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Abstract
Simulation-based imaging (SBI) is a blood flow imaging technique that optimally fits a computational fluid dynamics 
(CFD) simulation to low-resolution, noisy magnetic resonance (MR) flow data to produce a high-resolution velocity field. 
In this work, we study the effectivity of SBI in predicting wall shear stress (WSS) relative to standard magnetic resonance 
imaging (MRI) postprocessing techniques using two synthetic numerical experiments: steady flow through an idealized, 
two-dimensional stenotic vessel and a model of an adult aorta. In particular, we study the sensitivity of these two approaches 
with respect to the Reynolds number of the underlying flow, the resolution of the MRI data, and the noise in the MRI data. 
We found that the SBI WSS reconstruction: (1) is insensitive to Reynolds number over the range considered ( Re ≤ 1000 ), 
(2) improves as the amount of MRI data increases and provides accurate reconstructions with as little as three MRI voxels 
per diameter, and (3) degrades linearly as the noise in the data increases with a slope determined by the resolution of the 
MRI data. We also consider the sensitivity of SBI to the resolution of the CFD mesh and found there is flexibility in the 
mesh used for SBI, although the WSS reconstruction becomes more sensitive to other parameters, particularly the resolu-
tion of the MRI data, for coarser meshes. This indicates a fundamental trade-off between scan time (i.e., MRI data quality 
and resolution) and reconstruction time using SBI, which is inherently different than the trade-off between scan time and 
reconstruction quality observed in standard MRI postprocessing techniques.
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1  Background

Magnetic resonance imaging (MRI) is a powerful method 
to investigate cardiovascular physiology. High-resolution 
in vivo images can help understand patient-specific blood 
flow and provide important quantitative biomarkers such as 
wall shear stress (WSS). However, these methods are limited 
by a fundamental trade-off between scan time, resolution, 
and noise [1, 2], which limits their utility for applications 
that demand very high-resolution images, such as infants and 
children, with congenital heart disease [3]. This is further 
complicated when estimates of biomarkers must be extracted 

from these flow images with poorly resolved features. This 
motivates the need for imaging methods that can use sparse, 
noisy data to provide sufficiently high-resolution reconstruc-
tions that can be used to accurately compute quantitative 
biomarkers.

Recent advances in compressed sensing [4–7] and 
machine learning [8, 9] have been used to enhance MRI-
based flow reconstructions, leading to improved image qual-
ity and reduced scan times. Neural networks have proven 
effective in taking sparse or missing data in k-space and 
accurately reconstructing them into natural images. Machine 
learning approaches are valuable, but face drawbacks of high 
training cost and not being patient-specific. However, recent 
work on physics-informed neural networks (PINNs) applied 
to hemodynamics have shown promise in one-dimensional 
pulsatile flows [10] and two- and three-dimensional steady 
flows [11]. Several simulation-based imaging (SBI) meth-
ods [12–18] exist that match a computational fluid dynamics 
(CFD) simulation to magnetic resonance (MR) flow data by 
optimizing free parameters of the CFD simulation (usually 
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boundary and initial conditions), use a metric to measure 
the difference between CFD and MR flow imaging, and 
update the free parameters to minimize the cost function 
via their own strategy. The method used in this work [18] 
uses a high-order CFD discretization, efficient adjoint-based 
PDE-constrained optimization, and a novel objective func-
tion that mimics the point-spread function of MRI scanners. 
This method was shown to effectively reconstruct very high-
resolution velocity fields from limited MRI data and match 
ground truth values for both a controlled water tank experi-
ment and an in vivo clinical application. However, the qual-
ity to which the method predicts quantitative biomarkers has 
not been considered to date, nor has there been a detailed 
investigation into the sensitivity of the method to physiologi-
cal and imaging parameters (e.g., noise, resolution) due to 
the computational cost of the reconstruction and difficulty 
of obtaining a reliable reference solution.

In this paper, we study the accuracy to which an SBI 
approach [18] predicts the WSS distribution relative to 
standard MRI postprocessing approaches using two syn-
thetic numerical experiments. The two synthetic experi-
ments employ several unrealistic assumptions to simplify 
the problem (steady, two-dimensional, laminar flow of 
a Newtonian fluid), assume full knowledge of the vessel 
geometry, and extract MRI data from a CFD simulation via 
weighted averaging of the velocity field over MRI voxels. 
These simplifications keep the computational cost of SBI 
manageable to allow for detailed sensitivity analysis (requir-
ing hundreds of reconstructions), a well-defined reference 
solution, and a fair side-by-side comparison of SBI and MRI 
(both of which benefit from these assumptions) with respect 
to WSS prediction.

We focus on WSS because it is known to correlate to ath-
erosclerosis, the formation and rupture aneurysms, as well as 
numerous congenital heart diseases [19–28]. Furthermore, it 
has proven difficult to estimate directly using standard MRI 
postprocessing techniques [29–31] because WSS requires 
accurate estimation of the velocity gradient that can be diffi-
cult using only piecewise constant voxel data. Current meth-
ods for postprocessing MR flow data to obtain quantities of 
interest, e.g., phase-contrast (PC) MRI velocity mapping, 
Fourier velocity encoding (FVE), and intravoxel velocity 
standard deviation mapping [32–34], can be unreliable.

We study the impact of the Reynolds number of the 
underlying flow and the resolution and noise of the MRI data 
to understand the sensitivity of each method with respect 
to these critical parameters. Noise is a critical source of 
error for in vivo imaging and extraction of biomarkers [35] 
and becomes increasingly problematic as the resolution 
of the MRI grid increases or if faster scans are required, 
e.g. for sedated children or to reduce costs of health care. 
On the other hand, the resolution of the MRI data can lead 
to higher-resolution images and more accurate biomarker 

computations; however, it is usually accompanied with 
increased noise and requires longer scans. The Reynolds 
number is studied because it has been observed that the 
accuracy of the WSS computed directly from MRI data 
decreases as the Reynolds number of the flow increases [33]. 
Furthermore, we study the impact of the resolution of the 
CFD mesh used in SBI because this determines the overall 
cost of the reconstruction.

