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Abstract
The quality of the finite element mesh has a considerable effect on the efficiency and accuracy of computational fluid dynam-
ics (CFD) simulations. To ensure the generated mesh is of good quality, many quality metrics have been proposed to assess 
the generated mesh, such as aspect ratio, skewness, Jacobian ratio, etc. Such metrics, however, are primarily employed to 
detect locally distorted mesh elements. There are still no justifiable thresholds for determining whether the generated mesh 
is of sufficient quality for simulation. Consequently, it is necessary for the professionals to assess the generated mesh after-
ward which is time-consuming and labor-intensive work. With the ability to learn features on the graph, the graph neural 
networks have been successfully applied in many application areas to reduce human-computer interaction. In this paper, we 
define mesh quality evaluation as a graph classification problem. We first propose a novel and sparse-implemented algo-
rithm to transform the mesh data into graph data. We then introduce a deep graph neural network, GMeshNet, to evaluate 
the mesh quality. Experimental results on the NACA-Market and NACA6510 mesh datasets demonstrate the effectiveness 
of our proposed network.

Keywords Computational fluid dynamics · Mesh quality evaluation · Graph neural network · Deep learning application

1 Introduction

Computational fluid dynamics (CFD) has made great pro-
gress in recent decades and has been widely applied in a 
variety of industries, including the aerospace industry [1], 
automotive engineering [2], electro-thermal simulation 
[3], physical simulation [4] and others. In the CFD work-
flow, finite mesh generation is a crucial procedure that 

significantly influences simulation efficiency and accuracy 
[5]. Degenerate mesh elements with undesired qualities such 
as large or small angles or poor shapes can induce ill-condi-
tioning of the matrix system and decrease convergence rate. 
Many automatic methods have been proposed to generate 
finite meshes. However, the meshes required for CFD simu-
lation are closely tied to the physical problems. The meshes 
generated by automatic methods may not assure acceptable 
qualities [6]. Therefore, after the mesh generation process, 
the professionals usually need to check and evaluate mesh 
qualities, which is time-consuming and tedious work. The 
manual evaluation remarkably extends the CFD workflow.

Many metrics have been introduced in mesh generation 
to evaluate mesh quality. For example, aspect ratio, the 
inner angle of a triangle element, skewness, Jacobian ratio, 
and other metrics are applied to evaluate two-dimensional 
meshes. Volumetric skew and volumetric collapse are com-
monly used metrics to assess tetrahedral meshes in three 
dimensions [7]. The above metrics are widely adopted by the 
automatic mesh generation methods to guide the generating 
process. However, those quality metrics are flawed and can 
only be utilized to assess mesh quality in a limited way: on 
the one hand, most metrics are element-based, meaning that 
they are applied as a scalar function to a finite mesh element. 
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Thus, it represents local features instead of regional or global 
features. Their thresholds are usually based on the profes-
sionals’ subjective experience. On the other hand, some met-
rics may have no bearing on the accuracy of computations. 
Knupp [8] investigates the relationship between commonly 
used mesh quality metrics with industry, the truncation error, 
and interpolation error. Their results show that some mesh 
quality metrics may have no connection with the errors. For 
these two reasons, the mesh quality metrics are primarily 
utilized to detect defective mesh elements and guide the 
automatic mesh generation and postprocessing.

With the development of graphics processing unit 
(GPU) and accessibility to big data, deep learning has 
been applied in various domains, including computational 
vision, natural language processing, and machine transla-
tion [9]. The deep learning method can learn an abstract 
function which maps the input data to some target. The 
method interactively optimizes the model’s parameters 
through the gradient descent algorithm. In recent years, 
graph neural networks (GNNs) have shown the ability to 
perform deep learning on graph data. They have been suc-
cessfully applied to issues involving graph data as input, 
such as node classification, graph classification, network 
embedding [10]. In this paper, we utilize GNN to evaluate 
the mesh quality without human involvement. We intro-
duce a preprocessing algorithm for transforming mesh data 
to graph data that can be applied for meshes of different 
topologies. We also propose a deep graph neural network, 
GMeshNet, to evaluate the mesh qualities by categorizing 
meshes by pre-defined classes. The main contributions of 
our work are as follows: 

1. We introduce two graph representation schemes for 
meshes, and a novel, sparse-implemented preprocess-
ing algorithm to transform CFD mesh data to graph data. 
The algorithm is applicable to different meshes, such as 
structured meshes or unstructured meshes.

