
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4731–4747
https://doi.org/10.1007/s00366-022-01740-4

ORIGINAL ARTICLE

Indirect all‑quadrilateral meshing based on bipartite topological
labeling

Christos Georgiadis1  · Maxence Reberol1 · Jean‑François Remacle1

Received: 18 January 2022 / Accepted: 31 August 2022 / Published online: 7 October 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Quadrilateral meshes offer certain advantages compared to triangular ones, such as reduced number of elements and align-
ment with problem-specific directions. We present a pipeline for the generation of quadrilateral meshes on complex geom-
etries. It is based on two key components: robust surface meshing and efficient indirect conversion of a triangular mesh to an
all-quad one. The input is a valid geometric surface mesh, i.e., a triangulation that accurately represents the geometry of the
model. A right-angled triangular surface mesh is initially created by continuously modifying the input mesh while always
preserving its topological validity. The main advantages of our local mesh modification-based approach are to (i) allow the
generation of meshes that are globally aligned with a given direction field and (ii) to reliably handle non-manifold feature
edges (in multi-volume models) and small features. The final quadrilateral mesh is obtained by merging pairs of triangles
into quadrilaterals. We develop a novel bipartite labeling scheme in order to identify and correct inconsistent pairings. The
procedure is based on local operations and is much more efficient than previous global strategies for tri-to-quad conversion.
The whole pipeline is tested on a large number of models with diverse characteristics.

Keywords  Surface meshing · Quadrilateral meshing · Bipartite labeling · Cross-fields

1  Introduction

Quadrilateral meshes are often preferable to triangular ones
for numerical simulations. They have fewer elements for the
same number of vertices, they are ideally capable of pro-
viding a block-structure and they can provide better align-
ment to geometric features, as well as to problem-specific
features, providing better numerical behavior for specific
physical phenomena (a typical example is the demand for
structured and aligned boundary layers in Computational

Fluid Dynamics). Yet, the automatic generation of quadri-
lateral meshes is still regarded as a challenging problem in
mesh generation. Even though a lot of different approaches
exist, there is not to date a conclusive method, analogous
to triangular meshing which is considered highly mature
and for which there exist robust algorithms based on strong
mathematical foundations.

The purpose of this work is to address the problem of
generating quadrilateral meshes for complex 3D models. We
strive for generality in our approach; our input is simply a
triangulation of the model. The triangulation can be an STL
representation of the geometry, triangulation of scanned
data or a mesh generated from a CAD model with standard
meshing techniques (Fig. 1). The input meshes may be of
bad quality and contain non-manifold feature edges. Our
goal is to design a pipeline satisfying the following design
goals: (i) robustness, i.e., guarantee of termination regard-
less of the complexity/bad quality of input data, (ii) feature
preservation, i.e., the persistence of user-defined internal
and boundary curves, (iii) high element quality, and (iv)
efficiency, i.e., providing a quad meshing algorithm with a
running time comparable to or faster than conventional tri-
to-quad technologies.

Maxence Reberol and Jean-François Remacle are contributing
authors.

 *	 Christos Georgiadis
	 christos.georgiadis@uclouvain.be

	 Maxence Reberol
	 maxence.reberol@uclouvain.be

	 Jean‑François Remacle
	 jean-francois.remacle@uclouvain.be

1	 Institute of Mechanics, Materials and Civil Engineering,
Université Catholique de Louvain, Avenue Georges Lemaitre
4, 1348 Louvain‑la‑Neuve, Belgium

http://orcid.org/0000-0003-0251-8025
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01740-4&domain=pdf

4732	 Engineering with Computers (2022) 38:4731–4747

1 3

To generate a high-quality unstructured quadrilateral
mesh that preserves user-defined features, we develop three
independent steps: (i) we sample points on the model curves
and surfaces, guided from a metric field (cross-field and an
associated size-map), (ii) we use local mesh modifications
to continuously remove points of the initial triangulation
and add the new ones, leading to a right-angled triangular
mesh and (iii) we convert the triangular mesh into an all-
quad mesh using a novel approach based on a topological
labeling scheme.

When it comes to mesh generation, the expected reliabil-
ity rate of industrial-grade algorithms is essentially 100%.
The input data supplied to our meshing algorithms are often
noisy. Inputs may be huge, with a wide range of scales. It is
not surprising that the most complex/tricky part of our work
is related to robustness. We have given special attention to
ensure that this mesh generator provides results regardless
of the complexity of the input data, as long as it is correct
(i.e., a watertight but possibly non-manifold triangulation,
in the sense that no folded elements and edge intersections
may be present).

In order to ensure reproducibility of this work, the whole
implementation will be available in Gmsh, the open-source
mesh generator [1]. To demonstrate the robustness of our
algorithm, we applied it to a large number of models found
in various datasets.

1.1 � Related work

Surface meshing Surface mesh generation poses various dif-
ficulties related to robustness and efficiency. Of the several
methods proposed in the bibliography, we can identify two
main categories [2, 3]: (i) Parametric approaches, where the
surface mesh is generated in the parametric space, and (ii)

Nonparametric (direct) approaches, where the surface mesh
is generated directly in the 3D space.

In parametric approaches, the 3D surface is mapped to
a 2D parametric space [2, 4–7]. Since the CAD surfaces
(typically NURBS patches) have underlying u, v representa-
tion, it can be efficient to generate a mesh in the plane with
standard meshing techniques and afterward map it back to
the 3D space. Generating planar meshes in the parameter
space is a robust approach that is usually able to provide
high-quality meshes. Yet, approaches that use the parameter
plane are able to consider surfaces that are isomorphic to a
punctured disk. Meshing complex models with a parameter
space approach do not allow to globally align a mesh with a
cross-field, since each discrete patch of a CAD model may
be equipped with an independent parametrization and the
feature edges that separate those patches are not necessary
aligned with the cross-field. Parametrization techniques can
also be used to remesh triangulations [8, 9].

Nonparametric (also referred to as direct surface meshing
in the literature, creating some ambiguity with the terms of
direct/indirect approaches commonly used in quad meshing)
approaches to surface meshing can be based on quad trees
[10, 11], advancing front [12, 13] or Delaunay strategies
[14, 15]. One of the main advantages of the direct approach
is its usefulness for models where an underlying parametri-
zation is not available or when it is degraded. Local mesh
modification strategies to remesh models described by STL
triangulations are proposed in Refs. [16, 17]. One of the
main difficulties of this class of methods is that the manipu-
lation of geometry directly on the 3D space is a challenging
task that may lead to geometric or topological ambiguities.

Quadrilateral meshing Initial efforts to automatically
generate quadrilateral meshes include grid-based and pav-
ing algorithms. Grid-based methods start with the genera-
tion of a background Cartesian or a quad-tree grid with the

Fig. 1   Quadrilateral meshes
produced by our algorithm with
input a CAD model (left) and an
STL triangulation (right)

4733Engineering with Computers (2022) 38:4731–4747	

1 3

subsequent snapping of elements to the domain boundaries
[18–20]. The paving algorithm, first introduced by Ref.
[21] generates quadrilateral elements in an advancing-front
fashion, propagating from the boundary to the interior. Both
classes of methods suffer from a degraded quadrilateral
quality and high node irregularity on specific regions of the
domain: the latter on the domain boundaries and the former
on the front collisions on the interior. In Ref. [22], a bichro-
matic Delaunay quadrangulation method is presented, with
our current work building upon a similar concept.

On the other hand, quad conversion or indirect methods
are based on the merging of pairs of adjacent triangles of
an input mesh to quadrilaterals [23, 24]. In Q-Morph [25],
triangles are transformed into quadrilaterals with an advanc-
ing-front algorithm. Blossom-Quad algorithm [26] computes
a perfect matching to optimally pair triangles, while [27, 28]
produce meshes better suited for triangle pairing by generat-
ing aligned right-angled triangles.

