
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4663–4673
https://doi.org/10.1007/s00366-022-01720-8

ORIGINAL ARTICLE

Evaluating mesh quality with graph neural networks

Zhichao Wang1,2 · Xinhai Chen1,2 · Tieju Li2 · Chunye Gong1,2 · Yufei Pang3 · Jie Liu1,2

Received: 7 March 2022 / Accepted: 18 July 2022 / Published online: 30 July 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
The quality of the finite element mesh has a considerable effect on the efficiency and accuracy of computational fluid dynam-
ics (CFD) simulations. To ensure the generated mesh is of good quality, many quality metrics have been proposed to assess
the generated mesh, such as aspect ratio, skewness, Jacobian ratio, etc. Such metrics, however, are primarily employed to
detect locally distorted mesh elements. There are still no justifiable thresholds for determining whether the generated mesh
is of sufficient quality for simulation. Consequently, it is necessary for the professionals to assess the generated mesh after-
ward which is time-consuming and labor-intensive work. With the ability to learn features on the graph, the graph neural
networks have been successfully applied in many application areas to reduce human-computer interaction. In this paper, we
define mesh quality evaluation as a graph classification problem. We first propose a novel and sparse-implemented algo-
rithm to transform the mesh data into graph data. We then introduce a deep graph neural network, GMeshNet, to evaluate
the mesh quality. Experimental results on the NACA-Market and NACA6510 mesh datasets demonstrate the effectiveness
of our proposed network.

Keywords  Computational fluid dynamics · Mesh quality evaluation · Graph neural network · Deep learning application

1  Introduction

Computational fluid dynamics (CFD) has made great pro-
gress in recent decades and has been widely applied in a
variety of industries, including the aerospace industry [1],
automotive engineering [2], electro-thermal simulation
[3], physical simulation [4] and others. In the CFD work-
flow, finite mesh generation is a crucial procedure that

significantly influences simulation efficiency and accuracy
[5]. Degenerate mesh elements with undesired qualities such
as large or small angles or poor shapes can induce ill-condi-
tioning of the matrix system and decrease convergence rate.
Many automatic methods have been proposed to generate
finite meshes. However, the meshes required for CFD simu-
lation are closely tied to the physical problems. The meshes
generated by automatic methods may not assure acceptable
qualities [6]. Therefore, after the mesh generation process,
the professionals usually need to check and evaluate mesh
qualities, which is time-consuming and tedious work. The
manual evaluation remarkably extends the CFD workflow.

Many metrics have been introduced in mesh generation
to evaluate mesh quality. For example, aspect ratio, the
inner angle of a triangle element, skewness, Jacobian ratio,
and other metrics are applied to evaluate two-dimensional
meshes. Volumetric skew and volumetric collapse are com-
monly used metrics to assess tetrahedral meshes in three
dimensions [7]. The above metrics are widely adopted by the
automatic mesh generation methods to guide the generating
process. However, those quality metrics are flawed and can
only be utilized to assess mesh quality in a limited way: on
the one hand, most metrics are element-based, meaning that
they are applied as a scalar function to a finite mesh element.

Zhichao Wang and Xinhai Chen contributed equally to this work.

 *	 Jie Liu
	 liujie@nudt.edu.cn

	 Zhichao Wang
	 wangzhichao@nudt.edu.cn

	 Xinhai Chen
	 chenxinhai16@nudt.edu.cn

1	 Science and Technology on Parallel and Distributed
Processing Laboratory, National University of Defense
Technology, Changsha 410073, China

2	 Laboratory of Software Engineering for Complex
System, National University of Defense Technology,
Changsha 410073, China

3	 China Aerodynamics Research and Development Center,
Mianyang 621000, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01720-8&domain=pdf

4664	 Engineering with Computers (2022) 38:4663–4673

1 3

Thus, it represents local features instead of regional or global
features. Their thresholds are usually based on the profes-
sionals’ subjective experience. On the other hand, some met-
rics may have no bearing on the accuracy of computations.
Knupp [8] investigates the relationship between commonly
used mesh quality metrics with industry, the truncation error,
and interpolation error. Their results show that some mesh
quality metrics may have no connection with the errors. For
these two reasons, the mesh quality metrics are primarily
utilized to detect defective mesh elements and guide the
automatic mesh generation and postprocessing.

With the development of graphics processing unit
(GPU) and accessibility to big data, deep learning has
been applied in various domains, including computational
vision, natural language processing, and machine transla-
tion [9]. The deep learning method can learn an abstract
function which maps the input data to some target. The
method interactively optimizes the model’s parameters
through the gradient descent algorithm. In recent years,
graph neural networks (GNNs) have shown the ability to
perform deep learning on graph data. They have been suc-
cessfully applied to issues involving graph data as input,
such as node classification, graph classification, network
embedding [10]. In this paper, we utilize GNN to evaluate
the mesh quality without human involvement. We intro-
duce a preprocessing algorithm for transforming mesh data
to graph data that can be applied for meshes of different
topologies. We also propose a deep graph neural network,
GMeshNet, to evaluate the mesh qualities by categorizing
meshes by pre-defined classes. The main contributions of
our work are as follows:

1.	 We introduce two graph representation schemes for
meshes, and a novel, sparse-implemented preprocess-
ing algorithm to transform CFD mesh data to graph data.
The algorithm is applicable to different meshes, such as
structured meshes or unstructured meshes.

2.	 We propose a deep graph neural network, GMeshNet, for
the mesh quality evaluation. The network can utilize the
topology of the meshes to guide the mesh evaluation.

3.	 We validate GMeshNet on the real world mesh datasets
NACA-Market [11] and NACA6510. It achieves high
performance in detecting and recalling distorted meshes.
The experiment results show the effectiveness of our
proposed network.

The remainder of this paper is organized as follows. We pre-
sent related work on mesh quality metrics and mesh evalu-
ation methods with machine learning in Sect. 2. In Sect. 3,
we introduce our data transform algorithm and our network.
In Sect. 4, we evaluate our proposed network on the mesh
benchmark datasets, NACA-Market and NACA6510. We
conclude and discuss future work in Sect. 5.

