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Abstract 
The engineering design process often entails optimizing the underlying geometry while simultaneously selecting a suitable 
material. For a certain class of simple problems, the two are separable where, for example, one can first select an optimal 
material, and then optimize the geometry. However, in general, the two are not separable. Furthermore, the discrete nature of 
material selection is not compatible with gradient-based geometry optimization, making simultaneous optimization challeng-
ing. In this paper, we propose the use of variational autoencoders (VAE) for simultaneous optimization. First, a data-driven 
VAE is used to project the discrete material database onto a continuous and differentiable latent space. This is then coupled 
with a fully-connected neural network, embedded with a finite-element solver, to simultaneously optimize the material and 
geometry. The neural-network’s built-in gradient optimizer and back-propagation are exploited during optimization. The 
proposed framework is demonstrated using trusses, where an optimal material needs to be chosen from a database, while 
simultaneously optimizing the cross-sectional areas of the truss members. Several numerical examples illustrate the efficacy 
of the proposed framework. The Python code used in these experiments is available at github.com/UW-ERSL/MaTruss.
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1  Introduction

In engineering design, we are often faced with the task of 
optimizing the underlying geometry and selecting an optimal 
material [1]. As a simple example, consider the truss design 
problem illustrated in Fig. 1 where one must optimize the 
cross-sectional areas, while selecting, for simplicity, a single 
material for all the truss members. Formally, one can pose 
this as [2, 3]: 

 where � is the objective (for example, compliance), g 
denotes a set of constraints (such as yield stress and buck-
ling), f  is the applied force, K is the truss stiffness matrix, 
and u is the nodal displacements. The design variables are the 
cross-sectional areas of the members A = {A1,A2,… ,AN} , 

(1a)minimize
A={A1,A2,…,AN},m∈M

�(A, �m)

(1b)subject to g(A, �m) ≤ 0

(1c)K(A,Em)u = f

(1d)Amin ≤ A ≤ Amax,

with limits Amin and Amax , and the material choice m ∈ M . 
We denote the collection of relevant material properties by 
�m ; these may include, for example, the Young’s modulus 
( Em ), cost per unit mass ( Cm ), mass density ( �m ) and yield 
strength ( Ym).

1.1 � Literature review

Observe that the two sets of design variables are tightly cou-
pled. In other words, one cannot, for example, pick a mate-
rial, and then optimize the cross-sectional areas (or, vice 
versa). To quote [4] “... either approach does not guarantee 
the optimal combination of geometry and material”. Fur-
thermore, while the cross-sectional areas are continuously 
varying, the material choice is discrete, making the problem 
difficult to solve using classic gradient-based optimization. 
Note that treating material properties as continuous, inde-
pendent design variables is not a viable option since the 
variables would simply converge to their optimal values. For 
example, Young’s modulus, tensile strength can be expected 
to converge to the maximum (upper limit), while the vari-
ables of cost and density would converge to the lower bound. 
However, such a material would never exist.
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If the geometry is fixed, Ashby’s method [5] that relies 
on a performance metric, is the most popular strategy for 
material selection. Furthermore, for simple design prob-
lems where the loads, geometry and material functions are 
separable [6], a material index can be used to select the 
best material. This is simple, efficient and reliable. However, 
when there are multiple objectives or constraints, a weighted 
approach is recommended [7]. In practice, computing these 
weights is not trivial, and the material choice may be far 
from optimal. Several non-gradient methods have been 
proposed for material selection [8–10], but these cannot be 
integrated with gradient-based optimization.

An alternate concept of a design index was proposed in 
Ananthasuresh and Ashby [11]. It was shown that the design 
index can be used to construct a smooth material function, 
enabling simultaneous optimization of the geometry and 
selection of the material via gradient based optimization [4]. 
However, design indices were limited to simple determinate 
trusses. In [12], for the special case of a single stress con-
straint and a single load, the authors concluded that utmost 
two materials are sufficient and that the truss design prob-
lem can be cast as a linear programming problem. Unfortu-
nately, this method does not apply when there are multiple 
constraints. Recently, the authors of [13] considered two 
materials (glue-laminated timber and steel) to design truss 
structures incorporating stress constraints as a mixed-integer 
quadratic problem (MIQPs). However, the authors note that 
“[MIQPs]... require algorithmic tuning and considerable 
computational power”. Another hybrid approach was pro-
posed in [14] where a combination of the gradient-based 
methods such as sequential quadratic programming (SQP) 
and an evolution method such as genetic algorithm (GA) are 
used to solve MDNLPs. But these methods can be prohibi-
tively expensive.