Cross-fields Cross-fields are nowadays commonly used
in the context of mesh generation, a line of research stem-
ming from the computer graphics community and global
parametrization methods [29]. For quad/hex meshing, cross-
fields define preferred orthogonal directions on the domain
to guide creation of optimal elements [30–32]. Cross-fields
should be as smooth as possible (except at singular points)
and aligned with the boundary of the domain.

1.2 � Contributions

The quad meshing pipeline that is proposed follows a modu-
lar approach, with each of the steps being an independent
algorithm that can be re-used in various situations (Fig. 2).
As stated before, our main concern is to provide a reliable
solution, i.e., we want the quad meshing pipeline to be resil-
ient to complex/ill-conditioned inputs.

The two main contributions of this work are:

1.	 Robust surface meshing. In our procedure, we follow
the idea of Ref. [28] of separating the generation of
points and the creation of the elements. The main nov-
elty of this work is our direct approach. In this work, an
input triangular mesh is continuously modified through
robust local mesh modifications. The word continuous
is chosen on purpose: each local mesh modification that
is performed guarantees the topological integrity of the
current triangular mesh. At the end of the remeshing
process, most of the points of the initial triangular mesh,
and in most cases all those points are removed from the
triangulation and replaced by the ones created to accom-
modate the cross-field and size field characteristics.

2.	 Straightforward and efficient all-quad meshing. We
propose a bipartite labeling scheme that propagates
topology information on the vertices during point gen-

eration. By using this information on the right-angled
triangular mesh, we are able to optimally place new
Steiner points to fix topological inconsistencies (odd-
bounded regions on the interior) and recover a bipartite,
all-quad mesh. The approach is very efficient since it
converts a global problem to a local one.

2 � Overview

Our algorithm takes as input a watertight, possibly non-man-
ifold triangulation T0 . The input triangulation T0 is classi-
fied: the word classified indicates the fact that the triangles
are grouped into colors and interfaces between colors are
considered as feature edges that must be conserved in the
remeshing process. Internal feature edges may also exist that
lie inside a group of triangles with the same color. Note that
feature edges can also be detected based on the dihedral
angle, given a user-defined threshold. We take into account
two special categories of feature edges in T0 : (i) non-man-
ifold feature edges with two or more adjacent surfaces and
(ii) internal (embedded) feature edges inside surfaces (e.g.,
a crack for solid modeling)

All the necessary topological information is available
in the initial mesh. Surfaces are bounded by closed feature

Fig. 2   Schematic outline of the pipeline proposed for quadrilateral
meshing

4734	 Engineering with Computers (2022) 38:4731–4747

1 3

edges and those feature edges by feature points. Consecutive
feature edges form feature curves. Feature curves must be
preserved during the continuous mesh modification process.
An important property of our method is the ability to handle
the model as a whole and thus take advantage of the global
nature of the guiding cross-field. We do not follow a patch-
wise approach where we handle each surface independently,
followed by a connection of curves to ensure conformity.
A half-edge data structure [33] is used to get connectivity
information, and an array of boundary edges that define fea-
ture curves is stored. We extend this data structure by stor-
ing the type of boundary edge (manifold or non-manifold),
along with the triangles connected to each (one triangle for
open boundary edges, two triangles for manifold edges, and
a larger than two number for non-manifold ones). This fea-
ture enables us to efficiently treat boundaries during surface
meshing.

The scheme provides the flexibility to preserve the topo-
logical characteristics of the input mesh, such as ‘hard’ edges
or user-defined feature curves, without relying on extensive
a priori knowledge of domain characteristics or a compli-
cated feature recognition preprocess [34–37]. Furthermore,
by utilizing an appropriate data structure on top of the half-
edge one, we can handle non-manifold configurations that
may occur in industrial multi-volume CAD models.

The input triangulation T0 is the geometric model. Two
other inputs are required for running the algorithm: (i) a
unit cross-field � and (ii) a size field h(�) that are both used
for guiding the point insertion process. A cross-field � is
a field defined on a surface S with values in the quotient
space S1∕Q , where S1 is the circle group and Q is the group
of quadrilateral symmetry. It associates to each point of a
surface S to be meshed a cross made of two unit vectors
orthogonal to one another in the tangent plane of the surface
and their opposites (Fig. 3a). Although T0 , � and h can be
independent, it is beneficial to have (i) a cross-field � that
is aligned with the feature edges of T0 and (ii) a size field
h that takes into account both the local change of direction

of the cross-field and small features of the geometry. In this
work, � and h are precomputed using T0 as support with the
algorithms described in Ref. [38].

The transformation of the triangulation T0 into the final
quad mesh Tq is done in three sequential steps:

1.	 Point generation (Sect. 3) Points of the final mesh Tq are
generated in a frontal fashion starting from the feature
curves and guided by both the cross and the size field.
This set of points is embedded on the triangles of the
base/initial mesh T0.

2.	 Point replacement (Sect. 4) The initial mesh T0 is con-
tinuously transformed into another triangular mesh T1 by
connecting the newly generated points on T0 and subse-
quently removing the initial mesh points, utilizing local
mesh modifications.

3.	 From triangles to quads (Sect. 5) Mesh T1 is transformed
into a quad mesh by combining pairs of triangles. Using
a binary labeling scheme for the points during frontal
generation allows us to instantly extract a valid all-quad
topology.

The simple model of Fig. 3 is used as an example to
describe those three steps.

3 � Point generation

In this work, we take a standard surface-to-volume point of
view of mesh generation on Gmsh [1] which essentially con-
sists of a bottom-up procedure. Model curves are discretized
at first. Mesh edges on the model curves are used as bounda-
ries of model faces and mesh triangles on model faces are
used as the boundary of model volumes if they exist.

A set P of points on surfaces is generated using a frontal
point propagation algorithm that is similar to Ref. [28]. The
main difference with Ref. [28] is that all the operations are
performed here directly on T0 without using a parametric

Fig. 3   Surface meshing steps.
a Cross-field and size field
computed on the input mesh.
b Generated points embedded
on the input mesh. c Inserting
points to the triangulation with
local mesh modifications. d
Right-angled triangular mesh of
the generated points

4735Engineering with Computers (2022) 38:4731–4747	

1 3

space. The point sampling scheme has been implemented
for the special case of the sphere [39]. It is extended here
for general surfaces and we reiterate the whole process for
completeness. Our frontal approach is enhanced with the
use of a cross-field � that allows to structure the quad mesh
and a size field h that allows taking into account the various
feature sizes of a model as well as changes of directions of
� (Fig. 3a).

3.1 � Curve point generation

Each feature curve is uniquely defined from a list of non-
intersecting connected edges. Given a size field h defined by
a value at each point, we mesh the discrete representation of
each curve by following the general guidelines of Ref. [40].
This leads to the set of points Pc = {�i ∣ i = 1,… ,Ngc} . It is
important to note that at this step, we can control the genera-
tion to have an even number of points for each feature curve.
This provides us with a topologically necessary condition for
all-quadrilateral meshing.

3.2 � Surface point generation

Starting now from the Ngc generated points on mesh
feature curves, we want to spawn a set of points
Ps = {�i ∣ i = 1,… ,Ngs} on the surfaces in the directions

provided by the cross-field � (�) and with respect to the
underlying size field h(�) . The point set Ps , along Pc , will
be used to generate a right-angled triangulation T1 that is
well suited for combining triangles into quadrilaterals and
form Tq.