2 � Related work

Over the years, mesh quality evaluation has been studied
in many different methods. Since it is difficult to define an
evaluation function to take the entire mesh as input, mesh
evaluation usually adopts element-based mesh quality met-
rics, which are formulated by scalar functions. Many mesh
quality metrics have been proposed and widely applied in
the industry for structure meshes with different topological
structure. Li et al. [7] summarizes various commonly used
mesh quality metrics for both two-dimensional and three-
dimensional meshes. Warp angle, for example, is an angular
quality metric used to evaluate the skewness of the finite
element. For triangular mesh, it is defined as

where �1 , �2 , �3 is the smaller crossing angle between the
triangular mesh element’s center lines and medians. Jaco-
bian Ratio, defined as Eq. (2), evaluates how far an element’s
shape deviates from its ideal shape.

where ‖J‖min and ‖J‖max are the minimum and maximum
Jacobian determinants of finite elements. Sarrate et al. [12]
proposes a new approach for representing triangular mesh
elements in a bound domain, which can graphically depict
triangular meshes. Nie et al. [13] discusses several qual-
ity metrics for tetrahedral mesh, and shows the inconsistent
simulation results when adopting different metrics. Kwok
and Chen [14] develop a mesh quality metric for hexahedral
and wedge elements based on the aspect ratio, the warping
factor, and Jacobian determinants. It exhibits an explicit cor-
relation with the solution errors. Since the lack of mathemat-
ical theory for quality metrics, Knupp [15] places the quality
metrics in an algebraic framework and provides a method of
constructing, classifying and evaluating mesh quality met-
rics. Knupp [16] specifies essential properties that a quality
metric should satisfy, as well as explicit formulas for con-
structing different quality metrics for various mesh elements.
Despite their wide applications in the industry, those quality
metrics are usually employed to detect defective mesh ele-
ments. Besides this, their thresholds are often ambiguous
and highly subjective. Using different mesh quality metrics
may even lead to different simulation results.

Aside from those element-based mesh quality metrics, a
lot of effort has been put into evaluating mesh quality with
machine learning method. We divide those works into two
families. One adopts traditional machine learning methods,
which use feature engineering to construct input. The other
utilizes the deep learning methods, which allow the network
to extract needed features on its own. The support vector

(1)� skew = 90◦ −min
(
�1, �2, �3

)

(2)JR =
‖J‖min

‖J‖max

4665Engineering with Computers (2022) 38:4663–4673	

1 3

machine is the most popular linear model for classification
and regression problems before the rise of deep learning
[17]. The algorithm creates a hyperplane in feature space
and classifies data by separating them into different sub-
spaces. Support Vector Regression (SVR) is the regression
model based on the same idea. Chetouani [18] evaluates
3D mesh quality (those meshes are used in computer vision
instead of CFD) with the SVR model. It combines speci-
fied mesh quality metrics and geometric attributes as input
features and then employs the SVR to predict the quality
scores. Sprave and Drescher [19] consider the neighbor-
hoods of a mesh element by evaluating and aggregating the
values of its neighborhoods’ quality metrics. Feedforward
neural networks (FNNs) and extremely randomized trees
(ExtraTrees) are used to classify mesh elements. As can be
seen, such methods are not end-to-end algorithms, as they
take mesh quality metrics rather than mesh geometric attrib-
utes as input. Also, determining appropriate quality metrics
as input features is difficult.

With the development of GPU and the availability of big
data, the deep learning method can now solve many prob-
lems that were previously difficult for machines to address.
By deepening and widening the network, deep neural net-
works (DNNs) can extract high-level features from the raw
input data independently. DNNs can perform classification
under diverse application environments, such as text clas-
sification, image classification, speech recognition, etc [9].
Convolutional neural networks (CNNs) [20] are commonly
used in computer vision tasks such as image classification
[20], target detection [21], target segmentation [22], etc.
GridNet [11] and MVE-Net [23] develop CNN-based mesh
quality evaluation models based on the similar data repre-
sentation between two-dimensional structural meshes and
the grid data. The models take the geometric attributes of
mesh elements as input features. The experimental results
on structured mesh show that neural networks can evaluate
mesh quality in an end-to-end manner. However, such CNN-
based models are challenging to apply to three-dimensional
meshes or unstructured meshes. It is difficult to represent a
three-dimensional mesh with a two-dimensional grid with-
out losing information.

Graph neural networks (GNNs) have shown their ability
to handle graph data structures. They have been successfully
applied in many environments, including traffic prediction
[24], recommender systems [25], molecular properties pre-
diction [26] and social influence prediction [27]. Because of
the enormous success of CNNs in computer vision, a lot of
effort has been put into redefining convolution and pooling
operation on graphs. There are two types of convolutions
on graphs, spectral convolution [28] and spacial convolu-
tion [29]. The former represents node features in the spec-
tral domain with Fourier transform on the graph. The latter
aggregates the neighbors’ features of the node to generate

the hidden features. In classification tasks, convolution lay-
ers are used to extract features from raw input data, whereas
pooling layers are adopted to reduce input size and widen
the receptive field. The node clustering methods [30] learn a
cluster assignment matrix to coarsen the nodes and the graph
structure. The node drop methods [31] score every node and
then perform the pooling by dropping a percentage of nodes.

Taken together, we can see that traditional mesh qual-
ity metrics have limited usage. Traditional machine learn-
ing methods for evaluating mesh quality rely heavily on the
manual construction of mesh features, which is not an end-
to-end approach. While the CNN-based mesh quality evalu-
ating methods have shown promising results on 2D struc-
tured meshes, it cannot be extended to other mesh types. In
summary, this paper proposes a novel mesh quality evalua-
tion network based on GNN. The proposed method can be
applied to different types of meshes and be performed in an
end-to-end manner.