2  Methods

Two synthetic numerical experiments were conducted to 
compare the accuracy of MRI methods with SBI in measur-
ing wall shear stress. To perform comprehensive studies, 
SBI was simplified for use in two-dimensional, time-inde-
pendent problems, instead of three-dimensional, unsteady 
problems as in our previous study [18]. The experiments are 
synthetic in the sense that no in vivo MRI flow data or geom-
etries were used; synthetic data were constructed to be rep-
resentative of a realistic situation and consistent with in vivo 
measurements to the extent possible, e.g., regarding noise 
levels, MRI resolution, and extraction of MRI data from a 
velocity field. The synthetic experiments allow for a highly 
controlled study with a known reference (“truth”) flow so the 
impact of various parameters, e.g., Reynolds number, noise, 
MRI grid resolution, on WSS reconstruction accuracy can 
be isolated and identified. The remainder of this section will 
describe the numerical experiments in detail. Section 2.1 
introduces the setup of the synthetic experiments, Sect. 2.2 
details the creation of synthetic phase-contrast MRI data and 
WSS reconstruction, and Sect. 2.3 reviews the SBI method 
and corresponding WSS computation.

2.1  Synthetic experiments

We use two synthetic experiments to investigate the accu-
racy of WSS measurements from SBI relative to standard 
MRI methods: 1) flow through an idealized stenotic vessel 
and 2) flow through an idealized aorta with a coarctation. 
The geometry of the stenotic vessel with 60% grade is the 
set Ω ⊂ ℝ

d ( d = 2 in this work; formulas not pertaining to 
domain geometries hold for general d), defined as

where B0 = 0.3 cm, c = 3 cm, � = 0.6 cm, A = 0.18 cm2 
(Fig. 1). The geometry of the coarctated aorta (40% grade) 
is shown in Fig. 1. In practice, these geometries would be 
obtained from MRI scans; however, we chose to explicitly 
define the geometry to ensure a controlled setting in which to 
study WSS reconstruction. Most of the studies in this work 

(1)

Ω∶={(x,±y(x)) ∣ x ∈ [0, 6]}, y ∶ x ↦ B0 −
A

√
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are conducted using the vessel due to its simplicity; the aorta 
is used to confirm our findings on a more realistic geometry.

The blood flow is modeled as an incompressible, Newto-
nian fluid governed by the Navier–Stokes equations

where 𝜌0 ∈ ℝ>0 is the density of the fluid, 𝜈 ∈ ℝ>0 is 
the kinematic viscosity of the fluid, and v ∶ Ω → ℝ

d and 
P ∶ Ω → ℝ>0 are the velocity and pressure, respectively, of 
the fluid implicitly defined as the solution of (2). In this 
work, we assume the fluid is blood and take the material 
properties to be �0 = 1060 kg/m3 [36] and � = 2.83 × 10−6 
m 2 /s [37] for both test cases. We consider the case where the 
flow has reached a steady state and the time derivative, �v

�t
 , 

vanishes. Boundary conditions for the boundaries identified 
in Fig. 1 are

where vin ∶ x ↦ v̄in(B
2
0
− x2

2
)∕B2

0
 is the parabolic inlet pro-

file with peak value v̄in ∈ ℝ
d (for the stenotic vessel) and 

n ∶ �Ω → ℝ
d is the outward unit normal to the boundary of 

the domain. The rate-of-strain, � ∶ Ω → ℝ
d×d , and stress, 

� ∶ Ω → ℝ
d×d , tensors are defined as

(2)
�v

�t
+ (v ⋅ ∇)v − �∇2v +

1

�0
∇P = 0, ∇ ⋅ v = 0 in Ω,

(3)
v = 0 on �Ωw, v = vin on �Ωin, � ⋅ n = 0 on �Ωout

where � = �0� is the dynamic viscosity and Id is the d × d 
identity matrix. The Reynolds number, Re ∈ ℝ>0 , of the 
flow is defined based on the full cross-sectional diameter 
of the geometry, D ∈ ℝ>0 , and the peak inlet velocity as 
Re =

D‖v̄in‖
𝜈

 . The WSS, �wss ∶ �Ω → ℝ , the quantitative bio-
marker considered in this work, is defined as the magnitude 
of the tangential component of the surface traction [38]

where t ∶ �Ω → ℝ
d is the surface traction and � ∶ �Ω → ℝ

d 
is its tangential component.

The Navier–Stokes equations are approximated using the 
finite element method on an unstructured triangular mesh 
consisting of P3 − P

2 Taylor–Hood elements implemented 
in an in-house software [39]. A linear mesh (straight-sided 
triangles) is generated using DistMesh [40] and the bound-
ary edges are projected onto the exact geometry (and inte-
rior nodes smoothed) for a high-order representation. Let 
vh denote the finite element solution of the Navier–Stokes 
equations. This CFD solution defines our reference or 
“truth” flow, e.g., corresponding to the in vivo flow, which 
is not available in practice, but essential to conduct thor-
ough inquiries. The reference or “truth” value for WSS is 
computed from (5) using the finite element solution vh ; 

(4)� =
1

2
(∇v + ∇vT ), � = 2�� + PId,

(5)t = � ⋅ n, � = t − (t ⋅ n)n, �wss = ‖�‖,

Fig. 1  Idealized stenotic vessel with 60% grade (left) and coarctated 
aorta with 40% grade (right) geometry Ω used for numerical experi-
ments with boundaries: �Ωw (continuous black line), �Ωin (continuous 

blue line), �Ωout (continuous red line). The MRI scan region for each 
geometry is indicated with (dashed pink line). Units: cm
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the pointwise velocity and necessary derivatives are read-
ily available from the finite element basis functions. The 
reference WSS value computed from the reference finite 
element solution vh is denoted �wss

h
 . Figures 2 and 3 show 

the computational mesh and corresponding velocity field 
( Re = 1000 ) used to define the true flow for the stenosis and 
aorta test cases, respectively. The corresponding WSS ( �wss

h
 ) 

is shown in Fig. 4 for both test cases. Synthetic MRI data are 
extracted from the reference solution vh and perturbed with 
noise using the approach in [18] (summarized in Sect. 2.2). 
In Sect. 3, we will use this synthetic MRI data to reconstruct 
the WSS using standard MRI techniques (Sect. 2.2) and SBI 
(Sect. 2.3) to study the accuracy and sensitivity of each app
roach.

2.2  Magnetic resonance imaging

Phase-contrast MRI scans extract velocities averaged over a 
Cartesian grid of voxels from an in vivo flow. The resolution 
of the voxel grid determines both the resolution and noise of 
the velocity data [1, 2]. In blood flow imaging, the resolution 
is reported in millimeters, but an important metric for flow 
accuracy is the number of voxels per diameter (VPD) [41], 
which can range from 5 to 20 VPD for adults [42] and 3–5 
VPD for infants [43, 44]. Furthermore, the number of VPD 
can vary for different vascular territories [45].