Mathematically, the problem of (discrete) material 
selection and (continuous) area optimization can be cast as 
mixed-discrete nonlinear programming problems (MDN-
LPs). Such problems are fairly common in engineering, and 

several solution strategies methods have been proposed; see 
[15–17]. However, regardless of the strategy, these methods 
entail repeated solution of a sequence of nonlinear program-
ming problems with careful relaxations and approximations, 
making them sensitive to assumptions and underlying mod-
els [18]. Furthermore, the popular branch and bound algo-
rithm used in solving MDNLPs [16] does not apply here 
since the optimization problem depends indirectly on the 
material index through the database.

1.2 � Paper overview

The primary contribution of this work is the use of vari-
ational autoencoders (VAEs) to solve such problems. VAEs 
are a special form of neural networks that can convert dis-
crete data, such as a material database, into a continuous 
and differentiable representation, making the design problem 
amenable to gradient-based optimization. In the proposed 
method (see Fig. 2), a data-driven VAE is trained using a 
material database, and the trained decoder is then integrated 
with neural networks to simultaneously optimize the geom-
etry and material.

The proposed VAE framework is discussed in Sect. 2. In 
Sect. 3, the VAE is integrated with two additional and simple 
neural networks to solve the truss design problem. Specifi-
cally, we leverage the differentiable material representation 
to simultaneously optimize the geometry and material. Sec-
tion 4 demonstrates the proposed framework through several 
numerical examples. In Sect. 5, limitations and future work 
are discussed.

2 � A differentiable material representation

In this section, we discuss how variational autoencoders 
(VAEs) can be used to obtain a continuous and differen-
tiable representation of a discrete material database. This 
will serve as a foundation for the next section on design 
optimization.

2.1 � VAE architecture and training

VAEs are popular generative models that have wide appli-
cability in data compression, semi-supervised learning and 
data interpolation; please see [19]. In essence, a VAE cap-
tures the data in a form that can be used to synthesize new 
samples similar to the input data. For example, VAEs have 
been used to generate new microstructures from image data-
bases [20], in designing phononic crystals [21], and heat-
conduction materials [22].

However, in this paper, we do not use VAEs to synthe-
size new data, instead we simply use the VAE’s ability to 
map uncorrelated data onto an abstract latent space. In 

Fig. 1   A truss design problem involving optimizing the cross-sec-
tional areas of truss members, and selecting an optimal material



4718	 Engineering with Computers (2022) 38:4715–4730

1 3

that sense, VAEs are similar to principal component analy-
sis (PCA) in its ability to extract useful information from 
the data. However, the nonlinear nature of VAEs allows for 
far greater generalization than PCA [23]. In particular, the 
proposed VAE architecture for capturing material proper-
ties is illustrated in Fig. 3, and consists of the following 
components: 

1.	 A four-dimensional input module corresponding to the 
four properties in Table 1, namely the Young’s modulus 
(E), cost (C), mass density ( � ) and yield strength (Y). 
The input set is denoted by �.

2.	 An encoder F consisting of a fully-connected network 
of 250 neurons, where each neuron is associated with an 
ReLU activation function and weights [24].

3.	 A two-dimensional latent space, denoted by z0, z1 that 
lies at the heart of the VAE.

4.	 A decoder D, which is similar to the encoder, consists 
of a fully-connected network of 250 neurons.

5.	 A four-dimensional output corresponding to the same 
four properties; the output set is denoted by �̂.

In this work, the VAE was trained on a material database 
consisting of 92 materials [25], where Table 1 represents a 
small sample.

As mentioned earlier, the VAE’s primary task is to match 
the output to the input as closely as possible. This is done 
through an optimization process (also referred to a training), 
using the weights associated with the encoder and decoder 
as optimization parameters. In other words, we minimize 
‖� − �̂‖ . Additionally, a KL divergence loss is imposed to 
ensure that latent space resembles a standard Gaussian dis-
tribution z ∼ N(� = 0, � = 1) [19]. Thus, the net loss can 
then expressed as:

Fig. 2   An overview of the 
proposed method

Fig. 3   Architecture of the variational autoencoder

Table 1   A curated subset of materials and their properties used in the 
training

Material Class E [Pa] Cost 
C [$∕kg]