3 � Proposed method

In this paper, we define mesh evaluation as a graph clas-
sification task under supervised learning. Through a pre-
processing algorithm, we transform the meshes into graph
data and construct the input features. The GMeshNet takes
the graph data as input and predicts the mesh quality by
classifying it into pre-defined classes.

3.1 � Mesh preprocessing algorithm

The input of GNNs is graph data. However, the mesh is usu-
ally stored by a set of point coordinates or mesh elements.
To apply GNNs on meshes, a graph-based representation of
the mesh is required. In this part, we propose two graph rep-
resentation schemes for mesh data. Furthermore, we intro-
duce an algorithm with sparse implementation to transform
the mesh data into graph data. The main advantage of our
algorithm is that it can be applied to meshes with different
topologies.

A graph is pair of G = (V ,E) , where V = {vi‖i ∈ N}
is the set of vertices (N is the number of the vertices) and
E = {eij‖eij =

�
vi, vj

� �
vi, vj

�
∈ V2} is the set of edges. For

an undirected graph, eij is identical to eji . The finite element
mesh is made up of nodes and elements. In this paper, we
present two schemes for representing mesh as a graph. The
element-based graph treats mesh elements as vertices and
the adjacencies of mesh elements as edges of the graph.
The point-based graph treats mesh nodes as vertices and the
adjacencies of nodes as edges of the graph. Using the graph
representation, we can represent a mesh with its input feature
matrix X and adjacency matrix A. The former represents the
features of the vertices (mesh nodes or elements), while the

4666	 Engineering with Computers (2022) 38:4663–4673

1 3

latter represents the topology of the mesh. Figure 1 depicts
the two representation schemes for a structured mesh.

Next, we introduce the algorithm for constructing the
input feature matrix X and the adjacency matrix A from
the raw mesh file format. For the purpose of this paper, we
mainly talk about the preprocessing algorithm of the struc-
tured quadrilateral mesh. It is easy to expand to other types
of meshes. In this paper, we illustrate our algorithms with
the file format which stores the point coordinates of each
mesh element.

3.1.1 � The point‑based graph

The adjacencies of mesh nodes located in the same element
are easily accessible. However, one node may appear in dif-
ferent elements which are stored separately in the mesh file.
The key point is how to get the full adjacencies of one node.
The main idea is to get the index of the same node in differ-
ent elements, obtain adjacency and drop duplicated nodes in
different elements. We construct Xp ∈ ℝ

4N×3 by stacking the
coordinates of mesh elements’ nodes, where N is the number
of the mesh elements, and Xp[i,⋅]

 is the node i coordinates.
We have duplicated nodes in different elements, meaning
that for some i, j we have Xp[i,⋅]

= Xp[j,⋅]
 . We use Ap ∈ ℝ

4N×4N
to represent the adjacency of nodes in the same element. To
get the adjacency of the nodes in separate elements, a matrix
As is defined as

Intuitively, aij = 1 means that node i and node j are the
same node. Then the adjacencies of the nodes in different
elements can be attained by

(3)

As = [aij] ∈ ℝ
4N×4N ,

where aij =

{
1 , if Xp[i,⋅]

= Xp[j,⋅]

0 , otherwise

The first Eq. (4) computes the adjacencies of the nodes in
different elements. The Reformat operation sets the element
of a matrix to one if it is greater than one. To avoid losing
adjacent relationships when dropping duplicated nodes, we
need to ensure that if node i is adjacent to node j, then node
i is adjacent to the duplicated nodes of node j. Such opera-
tion can be done by

The final step is dropping duplicated nodes in Xp and A′
d
 .

Let duplicated_idx = {j‖aij = 1, i < j} denotes the index set
of duplicated nodes to be dropped. Then the no duplicated
node index is idx = {i‖i ∈ [1, 4N], i ∈ ℤ} − duplicated_idx .
Finally, the input feature matrix X and adjacency matrix A
are generated by

3.1.2 � The element‑based graph

In this representation, we treat mesh elements as vertices.
Two elements are adjacent if and only if the two elements
share one edge, i.e., the two elements have more than one
same point coordinates. The input feature matrix X ∈ ℝ

N×d
is obtained directly from the raw mesh files, where N is the
number of mesh elements and d is the number of element
features. We still need a way to construct adjacency rela-
tions between mesh elements. Suppose that S is the element
assignment matrix, which is define as S =

[
sij
]
∈ ℝ

Np×N ,
where Np is the number of the nodes, and sij equals to one
if node i in element j, otherwise equals to zero. Also let
Ap ∈ ℝ

Np×Np be the adjacency matrix of the point-based
representation. Then we can obtain the adjacency matrix
denoting the strength between two elements:

If two elements share one edge, the strength between the
elements is 8. The connection strength is illustrated in Fig. 2.
So, the item of final adjacency matrix A is

The above preprocessing algorithms are implemented
with sparse matrixes. For a structure two-dimensional
mesh with 30,400 elements, it only takes 0.79 s to

(4)An = ApAs

(5)A�
n
= Reformat(An)

(6)Ad = AsA
�
n
, A�

d
= Reformat

(
Ad

)

(7)X = Xp[idx,⋅],A = A�
d[idx,idx]

(8)Ae = STApS

(9)A[i,j] =

{
1, if Ae[i,j] = 8

0, otherwiseFig. 1   Left: Mesh nodes correspond to vertices on the graph. The
adjacency of vertices corresponds to the adjacency of nodes. For
example, vertex 5 is adjacent to vertex 2, 4, 6 and 8. Right: Mesh ele-
ments are treated as vertices on the graph. Two elements are adjacent
if and only if they share one edge. For instance, element 3 is adjacent
to element 1, 4

4667Engineering with Computers (2022) 38:4663–4673	

1 3

preprocess a mesh into a graph. It can be further opti-
mized by rearranging the index order of the nodes or the
elements. After obtaining X and A, Min–Max Normali-
zation is adopted to regularize the input feature matrix.