In the synthetic setting, we compute synthetic data con-
sistent with the approach in [18], specialized to the case 
of steady flow, i.e., a weighted integral of the true velocity 

field over a given voxel and its neighbors. For simplicity, we 
assume the voxel grid is aligned with the coordinate axes. 
We consider a grid consisting of Nx voxels in the x1-direc-
tion and Ny voxels in the x2-direction and let Δx,Δy ∈ ℝ>0 
denote the spacing of the voxel grid in the respective direc-
tion. We endow the N = NxNy voxels with an ordering 
and let (Xi, Yi) ∈ ℝ

2 denote the centroid of the ith voxel 
for i = 1,… ,N . We leverage an abuse of notation to let N 
denote the resolution of the voxel grid, either stated in terms 
of the total number of voxels ( NxNy ) or the number of VPD, 
depending on the context. With this notation, the synthetic 
MR flow velocity data associated with the ith voxel, v̄i ∈ ℝ

2 , 
is extracted from a CFD simulation as

where �i is a normally distributed random variable with 
mean 0 and standard deviation proportional to the peak flow 
velocity, i.e., � supx∈Ω vh(x) with noise level � ∈ ℝ

≥0 , and 
�1,… ,�N are independent and identically distributed [46, 
47]. This ensures that the noise is randomly sampled and is 
relative to the peak velocity of the true flow to model the 
effect of the velocity encoding parameter (VENC) used in 
4D flow acquisition. The velocity standard deviation due 
to noise is proportional to VENC [48], and the VENC is 
commonly set to be slightly larger than the highest velocity 
encountered in the region of interest to avoid aliasing (phase 
wrap-around). Following the approach in [18], the point-
spread function maps a continuous velocity field to the MR 

(6)v̄i∶=Ξi(vh) + 𝜑i,

Fig. 2  Computational mesh (a) and corresponding velocity field 
(b) used to define the true flow ( v

h
 ) through the stenotic vessel 

( Re = 1000 ). The velocity field is mapped to the MR data space 
( Ξ

i
(v

h
) ) to produce the noise-free MRI data (c); the MRI grid con-

tains N = 9 VPD. The Gaussian noise model with standard deviation 

equal to � = 20% of the peak velocity is added to the noise-free MRI 
data to produce the actual MRI data ( ̄v

i
 ) (d). Simulation-based imag-

ing is used to reconstruct the velocity field from the noisy MRI data, 
which leads to the field ( v

H
( ⋅ ;𝜃⋆) ) (e) and corresponding representa-

tion in the MR data space ( Ξ
i
(v

H
( ⋅ ;𝜃⋆)) ) (f). Colorbar: ‖v‖ (cm/s)
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data space through a weighted average of the velocity field 
over a given voxel as

for i = 1,… ,N . The weighting function for the ith voxel, 
wi ∶ Ω → ℝ , is the normalized tensor product of a sinc func-
tion with a smoothed box centered at (Xi, Yi) , i.e.,

where the component-wise, non-normalized weighting func-
tion, Ψ ∶ ℝ ×ℝ ×ℝ>0 → ℝ , is defined as

(7)Ξi ∶ u ↦

∫Ω

wiu dv

(8)
wi:x ↦ w̄i(x)

(

∫Ω
w̄i dv

)−1

,

w̄i:x ↦ Ψ(x1,Xi,Δx)Ψ(x2, Yi,Δy),

(9)Ψ ∶ (s, c,Δs) ↦ sinc
(
s − c

Δs

)
�(s, c, 4Δs).

The sinc function is included to mimic the point-spread 
function of MRI scanners that use a Fourier transform to 
map raw MRI data into flow velocities [18, 49]. The one-
dimensional smoothed box function, 𝜒 ∶ ℝ ×ℝ ×ℝ>0 → ℝ , 
is defined as

with center s0 , width � , and smoothness parameter � . The 
smoothed box function localizes the integrand in (7) to 
the center of a particular voxel, allowing for some overlap 
between voxels, and ensures the integrand is sufficiently 
smooth for the integral to be well-approximated using 
numerical quadrature. Following the work in [18], we take 
the smoothness parameter to be proportional to the voxel 
spacing, � = 0.1min{Δx,Δy} . In this work, (6) is used to 

(10)
� :(s, s0,�) ↦

1
1 + exp(−(s − (s0 − �∕2))∕�)

− 1
1 + exp(−(s − (s0 + �∕2))∕�)

Fig. 3  Computational mesh 
(a) and corresponding velocity 
field (b) used to define the true 
flow ( v

h
 ) through the aorta 

( Re = 1000 ). The velocity field 
is mapped to the MR data space 
( Ξ

i
(v

h
) ) to produce the noise-

free MRI data (c); the MRI 
grid contains N = 10 VPD. 
The Gaussian noise model with 
standard deviation equal to 
� = 20% of the peak velocity 
is added to the noise-free MRI 
data to produce the actual MRI 
data ( ̄v

i
 ) (d). Simulation-based 

imaging is used to reconstruct 
the velocity field from the noisy 
MRI data, which leads to the 
field ( v

H
( ⋅ ;𝜃⋆) ) (e) and cor-

responding representation in the 
MR data space ( Ξ

i
(v

H
( ⋅ ;𝜃⋆)) ) 

(f). Colorbar: ‖v‖ (cm/s)



3992 Engineering with Computers (2022) 38:3987–4003

1 3

define the synthetic MRI data and define the SBI cost func-
tion (Sect. 2.3); a complete description of the approach 
can be found in [18]. Figures 2 and 3 show the synthetic 
MRI data ( N = 9 VPD for stenosis, N = 10 VPD for aorta) 
extracted from the true flow with ( � = 20% ) and without 
noise for the stenosis and aorta test cases, respectively.

We use standard methods from the MRI literature to com-
pute the WSS directly from the MRI data, �wss

N
(x) , at any 

point x ∈ �Ωw [33, 50]. First, we use the raw voxel velocity 
data vh to compute a bilinear flow field reconstruction; we 
call this bilinear flow field vN . Then, assuming no flow pen-
etration through the walls, the tangential component of the 
surface traction in (5) can be written as

where the columns of B(x) ∈ ℝ
d×(d−1) form a basis of the 

tangent space at x ∈ Ωw (orthogonal complement of n(x)); 
see derivation in Appendix 1. The normal gradient is com-
puted using an approach similar to that in [33, 50], i.e., con-
struct a quadratic approximation of the velocity field in the 
normal direction from the bilinear flow field and assume the 
velocity is zero at x, because it performed favorably rela-
tive to several alternatives in a comparative study [33]. The 
quadratic velocity along the outward normal n originating 
at the point x takes the form

