightforward to extend the point generation part of our 
pipeline for such a use. Nevertheless, we consider the trian-
gulation on such a metric a much more difficult task (where 

the aim is having structured layers of anisotropic triangles 
to be combined). We believe that the best strategy would be 
to create structured layers of boundary quadrilaterals and 
then subdivide them.

A novel method to obtain an all-quad mesh from any 
quad-dominant mesh with minimal, if any, post-processing 
clean-up is introduced. By using a bipartite labeling scheme, 
we simplify the global treatment required for quad mesh-
ing to a set of localized operations that can be performed 
on a quad-dominant mesh. We are thus enabled to produce 
always a high-quality quad mesh, regardless of the com-
plexity of the model. Our meshes can be further optimized 
with a strategy to remove the majority of irregular vertices, 
presented on [38].

We are currently in the process of incorporating this quad 
surface mesher as a component of a general high-quality 
hex-dominant meshing pipeline, where it will be used as the 
volume bounding surface. An interesting open problem to 
this end is if hexahedral element generation should be con-
strained by a quadrilateral mesh, and if yes, what would be 
its optimal characteristics. Besides that, we are investigating 
ways to take advantage of the topological labels used here 
for quadrilateral elements to the generation of hexahedra, 
possibly with a labeling scheme that can codify more topo-
logical information.
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