� [kg∕m3] Y [Pa]

A286 iron Steel 2.01E+11 5.18E+00 7.92E+03 6.20E+08
AISI 304 Steel 1.90E+11 2.40E+00 8.00E+03 5.17E+08
Gray cast 

iron
Steel 6.62E+10 6.48E−01 7.20E+03 1.52E+08

3003-H16 Al alloy 6.90E+10 2.18E+00 2.73E+03 1.80E+08
5052-O Al alloy 7.00E+10 2.23E+00 2.68E+03 1.95E+08
7050-

T7651
Al alloy 7.20E+10 2.33E+00 2.83E+03 5.50E+08

Acrylic Plastic 3.00E+09 2.80E+00 1.20E+03 7.30E+07
ABS Plastic 2.00E+09 2.91E+00 1.02E+03 3.00E+07
PE HD Plastic 1.07E+09 2.21E+00 9.52E+02 2.21E+07
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where � is set to a recommended value of 5 × 10−5 . Further 
the input is scaled between (0, 1) for all attributes, and the 
output is re-scaled back after training. This ensures that all 
material properties are weighted equally. In this work, we 
used PyTorch [26] to model the VAE, and the gradient-based 
Adam optimizer [27] to minimize Eq. (2) with a learning 
rate of 0.002 and 50,000 epochs. The convergence is illus-
trated in Fig. 4; the training took approximately 51 s on a 
Macbook M1 pro.

(2)L = ‖� − �̂‖ + 𝛽 KL(z��N), Thus, the VAE captures each material uniquely and 
unambiguously using a non-dimensional latent space, i.e., 
z0, z1 in our case; this is visualized in Fig. 5. For example, 
annealed AISI 4340 is represented by the pair (−1.2, 1.0) 
while Acrylic is represented by (0.6,−0.4) . The VAE also 
clusters similar materials together in the latent space, as can 
be observed in Fig. 5. In an abstract sense, the latent space 
in Fig. 5 is similar to the popular Ashby charts [5].

2.2 � Representational accuracy

One can expect the values reconstructed using the decoder to 
deviate from the true material data; Table 2 summarizes the 
errors. The following observations are worth noting: 

1.	 Despite the lack of correlation between material proper-
ties, and two orders of magnitude difference in values, 
the VAE captures the entire database of 92 materials 
reasonably well, using a simple two-dimensional latent 
space.

2.	 The error can be further reduced by either increasing 
the dimension of the latent space, or limiting the type 
of materials considered (see Sect. 4).

3.	 Finally, as will be discussed in the next section, the 
original material data will be used, as part of a post-
processing step, at the end of optimization.

Fig. 4   Convergence plot during training of the VAE

Fig. 5   Encoding of the materials in the latent space; only a few materials are annotated for clarity
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2.3 � Differentiability of latent space

A crucial aspect of the latent space is its differentiability. In 
particular, we note that using the decoder, each of the output 
material properties is represented via analytic activation 
functions; for example, Ê = D∗

E
(z0, z1) where D∗

E
(⋅) is a com-

bination of activation functions and weights. It means that 
one can back propagate through the decoder to compute 
analytical sensitivities; for example, the sensitivity ( 𝜕Ê

𝜕z0
 ). 

This plays an important role in gradient-driven design opti-
mization. The proposed method thus falls under the category 
of differentiable programming, which has recently gained 
popularity motivated by deep learning methods in other 
fields, such as computer graphics [28] and physical simula-
tion [29].

2.4 � Material similarity

While the accuracy and differentiability of the VAE lends 
itself to design optimization, the latent space also provides 
key insights into material characteristics. For instance, one 
can compute the Euclidean distance between materials in 
the latent space. These distances are reported in Fig. 6. As 
one can expect, steels are closer to aluminum alloys, than 
they are to plastics.

Furthermore, one can overlay the latent space in Fig. 5 
with specific material properties to gain further insight. This 
is illustrated in Fig. 7 where the contour plots of the Young’s 
moduli are illustrated in the latent space. This allows design-
ers to visualize similarities between materials, specific to a 
material property.