(11)� = �(BBT )∇v ⋅ n,

(12)
ṽN( ⋅ ;x, n):ℝ → ℝd,
ṽN( ⋅ ;x, n):r ↦ vN(x − �n)�1(r) + vN(x − 2�n)�2(r)

where {�0,�1,�2} are one-dimensional quadratic Lagran-
gian polynomials associated with the nodes {0, �, 2�} , 
and 𝛿 ∈ ℝ>0 is the increment used to determine the points 
along the normal at which to fit the quadratic function 
to the bilinear flow field [31]. In this work, we choose 
the increment to be proportional to the voxel spacing, 
� = 1.2min{Δx,Δy , 0.06} (cm) to ensure the step is large 
enough to avoid sampling from MRI voxels that intersect the 
wall (to avoid corruption from the partial volume effect), if 
possible, and small enough for the quadratic reconstruction 
to be accurate. Finally, the gradient of the velocity in the 
normal direction is approximated as ṽ�

N
(0) and the tangential 

component of the surface traction ( �N ) and wall shear stress 
( �wss

N
 ) at x ∈ Ω are computed as

This approach makes two unrealistic assumptions, namely, 
that the point on the boundary x and corresponding normal 
n(x) are known exactly. In practice, these geometric prop-
erties must be approximated from scanned images, which 
introduces additional error that was quantified in [33]. Since 
the position on the wall and the corresponding normal are 
known in the SBI setting, we use this information to main-
tain fairness in the comparison between MRI postprocessing 
and SBI.

(13)
𝜏N(x) = 𝜇(B(x)B(x)T )ṽ�

N
(0;x, n(x)), 𝜎wss

N
(x) = ‖‖𝜏N(x)‖‖.

Fig. 4  True wall shear stress distribution �wss
h

 (continuous black line) 
and its reconstruction using simulation-based imaging 𝜎wss

H
( ⋅ , 𝜃⋆) 

from MRI grids ( N = 9 VPD for stenosis, N = 10 VPD for aorta) 

with a noise level of � = 20% (dashed red line) along the intersection 
of the top wall of stenotic vessel (left) and bottom wall of the aorta 
(right) with the MRI domain, both at Re = 1000



3993Engineering with Computers (2022) 38:3987–4003 

1 3

2.3  Simulation‑based imaging

Simulation-based imaging aims to reconstruct a high-fidelity 
in vivo flow image from a CFD simulation that has been cer-
tified with MRI flow measurements. It optimally fits a CFD 
simulation to MRI flow data that can be noisy, sparse, and 
low-resolution by modifying the boundary conditions, material 
properties, and the initial condition. In this work, we adjust the 
inflow boundary conditions to fit the CFD simulation to the 
MRI data. That is, we consider the Navier–Stokes equation in 
(2) subject to the following boundary conditions

where v̂ ∶ ℝ
d ×D → ℝ

d is the parametrized inflow func-
tion, � ∈ D is a vector of parameters, and D ⊂ ℝ

d is the 
admissible parameter space. In this work, we take the inflow 
velocity to be parallel to the normal of the inflow boundary 
surface following [18], which leads to

for the vessel case study, i.e., a parabolic profile for the x1 
velocity that is zero at the wall ( x2 = ±B0 ) with � defining 
the peak of the parabola. A similar parabolic parametrization 
of the normal-directed inflow velocity is used for the aorta.

Remark 1 In practice, a zero traction outlet boundary condi-
tion does not necessarily lead to a physically relevant CFD 
model due to the potential for the actual blood flow to split 
between major branches of the aorta. For such cases, the 
outflow velocities and pressure can be treated as unknowns 
and determined using the SBI framework. This was shown 
to be an effective approach in [18]. In this work, we use the 
zero-traction outflow because it is a reasonable assumption 
for the problems considered.

The CFD simulation underlying SBI discretizes the 
Navier–Stokes equation in (2) with the parametrized bound-
ary conditions in (14) using the finite element method as 
described in Sect. 2.1; the corresponding velocity field is 
denoted vH(x;�) . In the in vivo setting, the geometry of 
the flow domain is obtained by segmenting an angiogram 
scan from which a mesh is generated using standard tools 
[51–53]. In this study, we directly generate a high-order 
mesh of the two geometries considered (Sect. 2.1).

The parameterized inflow boundary conditions are deter-
mined by optimally fitting the parameterized CFD solution 
to the MRI data

(14)
v = 0 on �Ωw, v = v̂( ⋅ ;�)
on �Ωin, � ⋅ n = 0 on �Ωout

(15)v̂ ∶ (x;𝜃) ↦
(B0 − x2)(B0 + x2)

B2
0

(𝜃, 0)

where �i = 1 if the ith voxel is entirely within the domain 
and zero otherwise (to avoid corruption from the partial vol-
ume effect) and I ∶ D → ℝ is the cost function that measures 
the misfit between the MRI data and its prediction from the 
CFD simulation. The optimization problem in (16) is solved 
using a quasi-Newton method globalized with a line search 
[54] and gradients of the objective function are computed 
efficiently using the adjoint method. From the solution of the 
SBI optimization problem ( 𝜃⋆ ), the reconstructed flow field 
is the CFD simulation at the optimal parameter configura-
tion, i.e., vH( ⋅ ;𝜃⋆) . From the SBI reconstructed flow, we 
calculate the corresponding WSS, denoted 𝜎wss

H
( ⋅ ;𝜃⋆) , using 

(5) with the SBI state vH( ⋅ ;𝜃⋆) . The necessary derivatives of 
the flow solution required in (5) are readily available from 
the finite element basis functions.

Figures 2 and 3 show the SBI reconstruction of the flow 
field and its representation in the MR data space for the ste-
nosis and aorta test cases, respectively. Additionally, Fig. 4 
shows the WSS reconstruction using SBI for both test cases.

The same point-spread function ( Ξ ) used to define the 
MRI data is used to sample the CFD solution for matching 
to the MR flow data in the objective function. This assumes 
the numerical point-spread function (6) will exactly repro-
duce the point-spread function of the MRI scanner, which 
is not true in practice, which may introduce additional mod-
eling error. However, in this work, we do not consider the 
sensitivity of SBI to the point-spread function, instead we 
focus on its performance with respect to Reynolds number, 
MRI resolution, and noise. Another unrealistic assumption 
is the domain ( Ω ) and its boundary are known with certainty, 
whereas there would be errors in the vessel geometry that 
is segmented from angiogram scans, which will introduce 
errors into the SBI reconstruction and WSS computation. 
The sensitivity of SBI to the geometry was considered in 
[55].