3.2 � Network architecture

Typically, a mesh may have a large number of elements.
To extract high-level features from low-level features, we
design a deep graph neural network. As shown in Fig. 3
our GMeshNet mainly consists of graph convolutional
layers, graph pooling layers, and Jumping connections.
The graph convolution layers aggregate the features of the
elements on the graph layer-by-layer. And the graph pool-
ing layer reduces the size of the graph and expands the
graph convolution receptive field. Moreover, we employ
Jumping connection to aggregate information under dif-
ferent hierarchical representations. Finally, an MLP clas-
sifies data into different classes.

3.3 � Graph convolution layers

Similar to CNNs, spatial GNNs extract hidden features of
vertices on the graph by aggregating the features of neigh-
bors. Depending on the aggregation method, there are many
different graph convolution operations. Since different neigh-
bors may have different influences on the hidden features of
the vertice, we adopt GAT [29] as the convolutional layer. It
assigns different weights to different vertices in the neigh-
borhood. Specifically, the inputs of the h th graph convolu-
tion are the feature matrix, Xh =

[
xhT
1
, xhT

2
, ..., xhT

N

]
∈ ℝ

N×m ,
and the adjacency matrix, Ah ∈ ℝ

N×N , where N is the num-
ber of the vertices, m is the dim of input features, xh

i
 is the

features of vertice i in layer h. It then produces a new feature
matrix X�

h
∈ ℝ

N×n as the input of the pooling layer, where n
is the dim of output features. Suppose the weight between
vertice i and vertice j is �ij , then the hidden features of the
vertice i are attained by

where � is the ReLU function, W is the transform matrix
and Ni is the indexes of neighbours of vertice i. To sum up,
GAT performs as

As the GNN gets deeper and deeper, it suffers from over-
smoothing [32]. Over-smoothing leads to possible degra-
dation of the performance of the network as it gets deeper
and deeper. To avoid this, we adopt residual connection,
which is proposed by Li et al. [33] and Li et al. [34], to
tackle this problem. We computer the Xres

h+1
 instead of Xh+1

(10)xh
i

�
= �

(
∑

j∈Ni

�ij�xh
j

)

(11)X�
h
= GAT(Xh,Ah)

i j ji

Fig. 2   Element i and j share one edge. Each element can obtain the
adjacencies of the identical nodes on the other elements. The lines
show the connection between the elements. Thus, in this case the con-
nection strength of the two elements is 8

Fig. 3   The proposed network
for mesh quality evaluation.
Through preprocessing, the
mesh is represented with the
input feature matrix X and
the adjacency matrix A. The
network learns the features of
the mesh and then predicts the
mesh quality by classifying
it into predefined categories.
The GraphConv layer extracts
features with message passing
among the vertices. The Graph-
Pooling layer coarsens the graph
by scoring the nodes the retain-
ing the most valuable vertices

4668	 Engineering with Computers (2022) 38:4663–4673

1 3

and let the input feature dim equal to output feature dim to
enable addition between residuals and original input matrix.
Additionally, LayerNorm [35] and activation function � are
performed before the graph convolution. Figure 3 shows the
structure of the graph convolution layers.

3.4 � Pooling layers

The mesh may consist of millions of mesh elements. By
pooling the graph into smaller sizes, the network could learn
local features from mesh elements and reduce its parameters
and computing overhead. Due to a large number of mesh
elements, it is inefficient to perform node-cluster pooling
methods (e.g. DiffPool [30]) since they require to compute
the assignment matrix. Therefore, we adopt SAGPool [36] ,
implemented with sparse operations, to pool the graph data.

More specifically, the SAGPool first obtains the self-
attention scores Z ∈ ℝ

N of the nodes by Graph Convolu-
tion. Further top ⌈kN⌉ vertices are selected based on the
value of Z, where k ∈ (0, 1] is the pooling ratio. Finally, the
reconstructed feature matrix X′

h
 and adjacency matrix Ah are

obtained by

3.5 � Jumping connection

To classify the graph, we need a representation of the entire
graph. The commonly used graph representation methods
are global average readout operation and global maximum
readout operation. The former utilizes the average features of
all vertices as graph representation, while the latter uses the
maximum features of all vertices. To enhance the robustness
of the algorithm, we concatenate the above two representa-
tions together. The readout operation is

where the two pooling operations output representations in
ℝ

n.
Additionally, to consider graph representations under dif-

ferent levels, we apply JK-Net [37] to concatenate graph
representations under different levels. The effectiveness
of the JK-Net and the analysis of different connect in JK-
Net are demonstrated with experiments. The final repre-
sentation is then input to an MLP with SoftMax output for

(12)
X�
h
= Xres

h
+ Xh

= GAT(�(LayerNorm(Xh)),Ah) + Xh

(13)

idx =top − rank(Z, ⌈kN⌉)
Zmask =Z[idx],X

�
h
= X�

h[idx,∶]

Xh+1 =X
�
h
⊙ Zmask , Ah+1 = Ah[idx,idx]

(14)gh = [global_avg_pool(Xh), global_max_pool(Xh)]
T

classification. Between fully connected layers, BatchNorms
[38] are adopted to stable the training process.

4 � Experiments

In this section, we evaluate our proposed GMeshNet on
the real mesh benchmark datasets, NACA-Market and
NACA6510. In Sect. 4.1, we introduce the datasets and the
features of the input. Section 4.2 demonstrates the train-
ing procedures. The results of the network are discussed
in Sect. 4.3. Furthermore, we discuss the effect of hyper-
parameters and structures of the Network on the perfor-
mance in the last section.

4.1 � Datasets

We evaluate GMeshNet on two mesh benchmark datasets,
NACA-Market and NACA6510. NACA-Market [11] is a
two-dimensional structured mesh dataset proposed for the
mesh quality evaluation task. It has a total of 10240 meshes
with different sizes. The distorted meshes are generated by
modifying points and lines of the well-shaped mesh. Meshes
are classified into eight types depending on their smooth-
ness, orthogonality, and spacing distribution. We verify the
mesh quality with CFD solver in terms of solution accuracy
and convergence speed. Figure 4 shows some examples of
meshes with different properties. To illustrate the generaliza-
tion performance of our network under different airfoils, we
used the same method to construct the NACA6510 dataset
(a total of 1024 meshes) from the NACA6510 airfoil, which
is shown in Fig. 4e. In experiments, we choose the element-
based representation to represent mesh. We leave the point-
based representation for future work because it performs
poorly in the experiments. Some insights are provided in
Sect. 4.4.3 to explain the difficulties of learning from point-
based representation. The edge length, the maximum angle
and the area of the mesh element are adopted as vertices
features.