The cross-field � gives Nd = 2 tangent orthogonal direc-
tions and their opposites. A priority queue is initially filled
with the Ngc points ordered along the curves. The point �i at
the top of the queue then tries to insert 4 new points �ij in
the j = 1,… , 2Nd directions defined by �

(
�
j

i

)
 and at a dis-

tance h(�i) . In order to have points inserted ‘by layers,’ the
priority queue that is chosen is a first-in, first-out queue.
Ordering the boundary points along the domain allows
smooth propagation on the interior.

Each seed point �i tries to spawn �ij, j = 1,… , 2Nd neigh-
bor points on T0 . Yet, there is no guarantee that point �ij is
not too close to another point of the queue. Points �ij are
hence filtered. A rectangular exclusion zone is defined by the
cross-field orientation and the size field around each vertex
�i in such a way that any point lying in this zone will not be
inserted in the queue. Finally, seed points are removed from
the queue, and accepted points are added to the end of the
queue as well as in P . The procedure terminates when the
queue is empty. Algorithm 1 describes the procedure. Fol-
lowing, we will focus in detail on the two main operations,
i.e., the point insertion and the point filtering.

4736	 Engineering with Computers (2022) 38:4731–4747

1 3

3.2.1 � Intersection with triangulation

Assume a point �i that lies on one of the triangles of T0 , a
direction �ij = �

(
�
j

i

)
 , i.e., a unit vector tangent to the surface

and the mesh size hi = h(�i) at that point. The aim is to cre-
ate an edge of size hi . Therefore, the new point �ij can be
computed as the intersection of the triangulated surface T0
and a circle Ci with center �i and radius hi . Ci lies on the
plane Pi that is formed by the direction vector �ij and the
normal to the triangulation at our origin point, �i (Fig. 4).

To compute �ij our goal is to find the intersection point
of circle Ci with the triangulation T0 (Fig. 4). We start from
the triangle of the base mesh T0i on which �i lies. First, we
compute the intersection line of the plane Pi and the plane
of the triangle PT0 i

 . Then, we find the intersection points
of this line with the circle Ci and choose the one that lies in
direction �ij . Finally, the barycentric coordinates �0, �1, �2 of
this point with respect to the current triangle are calculated.
In this way, we determine whether the intersection point
lies on the triangle, and therefore if we have a successful
intersection with this triangle.

In the case where the current triangle is not intersected,
we move forward to another triangle. Since we have already
computed the barycentric coordinates with respect to the
current triangle T0i , we know where on the plane PT0 i

 the
intersection point lies (Fig. 5, left). The next triangle to be
searched for an intersection is thus given from the computed
barycentric coordinates and the adjacency information of the
input mesh. This procedure continues until a valid intersec-
tion point is retrieved.

Essentially, we perform a walk in the triangulation [41] in
the desired direction until we obtain the intersection point.
Our experience shows that this method is efficient since it
utilizes the underlying mesh as a space searching structure.
For the same order of magnitude of mesh sizes on input and
desired meshes, intersection points are found after a little
less than two triangle visits on average.

3.2.2 � Filtering procedure

Each point generates �ij points for j = 1,… , 2Nd direc-
tions. We have to ensure that new points are not too close to
already generated points. Therefore, after each point �ij is
generated, a filtering procedure should follow. To this end,
we use RTrees as a spatial search structure [42].

For every candidate point �ij , we define a large enough
search box (typically 2 times the mesh size). We find then
the set of points Pf = {�f , k = 1,… , nf } in the vicinity of �ij .
Since our objective is to create right-angled triangles, i.e.,
equilateral triangles in the L∞ norm, we compute the distance
between the candidate point and its surrounding ones as
‖�ij − �f‖∞ = max{�xij − xk�, �yij − yk�, �zij − zk�} The point
is accepted for insertion if condition ‖�ij − �f‖∞ > 𝛼 ⋅ h(�ij)
holds for all �f ∈ Pf .

Fig. 4   Computation of point �ij , given a direction �ij , the normal
�i and the size hi (the radius of the circle Ci ). With green color, we
denote the generated points while with red the initial mesh ones. Here
the seed point �i coincides with a red point (color figure online)

Fig. 5   Indication of the position
of intersection point according
to barycentric coordinates (left)
and computation of point �ij by
walking in the triangulation in
specific direction (right)

4737Engineering with Computers (2022) 38:4731–4747	

1 3

4 � Surface meshing

The objective now is to create a surface mesh with the
set of optimal points P = {�i ∣ i = 1,… ,Ng} (where
Ng = Ngc + Ngs ) that have been generated on curves and
surfaces. The idea is straightforward: connect the generated
points P on the initial mesh T0 , and subsequently remove
the initial mesh points (Fig. 6). A similar idea but in a dif-
ferent context has been used in Ref. [43], leading to a quad-
dominant mesh.

Robustness is of crucial interest in our method, since
modifying geometric aspects of general surfaces in 3D space
is a delicate task. With our approach, the main goal is to
preserve the topological integrity of the mesh through each
step of the process, while not compromising the accuracy of
the geometric representation of the surface.

We can identify two complementary sets of generated
points �i :

i	 Ngc points lying on curves (feature edges)
ii	 Ngs points lying purely on surface triangles

with a corresponding unique parent element (feature edge
or mesh triangle, respectively) already stored for each of
these points. Correspondingly, there are Nr points from the
initial mesh: Nrc points of the feature edges and Nrs points of
the ‘interior’ surface. This division enables us to perform a
bottom-up procedure where topological entities are handled

independently (first mesh curves and then surfaces). We can
therefore ensure that each step will have a well-defined ‘pre-
decessor’ mesh to build upon.

4.1 � Local mesh modifications

The basic operations utilized to locally modify the mesh
follow:

Split triangles

Given a surface point and its parent triangle, split it by
replacing it by three triangles. This operation is trivial to
implement since it cannot change the geometry or the topol-
ogy of the mesh.

Split edges

Given a point that lies on a mesh edge, split this edge. For
points on boundary edges, we already know the parent edge,
while for points on triangles it is easy to compute if the point
lies on a triangle edge (given a user-defined threshold value
� ). For non-manifold boundary edges, we split all the corre-
sponding triangles connected to this edge (Fig. 7, left). This
set of triangles is readily accessible from the extended data
structure for boundary edges.

Collapse edges

Remove points from the triangulation by collapsing an edge.
Collapsing an edge is not always a valid operation since
it can create flipped or degenerate elements. We check the
fan of n triangles connected to the vertex in question and
choose an edge that can be collapsed. The resulting n − 2
triangles should not intersect with neighboring ones. Again,
non-manifold edges can be collapsed if all corresponding
‘half-fans’ pass the validity test (Fig. 7, right).

Swap edges
Given an appropriate quality criterion, swap the edge if

the topology is not violated. Obviously, a feature edge can-
not be swapped. Edge swaps have a significant role during
collapsing of edges, since it is not always feasible to col-
lapse all unnecessary vertices at the first pass. Edge swaps
serve at this point to create improved conditions for the next

Fig. 6   Generated points (green)—initial mesh (red points to be
removed) (color figure online)

Fig. 7   Splitting (left) and col-
lapsing (right) a non-manifold
feature edge

4738	 Engineering with Computers (2022) 38:4731–4747

1 3

collapsing iteration. Collapsing numerous mesh vertices
leads to steep angles; therefore we swap edges if it does not
result to bigger dihedral angles. At the final step, swaps can
be performed based only on quality criteria.

A quality improvement with edge swaps can be performed
here, though it is not a necessary condition to continue to
the next step.