2. We propose a deep graph neural network, GMeshNet, for 
the mesh quality evaluation. The network can utilize the 
topology of the meshes to guide the mesh evaluation.

3. We validate GMeshNet on the real world mesh datasets 
NACA-Market [11] and NACA6510. It achieves high 
performance in detecting and recalling distorted meshes. 
The experiment results show the effectiveness of our 
proposed network.

The remainder of this paper is organized as follows. We pre-
sent related work on mesh quality metrics and mesh evalu-
ation methods with machine learning in Sect. 2. In Sect. 3, 
we introduce our data transform algorithm and our network. 
In Sect. 4, we evaluate our proposed network on the mesh 
benchmark datasets, NACA-Market and NACA6510. We 
conclude and discuss future work in Sect. 5.

2  Related work

Over the years, mesh quality evaluation has been studied 
in many different methods. Since it is difficult to define an 
evaluation function to take the entire mesh as input, mesh 
evaluation usually adopts element-based mesh quality met-
rics, which are formulated by scalar functions. Many mesh 
quality metrics have been proposed and widely applied in 
the industry for structure meshes with different topological 
structure. Li et al. [7] summarizes various commonly used 
mesh quality metrics for both two-dimensional and three-
dimensional meshes. Warp angle, for example, is an angular 
quality metric used to evaluate the skewness of the finite 
element. For triangular mesh, it is defined as

where �1 , �2 , �3 is the smaller crossing angle between the 
triangular mesh element’s center lines and medians. Jaco-
bian Ratio, defined as Eq. (2), evaluates how far an element’s 
shape deviates from its ideal shape.

where ‖J‖min and ‖J‖max are the minimum and maximum 
Jacobian determinants of finite elements. Sarrate et al. [12] 
proposes a new approach for representing triangular mesh 
elements in a bound domain, which can graphically depict 
triangular meshes. Nie et al. [13] discusses several qual-
ity metrics for tetrahedral mesh, and shows the inconsistent 
simulation results when adopting different metrics. Kwok 
and Chen [14] develop a mesh quality metric for hexahedral 
and wedge elements based on the aspect ratio, the warping 
factor, and Jacobian determinants. It exhibits an explicit cor-
relation with the solution errors. Since the lack of mathemat-
ical theory for quality metrics, Knupp [15] places the quality 
metrics in an algebraic framework and provides a method of 
constructing, classifying and evaluating mesh quality met-
rics. Knupp [16] specifies essential properties that a quality 
metric should satisfy, as well as explicit formulas for con-
structing different quality metrics for various mesh elements. 
Despite their wide applications in the industry, those quality 
metrics are usually employed to detect defective mesh ele-
ments. Besides this, their thresholds are often ambiguous 
and highly subjective. Using different mesh quality metrics 
may even lead to different simulation results.

Aside from those element-based mesh quality metrics, a 
lot of effort has been put into evaluating mesh quality with 
machine learning method. We divide those works into two 
families. One adopts traditional machine learning methods, 
which use feature engineering to construct input. The other 
utilizes the deep learning methods, which allow the network 
to extract needed features on its own. The support vector 

(1)� skew = 90◦ −min
(
�1, �2, �3

)

(2)JR =
‖J‖min

‖J‖max
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machine is the most popular linear model for classification 
and regression problems before the rise of deep learning 
[17]. The algorithm creates a hyperplane in feature space 
and classifies data by separating them into different sub-
spaces. Support Vector Regression (SVR) is the regression 
model based on the same idea. Chetouani [18] evaluates 
3D mesh quality (those meshes are used in computer vision 
instead of CFD) with the SVR model. It combines speci-
fied mesh quality metrics and geometric attributes as input 
features and then employs the SVR to predict the quality 
scores. Sprave and Drescher [19] consider the neighbor-
hoods of a mesh element by evaluating and aggregating the 
values of its neighborhoods’ quality metrics. Feedforward 
neural networks (FNNs) and extremely randomized trees 
(ExtraTrees) are used to classify mesh elements. As can be 
seen, such methods are not end-to-end algorithms, as they 
take mesh quality metrics rather than mesh geometric attrib-
utes as input. Also, determining appropriate quality metrics 
as input features is difficult.