4.2 � Training procedures

During our training, 10% of the meshes are used as testing
data to get the final accuracy of the network. 10% of the
meshes are employed for validation in training. The remain-
ing meshes are adopted as the training data. We select AMS-
Grad [39] with a initial learning rate of 1e-2 as the optimizer,
and manually adjust the learning rate in the trainning . We
use cross-entropy as the loss function and add L2 regulariza-
tion with 1e-4 weight decay for the NACA-Market dataset
and 5e-4 for the NACA6510 dataset. The batch size is set
to 32. For all pooling layers, the pooling ratio is set to 0.78.
The experiments are carried out on two RTX Titan GPUs.

4669Engineering with Computers (2022) 38:4663–4673	

1 3

4.3 � Network evaluation results

First, we evaluated the accuracy of the network on the test
set of the NACA-Market. The classification results of dif-
ferent types of meshes are shown in Table 1. O, S, D denote
the orthogonality, smoothness, and distribution density
of the mesh, respectively. N-O represents the meshes of
poor orthogonality, and N-OD represents the meshes poor
orthogonality and distribution. The W represents meshes
with good qualities. From the experiment results, we can

see that GMeshNet achieves high accuracy on the dataset.
For mesh with good qualities, the network achieves the high-
est accuracy with 99.22%. The network can easily classify
the meshes with poor orthogonality and distribution. For
different types of meshes, the accuracy rate is all above 85%,
which demonstrates the effectiveness of GMeshNet for mesh
quality evaluation.

Second, we utilize recall on NACA-Market test set to
evaluate the ability of GMeshNet to identify defects of the
mesh. In the experiment, we calculate the recall based on

(a) Mesh with poor distribution (mesh density near the
bound layer is inappropriate)

(b) Mesh with poor smoothness (unsmoothed areas are
colored)

(c) Mesh with poor orthogonality (elements with poor
orthogonality are marked red)

(d) Well-shaped mesh

(e) Mesh in NACA6510 dataset

Fig. 4   Examples of meshes in NACA-Market [11] and NACA6510 dataset

Table 1   Confusion matrix
of the GMeshNet on NACA-
market

The diagonal elements of the confusion matrix represent the percentages for which the predicted label is
equal to the true labelfor meshes with different properties. We highlight them in bold

Labels W (%) N-O (%) N-S (%) N-D (%) N-OS (%) N-OD (%) N-SD (%) N-OSD (%)

W 99.22 0.00 0.73 0.00 0.00 0.00 0.00 0.00
N-O 0.00 94.80 0.00 0.00 4.23 0.71 0.00 0.00
N-S 13.28 0.00 87.18 0.00 0.00 0.00 0.43 0.00
N-D 0.78 0.00 0.00 97.25 0.00 0.00 2.16 0.00
N-OS 0.00 13.60 0.73 0.00 85.00 0.35 0.00 0.83
N-OD 0.00 0.40 0.00 0.00 0.00 93.97 0.00 6.67
N-SD 0.00 0.00 1.10 9.02 0.00 0.00 88.79 0.00
N-OSD 0.00 0.00 0.00 0.00 0.77 9.57 0.00 87.92

4670	 Engineering with Computers (2022) 38:4663–4673

1 3

the orthogonality, smoothness and distribution of the mesh.
Recall indicates the percentage of bad meshes identified by
the network out of all bad meshes. For example, the recall
of the N-O meshes is defined as

Table 2 shows the results of recalling a different kind
of defects. From Table 2, we can see that GMeshNet can

(15)recallN-O =
N-O meshes identified by the network

all N-O meshes

retrieve almost all bad meshes. Meshes of poor orthogo-
nality and poor distribution can be easily distinguished
with the accuracy of 99.81% and 99.21%, respectively. In
comparison with GridNet [11], GMeshNet has comparable
performance in terms of recall. As for the overall accuracy,
GMeshNet has 1.11% improvement. But more importantly,
GMeshNet has the ability to train on all types of meshes
rather than structure meshes.

Third, we also validate our network by comparing it
with the widely used CFD-preprocessing software ICEM
CFD, which utilizes traditional metrics to evaluate mesh
qualities. As shown in Fig. 5, we can see that the pro-
posed method can correctly discriminate meshes with
poor distribution, poor smoothness or poor orthogonality.
Furthermore, the network is superior to traditional qual-
ity metrics. Figure 5d depicts a defective mesh which has
poor-distribution. However, the ICEM CFD misclassifies it
as a well-shaped mesh. In contrast, our proposed network
successfully detects it, which shows the effectiveness of
the proposed network compared with traditional metrics.

Fourth, to illustrate the generalization performance of
the network, we validate the network on a different air-
foil mesh dataset, NACA6510. The experimental results
are shown in Table 3. We can see that the network can
also achieve satisfying accuracy and recall when the air-
foil changes, which shows the ability of the network to
learn patterns of meshes with different airfoils. We can
also observe that due to overfitting on the small-scale
NACA6510 dataset, the performance is slightly inferior
to that on NACA-Market.