3 � Design optimization

Having constructed a differentiable representation of mate-
rial properties, one can now pose the optimization problem 
discussed in Sect. 1, now using {A, z0, z1} as continuous 
design variables Eq. (3). Without a loss in generalization, 
we consider a specific instance of the truss optimization 
problem, where the objective is the compliance J Eq. (3a) 
with three sets of constraints: cost constraint gc , buckling 
constraint gb , and tensile yield constraint gy as referred in 
Eqs. (3c)–(3e). We assume here that members will fail due 
to buckling, before failing due to compressive yield [4]. The 
resulting optimization problem for circular truss members 
can be posed as [30]: 

(3a)minimize
A={A1,A2,…AN},z0,z1

J = fTu(A, Ê)

(3b)subject to [K(A, Ê)]u = f

(3c)gc∶=

(
𝜌̂Ĉ

C∗

N∑

k=1

AkLk

)
− 1 ≤ 0

(3d)gb∶=max
k

(
−4PkL

2
k

𝜋2ÊA2
k

)
−

1

Fs

≤ 0

(3e)gy∶=max
k

(
Pk

ŶAk

)
−

1

Fs

≤ 0

(3f)Amin ≤ A ≤ Amax,

Table 2   Percentage error between actual and decoded data

Material ΔE% ΔC% Δ�% ΔY%

A286 iron 0.8 0.7 0.8 0.0
ABS 1.4 0.0 0.7 1.7
AISI 304 4.3 3.1 0.4 1.0
Gray cast Fe 1.3 1.8 0.2 0.2
3003-H16 3.2 6.8 1.3 1.1
5052-O 1.4 2.4 0.6 1.2
7050-T7651 0.9 1.9 1.0 1.9
Acrylic 2.3 0.5 0.2 0.5
PE HD 0.7 0.9 1.1 1.8
Max error 5.0 6.8 3.3 7.1

Fig. 6   Symmetric distance in the latent space between materials
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 where Pk is the internal force in member k, Lk is its length, 
C∗ is the allowable cost, Fs is the safety factor, and the mate-
rial properties ( ̂E, 𝜌̂, Ŷ , Ĉ ) are decoded from the latent space 
coordinates ( z0, z1 ). Further, to facilitate gradient-driven 
optimization, the max operator is relaxed here using a 
p-norm, i.e., max

i
(xi) ≈ ‖x‖p , with p = 6.

To solve the above optimization, we use two additional 
neural networks (NNs) (see Fig. 8a): a truss network NNT , 
parameterized by weights wT , and a material network NNM , 
parameterized by weights wM . The truss network NNT is 

a simple feed-forward NN with two hidden layers with a 
width of 20 neurons, each containing an ReLU activation 
function. The input to the NNT is a unique identifier for 
each truss member, in this case we use the vector of coor-
dinates of the truss member centers. The output layer of 
NNT consists of N neurons where N is the number of truss 
members, activated by a Sigmoid function, generates a vec-
tor OT of size N whose values are in [0, 1]. The output is 
then scaled as A ← Amin + OT(Amax − Amin) to satisfy the 
area bounds Eq. (3f). The material network NNM (Fig. 8b) 
is similar to NNT in construction, for simplicity. Since we 

Fig. 7   Contours of the Young’s moduli in the latent space

Fig. 8   The truss and material 
neural networks
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are selecting a single material for all the truss members, 
we do not require a vector of inputs corresponding to each 
member to the NNM and instead pass a scalar identifier 1 as 
its input. The output layer consists of two output neurons 
activated by Sigmoid functions. The outputs OM are scaled 
as z ← −3 + 6OM , resulting in zi ∈ [−3, 3] corresponding to 
six Gaussian deviations. These outputs now interface with 
the trained decoder D∗ from Fig. 3. Thus, by varying the 
weights wM of the material network one can create points 
in the latent space, that then feeds to the trained decoder 
resulting in values of material constants.

3.1 � Loss function

With the introduction of the two NNs, the weights wT now 
control the areas A , while the weights wM control the mate-
rial constants �̂ . In other words, the weights wT and wM now 
form the design variables. Further, since NNs are designed 
to minimize an unconstrained loss function, we convert the 
constrained minimization problem in Eq. (3) into an uncon-
strained minimization by employing a log-barrier scheme 
as proposed in [31]:

where

with the parameter t updated during each iteration (as 
described in the next section). Thus, the optimization prob-
lem reduces to a simple form: 

(4)L(wT ,wM) = J + �(gc) + �(gb) + �(gy),

(5)�t(g) =

{
−

1

t
log(−g), g ≤

−1

t2

tg −
1

t
log(

1

t2
) +

1

t
, otherwise

(6a)minimize
wT ,wM

L(wT ,wM)

 A schematic of the proposed framework is presented in 
Fig. 9.