3  Results

In this section, we study the performance of MRI- and 
SBI-based wall shear stress reconstructions as a function 
of MRI noise level, resolution of the MRI voxel grid, Reyn-
olds number, and resolution of the CFD mesh used for SBI 
reconstruction. Comprehensive studies for the ideal stenosis 
geometry are used to draw conclusions regarding the per-
formance of MRI and SBI wall shear stress reconstruction; 

(16)

𝜃⋆ = argmin 𝜃∈D I(𝜃), I ∶ 𝜃 ↦

N∑

i=1

𝛼i

2
‖‖Ξi(vH( ⋅ ;𝜃)) − v̄i

‖‖
2

2
,
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these conclusions are then verified for the more complex 
setting of flow through an idealized aorta using targeted 
studies.

In each of these studies, we will quantitatively compare 
the WSS distributions, i.e., 𝜎wss

H
( ⋅ ;𝜃⋆) (SBI) and �wss

N
 (MRI) 

to �wss
h

 (true WSS), along the curve Γ ⊂ 𝜕Ωw , where Γ is the 
intersection of the top (bottom) wall of the vessel (aorta) 
with the limits of the MRI domain (which does not span 
the entire domain for the stenotic vessel case). The error 
will be quantified using the relative L2 norm, reported as 
percentages,

where eSBI, eMRI ∈ ℝ
≥0 are the SBI and MRI WSS distri-

bution errors, respectively, and the integrals are computed 
using Gaussian quadrature.

3.1  Impact of the CFD resolution

The CFD mesh resolution used for SBI impacts the compu-
tational cost of the method so we study the sensitivity of the 
SBI wall shear stress reconstruction to the resolution of the 
mesh. For this study, we vary the noise � ∈ {0, 5, 10, 15, 20} 
( % ), Reynolds number Re ∈ {100, 500, 1000} , MRI grid 
resolution N ∈ {3, 9, 15, 28} (VPD), and consider the three 
meshes of increasing resolution shown in Fig. 5 ( Ne = 368 , 
766, 1590 elements, respectively). The finest mesh 
( Ne = 1590 ) is used to compute the reference (“true”) flow 
and smoothly resolves all flow features, whereas the two 
coarser meshes ( Ne = 368 and Ne = 766 ) lead to numerical 
artifacts in the stenosis, but contain two and four times fewer 
elements, respectively, and the corresponding CFD simula-
tions require a fraction of the compute time.

(17)

eSBI =

√

∫Γ |�
wss
h (x) − �wss

H (x;�⋆)|2 dS
√

∫Γ |�
wss
h (x)|2 dS

,

eMRI =

√

∫Γ |�
wss
h (x) − �wss

N (x)|2 dS
√

∫Γ |�
wss
h (x)|2 dS

,

Remark 2 The mesh used for the reference solution was 
determined through a careful refinement study. We con-
sidered a sequence of meshes with increasing refinement 
and selected the reference mesh once the relative error in 
the WSS distribution between successive refinement levels 
dropped below 0.1% . Because the discretization uses a cubic 
approximation of the velocity field within each element, a 
relatively coarse mesh (compared to the refinement required 
by conventional second-order methods) is sufficient to reach 
high accuracy.

First, we observe that the WSS reconstruction error 
using SBI decreases as the CFD mesh is refined (Fig. 6), 
which holds for almost all Reynolds numbers, noise levels, 
and MRI voxel grids considered. The noise in the MRI data 
tends to degrade the accuracy of the WSS reconstruction; 
however, its influence diminishes as the MRI voxel grid 
is refined, i.e., there is very little difference in the � = 0% 
and � = 20% WSS reconstruction with N = 28 VPD MRI 
grid, whereas there is a substantial difference with N = 3 
VPD. We note that for the finest mesh ( Ne = 1590 ), the 
WSS reconstruction has a relatively weak dependence on 
the Reynolds number of the flow, whereas there is a sig-
nificant dependence on Reynolds number for the coarser 
meshes, e.g., for the coarse mesh with N = 3 VPD and 
� = 10% , the WSS error is around 5% for Re = 100 and 
close to 15% for Re = 1000 . Even in the cases with large 
error, the optimization problem underlying SBI drives the 
CFD simulation to a configuration that agrees reasonably 
well with the true WSS distribution given the limitations 
of the discretization (Fig. 7).

Together these observations imply that an underre-
solved mesh can be used for the SBI reconstruction at the 
cost of increasing the sensitivity of the WSS reconstruc-
tion to Reynolds number and the MRI voxel grid. This is 
significant because it means the high computational cost 
of SBI can be reduced using a coarse mesh without sig-
nificant loss in WSS reconstruction accuracy, provided a 
sufficiently high-resolution MRI data set is used. Alter-
natively, it implies that a limited amount of MRI data can 

Fig. 5  Meshes (left) of stenotic vessel used to study the sensitivity of SBI to resolution of the CFD mesh and the corresponding velocity field 
(right). Number of elements in mesh: Ne = 368 (top row), Ne = 766 (middle row), and Ne = 1590 (bottom row). Colorbar in Fig. 2
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be used (e.g., from fast patient scans) provided the CFD 
mesh used for SBI reconstruction is relatively fine, which 
indicates an inherent trade-off between scan and recon-
struction time when using SBI. In the remainder, we will 
fix the CFD mesh resolution at Ne = 1590 and focus on 
the impact of the remaining parameters (noise, Reynolds 
number, MRI resolution).

3.2  Impact of noise, Reynolds number, and MRI 
resolution

In this section, we study the coupled effect that noise, 
Reynolds number, and the MRI voxel grid resolution have 
on the accuracy to which WSS is reconstructed using SBI 
(Sect. 2.3) and standard MRI reconstruction (Sect. 2.2). 
We vary the Reynolds number Re ∈ {100, 500, 1000} 
because it is known to strongly impact the accuracy of 
WSS reconstructions based solely on MRI [33]. We vary 
the noise � ∈ {0, 5, 10, 15, 20} ( % ) and MRI voxel grid 
N ∈ {3, 9, 15, 28} (VPD) because these incorporate extreme 

(best-case and worst-case) scenarios seen in practice; usu-
ally, for infant patients, noise levels are 3–10% and MRI 
resolution is 3–5 VPD [43, 44]. We use the CFD mesh with 
Ne = 1590 elements for SBI reconstruction.

Remark 3 In practice, it is rarely, if ever, practical to achieve 
an MRI resolution of 28 VPD; however, we include it in the 
study to gain insight into each method in the limit of extreme 
resolution. Similarly, Reynolds numbers in practical blood 
flows are usually well above 100; Re = 100 was included in 
the study to provide a well-defined controlled condition on 
which to base further investigations. We then increased the 
Reynolds number to obtain measurements at higher flow 
rates, but limited this to Re = 1000 to ensure that flow is 
kept steady and laminar.