Table 2   Recall and accuracy of different networks

Mesh property Network

GMeshNet (%) GridNet (%)

Orthogonality 99.81 96.95
Smoothing 88.16 93.46
Distribution 99.21 99.92
Overall accuracy 91.76 90.65

Table 3   Recall and accuracy of
GMeshNet on the NACA6510
dataset

Mesh property Recall (%)

Orthogonality 80.73
Smoothing 78.57
Distribution 82.69
Overall accuracy 85.37

(a) Mesh with poor distribution (b) Mesh with poor smoothness

(c) Mesh with poor orthogonality (d) Mesh classified as well-shaped mesh by the mesh metrics
and actually defective

Fig. 5   Visualization of discrimination results on NACA-Market with
ICEM. Figure 5a–c, shows that our network can discriminate the
defective meshes in agreement with the traditional metrics. However,

for some meshes (such as mesh in Fig. 5d) that are actually flawed,
our network can correctly classify them but the traditional mesh qual-
ity evaluation metrics fail

4671Engineering with Computers (2022) 38:4663–4673	

1 3

In summary, our proposed GMeshNet can evaluate the
mesh quality with both high accuracy and recall, has a bet-
ter discriminative ability compared to traditional metrics
and can be applied to different meshes.

4.4 � Analysis of hyper‑parameters

In this part, we discuss the effect of hyper-parameters on the
performance. For the mesh evaluation tasks, selecting the
appropriate hyper-parameters is beneficial to the network
performance, and can reduce the computational and storage
overhead. We only discuss the hyper-parameters that have a
large impact on the network performance. Due to the long
training time of the model on the whole dataset, we perform
hyper-parameter experiments on a subset (1024 meshes of
the same size) of the dataset. In the experiments, we fix other
parameters and change the depth of the network and the
pooling ratio of the pooling layers. The experimental results
are shown in Table 4.

4.4.1 � Depth of the network

As the number of network layers deepens, the performance
of the network improves to some extend. The average accu-
racy of the 16-layer network has a 2.99% improvement than
the average accuracy of the 4-layer network. However, A
deeper network is not necessarily better than a shallower
network. We can see that the 8-layer networks with 0.7
pooling ratio achieve the best performmance. A shallow
network with a suitable pooling rate may be better than a
deep network with an inappropriate pooling rate. In addition,
a appropriate number of network layers can also reduce the
sensitivity of the network to the pooling rate. We can see
that the performance of the network is less sensitive to the
pooling rate when the network depth is 25 or 32.

4.4.2 � Pooling ratio

The other important hyper-parameter is the pooling ratio k.
Intuitively, the pooling ratio determines what percentage of
vertices are left after pooling. A larger k helps to preserve

the information of the graph, while a smaller k helps to
quickly reduce the size of the graph resulting to a smaller
network depth. We can see that the optimal pooling ratio
is related to the network depth. For 4-layer or 16-layer net-
works, the performance is better at the pooling ratio of 0.5.
While for 8-layer networks, the appropriate pooling ratios
is 0.7. 25-layer networks and 32-layer networks achieve best
result at a pooling ratio of 0.3 and 0.9. On average, 0.5 is
an appropriate pooling rate for networks of different depths.
This experience can help us to set the pooling ratio at the
beginning of constructing the mesh evaluation network.

4.4.3 � Representation scheme

In Sect. 3.1 we propose two different representations, but in
our experiments, we only used the element-based representa-
tion. In fact, we experimented with both representations, but
the point-based representation fails to achieve satisfactory
results even for simple discrimination tasks (such as train
on 256 samples). We believe that the reason for this is that
the point-based representation loses the information of the
mesh elements. The mesh quality depends in large part on
the shape of the mesh elements. However, in the point-based
scheme mesh nodes become the basic units for feature learn-
ing. Because of the stochastic of neural networks, we cannot
constrain how the network learns, for example, let it learn
the norm of the vector which is obtained by subtracting the
coordinates of two points. Thus, the graph convolution lay-
ers may not capture the edge features. However, we believe
that the information about the element edges of meshes is
important for network to determine mesh quality. Future
work includes the use of convolution layers utilizing edge
features, so that point-based representations can also achieve
satisfactory results.

4.5 � The analysis of network structure

In this section, we illustrate the effectiveness of JK-Net and
the effect of the graph convolution layer on the network per-
formance. The purpose of JK-Net is to consider the graph
representation under different hierarchies in the network. In
JK-Net, we can use different schemes to aggregate graph
representations, such as as concatenation and max pooling.
We test the effect of JK-Net on the performance in different
aggregation schemes, including without JK-Net, with max
pooling scheme and with concatenation scheme. The results
are shown in Table 5. We can see that not using JK-Net the
network has a large degradation in performance. Compared
with the max pooling scheme, the concatenation scheme can
achieve higher accuracy.

In addition to JK-Net, we also compare the effect of
adopting different graph convolutions on the network per-
formance. We select classical graph convolutions for the

Table 4   Test accuracy for different hyper-parameters

Network depth 0.3 (%) 0.5 (%) 0.7 (%) 0.9 (%) Avg. (%)

Pooling ratio
 4 81.22 85.12 81.46 82.68 82.62
 8 84.88 84.10 88.29 82.68 84.99
 16 81.71 88.05 85.61 87.07 85.61
 25 86.10 84.63 84.15 85.61 85.12
 32 85.61 84.15 84.39 85.85 85.00
 Avg. 83.90 85.21 84.78 84.78 84.67

4672	 Engineering with Computers (2022) 38:4663–4673

1 3

experiment, including GCN [28], GraphSAGE [40], GAT
[29]. The experimental results are shown in Table 6. We
can see that the network based on GAT achieves better train
and test accuracy, which indicates that using that type of
convolutions makes the network have better learning ability.
However, the choice of the graph convolution layer has less
impact on the performance of the network. In summary, we
recommend GAT as the graph convolution for feature learn-
ing on the mesh.

5 � Conclusion

The mesh quality is of great importance for the accuracy of
CFD simulations. However, the widely used mesh quality
metrics based on mesh elements have limited usage. The
mesh quality evaluation still relies on manual work. To
tackle this problem, we introduce graph neural network into
the mesh quality evaluation. Firstly, we define two graph-
based representations for meshes, and propose algorithms
with sparse-implementation to transform any type of mesh
into the graph. Secondly, a deep graph neural network,
GMeshNet, is designed for mesh quality evaluation. We
evaluate our network on NACA-Market and NACA0012
mesh datasets. The experimental results show the feasibil-
ity of the GNN-based network for mesh evaluation tasks for
different meshes.