3.2 � Structural analysis

We rely on classical structural analysis to solve the state 
equation Eq. (6b) [32] and evaluate the performance of the 
truss structure during each iteration. The solver computes the 
stiffness matrix for each member based on the corresponding 
area, length and material. Upon assembling the global stiff-
ness matrix, the nodal displacement vector u is computed 
using the standard linear solver torch.linalg.solve 
in PyTorch [26]. Since this is part of the PyTorch library, 
this allows us to exploit backward propagation for automatic 
differentiation [33], resulting in an end-to-end differentiable 
solver with automated sensitivity analysis as described next.

3.3 � Sensitivity analysis

In the proposed framework, the loss function in Eq. (4) is 
minimized using gradient-based Adagrad optimizer [34]. 
Further, the sensitivities are computed automatically using 
back propagation. A schematic representation of the back-
ward computation graph is shown in Fig. 10. For instance, 
the sensitivity of the loss function with respect to the weights 
wT can be expressed as:

This is illustrated in Fig. 10 where each term corresponds to 
an edge in the graph. Similarly, the sensitivity with respect 
to wM is given by:

(6b)subject to [K(A(wT ), Ê(wM))]u = f .

(7)
�L

�wT

=

[
�L

�J
⏟⏟⏟

I

�J

�u
⏟⏟⏟

II

�u

�A
⏟⏟⏟

III

+⋯

]
�A

�wT
⏟⏟⏟

IV

.

Fig. 9   Forward computation



4723Engineering with Computers (2022) 38:4715–4730	

1 3

These are once again illustrated in Fig. 10. Note that the 
backward computation is carried out automatically in the 
proposed framework.

3.4 � Post processing

Once the optimization process is complete, we obtain an 
optimal set of latent coordinates z∗ . However, there might 
not exist a material in the database corresponding precisely 
to z∗ . We, therefore, define a confidence metric �m for each 
material m using the distance from z∗ to the material m in 
the latent space:

The metric serves to rank the materials based on their dis-
tance from z∗ . After finding the closest material, we repeat 
the geometry optimization to compute the optimal areas A∗ . 
This is analogous to the rounding method in discrete opti-
mization [16]: “After rounding, it is usually best to repeat 
the optimization once more, allowing only the continuous 
design variables to vary. This process may not lead to the 
exact optimum, and sometimes may not even lead to a fea-
sible solution, but for many problems this is an effective 
approach.” This is explored further through numerical 
experiments in Sect. 4.

3.5 � Algorithm

The proposed algorithms are summarized in this section.

(8)
𝜕L

𝜕wM

=

[
𝜕L

𝜕J
���

I

𝜕J

𝜕u
���

II

𝜕u

𝜕𝜁
���

V

+⋯

]
𝜕𝜁

𝜕z
���

VI

𝜕z

𝜕wM
���

VII

.

(9)�(zm, z
∗) = 1 −

‖z∗ − zm‖
max
∀k∈M

(‖z∗ − zk‖)
.

Algorithm 1 As mentioned earlier, we assume that a 
material database has been provided. The procedure begins 
with training the VAE as described in Algorithm 1, with the 
input training data being the material database. Encoder F is 
a neural network that takes in the set of material data � and 
encodes the four-dimensional data to the two-dimensional 
latent space denoted by z0, z1 through a probabilistic latent 
distribution governed by �, � . The VAE Loss is then used 
to drive the training per Eq. (2) until a sufficiently high rep-
resentational accuracy is attained. The encoder is then dis-
carded and the decoder D is retained for material selection. 
The decoder takes the latent space coordinates as input and 
returns the expected material properties.

Algorithm 2 In Algorithm 2, starting with the given truss, 
specified loads, restraints, area bounds and other constraints, 
the areas are optimized and simultaneously the best material 
is selected as follows. The truss neural network and material 
neural network are constructed as described in Sect. 3; these 
output the cross sectional area and the latent space coordi-
nates, respectively. The decoder D (from above) then returns 
the material properties, and now with the area and material 
information, the state equation can be solved and the objec-
tive J can be evaluated per Sect. 3.2. The constraints can also 
be computed post finite element analysis and the loss func-
tion Eq. (4) is next evaluated. Sensitivity of the objective 
and constraints is available through automatic differentia-
tion as described in Sect. 3.3. In our experiments t0 = 3 and 
� = 1.01 for the log-barrier implementation Eqs. (4) and (5), 
and the learning rate for the Adagrad optimizer was set to 
the value of 2 × 10−3 to solve the Eq. (6). Once convergence 
is reached, we re-optimize for the optimal areas using the 
nearest material in the latent space as described in Sect. 3.4.