First, we focus on the relationship between the WSS 
reconstruction error and resolution of the MRI voxel grid 
for various noise levels and Reynolds numbers (Fig. 8). The 
error in the WSS reconstruction from MRI trends toward 

Fig. 6  WSS reconstruction error using SBI as a function of CFD 
mesh resolution for various MRI grids (columns) and noise levels 
(lines) at Reynolds number 100 (top row), 500 (middle row), and 
1000 (bottom row) for the stenotic vessel test case. Legend: � = 0% 
(continuous black line with centered black circle), � = 5% (continu-

ous blue line with centered blue square), � = 10% (continuous red 
line with centered red triangle), � = 15% (continuous pink line with 
centered pink diamond), � = 20% (continuous green line with cen-
tered green pentagon)
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zero, albeit slowly, as the voxel grid is refined, which con-
firms the MRI WSS approach and implementation. Moreo-
ver, in the low noise setting, the WSS reconstruction error 
decreases toward a minimum (non-zero) value as the voxel 
grid is refined. However, for higher noise levels, additional 

MRI voxels can degrade the WSS reconstruction accuracy 
because it operates directly on the noisy MRI data and the 
length scale over which the noise (fixed magnitude of � ) 
varies decreases as the grid is refined, i.e., the noise var-
ies more rapidly in the spatial domain. On the other hand, 
the WSS reconstruction from SBI is nearly exact in the no-
noise setting and the error decreases monotonically as the 
voxel grid is refined for all Reynolds numbers and noise 
levels. While the overall error in the WSS reconstruction 
using SBI does increase with noise, additional MRI vox-
els do not limit or degrade the approximation as seen in 
the MRI-based reconstruction. This can be attributed to the 
fact that the WSS reconstruction using SBI does not directly 
operate on the noisy data; rather, the noisy data is used to 
reconstruct a noise-free CFD velocity field, which is used to 
compute the WSS. Therefore, the noise-sensitive operations, 
e.g., differentiation, are only applied to the noise-free SBI 
flow field, which leads to an approximation that is robust to 
noise in the MRI data. Finally, we observe that in the 3 − 5 
VPD regime, the resolution commonly available for infant 
patients, the WSS reconstruction using SBI is significantly 
more accurate than using MRI alone. Even in the highest 
noise scenario ( � = 20% ), the SBI WSS reconstruction error 
is less than 10% , whereas the MRI WSS reconstruction error 
is about 50%.

Next, we investigate the relationship between the WSS 
reconstruction error and Reynolds number for various noise 
levels and MRI voxel grids (Fig. 9). The accuracy of the 
WSS reconstruction directly from the MRI degrades as the 
Reynolds number increases, which agrees with other studies 

Fig. 7  Wall shear stress distribution over intersection of top wall of 
stenotic vessel with MRI domain ( Γ ) using SBI with different mesh 
resolutions at Reynolds number Re = 1000 , noise � = 20% , and MRI 
resolution N = 9 VPD (scenario in Fig.  2). Legend: WSS distribu-
tion from true flow (continuous black line) and SBI WSS distribution 
using the mesh with Ne = 368 elements (dashed red line), Ne = 766 
elements (dotted blue line), and Ne = 1590 elements (dadhdotted pink 
line); see Fig. 5 for meshes

Fig. 8  WSS reconstruction error using SBI (top row) and MRI (bot-
tom row) as a function of MRI grid resolution for various noise levels 
(columns) and Reynolds numbers (lines) for the stenotic vessel test 

case. Legend: Re = 100 (continuous black line with centered black 
circle), Re = 500 (continuous blue line with centered blue square), 
Re = 1000 (continuous red line with centered red triangle)



3997Engineering with Computers (2022) 38:3987–4003 

1 3

[33]. The main exceptions come from configurations with 
high noise and many voxels per diameter where the error 
is already quite large (above 40% ); in these cases, the WSS 
reconstruction error can decrease somewhat with increasing 
Reynolds number. On the other hand, WSS reconstruction 
from SBI is insensitive to Reynolds number, i.e., the range in 
the WSS reconstruction error is less than 1% from Re = 100 
to Re = 1000 for all noise levels and decreases as the MRI 
grid is refined.

Next, we investigate the relationship between the WSS 
reconstruction error and noise level for various Reynolds 
numbers and MRI voxel grids (Fig. 10). For the MRI-based 
WSS reconstruction, the error increases with noise except 
for the coarsest voxel grid ( N = 3 VPD) where the error 
can slightly decrease as noise increases for higher Reynolds 
numbers (situations where the error is already quite large, at 
least 50% ). As the MRI grid is refined, the rate at which the 
WSS error increases with respect to noise accelerates due to 
the decreasing length scale over which the noise varies. The 
error in the WSS reconstruction using SBI increases linearly 
with the noise level with a decreasing slope as the MRI reso-
lution increases (opposite of the trend observed with MRI-
only WSS reconstruction). These observations hold across 
all Reynolds numbers considered Re ∈ {100, 500, 1000}.

To this point, we have aggregated the entire WSS distri-
bution into a scalar to compare MRI- and SBI-based WSS 
reconstruction across numerous scenarios. We take a closer 
look at the entire WSS distribution as a scatter plot, whereby 
the actual value of WSS is plotted against the reconstructed 

WSS for a number of points along the wall x ∈ Γ (Fig. 11); 
tight clustering around the line of identity implies the 
reconstruction is accurate and reliable. Because of the 
relatively weak dependence on Reynolds number (Fig. 9), 
we fix Re = 1000 and vary the noise � ∈ {5%, 10%, 15%} 
and MRI resolution N ∈ {9, 15, 28} VPD. The SBI-based 
WSS reconstruction lies tightly clustered near the line of 
identity, whereas the MRI-based WSS reconstruction var-
ies significantly from the line, particularly in the high-noise 
configurations.

3.3  Verification with aorta geometry

A final set of numerical experiments was conducted using 
the coarctated aorta to demonstrate the key findings from 
the previous sections generalize to the more complex test 
case. To limit the parameter space to explore, we do not 
study the impact of mesh resolution on the SBI reconstruc-
tion. Furthermore, given the relative insensitivity of SBI 
to Reynolds number, we only consider a limited sampling 
of Reynolds numbers, i.e., Re ∈ {100, 1000} . We vary the 
noise � ∈ {0, 5, 10, 20} and MRI voxel grid N ∈ {3, 5, 10} 
VPD; the finest MRI grid is restricted to N = 10 VPD (cor-
responds to 60 × 90 voxel grid) because the MRI domain 
covers a larger region compared to the stenotic vessel.