Future work includes extending the classification of the
whole mesh to the classification of mesh elements. However,
performances for the meshes with different working condi-
tions (such as when Reynolds number and angle of attack
change) and topological structures still need to be inves-
tigated in future work. By considering the flow field fea-
tures and working condition features, we believe that GNN
can deal with different meshes as we have shown when the

airfoil changes. Moreover, we will focus on applying the
GNN-based networks to more fields in CFD, including mesh
generation, mesh optimization, and others.

Author Contributions  All authors contributed to the study conception
and design. Data collection and analysis, network design, experiment
and result analysis were performed by ZW and XC. The first draft
of the manuscript was written by ZW and all authors commented on
previous versions of the manuscript. All authors read and approved
the final manuscript.

Funding  This research work was supported in part by the National
Numerical Windtunnel project (NNW2019ZT5-A10) and National Key
Research and Development Program of China.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

References

	 1.	 Spalart P, Venkatakrishnan V (2016) On the role and challenges
of CFD in the aerospace industry. Aeronaut J 120(1223):209–232.
https://​doi.​org/​10.​1017/​aer.​2015.​10

	 2.	 Watanabe N, Miyamoto S, Kuba M et al (2003) The CFD applica-
tion for efficient designing in the automotive engineering. SAE
Trans 1476–1482. https://​doi.​org/​10.​4271/​2003-​01-​1335

	 3.	 Das S, Paul S, Doloi B (2019) Application of cfd and vapor bub-
ble dynamics for an efficient electro-thermal simulation of edm:
an integrated approach. Int J Adv Manuf Technol 102. https://​doi.​
org/​10.​1007/​s00170-​018-​3144-x

	 4.	 Wan S, Ang Y, Sato T et al (2013) Process modeling and cfd simu-
lation of two-way abrasive flow machining. Int J Adv Manuf Tech-
nol 71:1077–1086. https://​doi.​org/​10.​1007/​s00170-​013-​5550-4

	 5.	 Ho-Le K (1988) Finite element mesh generation methods: a
review and classification. Comput Aided Des 20(1):27–38. https://​
doi.​org/​10.​1016/​0010-​4485(88)​90138-8

	 6.	 Gammon M (2018) A review of common geometry issues affect-
ing mesh generation. In: 2018 AIAA Aerospace Sciences Meet-
ing, p 1402. https://​doi.​org/​10.​2514/6.​2018-​1402

	 7.	 Li H et al (2012) Finite element mesh generation and decision
criteria of mesh quality. China Mech Eng 23(3):368

	 8.	 Knupp P (2007) Remarks on mesh quality. Tech. rep., Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States)

	 9.	 Guo Y, Liu Y, Oerlemans A et al (2016) Deep learning for visual
understanding: a review. Neurocomputing 187:27–48. https://​doi.​
org/​10.​1016/j.​neucom.​2015.​09.​116

	10.	 Wu Z, Pan S, Chen F et al (2020) A comprehensive survey on
graph neural networks. IEEE Trans Neural Netw Learn Syst
32(1):4–24. https://​doi.​org/​10.​1109/​TNNLS.​2020.​29783​86

	11.	 Chen X, Liu J, Pang Y et al (2020) Developing a new mesh quality
evaluation method based on convolutional neural network. Eng
Appl Comput Fluid Mech 14(1):391–400. https://​doi.​org/​10.​1080/​
19942​060.​2020.​17208​20

	12.	 Sarrate J, Palau J, Huerta A (2003) Numerical representation of
the quality measures of triangles and triangular meshes. Commun
Numer Methods Eng 19(7):551–561. https://​doi.​org/​10.​1002/​cnm.​
585

Table 5   Experimental results of
the JK-Net aggregation schemes

None means that JK-Net is not
used

JK-Net Accuracy (%)

None 55.37
Max pooling 77.89
Concatenation 86.34

Table 6   Experimental results of the different GraphConv

GraphConv Train accuracy (%) Test accuracy (%)

GCN 91.33 85.99
GraphSAGE 93.16 85.87
GAT​ 94.87 85.47

https://doi.org/10.1017/aer.2015.10
https://doi.org/10.4271/2003-01-1335
https://doi.org/10.1007/s00170-018-3144-x
https://doi.org/10.1007/s00170-018-3144-x
https://doi.org/10.1007/s00170-013-5550-4
https://doi.org/10.1016/0010-4485(88)90138-8
https://doi.org/10.1016/0010-4485(88)90138-8
https://doi.org/10.2514/6.2018-1402
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1080/19942060.2020.1720820
https://doi.org/10.1080/19942060.2020.1720820
https://doi.org/10.1002/cnm.585
https://doi.org/10.1002/cnm.585

4673Engineering with Computers (2022) 38:4663–4673	

1 3

	13.	 Nie C, Liu J, Sun S (2003) Study on quality measures for tetrahe-
dral mesh. Chin J Comput Mech 20(5):579–582

	14.	 Kwok W, Chen Z (2000) A simple and effective mesh quality
metric for hexahedral and wedge elements. In: IMR, pp 325–333

	15.	 Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci
Comput 23(1):193–218. https://​doi.​org/​10.​1137/​S1064​82750​
03714​99

	16.	 Knupp PM (2003) Algebraic mesh quality metrics for unstructured
initial meshes. Finite Elem Anal Des 39(3):217–241. https://​doi.​
org/​10.​1016/​S0168-​874X(02)​00070-7

	17.	 Chauhan VK, Dahiya K, Sharma A (2019) Problem formulations
and solvers in linear SVM: a review. Artif Intell Rev 52(2):803–
855. https://​doi.​org/​10.​1007/​s10462-​018-​9614-6

	18.	 Chetouani A (2017) A 3D mesh quality metric based on features
fusion. Electron Imaging 2017(20):4–8. https://​doi.​org/​10.​2352/​
ISSN.​2470-​1173.​2017.​20.​3DIPM-​001