Fig. 10   Backward computation
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Fig. 11   Loading of 6-bar mid-cantilever truss

Table 3   Cost constrained optimization of the truss in Fig. 11

Scenario J
∗ Closest material (confi-

dence)
Area ( 10−3 m2)

1 3.79 AISI 4130 norm 
(89.76%)

[2, 2, 2, 2, 2, 2]

2 2.95 AISI 4130 norm 
(89.76%)

[3.2, 2.6, 2.6, 3.2, 1, 1]

3 2.58 AISI 1010 (90.69%) [3.6, 3.1, 3.1, 3.5, 1.3, 
1.2]
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4 � Numerical experiments

In this section, we present results from several experiments 
that illustrate the method and algorithm.

4.1 � Simultaneous optimization of area and material

The central hypothesis of this paper is that simultaneous 
optimization of material and geometry leads to superior 
performance compared to sequential optimization. To 
validate this hypothesis, we consider the 6-bar truss sys-
tem illustrated in Fig. 11, and perform the following three 
experiments: 

1.	 Material optimization: Here the areas are fixed at the 
initial value of Ak = 2 × 10−3 m2,∀k , and only the mate-
rial is optimized using the decoder.

2.	 Area optimization: Using the optimal material from the 
first experiment, the areas are optimized by disregarding 
the decoder.

3.	 Simultaneous material and area optimization: Here 
the material and areas are optimized simultaneously.

The results are reported in Table 3 for a cost constraint 
of C∗ = $60 and a safety factor FS = 4 . Observe that sce-
nario-1 (material optimization) leads to the lowest perfor-
mance since the areas are not optimized. For this scenario, 
we also performed a brute-force search wherein the com-
pliance was evaluated for all the materials; the brute-force 
search also resulted in ‘AISI 4130 norm’ as the best choice. 
In scenario-2, when the areas are optimized using ‘AISI 
4130 norm’ as the material, the performance improved 
significantly. Finally, the best performance is achieved in 
scenario-3 when both material and areas are optimized 

Table 4   Three closest materials under cost constraint

Closest material Confidence ( �)

1. AISI 1010 90.69%
2. 4032-T6 86.64%
3. AISI 1020 80.01%

Table 5   Mass constrained optimization of the truss in Fig. 11

Scenario J
∗ Closest material (confi-

dence)
Area ( 10−3 m2)

1 10.5 Al 380F die (91.63%) [2, 2, 2, 2, 2, 2]
2 8.75 Al 380F die (91.63%) [3, 2.5, 2.4, 3.3, 1, 1]
3 8.56 Al 2018 (94.16%) [3.1, 2.4, 2.5, 3.1, 1, 1]

Table 6   Three closest materials under mass constraint

Closest material Confidence ( �)

1. Al 2018 94.16%
2. Al 380F die 90.64%
3. Al 2014-T4 90.13%

Fig. 12   Optimal material in latent space



4726	 Engineering with Computers (2022) 38:4715–4730

1 3

simultaneously. Observe that the optimal material in sce-
nario-3 differs from the one found in scenario-1.

For scenario-3, Table 4 lists the three closest materials 
and their confidence values.

As an additional experiment, we replaced the cost 
constraint (Eq.  (3c)) in the above problem with a mass 
constraint:

with M∗ = 40 kg; all other parameters being the same. The 
results are presented in Table 5. Once again we observe that 
simultaneous optimization results in the best performance. 
Furthermore, when cost constrained was imposed, a steel 
alloy was chosen as the best material; whereas when a mass 
constrained is imposed, an aluminum alloy was chosen.

For scenario-3 under mass constraint, Table 6 lists the 
three closest materials and the confidence values.

The location of the optimal material in the latent space for 
this scenario is illustrated in Figs. 12 and 13. We observe that 
the closest catalog material for scenario-3 is Al 2018. The 
latter is chosen, and the areas are subsequently re-optimized.