The relationship between the WSS reconstruction error 
and resolution of the MRI voxel grid for various noise levels 
and Reynolds numbers (Fig. 12) is consistent with findings 

Fig. 9  WSS reconstruction error using SBI (top row) and MRI (bot-
tom row) as a function of Reynolds number for various MRI grid 
resolutions (columns) and noise levels (lines) for the stenotic vessel 
test case. Legend: � = 0% (continuous black line with centered black 

circle), � = 5% (continuous blue line with centered blue square), 
� = 10% (continuous red line with centered red triangle), � = 15% 
(continuous pink line with centered pink diamond), � = 20% (con-
tinuous green line with centered green pentagon)
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for the stenotic vessel. That is, the accuracy of the WSS 
reconstruction from MRI improves as the MRI voxel grid 
is refined for the low-noise settings, whereas it degrades in 
the higher noise settings. On the other hand, the WSS recon-
struction error from SBI decreases as the MRI voxel grid is 
refined for all noise levels considered.

Similarly, the relationship between the WSS reconstruc-
tion error and noise for various Reynolds numbers and MRI 
voxel grids (Fig. 13) is consistent with findings for the sten-
otic vessel. For MRI, the WSS reconstruction error increases 
rapidly when the noise exceeds � = 5% and increases most 
rapidly for the finest MRI voxel grid. For SBI, the WSS 
reconstruction error increases linearly with the noise level 
with a slope that decreases as the MRI voxel grid is refined.

Overall, the results from the aorta test case agree with 
those from the vessel, particularly the trends with respect to 
variations in the MRI grid resolution and noise.

4  Discussion

4.1  Discussion of results

The wall shear stress reconstruction directly from MRI data 
showed sensitivity to the Reynolds number of the flow, the 
resolution of the MRI grid, and the noise in the MRI data. 

Without noise, the reconstructed WSS converged to the true 
WSS distribution as the MRI grid is refined; however, for 
higher noise levels the accuracy degrades as the MRI grid 
is refined. This can be attributed to the noise in the domain 
varying more rapidly, i.e., over a smaller length scale given 
by the MRI voxel spacing. Because the MRI WSS recon-
struction fits a quadratic function to this noisy data, it is 
inherently sensitive to the length scale over which the noise 
varies. We also observed the accuracy of the WSS recon-
struction directly from the MRI data degrades as the Reyn-
olds number of the flow increases for most voxel grids and 
noise levels considered. Lastly, we found the error of the 
WSS reconstruction increases as the noise in the MRI data 
increases and grows faster as the MRI grid is refined. These 
findings are consistent with studies in the literature [29–31, 
33, 35], which show that the accuracy of WSS computations 
directly from MRI data are limited by a fundamental trade-
off between noise and resolution and become less reliable as 
the Reynolds number of the flow increases.

On the other hand, WSS reconstruction from SBI is rela-
tively insensitive to the Reynolds number of the flow, the 
resolution of the MRI grid, and the noise in the MRI data. 
For all Reynolds numbers and noise levels considered, the 
WSS reconstruction accuracy improves as the MRI grid is 
refined. Furthermore, the reconstruction is reliable for all 
MRI grids considered, i.e., the largest WSS reconstruction 

Fig. 10  WSS reconstruction error using SBI (top row) and MRI (bot-
tom row) as a function of noise level for various Reynolds numbers 
(columns) and MRI grid resolutions (lines) for the stenotic vessel test 
case. Legend: N = 3 VPD (continuous black line with centered black 

circle), N = 9 VPD (continuous red line with centered red triangle), 
N = 15 VPD (continuous pink line with centered pink diamond), 
N = 28 VPD (continuous green line with centered green pentagon)



3999Engineering with Computers (2022) 38:3987–4003 

1 3

error for the coarctated aorta test case was eSBI = 6% , 
which occurred at Reynolds number Re = 1000 with only 
N = 3 VPD and � = 20% noise level. The accurate WSS 
reconstruction in the small data and high noise regime is 
attributed to the significant amount of a priori information 
leveraged by SBI including the geometry of the domain and 
governing equations (with unknown inflow boundary condi-
tions) that are not exploited when reconstructing WSS from 
MRI data alone. Next, we observed that WSS reconstruction 
from SBI showed relatively little sensitivity to the Reyn-
olds number of the flow over the limited range considered in 
this work. We expect these results to generalize throughout 
the laminar regime, but break down as the transitional and 
turbulent regimes are approached. Lastly, for all Reynolds 

numbers and MRI grids considered, the error in the WSS 
reconstruction using SBI increased linearly with noise; the 
maximum error observed is 10% for the stenotic vessel and 
6% for the coarctated aorta which occur at a larger noise 
than usually observed in practice ( � = 20% ). This relatively 
minor sensitivity to noise is attributed to the fact that SBI 
does not directly compute WSS from a noisy field; rather, 
the noisy MRI data is used to reconstruct a noise-free CFD 
velocity field, which is then used to compute WSS. Because 
the velocity field reconstruction is reliable in the presence of 
zero-mean noise, the overall WSS reconstruction is reliable.

The SBI framework was shown to be moderately sensi-
tive to the resolution of the mesh used for the SBI recon-
struction. That is, a coarser mesh can be used for the SBI 

Fig. 11  Scatter plot of the true WSS vs. the reconstructed WSS using 
SBI (red circle) and MRI (blue plus) for 200 points along the upper 
wall intersected with the MRI domain ( Γ ) for the stenotic vessel. The 
rows correspond to noise levels � = 5%, 10%, 15% and the columns 

correspond to MRI resolutions N = 9, 15, 28 VPD. Tight clustering 
around the line of identity (continuous black line) indicates accurate 
WSS reconstruction along Γ
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reconstruction than used to simulate the true flow; however, 
the sensitivity of the WSS reconstruction with respect to 
MRI resolution and Reynolds number increases. This pro-
vides an opportunity to reduce the computational cost of SBI 
for in vivo applications as it suggests there is some flexibility 

in designing the mesh used for SBI provided care is taken 
to ensure underresolution of the CFD velocity field is com-
pensated with additional MRI resolution. Multi-fidelity opti-
mization approaches that progressively refine inexpensive 
models, e.g., simulations on coarser meshes [56] or reduced-
order models [57] [58], to accelerate convergence could be 
used to further reduce the cost of SBI. Alternatively, this 
observation implies that a limited amount of MRI data can 
be used (e.g., from fast patient scans) provided the CFD 
mesh used for SBI reconstruction is relatively fine due to the 
insensitivity of SBI to the quality/resolution of the MRI data 
in this scenario. This leads to an inherent trade-off between 
scan and reconstruction time when using SBI, which is fun-
damentally different and preferred than the trade-off between 
scan time and reconstruction quality attributed to traditional 
MRI postprocessing techniques.