4.2 � Outline

The procedure consists of the following (Algorithm 2). All
generated points are flagged to be inserted while all initial
points are flagged to be removed. Starting from the model
curves, each generated point splits its corresponding parent
feature edge, which can be manifold or non-manifold. Each
point has a unique parent feature edge and the splitting is
done based on its parameter t ∈ [0, 1] , thus defined in an
unambiguous way. If a point to be inserted is ‘close’ (w.r.t to
� ) to an initial mesh point, we flag the latter to be preserved
instead of the former in order to avoid small-scale geometric
ambiguities that may occur. The procedure follows until all
points on model curves are inserted into the mesh. Follow-
ing, points on surfaces are inserted by splitting triangles.
These points have a unique parent triangle, and the splitting
is based on the barycentric coordinates. If a point is ‘close’
w.r.t to � on one of the triangle’s edges, we split the edge,
and if a point lies ‘close’ to an initial point, it gets disre-
garded (as explained for points on lines).

At this stage, we have an ‘enhanced’ intermediate mesh
Ti containing the initial (red) and generated (green) points
(Fig. 3c). This mesh is of low quality, but our interest here
is that it represents as accurately as possible the underly-
ing surface and respects the topology of the initial mesh.

We want now to remove the initial mesh points. Starting
again from model curves, we iterate for all feature points to
be removed and examine if one of the two connected bound-
ary edges can be collapsed. Similarly with the procedure of
splitting feature edges, we can collapse non-manifold feature
edges without compromising the conformity of the mesh.
Subsequently, points on surfaces are removed by collaps-
ing interior edges. Since not all points are guaranteed to be
removed in the first pass, the two discrete loops for points
are encapsulated in a while loop that terminates when no
point to be removed remains or breaks if the remaining ‘red’
points cannot be removed at all. This is a crucial part since
it prevents the algorithm from producing invalid topology.
When an initial mesh vertex cannot be collapsed, it can sim-
ply remain in the final mesh. In practice, we observe that no
more than two iterations are necessary to remove unwanted
vertices for most of the models tested. While inserting points
in the triangulation by split edge/triangle operators is trivial,
robustly implementing the collapsing step proved be a fairly
strenuous task for the general case.

4739Engineering with Computers (2022) 38:4731–4747	

1 3

5 � Bipartite quadrilateral labeling

At this point, we have obtained a mesh T1 that is right-angled
and ready to be transformed to an all-quad mesh by triangle
pairing. A necessary condition for an all-quad mesh to exist
is to have an even number of edges on the boundary of each
surface of the model. In this work, we trivially impose this
condition on the feature curves that bound the surfaces dur-
ing the first step of the pipeline (Sect. 3.1). Dividing each
curve into an even number of segments is not sufficient to
ensure the existence of a perfect matching, i.e., a triangle
pairing that involves all triangles of T1 . This is a typical
obstacle of triangle-pairing methods, leading to isolated
triangles that cannot be locally removed. A naive way to
eliminate those triangles is to perform a Catmull–Clark

subdivision [44], converting a quad-dominant mesh to an
all-quad at the expense of vastly increasing the number
of elements as well as the number of irregular vertices. In
Blossom-Quad [26] a more sophisticated solution is pro-
posed by computing a minimum-cost perfect matching of
the dual graph to offer a global solution. Still, ensuring a
graph to contain at least one perfect matching remains quite
complicated.

We propose here a new idea for constructing one perfect
matching in a triangular mesh: all edges of the matching
will be used to combine their two neighboring triangles and
form a quad mesh.

Let us first recall some elements of graph theory. A graph
labeling is the assignment of labels to the nodes of the graph.
A graph coloring is a special case of graph labeling; it is an
assignment of labels traditionally called colors to the nodes
of the graph with the constraint that the graph contains no
monochromatic edge, i.e., no edge connecting two nodes
with the same color.

A bipartite graph G is a graph that can be 2-colored.
An important property of a bipartite graph is that it does
not contain any odd-cycles (an odd-cycle is a cycle of odd
length).

Let us now look at the quadrilateral mesh of a domain Ω
as a graph G . We assume here that the boundary �Ω of Ω is
divided into n separated sub-boundaries �Ωi , i = 1… n , with
each of the sub-boundaries �Ωi forming a boundary cycle Ci
in G . We assume that each Ci is an even-cycle. Under these
conditions, it is easy to see that G is bipartite. We consider a
cycle C of G : C bounds a quadrilateral mesh and it is known
[32] that every quadrilateral mesh has an even number of
boundary vertices. If the domain D that is enclosed by C
is simply connected, then C is its only boundary and C is
an even-cycle. If D is not simply connected, its boundary
contains other boundary cycles Cl that are by hypothesis
even-cycles. Thus, ensuring that every boundary cycle Ck
is even is sufficient to ensure that any other cycle C is even
as well. Figure 8 illustrates the aforementioned reasoning.
It should be noted that not all quad meshes are bipartite: it
only holds when every boundary cycle is even.

Fig. 8   Every cycle C is even so the graph is bipartite and is 2-color-
able. Starting from one 2-colored boundary Ck , it is possible to find
the color of any vertex v ∉ Ck by 2-coloring any path P between Ck
and v (color figure online)

Fig. 9   Bipartite topological correction. a Initial labeling on the even-sided boundary. b Splitting topologically inconsistent triangle. c reposition
of vertex according to opposite labeled stencil. d recovery of quadrilaterals (defined by same-labeled edges)

4740	 Engineering with Computers (2022) 38:4731–4747

1 3

It should be noted as well that, starting from the 2-color-
ing of one of the boundary cycle Ck , the 2-coloring of the
rest of the graph is unique: the color of any vertex v ∉ Ck is
found by coloring any path P between any vertex of Ck and
v (see Fig. 8).

We consider now a triangulation of Ω and a bipartite labe-
ling of its vertices. The graph of a triangulation is obviously
not a bipartite graph since every triangle forms an odd-cycle
and therefore it cannot be 2-colored.

Assume that the labeling is done in such a way that there
exists no monochromatic triangle (a triangle is monochro-
matic if its three vertices have the same label). Then, the
set of monochromatic edges of the triangulation forms a
perfect matching and removing monochromatic edges leads
to the desired quadrangulation. The proof is simple: every
triangle of the mesh has exactly one monochromatic edge,
which means that each triangle will be chosen exactly once
for creating a quad: this is by definition a perfect matching.
The only possible issue would be the existence of monochro-
matic edges on �Ω . This issue is avoidable if every boundary
cycle is even: coloring should be done at first on �Ω and then
be propagated inside.

Now the last question: is it possible to avoid monochro-
matic triangles? The answer is no, at least not without modi-
fying the triangulation. We start by analyzing the simplest
possible case of an even triangulation without perfect match-
ing (see Fig. 9a). In this example, all labelings leave the
internal triangle monochromatic so there exists no perfect
matching in this graph. In other words, merging any of the
three possible pairs of triangles would leave two non-con-
nected triangles ‘hanging.’ In general, picking edges in the
graph while constructing a matching may split the graph into
disconnected sub-graphs with an odd number of edges on

their boundaries, thus not allowing a perfect matching. This
condition is a special form of a well-known graph theory
theorem from Tutte [45]. By inserting an additional Steiner
point of the opposite label (by splitting one edge of the tri-
angle in question) our condition is met (Fig. 9b). A perfect
matching actually exists and is composed of all monochro-
matic edges as demonstrated above (see Fig. 9d).

5.1 � Random labeling

We start by 2-coloring the boundary cycles Ck of Ω and
assign a random label to all internal vertices. Figure 10a
shows this initial random labeling. Random labeling is not
the worst-case scenario: it typically produces 25% of mono-
chromatic triangles. Yet, this number is too big because the
number of Steiner points that should be added to remove all
the monochromatic triangles is sufficiently large to damage
the mesh size field.