With the development of GPU and the availability of big 
data, the deep learning method can now solve many prob-
lems that were previously difficult for machines to address. 
By deepening and widening the network, deep neural net-
works (DNNs) can extract high-level features from the raw 
input data independently. DNNs can perform classification 
under diverse application environments, such as text clas-
sification, image classification, speech recognition, etc [9]. 
Convolutional neural networks (CNNs) [20] are commonly 
used in computer vision tasks such as image classification 
[20], target detection [21], target segmentation [22], etc. 
GridNet [11] and MVE-Net [23] develop CNN-based mesh 
quality evaluation models based on the similar data repre-
sentation between two-dimensional structural meshes and 
the grid data. The models take the geometric attributes of 
mesh elements as input features. The experimental results 
on structured mesh show that neural networks can evaluate 
mesh quality in an end-to-end manner. However, such CNN-
based models are challenging to apply to three-dimensional 
meshes or unstructured meshes. It is difficult to represent a 
three-dimensional mesh with a two-dimensional grid with-
out losing information.

Graph neural networks (GNNs) have shown their ability 
to handle graph data structures. They have been successfully 
applied in many environments, including traffic prediction 
[24], recommender systems [25], molecular properties pre-
diction [26] and social influence prediction [27]. Because of 
the enormous success of CNNs in computer vision, a lot of 
effort has been put into redefining convolution and pooling 
operation on graphs. There are two types of convolutions 
on graphs, spectral convolution [28] and spacial convolu-
tion [29]. The former represents node features in the spec-
tral domain with Fourier transform on the graph. The latter 
aggregates the neighbors’ features of the node to generate 

the hidden features. In classification tasks, convolution lay-
ers are used to extract features from raw input data, whereas 
pooling layers are adopted to reduce input size and widen 
the receptive field. The node clustering methods [30] learn a 
cluster assignment matrix to coarsen the nodes and the graph 
structure. The node drop methods [31] score every node and 
then perform the pooling by dropping a percentage of nodes.

Taken together, we can see that traditional mesh qual-
ity metrics have limited usage. Traditional machine learn-
ing methods for evaluating mesh quality rely heavily on the 
manual construction of mesh features, which is not an end-
to-end approach. While the CNN-based mesh quality evalu-
ating methods have shown promising results on 2D struc-
tured meshes, it cannot be extended to other mesh types. In 
summary, this paper proposes a novel mesh quality evalua-
tion network based on GNN. The proposed method can be 
applied to different types of meshes and be performed in an 
end-to-end manner.

3  Proposed method

In this paper, we define mesh evaluation as a graph clas-
sification task under supervised learning. Through a pre-
processing algorithm, we transform the meshes into graph 
data and construct the input features. The GMeshNet takes 
the graph data as input and predicts the mesh quality by 
classifying it into pre-defined classes.

3.1  Mesh preprocessing algorithm

The input of GNNs is graph data. However, the mesh is usu-
ally stored by a set of point coordinates or mesh elements. 
To apply GNNs on meshes, a graph-based representation of 
the mesh is required. In this part, we propose two graph rep-
resentation schemes for mesh data. Furthermore, we intro-
duce an algorithm with sparse implementation to transform 
the mesh data into graph data. The main advantage of our 
algorithm is that it can be applied to meshes with different 
topologies.

A graph is pair of G = (V ,E) , where V = {vi‖i ∈ N} 
is the set of vertices (N is the number of the vertices) and 
E = {eij‖eij =

�
vi, vj

� �
vi, vj

�
∈ V2} is the set of edges. For 

an undirected graph, eij is identical to eji . The finite element 
mesh is made up of nodes and elements. In this paper, we 
present two schemes for representing mesh as a graph. The 
element-based graph treats mesh elements as vertices and 
the adjacencies of mesh elements as edges of the graph. 
The point-based graph treats mesh nodes as vertices and the 
adjacencies of nodes as edges of the graph. Using the graph 
representation, we can represent a mesh with its input feature 
matrix X and adjacency matrix A. The former represents the 
features of the vertices (mesh nodes or elements), while the 
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latter represents the topology of the mesh. Figure 1 depicts 
the two representation schemes for a structured mesh.

Next, we introduce the algorithm for constructing the 
input feature matrix X and the adjacency matrix A from 
the raw mesh file format. For the purpose of this paper, we 
mainly talk about the preprocessing algorithm of the struc-
tured quadrilateral mesh. It is easy to expand to other types 
of meshes. In this paper, we illustrate our algorithms with 
the file format which stores the point coordinates of each 
mesh element.