4.2  Summary

This paper details a simulation-based imaging framework 
for blood flow imaging and WSS reconstruction based on 
using numerical optimization to fit a CFD simulation to MRI 
flow velocity data. The primary contribution of the paper are 
two synthetic test cases—flow through a stenotic vessel and 
coarctated aorta—that directly compare WSS reconstruc-
tion accuracy using SBI and standard MRI postprocessing 
techniques. We found the SBI method can accurately recon-
struct WSS and is relatively insensitive to the resolution of 
the MRI data and Reynolds number of the flow. The WSS 

Fig. 12  WSS reconstruction error using SBI (top row) and MRI (bot-
tom row) as a function of MRI grid resolution for various noise lev-
els (columns) and Reynolds numbers (lines) for coarctated aorta test 

case. Legend: Re = 100 (continuous black line with centered black 
circle), Re = 1000 (continuous red line with centered red triangle)

Fig. 13  WSS reconstruction error using SBI (top row) and MRI (bot-
tom row) as a function of noise level for various Reynolds numbers 
(columns) and MRI grid resolutions (lines) for the coarctated aorta 
test case. Legend: N = 3 VPD (continuous black line with centered 
black circle), N = 5 VPD (continuous blue line with centered blue 
square), N = 10 VPD (continuous red line with centered red triangle)



4001Engineering with Computers (2022) 38:3987–4003 

1 3

reconstruction error of SBI increases only linearly with noise 
in the MRI data with a slope that is inversely proportional to 
the resolution of the MRI data. Furthermore, coarser CFD 
grids can be used for the SBI reconstruction than used for 
the reference flow at the cost of increased sensitivity to the 
resolution of the MRI data and Reynolds number of the flow. 
On the other hand, WSS reconstruction from MRI data is 
less accurate than SBI and more sensitive to noise, resolu-
tion of the MRI data, and the Reynolds number of the flow.

4.3  Limitations and future work

While this study resulted in a number observations regarding 
the strengths and weaknesses of using SBI to reconstruct 
WSS, there are a number of limitations that offer promising 
paths for future research. First, the synthetic experiments 
employ several unrealistic assumptions to simplify the prob-
lem: steady, two-dimensional, laminar flow of a Newtonian 
fluid and full knowledge of the geometry. While these were 
important for an extensive, controlled, and fair comparison1 
between SBI and MRI with respect to WSS prediction in 
this simplified setting, they limit the clinical generalizability 
of the observations and should only be considered a lower 
bound on the errors that would be observed in more practi-
cal settings.

Because most clinically relevant flows are three-dimen-
sional and unsteady, the two-dimensional steady flow 
assumptions are the most severe, although the SBI approach 
has been shown to successfully reconstruct in vivo flows 
for three-dimensional, pulsatile, laminar flows [18]. The 
assumption that the geometry is known with certainty is 
also not practical and would introduce potentially large 
errors in both the SBI and MRI WSS prediction [33], which 
can only be mitigated via detailed uncertainty quantifica-
tion to establish the sensitivity of the WSS reconstruction to 
variations in the geometry, or higher resolution angiogram 
scans to extract the vessel wall geometry. The relatively low 
Reynolds numbers considered ensure the flow is laminar, 
which is another fundamental limitation of the study. Addi-
tional research is needed to determine if SBI will be feasible 
for turbulent blood flows (e.g., behind a stenosis with small 
grade) where the inherent chaos of the system can lead to ill-
posed optimization problems [59]. Finally, while blood flow 
does exhibit non-Newtonian behavior in some regimes (low 
inlet velocities and shears) [60], our Newtonian blood flow 
model only introduces secondary errors relative to the other 
assumptions [61]. Future work should consider the general-
izability of these results to three-dimensional, pulsatile flows 
at higher Reynolds numbers with uncertainty in the vessel 

geometry that lead to higher peak WSS and more complex 
distributions. Even though extensive sensitivity analysis is 
not necessarily practical in the generalized setting, the stud-
ies can be guided by the observations of this work.

Furthermore, a study of the impact of varying the point-
spread function used in the SBI reconstruction from that 
used to compute the true flow would provide insight into 
the sensitivity of SBI for in vivo applications because the 
point-spread function of MRI scanners is not known with 
certainty, but can be modeled and estimated depending on 
the MRI protocol. Also, it would be interesting to include 
additional parameters to optimize in the SBI reconstruction, 
e.g., material properties of blood (with Newtonian or non-
Newtonian fluid models) and outflow conditions, to further 
understand the ability of SBI to reconstruct a fully patient-
specific flow.

Appendix

Simplification of tangential component 
of wall traction

To derive the simplified expression for the tangential com-
ponent of the wall traction in (11), we consider a point 
x ∈ �Ωw . All spatially varying quantities will be evaluated 
at this point; however, for brevity, the explicit dependence 
on x will be dropped. Let T  denote the (d − 1)-dimensional 
tangent space of the wall �Ωw at x, i.e., T  is a linear space 
such that for any � ∈ T  , � ⋅ n = 0 . In addition, let the col-
umns of the matrix B ∈ ℝ

d×(d−1) be an orthogonal basis of 
T  , which implies

From the no-slip condition ( v = 0 on �Ωw ), we have that for 
any � ∈ T  , ∇v ⋅ � = 0 , which implies

Next, we observe that the columns of 
[
B n

]
 form a basis of 

ℝ
d and expand the traction vector at x in this basis

where ts ∈ ℝ
d−1 and tn ∈ ℝ are the coefficients of the trac-

tion vector expansion. From this expansion, the tangential 
component of the traction vector reduces to

where we used (18) and unity of the normal vector n. Fur-
thermore, by multiplying (20) by BT and using (18), we have

(18)BTn = 0, BTB = Id−1.

(19)∇v ⋅ B = 0.

(20)t = Bts + ntn,

(21)� = (I − nnT )t = Bts,

(22)ts = BTt.1 Fairness in the sense that both SBI and MRI WSS reconstruction 
benefit from these assumptions.
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Next, we substitute the expression for the traction in (5) into 
the above equation to yield

where we used (18) and (19). Finally, we combine (21) and 
(23) to yield the simplified expression for the tangential 
component of the wall traction in (11).
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