(10)gm∶=

(
�

M∗

N∑

k=1

AkLk

)
− 1 ≤ 0

Fig. 13   A close-up of Fig. 12; the closest material to the optimal one is Al 2018

Table 7   VAE reconstruction error trained with the full and various 
material subsets

Material class No. materials ΔE% ΔC% Δ�% ΔY%

All Matls. 92 5.0 6.8 3.3 7.1
Steel 14 0.58 2.6 0.07 1.4
Aluminum 52 0.09 0.22 0.04 2.9
Plastic 12 2.3 0.36 0.5 0.7

Table 8   Material refinement 
with cost constraint

Material class J Optimal material E � Y J
∗ Area ( 10−3 m2)

All Matls. 2.25 AISI 1010 2E11 7.9E3 3.3E8 2.58 [3.6, 3.1, 3.1, 3.5, 1.3, 1.2]
Steel 2.6 AISI 1020 2E11 7.9E3 4.2E8 2.6 [3.7, 2.9, 3.1, 3.8, 1.1, 1.2]

Table 9   Material refinement 
with mass constraint

Material class J Optimal material E � Y J
∗ Area ( 10−3 m2)

All Matls. 8.21 Al 2018 7.40E10 2.80E3 4.21E8 8.53 [3.1, 2.4, 2.5, 3.1, 1, 1]
Aluminum 8.23 AA356.0-F 7.24E10 2.68E3 1.45E8 8.38 [3.2, 2.7, 2.6, 3.2, 0.9, 1]
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4.2 � Material database subsets

While we have used the entire material database in the previ-
ous experiment, we now consider subsets of the database. 
Subsets of materials can often be justified based on experi-
ence. The VAE reconstruction error for the full database and 
three sample subsets is reported in Table 7. As one expect, 
the VAE error reduces for the subsets.

We now carry out a few experiments using these subsets, 
and report the results. First, for the truss problem in Fig. 11, 
we carry out a cost-constrained simultaneous optimization 
for the full database, as in the previous section. However, we 
now report additional results in Table 8. When all materials 
are considered (row-2), the compliance prior to snapping 
to the closest material is reported as J = 2.25 . The closest 
material is AISI 1010, resulting in a final compliance of 
J∗ = 2.58 . As one can expect, J∗ > J.

Next, since AISI 1010 is a steel alloy, we now consider 
only the Steel subset, and carry out simultaneous optimiza-
tion. The results are reported in row-3. Observe that the raw Fig. 14   Loading of 47-bar antenna tower

Fig. 15   Convergence of compli-
ance for the material and area 
for loading in Fig. 14

Fig. 16   Examples in 3D: a mid 
noded cantilever and a 25 mem-
ber transmission tower
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compliance J = 2.6 is surprisingly larger than J = 2.25 in 
the previous row. This can be attributed to the larger VAE 
reconstruction error when all materials are considered, i.e., 
J = 2.25 is not as reliable as the estimate J = 2.6 . Further, 
after the closest material is selected (AISI 1020), the final 
compliance is J∗ = 2.6 . This is slightly larger than the value 
in the previous row. This discrepancy is analogous to round-
ing errors in integer optimization [16].

Next, we repeated the above experiment for a mass con-
straint (instead of a cost constraint) and report the results 
in Table 9. When all materials are considered (row-2), the 
algorithm converges to the aluminum class, with an optimal 
material Al 2018, as before. Further, J∗ > J as expected. 
The results using the aluminum subset is reported in row-3. 
Now, the optimal material is AA356.0-F, and it differs from 
Al 2018. Now the performance J∗ = 8.38 has significantly 
improved compared to J∗ = 8.53.

4.3 � Convergence

To study the convergence characteristics of simultaneous 
optimization, we consider the antenna tower illustrated in 

Fig. 14. We impose a cost constraint of $50 , factor of safety 
of FS = 4 , and area bounds [10−9, 10−2]m2 . Then the areas 
and material are simultaneously optimized, resulting in an 
optimal material of ‘AISI 4130 norm’ and J∗ = 32.5 . The 
convergence in compliance is illustrated in Fig. 15. We 
observe that the material choice converges early while the 
areas continue to be optimized; this was typical. The opti-
mization took 1.89 s, with forward propagation and FEA, 
accounting for 16% each, while back-propagation consumed 
54%.

4.4 � Extension to 3D and Pareto design

In this section we demonstrate two examples of simulta-
neous design optimization with material selection in 3D. 
The first example is that of a cantilever, and the second is a 
transmission tower, as illustrated in Fig. 16. We further dem-
onstrate that the proposed method generates Pareto designs 
under mass and cost constraints.