It is possible to dramatically decrease the number of mon-
ochromatic triangles by applying the following smoothing
algorithm. Each internal vertex is re-labeled if changing its
label reduces the number of (its adjacent) monochromatic
triangles. The smoothing usually ends with monochromatic
triangles that are either isolated or form adjacent pairs (see
Fig. 10b). In this specific example, no pairs are observed but
they cannot be avoided in the general case.

Then, bipartite topological correction is performed. When
monochromatic triangles appear in pairs, their common edge
is split. When they are isolated, we choose to split their long-
est edge, to not degrade the accordance with the size field.
This process continues until all monochromatic triangles are
eliminated. Figure 10c shows the final labeling without any
monochromatic triangle.

Fig. 10   Different stages of the
quadrangulation process. a
Random labeling of the internal
vertices, monochromatic
triangles are colored. b Local
label smoothing. c Splitting
of remaining isolated mono-
chromatic triangles. d Merging
triangles using monochromatic
edges and obtention of a 2-col-
oring. e Final quad mesh after
topological optimization (color
figure online)

4741Engineering with Computers (2022) 38:4731–4747	

1 3

The triangular mesh of Fig. 10c can then be transformed
into a quadrilateral mesh by removing its monochromatic
edges as depicted in Fig. 10d. Mesh of Fig. 10d is not of
high quality. We had to use all Gmsh’s heavy optimization
weaponry to obtain the final mesh of Fig. 10e.

5.2 � Cross‑field guided labeling

The triangular mesh of Fig. 10a is not suited to be trans-
formed into a quadrilateral mesh; obtaining a good mesh at
the end heavily relies on advanced optimization. In Sect. 3.2,
we proposed an advancing-front scheme where each point
tries to add other points guided by the orthogonal direc-
tions provided by a cross-field. The cross-field guided point
insertion process produces an excellent labeling scheme:
new vertices added by a vertex v have the opposite label of
the one of v (since the edges formed between these vertices
will be the cross-field aligned ones that we want to have in
the final quad mesh). Figure 11a shows the initial labeling
after frontal point insertion. As few as 14 monochromatic
triangles are present in the triangular mesh, leading to a very
small number of Steiner points. More importantly, no Steiner
point has been inserted at the vicinity of the boundary, lead-
ing to several perfect layers of quads (see Fig. 11d).

By inserting the Steiner points, we have constructed the
underlying topological connectivity of an all-quad mesh
(Fig. 11b). Mesh vertices can be repositioned at the center
of the stencil of opposite labeled neighbors (essentially a
single iteration Laplacian smoothing, e.g., Fig. 11c). In the
case of non-planar surfaces, the repositioned vertices are
projected onto the original triangulation. We can then trivi-
ally extract an all-quad mesh, since each pair of triangles
whose common edge has two same labels defines a quad-
rilateral (Fig. 11d). At this point, the advancing labeling
scheme is converted to the true 2-coloring of the final bipar-
tite quadrilateral mesh. Another way to see this is that the
set of same-colored edges is perpendicular to the set of the
edges of the perfect matching of the dual. It is interesting
to note that forming the quads this way before inserting the
additional vertices would lead to a quad-dominant mesh with
non-quad polygonal regions that are even-sided due to the
bipartite condition.

Finally, it must be noted that our algorithm is straight-
forward, and linear in time compared to the computation of
an optimal perfect matching, which is quadratic in time and
very complex. For the sake of completeness, the algorithm
is presented on Algorithm 3.

Fig. 11   Bipartite all-quad meshing. a Topologically inconsistent triangles. b Insert vertices (Steiner points). c Reposition of vertices. d Bipartite
all-quad mesh

4742	 Engineering with Computers (2022) 38:4731–4747

1 3

5.3 � Mesh optimization

The algorithm described is always able by construction to
produce a topological quad mesh Tq . Moreover, Tq is also of
high geometric quality (measured by the scaled Jacobian Q
[46]) since it follows the cross-field directions.

In few cases, especially when the requested size field
is much coarser than the geometric characteristics of the
model, we may encounter minor defects where elements
with Q ≤ 0 may occur, such as doublet quads (two quads
connected only by one vertex) or flat quads on the boundary
(since boundary vertices cannot be repositioned). Both cases
can be locally handled, the former by merging the doublet
into one quad and the latter by inserting additional vertices
and thus ‘pushing’ the boundary irregular vertex inside the
domain.

The only smoothing procedure used in this work is the
Laplacian smoothing described in Sect. 5.2 for the repo-
sitioning of vertices. Further and more suited smoothing
(e.g., Winslow smoothing [47]) can be performed on the
final quadrilateral mesh.

The next step in our developments will be to complement
our approach with the more sophisticated optimization pro-
cedure proposed in [38] that takes as input the quad mesh Tq ,
the cross-field � as well as the size field h. The main features
of this optimization process are:

•	 All vertices of high valence are eliminated.
•	 All boundary vertices have their optimal valence in such

a way that we can create a boundary layer mesh without
effort.

•	 Isolated irregular vertices corresponding to the singulari-
ties of the cross-field are preserved.

•	 Advanced vertex relocation schemes are performed to
obtain a geometry regular quad mesh.

6 � Results

To demonstrate the capabilities of our methodology, we
have tested the whole pipeline on a variety of cases with
diverse characteristics (Fig. 12). One of our main interests
is to be able to produce meshes on any input, regardless of
its complexity (Fig. 13). Reviewing the relevant literature,
we observe that the majority of the works present results
on relatively simple models. We work on large model data-
bases (that are recently becoming the common standard for
validation purposes on bulk numbers of models), and we
aim to have a close to 100% success rate on them. The mod-
els are obtained from the following sources: the ABC [48],
MAMBO [49] and Thingi10k [50] datasets, and the supple-
mentary test data of LoopyCuts software [51].

We present statistics for all the models from MAMBO
and LoopyCuts, since all their models are directly suited
for meshing (Table 1). MAMBO contains three categories
of CAD models: basic, simple, and medium, of which we
use the latter two since they have more complex features of
interest. LoopyCuts models are in general simpler models
in terms of surface complexity (smooth surfaces, absence of
very small features) oriented mostly for computer graphics
research.

4743Engineering with Computers (2022) 38:4731–4747	

1 3

A desired property of our mesh generation process is to
keep user intervention at a minimum. Input parameters are a
threshold value � to suppress potential discrepancies during
local mesh modifications and the angle threshold to detect
hard edges. The angle threshold � may be disregarded, and
the algorithm can initiate from a random edge of the initial
mesh instead of the model curves. We keep in mind that this
may result in low-quality meshing on hard edges.

Cross-fields are precomputed and considered input to
the algorithm, or they can be taken as the unit axis direc-
tions for practical purposes. Size fields can be a uniform
input size or computed from the curvature and geometric
characteristics of the input mesh. Both cross and size fields

impact considerably the output mesh quality, and we can
observe that the directionality of the elements matches the
input cross-field directions. It must be noted that our point
generation module can have any kind of metric input. For
example, we can use an anisotropic metric or a prescribed
user-defined size field that is ‘incompatible’ with the com-
puted cross-field. In Fig. 14 (right), a size field of sinusoidal
form is prescribed and we can observe that our algorithm
can successfully handle it at the cost of lower element qual-
ity and an excess of irregular vertices to accommodate for
the size transitions.