	19.	 Sprave J, Drescher C (2021) Evaluating the quality of finite ele-
ment meshes with machine learning. arXiv:​2107.​10507

	20.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. Adv Neural Inf
Process Syst 25:1097–1105. https://​doi.​org/​10.​1145/​30653​86

	21.	 Wang J, Zheng T, Lei P et al (2019) A hierarchical convolution
neural network CNN-based ship target detection method in spa-
ceborne sar imagery. Remote Sens 11(6):620. https://​doi.​org/​10.​
3390/​rs110​60620

	22.	 Jalilian E, Uhl A, Kwitt R (2017) Domain adaptation for cnn based
iris segmentation. In: 2017 International Conference of the Biom-
etrics Special Interest Group (BIOSIG), pp 1–6. https://​doi.​org/​
10.​23919/​BIOSIG.​2017.​80535​02

	23.	 Chen X, Liu J, Gong C et al (2021) MVE-Net: An automatic 3-d
structured mesh validity evaluation framework using deep neural
networks. Comput Aided Des 141(103):104. https://​doi.​org/​10.​
1016/j.​cad.​2021.​103104

	24.	 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting. In:
Proceedings of the 27th International Joint Conference on Arti-
ficial Intelligence, pp 3634–3640. https://​doi.​org/​10.​24963/​ijcai.​
2018/​505

	25.	 Monti F, Bronstein MM, Bresson X (2017) Geometric matrix
completion with recurrent multi-graph neural networks. In: Pro-
ceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, pp 3700–3710

	26.	 Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message
passing for quantum chemistry. In: International conference on
machine learning, PMLR, pp 1263–1272

	27.	 Qiu J, Tang J, Ma H et al (2018) Deepinf: Social influence predic-
tion with deep learning. In: Proceedings of the 24th ACM SIG-
KDD International Conference on Knowledge Discovery & Data
Mining, pp 2110–2119. https://​doi.​org/​10.​1145/​32198​19.​32200​77

	28.	 Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. https://​doi.​org/​10.​1145/​34596​37.​
34824​77. arXiv preprint arXiv:​1609.​02907

	29.	 Veličković P, Cucurull G, Casanova A et al (2017) Graph attention
networks. arXiv preprint arXiv:​1710.​10903

	30.	 Ying R, You J, Morris C et al (2018) Hierarchical graph represen-
tation learning with differentiable pooling. In: Proceedings of the
32nd International Conference on Neural Information Processing
Systems, pp 4805–4815

	31.	 Cangea C, Veličković P, Jovanović N, et al (2018) Towards sparse
hierarchical graph classifiers. arXiv preprint arXiv:​1811.​01287

	32.	 Li Q, Han Z, Wu XM (2018) Deeper insights into graph convolu-
tional networks for semi-supervised learning. In: Thirty-Second
AAAI conference on artificial intelligence

	33.	 Li G, Muller M, Thabet A, et al (2019) DeepGCNs: Can GCNs go
as deep as CNNs? In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp 9267–9276, https://​doi.​org/​
10.​1109/​ICCV.​2019.​00936

	34.	 Li G, Xiong C, Thabet A et al (2020) Deepergcn: All you need to
train deeper gcns. arXiv:​2006.​07739

	35.	 Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv:​
1607.​06450

	36.	 Lee J, Lee I, Kang J (2019) Self-attention graph pooling. In: Inter-
national Conference on Machine Learning, PMLR, pp 3734–3743

	37.	 Xu K, Li C, Tian Y et al (2018) Representation learning on graphs
with jumping knowledge networks. In: International Conference
on Machine Learning, PMLR, pp 5453–5462

	38.	 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In: Proceed-
ings of the 32nd International Conference on International Confer-
ence on Machine Learning - Volume 37, ICML’15, pp 448–456

	39.	 Reddi SJ, Kale S, Kumar S (2019) On the convergence of adam
and beyond. arXiv:​1904.​09237

	40.	 Hamilton WL, Ying R, Leskovec J (2017) Inductive representation
learning on large graphs. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. Curran
Associates Inc., Red Hook, NY, USA, NIPS’17, pp 1025-1035

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to thisarticle under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving ofthe accepted manuscript version of this
article is solely governed by the terms of such publishing agreement
andapplicable law.

https://doi.org/10.1137/S1064827500371499
https://doi.org/10.1137/S1064827500371499
https://doi.org/10.1016/S0168-874X(02)00070-7
https://doi.org/10.1016/S0168-874X(02)00070-7
https://doi.org/10.1007/s10462-018-9614-6
https://doi.org/10.2352/ISSN.2470-1173.2017.20.3DIPM-001
https://doi.org/10.2352/ISSN.2470-1173.2017.20.3DIPM-001
http://arxiv.org/abs/2107.10507
https://doi.org/10.1145/3065386
https://doi.org/10.3390/rs11060620
https://doi.org/10.3390/rs11060620
https://doi.org/10.23919/BIOSIG.2017.8053502
https://doi.org/10.23919/BIOSIG.2017.8053502
https://doi.org/10.1016/j.cad.2021.103104
https://doi.org/10.1016/j.cad.2021.103104
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1145/3219819.3220077
https://doi.org/10.1145/3459637.3482477
https://doi.org/10.1145/3459637.3482477
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1811.01287
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1109/ICCV.2019.00936
http://arxiv.org/abs/2006.07739
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1904.09237

	Evaluating mesh quality with graph neural networks
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Mesh preprocessing algorithm
	3.1.1 The point-based graph
	3.1.2 The element-based graph

	3.2 Network architecture
	3.3 Graph convolution layers
	3.4 Pooling layers
	3.5 Jumping connection

	4 Experiments
	4.1 Datasets
	4.2 Training procedures
	4.3 Network evaluation results
	4.4 Analysis of hyper-parameters
	4.4.1 Depth of the network
	4.4.2 Pooling ratio
	4.4.3 Representation scheme

	4.5 The analysis of network structure

	5 Conclusion
	References