First, we consider the mid-loaded cantilever in Fig. 16 
with a 20 kN force, and seek to optimize the truss cross 

Fig. 17   Pareto designs under mass constraint: optimized cross sec-
tional areas and best material choices are depicted

Table 10   Final compliance and closest material for the 3D cantilever 
problem under mass constraint

Target mass Final compliance J∗ Closest material

1e6 3.4e−3 Al 6063
1.5e6 2.19e−3 Al 6061
2e6 1.64e−3 Al 6061
2.5e6 1.26e−3 Steel 2018
3e6 1.01e−3 Ti-6Al-1Mo-1V
3.5e6 9.10e−4 Steel 2018
4e6 8.36e−4 Steel 2018

Table 11   Final compliance and closest material for the 3D transmis-
sion tower problem under cost constraint

Target cost Final compliance J∗ Closest material

2e4 8.15e−6 1345 Steel
4e4 6.06e−6 1345 Steel
5e4 4.86e−6 1345 Steel
8e4 3.09e−6 1350 Steel
1e5 2.45e−6 6063 Al
1.2e5 2.03e−6 356 Al
1.5e5 1.72e−6 6063 Al
2e5 1.45e−6 6063 Al

Fig. 18   Pareto designs under cost constraint: optimized cross sec-
tional areas and best material choices are depicted
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sectional areas and select the optimal material from the 
database. In this problem, along with the safety constraints 
on buckling and yielding (with a factor of safety of 4), we 
impose a mass constraint. The final compliance values ( J∗ ) 
and the selected optimal material, for various mass con-
straints, are summarized in Table 10. The resulting truss 
designs are illustrated in Fig. 17 (cross sectional values not 
included for brevity). From Fig. 17 we observe that at lower 
target masses, aluminum alloys are preferred, and at higher 
masses, steels are selected.

Next, we consider the 3D transmission tower illustrated 
in Fig. 16 with a 100 N force, and seek to optimize the truss 
cross sectional areas and select the optimal material from 
the database. In this problem, along with the safety con-
straints of buckling and yielding (with a factor of safety of 
4), we impose a cost constraint. The final compliance val-
ues ( J∗ ) and the selected optimal material, for various cost 
constraints, are summarized in Table 11. The truss cross 
sections are illustrated in Fig. 18 (cross sectional values not 
included for brevity). From Fig. 18 we observe that at lower 
target costs, Steel alloys are preferred, and at higher costs, 
Aluminum alloys are selected.

5 � Conclusion

Engineers today have access to over 150,000 materials [35], 
and this number is growing as new materials are being dis-
covered [36, 37]. This presents a significant challenge to 
design engineers. In this paper, using variational auto encod-
ers (VAEs), we proposed a generic method to simultaneously 
select the optimal material, while optimizing the geometry. 
The proposed method was demonstrated using trusses.

There are several limitations to the proposed method. 
A heuristic confidence-metric was used, as a final step, to 
snap from the continuous latent space to the nearest material. 
While this is a well known method in integer optimization, 
and was found to be effective in our study, it might lead to 
discrepancies in performance, as was noted in the numerical 
experiments. On the other hand, since the proposed method 
suggests an optimal set of material properties, it could drive 
material innovation in targeted applications. A very small 
material database with about 100 materials, with limited 
number of attributes, was considered here. Larger databases 
[38] with additional attributes needs to be explored and scal-
ability of method remains to be evaluated. In passing, we 
note that VAEs have shown promise in other applications, 
with datasets larger than 50,000 entries [39, 40]. The method 
could further benefit from better tuning of the networks, 
optimal choice of the NN architecture [41], and reducing the 
reconstruction error of VAEs [42]. Another promising direc-
tion for discrete selection within continuous frameworks is 
differentiable programming [29, 43] and learnable lookup 

tables [44]. Comparison of the proposed method against 
such methods will be considered in the future.

Despite these limitations, we believe that the method 
holds promise. For example, it could be extended to topol-
ogy optimization with material selection, specifically using 
the NN framework proposed in [45]. Furthermore, inclusion 
of a diverse set of material attributes, such as thermo-elastic 
properties [46], auxetic properties [47], coating properties 
[48], global warming indices [13] can also be considered. 
Inclusion of uncertainty in material properties is also of 
significant interest. Finally, the method can be extended to 
the selection of discrete components in assemblies such as 
springs, bolts, etc., and to the selection of discrete micro-
structures [49] in multiscale designs.
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