Our pipeline can succesfully produce a quad mesh in all
the models that can be processed by GMSH for the initial

Fig. 12   All-quad meshes on
various models obtained from
the following sources: ABC
[48], MAMBO [49], Thingi10k
[50] and LoopyCuts [51]

4744	 Engineering with Computers (2022) 38:4731–4747

1 3

triangulation. One of the most challenging aspects of our
methodology is the removal of the initial mesh points by
collapsing and testing multiple ‘extreme’ cases on that is an
ongoing process. As desired, non-manifold features are well
handled and conformity is preserved (Fig. 14, left). The final
conversion to an all-quad mesh proves to be straightforward
and efficient, given that the input respects the fundamental
topological condition (i.e., even number of edges on each
curve). The quad meshes exhibit high quality Q, computed
as the scaled Jacobian (Table 1). Minimum quality over all
LoopyCuts models is 0.22 with the vast majority of the mod-
els having over 0.50. On the other hand, we observe similar
outputs on the MAMBO models except of a few cases where
very thin sliver regions result to almost flat quad elements
with Q ≃ 0 . These kind of features are common in ‘real-life’
models and element quality there could be improved with

further optimization. The output meshes shown here con-
sist of the ‘raw’ quadrilateral meshes, without heavy further
optimization (an example of further optimizing a quad mesh
is presented in Fig. 15).

One of our main interests is the computational efficiency
of the method. The majority of operations are local and the
algorithms of linear complexity. The most time-consuming
parts of our pipeline is the (inevitable) use of spatial search
structures (involved in filtering and also in projection of
points onto the triangulation during surface meshing and
all-quad conversion). The performance of the algorithm is
heavily dependent on the input mesh, specifically its num-
ber of triangles and colored surfaces. More triangles lead
to more spatial searches during point generation and filter-
ing as well as more local mesh modifications during sur-
face meshing. Spatial searches and projections are the most

Fig. 13   Left: Quadrilateral
mesh on a B-rep model of a
motorbike. Right: Quadrilat-
eral mesh from a triangulated
surface of scanned data

Fig. 14   Left: CAD model with
multiple volumes, leading to
non-manifold feature curves.
Right: A quadrilateral mesh
with a prescribed sinusoidal
non-uniform size field

Table 1   Average quality and
timings values for MAMBO and
LoopyCuts models

Nq is the average number of quadrilaterals of the output meshes. The quality metric Q is the scaled Jaco-
bian and tpoints , tsurf and tquad are the timings in seconds for the three pipeline steps, respectively: point gen-
eration, surface meshing and quad conversion

Dataset (#) Nq Q tpoints(s) tsurf(s) tquad(s) ttotal(s)

MAMBO (39) 23730 0.988 0.907 0.723 0.366 2.112
LoopyCuts (70) 12748 0.985 0.305 0.351 0.197 0.953

4745Engineering with Computers (2022) 38:4731–4747	

1 3

important bottlenecks on the performance of our pipeline
and we consider that we can speed up with more efficient
procedures. In Table 1, we present the average time for each
part of our pipeline, using a single-thread on a laptop with
2.6 GHz CPU.

7 � Conclusions

We have presented a method for the creation of quadrilateral
surface meshes on general complex geometries. One of the
important aspects of our pipeline is its modular nature. Each
step can be independently used, for example, a more efficient
point sampling method could be used, or a typical CAD
meshing algorithm to generate the mesh with these points.

The surface meshing algorithm proposed is used to pro-
duce right-angled triangles, but it can be repurposed as a
remeshing tool for triangulations, given appropriate input
(i.e., an ‘asterisk’ field [32, 39]). The proposed two-step
method for surface meshing aims at balancing the trade-off
between output quality and robustness. One of its strengths
is the ability to handle the model as a whole and thus cre-
ate cross-aligned elements globally. While producing high-
quality elements in this aspect, we always respect the topol-
ogy and succeed at meshing small-scale and non-manifold
features as shown in the results demonstrated (Sect. 6).

As stated, scaled cross-fields are beneficial for quad mesh
generation. We have mainly used here size fields obtained
from the scaling of cross-fields. In practice though, a user
would commonly prefer prescribing a size field that is a
better fit for the problem in hand, and unfortunately this is
currently an open problem. One of the advantages of our
approach is that our pipeline can produce meshes regardless
of the topological integrity of the input metric, for example
with a user-defined size field that is incompatible with the
computed cross-field (Fig. 14, left). Nevertheless, adapting a
direction field to an input size field would vastly improve the
results. Regarding highly anisotropic metrics (for example
for the generation of structured boundary layer meshes), it
is straightforward to extend the point generation part of our
pipeline for such a use. Nevertheless, we consider the trian-
gulation on such a metric a much more difficult task (where

the aim is having structured layers of anisotropic triangles
to be combined). We believe that the best strategy would be
to create structured layers of boundary quadrilaterals and
then subdivide them.

A novel method to obtain an all-quad mesh from any
quad-dominant mesh with minimal, if any, post-processing
clean-up is introduced. By using a bipartite labeling scheme,
we simplify the global treatment required for quad mesh-
ing to a set of localized operations that can be performed
on a quad-dominant mesh. We are thus enabled to produce
always a high-quality quad mesh, regardless of the com-
plexity of the model. Our meshes can be further optimized
with a strategy to remove the majority of irregular vertices,
presented on [38].

We are currently in the process of incorporating this quad
surface mesher as a component of a general high-quality
hex-dominant meshing pipeline, where it will be used as the
volume bounding surface. An interesting open problem to
this end is if hexahedral element generation should be con-
strained by a quadrilateral mesh, and if yes, what would be
its optimal characteristics. Besides that, we are investigating
ways to take advantage of the topological labels used here
for quadrilateral elements to the generation of hexahedra,
possibly with a labeling scheme that can codify more topo-
logical information.

Declarations 

Conflict of interest  This study was carried out in the framework of the
research project ‘Hextreme,’ funded by the European Research Coun-
cil (ERC-2015-AdG-694020) and hosted at the Université catholique
de Louvain. The authors have no competing interests to declare that are
relevant to the content of this article.

References

	 1.	 Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh
generator with built-in pre- and post-processing facilities. Int J
Numer Methods Eng 79(11):1309–1331. https://​doi.​org/​10.​1002/​
nme.​2579

	 2.	 Borouchaki H, Laug P, George P-L (2000) Parametric surface
meshing using a combined advancing-front generalized Delaunay

Fig. 15   Left: unstructured
quad mesh produced with our
pipeline, where we can observe
the excess of irregular vertices.
Right: quasi-structured quad
mesh obtained with the topo-
logical optimization of Ref. [38]

https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579

4746	 Engineering with Computers (2022) 38:4731–4747

1 3

approach. Int J Numer Methods Eng 49(1–2):233–259. https://​doi.​
org/​10.​1002/​1097-​0207(20000​910/​20)​49:1/​2h233::​AID-​NME93​
1i3.0.​CO;2-G

	 3.	 Lo S (2015) Finite element mesh generation
	 4.	 Lo SH (1988) Finite element mesh generation over curved sur-

faces. Comput Struct 29(5):731–742. https://​doi.​org/​10.​1016/​
0045-​7949(88)​90341-0

	 5.	 Sheng X, Hirsch BE (1992) Triangulation of trimmed surfaces in
parametric space. Comput Aided Des 24(8):437–444. https://​doi.​
org/​10.​1016/​0010-​4485(92)​90011-X

	 6.	 Shimada K, Gossard DC (1998) Automatic triangular mesh gen-
eration of trimmed parametric surfaces for finite element analysis.
Comput Aided Geom Des 15(3):199–222. https://​doi.​org/​10.​1016/​
S0167-​8396(97)​00037-X

	 7.	 Floater MS, Hormann K (2005) Surface parameterization: a tuto-
rial and survey. In: Dodgson NA, Floater MS, Sabin MA (eds)
Advances in multiresolution for geometric modelling. Springer-
Verlag, Berlin/Heidelberg, pp 157–186. https://​doi.​org/​10.​
1007/3-​540-​26808-1_9

	 8.	 Remacle J-F, Geuzaine C, Compère G, Marchandise E (2010)
High-quality surface remeshing using harmonic maps. Int J
Numer Methods Eng 83(4):403–425. arXiv:​10.​1002/​nme.​2824.
https://​onlin​elibr​ary.​wiley.​com/​doi/​pdf/​10.​1002/​nme.​2824. https://​
doi.​org/​10.​1002/​nme.​2824

	 9.	 Beaufort P-A, Geuzaine C, Remacle J-F (2020) Automatic surface
mesh generation for discrete models—a complete and automatic
pipeline based on reparametrization. J Comput Phys 417:109575
arXiv:​2001.​02542. https://​doi.​org/​10.​1016/j.​jcp.​2020.​109575

	10.	 Shephard MS, Georges MK (1991) Automatic three-dimensional
mesh generation by the finite octree technique. Int J Numer Meth-
ods Eng 32(4):709–749. https://​doi.​org/​10.​1002/​nme.​16203​20406

	11.	 Frey PJ, Marechal L (1998) Fast adaptive quadtree mesh genera-
tion. In: Proceedings of the seventh international meshing round-
table, pp 211–224

	12.	 Löhner R, Parikh P (1988) Generation of three-dimensional
unstructured grids by the advancing-front method. Int J Numer
Methods Fluids 8(10):1135–1149. https://​doi.​org/​10.​1002/​fld.​
16500​81003

	13.	 Lau TS, Lo SH (1996) Finite element mesh generation over ana-
lytical curved surfaces. Comput Struct 59(2):301–309. https://​doi.​
org/​10.​1016/​0045-​7949(95)​00261-8

	14.	 Baker TJ (1989) Automatic mesh generation for complex three-
dimensional regions using a constrained Delaunay triangulation.
Eng Comput 5(3–4):161–175. https://​doi.​org/​10.​1007/​BF022​
74210

	15.	 Borouchaki H, George PL, Hecht F, Laug P, Saltel E (1997)
Delaunay mesh generation governed by metric specifications Part
I. Algorithms. Finite Elem Anal Des 25(1–2):61–83. https://​doi.​
org/​10.​1016/​S0168-​874X(96)​00057-1

	16.	 Wang D, Hassan O, Morgan K, Weatherill N (2006) EQSM: an
efficient high quality surface grid generation method based on
remeshing. Comput Methods Appl Mech Eng 195(41–43):5621–
5633. https://​doi.​org/​10.​1016/j.​cma.​2005.​10.​028

	17.	 Béchet E, Cuilliere J-C, Trochu F (2002) Generation of a finite
element MESH from stereolithography (STL) files. Comput Aided
Des 34(1):1–17. https://​doi.​org/​10.​1016/​S0010-​4485(00)​00146-9

	18.	 Baehmann PL, Wittchen SL, Shephard M, Grice KR, Yerry M
(1987) Robust, geometrically based, automatic two-dimensional
mesh generation. Int J Numer Methods Eng 24:1043–1078

	19.	 Schneiders R (1996) A grid-based algorithm for the generation
of hexahedral element meshes. Eng Comput 12(3–4):168–177.
https://​doi.​org/​10.​1007/​BF011​98732

	20.	 Frey P, Marechal L (2000) Fast adaptive quadtree mesh genera-
tion. In: Proceedings of the 7th international meshing roundtable

	21.	 Blacker TD, Stephenson MB (1991) Paving: a new approach to
automated quadrilateral mesh generation. Int J Numer Methods
Eng 32(4):811–847. https://​doi.​org/​10.​1002/​nme.​16203​20410

	22.	 Mitchell SA, Mohammed MA, Mahmoud AH, Ebeida MS (2014)
Delaunay quadrangulation by two-coloring vertices. Proc Eng
82:364–376. https://​doi.​org/​10.​1016/j.​proeng.​2014.​10.​397

	23.	 Lee CK, Lo SH (1994) A new scheme for the generation of a
graded quadrilateral mesh. Comput Struct 52(5):847–857. https://​
doi.​org/​10.​1016/​0045-​7949(94)​90070-1

	24.	 Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral
mesh generation. Int J Numer Methods Eng 41(5):915–934.
https://​doi.​org/​10.​1002/​(SICI)​1097-​0207(19980​315)​41:​5h915::​
AID-​NME31​8i3.0.​CO;2-Y

	25.	 Owen S, Staten M, Canann S, Saigal S (1999) Q-Morph: an
indirect approach to advancing front quad meshing. Int J Numer
Methods Eng 44(9):1317–1340. https://​doi.​org/​10.​1002/​(SICI)​
1097-​0207(19990​330)​44:​9h131​7::​AID-​NME53​2i3.0.​CO;2-N

	26.	 Remacle J-F, Lambrechts J, Seny B, Marchandise E, Johnen A,
Geuzainet C (2012) Blossom-Quad: a non-uniform quadrilateral
mesh generator using a minimum-cost perfect-matching algo-
rithm. Int J Numer Methods Eng 89(9):1102–1119. https://​doi.​
org/​10.​1002/​nme.​3279

	27.	 Remacle J-F, Henrotte F, Carrier-Baudouin T, Béchet E, March-
andise E, Geuzaine C, Mouton T (2013) A frontal Delaunay quad
mesh generator using the L ∞ norm. Int J Numer Methods Eng
94(5):494–512. https://​doi.​org/​10.​1002/​nme.​4458

	28.	 Baudouin TC, Remacle J-F, Marchandise É, Henrotte F, Geuzaine
C (2014) A frontal approach to hex-dominant mesh generation.
Adv Model Simul Eng Sci 1(1):8–8. https://​doi.​org/​10.​1186/​
2213-​7467-1-8

	29.	 Bommes D, Lévy B, Pietroni N, Puppo E, Silva C, Tarini M,
Zorin D (2013) Quad-mesh generation and processing: a survey:
quad-mesh generation and processing. Comput Graphics Forum
32(6):51–76. https://​doi.​org/​10.​1111/​cgf.​12014

	30.	 Ray N, Li WC, Lévy B, Sheffer A, Alliez P (2006) Periodic global
parameterization. ACM Trans Graph 25(4):1460–1485. https://​
doi.​org/​10.​1145/​11832​87.​11832​97

	31.	 Palacios J, Zhang E (2007) Rotational symmetry field design on
surfaces. ACM Trans Graph 26(3):55. https://​doi.​org/​10.​1145/​
12763​77.​12764​46

	32.	 Beaufort P-A, Lambrechts J, Henrotte F, Geuzaine C, Remacle
J-F (2017) Computing cross fields A PDE approach based on the
Ginzburg-Landau theory. In: 26th International meshing round-
table, vol. 203, IMR26, 18-21 September 2017, Barcelona, Spain
pp 219–231. https://​doi.​org/​10.​1016/j.​proeng.​2017.​09.​799

	33.	 Kettner L (1998) Designing a data structure for polyhedral sur-
faces. In: Proceedings of the fourteenth annual symposium on
computational geometry. SCG ’98, pp 146–154. ACM, New York.
https://​doi.​org/​10.​1145/​276884.​276901

	34.	 Shamir A (2008) A survey on mesh segmentation techniques.
Comput Graph Forum 27(6):1539–1556. https://​doi.​org/​10.​1111/j.​
1467-​8659.​2007.​01103.x

	35.	 Vieira M, Shimada K (2005) Surface mesh segmentation and
smooth surface extraction through region growing. Comput Aided
Geometr Des 22(8):771–792. https://​doi.​org/​10.​1016/j.​cagd.​2005.​
03.​006

	36.	 Sunil VB, Pande SS (2008) Automatic recognition of fea-
tures from freeform surface CAD models. Comput Aided Des
40(4):502–517. https://​doi.​org/​10.​1016/j.​cad.​2008.​01.​006

	37.	 Thakur A, Banerjee AG, Gupta SK (2009) A survey of CAD
model simplification techniques for physics-based simulation
applications. Comput Aided Des 41(2):65–80. https://​doi.​org/​10.​
1016/j.​cad.​2008.​11.​009

	38.	 Reberol M, Georgiadis C, Remacle J-F (2021) Quasi-structured
quadrilateral meshing in Gmsh—a robust pipeline for complex
CAD models. arXiv:​2103.​04652 [cs]. arXiv:​2103.​04652 [cs]

https://doi.org/10.1002/1097-0207(20000910/20)49:1/2h233::AID-NME931i3.0.CO;2-G
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2h233::AID-NME931i3.0.CO;2-G
https://doi.org/10.1002/1097-0207(20000910/20)49:1/2h233::AID-NME931i3.0.CO;2-G
https://doi.org/10.1016/0045-7949(88)90341-0
https://doi.org/10.1016/0045-7949(88)90341-0
https://doi.org/10.1016/0010-4485(92)90011-X
https://doi.org/10.1016/0010-4485(92)90011-X
https://doi.org/10.1016/S0167-8396(97)00037-X
https://doi.org/10.1016/S0167-8396(97)00037-X
https://doi.org/10.1007/3-540-26808-1_9
https://doi.org/10.1007/3-540-26808-1_9
http://arxiv.org/abs/10.1002/nme.2824
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2824
https://doi.org/10.1002/nme.2824
https://doi.org/10.1002/nme.2824
http://arxiv.org/abs/2001.02542
https://doi.org/10.1016/j.jcp.2020.109575
https://doi.org/10.1002/nme.1620320406
https://doi.org/10.1002/fld.1650081003
https://doi.org/10.1002/fld.1650081003
https://doi.org/10.1016/0045-7949(95)00261-8
https://doi.org/10.1016/0045-7949(95)00261-8
https://doi.org/10.1007/BF02274210
https://doi.org/10.1007/BF02274210
https://doi.org/10.1016/S0168-874X(96)00057-1
https://doi.org/10.1016/S0168-874X(96)00057-1
https://doi.org/10.1016/j.cma.2005.10.028
https://doi.org/10.1016/S0010-4485(00)00146-9
https://doi.org/10.1007/BF01198732
https://doi.org/10.1002/nme.1620320410
https://doi.org/10.1016/j.proeng.2014.10.397
https://doi.org/10.1016/0045-7949(94)90070-1
https://doi.org/10.1016/0045-7949(94)90070-1
https://doi.org/10.1002/(SICI)1097-0207(19980315)41:5h915::AID-NME318i3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0207(19980315)41:5h915::AID-NME318i3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9h1317::AID-NME532i3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9h1317::AID-NME532i3.0.CO;2-N
https://doi.org/10.1002/nme.3279
https://doi.org/10.1002/nme.3279
https://doi.org/10.1002/nme.4458
https://doi.org/10.1186/2213-7467-1-8
https://doi.org/10.1186/2213-7467-1-8
https://doi.org/10.1111/cgf.12014
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1276377.1276446
https://doi.org/10.1145/1276377.1276446
https://doi.org/10.1016/j.proeng.2017.09.799
https://doi.org/10.1145/276884.276901
https://doi.org/10.1111/j.1467-8659.2007.01103.x
https://doi.org/10.1111/j.1467-8659.2007.01103.x
https://doi.org/10.1016/j.cagd.2005.03.006
https://doi.org/10.1016/j.cagd.2005.03.006
https://doi.org/10.1016/j.cad.2008.01.006
https://doi.org/10.1016/j.cad.2008.11.009
https://doi.org/10.1016/j.cad.2008.11.009
http://arxiv.org/abs/2103.04652
http://arxiv.org/abs/2103.04652

4747Engineering with Computers (2022) 38:4731–4747	

1 3

	39.	 Georgiadis C, Beaufort P-A, Lambrechts J, Remacle J-F (2017)
High quality mesh generation using cross and asterisk fields:
application on coastal domains. In: 26th International meshing
roundtable, research notes, Barcelona

	40.	 Frey PJ, George PL (2008) Mesh generation: application to finite
elements, 2nd edn. Wiley, London

	41.	 Devillers O, Pion S, Teillaud M (2001) Walking in a triangulation.
In: Proceedings of the seventeenth annual symposium on compu-
tational geometry. SCG ’01, pp 106–114. Association for Comput-
ing Machinery, New York. https://​doi.​org/​10.​1145/​378583.​378643

	42.	 Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The
R*-tree: an efficient and robust access method for points and rec-
tangles. ACM SIGMOD Record 19(2):322–331. https://​doi.​org/​
10.​1145/​93605.​98741

	43.	 Ray N, Sokolov D, Reberol M, Ledoux F, Lévy B (2018) Hex-
dominant meshing: mind the gap! Comput Aided Des 102:94–
103. https://​doi.​org/​10.​1016/j.​cad.​2018.​04.​012

	44.	 Catmull E, Clark J (1978) Recursively generated B-spline surfaces
on arbitrary topological meshes. Comput Aided Des 10(6):350–
355. https://​doi.​org/​10.​1016/​0010-​4485(78)​90110-0

	45.	 Bondy JA, Murty USR (1976) Graph theory with applications, p
264. Macmillan London, London

	46.	 Stimpson CJ, St NM, Ernst CD, St NM, Pébay PP, Thompson D
(2007) The verdict geometric quality library. Technical Report
SAND2007-1751, SANDIA

	47.	 Knupp PM (1999) Winslow smoothing on two-dimensional
unstructured meshes. Eng Comput 15(3):263–268. https://​doi.​
org/​10.​1007/​s0036​60050​021

	48.	 Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev
E, Alexa M, Zorin D, Panozzo D (2019) ABC: a big CAD model
dataset for geometric deep learning. In: The IEEE conference on
computer vision and pattern recognition (CVPR)

	49.	 Ledoux F MAMBO Dataset. https://​gitlab.​com/​franck.​ledoux/​
mambo

	50.	 Zhou Q, Jacobson A (2016) Thingi10K: a dataset of 10,000
3D-Printing models. arXiv preprint arXiv:​1605.​04797. arXiv:​
1605.​04797

	51.	 Livesu M, Pietroni N, Puppo E, Sheffer A, Cignoni P (2020)
LoopyCuts: practical feature-preserving block decomposition for
strongly hex-dominant meshing. ACM Transactions on Graphics.
https://​doi.​org/​10.​1145/​33865​69.​33924​72

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1145/378583.378643
https://doi.org/10.1145/93605.98741
https://doi.org/10.1145/93605.98741
https://doi.org/10.1016/j.cad.2018.04.012
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1007/s003660050021
https://doi.org/10.1007/s003660050021
https://gitlab.com/franck.ledoux/mambo
https://gitlab.com/franck.ledoux/mambo
http://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797
https://doi.org/10.1145/3386569.3392472

	Indirect all-quadrilateral meshing based on bipartite topological labeling
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Overview
	3 Point generation
	3.1 Curve point generation
	3.2 Surface point generation
	3.2.1 Intersection with triangulation
	3.2.2 Filtering procedure

	4 Surface meshing
	4.1 Local mesh modifications
	4.2 Outline

	5 Bipartite quadrilateral labeling
	5.1 Random labeling
	5.2 Cross-field guided labeling
	5.3 Mesh optimization

	6 Results
	7 Conclusions
	References