3.1.1  The point‑based graph

The adjacencies of mesh nodes located in the same element 
are easily accessible. However, one node may appear in dif-
ferent elements which are stored separately in the mesh file. 
The key point is how to get the full adjacencies of one node. 
The main idea is to get the index of the same node in differ-
ent elements, obtain adjacency and drop duplicated nodes in 
different elements. We construct Xp ∈ ℝ

4N×3 by stacking the 
coordinates of mesh elements’ nodes, where N is the number 
of the mesh elements, and Xp[i,⋅]

 is the node i coordinates. 
We have duplicated nodes in different elements, meaning 
that for some i, j we have Xp[i,⋅]

= Xp[j,⋅]
 . We use Ap ∈ ℝ

4N×4N 
to represent the adjacency of nodes in the same element. To 
get the adjacency of the nodes in separate elements, a matrix 
As is defined as

Intuitively, aij = 1 means that node i and node j are the 
same node. Then the adjacencies of the nodes in different 
elements can be attained by

(3)

As = [aij] ∈ ℝ
4N×4N ,

where aij =

{
1 , if Xp[i,⋅]

= Xp[j,⋅]

0 , otherwise

The first Eq. (4) computes the adjacencies of the nodes in 
different elements. The Reformat operation sets the element 
of a matrix to one if it is greater than one. To avoid losing 
adjacent relationships when dropping duplicated nodes, we 
need to ensure that if node i is adjacent to node j, then node 
i is adjacent to the duplicated nodes of node j. Such opera-
tion can be done by

The final step is dropping duplicated nodes in Xp and A′
d
 . 

Let duplicated_idx = {j‖aij = 1, i < j} denotes the index set 
of duplicated nodes to be dropped. Then the no duplicated 
node index is idx = {i‖i ∈ [1, 4N], i ∈ ℤ} − duplicated_idx . 
Finally, the input feature matrix X and adjacency matrix A 
are generated by

3.1.2  The element‑based graph

In this representation, we treat mesh elements as vertices. 
Two elements are adjacent if and only if the two elements 
share one edge, i.e., the two elements have more than one 
same point coordinates. The input feature matrix X ∈ ℝ

N×d 
is obtained directly from the raw mesh files, where N is the 
number of mesh elements and d is the number of element 
features. We still need a way to construct adjacency rela-
tions between mesh elements. Suppose that S is the element 
assignment matrix, which is define as S =

[
sij
]
∈ ℝ

Np×N , 
where Np is the number of the nodes, and sij equals to one 
if node i in element j, otherwise equals to zero. Also let 
Ap ∈ ℝ

Np×Np be the adjacency matrix of the point-based 
representation. Then we can obtain the adjacency matrix 
denoting the strength between two elements:

If two elements share one edge, the strength between the 
elements is 8. The connection strength is illustrated in Fig. 2. 
So, the item of final adjacency matrix A is

The above preprocessing algorithms are implemented 
with sparse matrixes. For a structure two-dimensional 
mesh with 30,400 elements, it only takes 0.79 s to 

(4)An = ApAs

(5)A�
n
= Reformat(An)

(6)Ad = AsA
�
n
, A�

d
= Reformat

(
Ad

)

(7)X = Xp[idx,⋅],A = A�
d[idx,idx]

(8)Ae = STApS

(9)A[i,j] =

{
1, if Ae[i,j] = 8

0, otherwiseFig. 1  Left: Mesh nodes correspond to vertices on the graph. The 
adjacency of vertices corresponds to the adjacency of nodes. For 
example, vertex 5 is adjacent to vertex 2, 4, 6 and 8. Right: Mesh ele-
ments are treated as vertices on the graph. Two elements are adjacent 
if and only if they share one edge. For instance, element 3 is adjacent 
to element 1, 4
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preprocess a mesh into a graph. It can be further opti-
mized by rearranging the index order of the nodes or the 
elements. After obtaining X and A, Min–Max Normali-
zation is adopted to regularize the input feature matrix.

3.2  Network architecture

Typically, a mesh may have a large number of elements. 
To extract high-level features from low-level features, we 
design a deep graph neural network. As shown in Fig. 3 
our GMeshNet mainly consists of graph convolutional 
layers, graph pooling layers, and Jumping connections. 
The graph convolution layers aggregate the features of the 
elements on the graph layer-by-layer. And the graph pool-
ing layer reduces the size of the graph and expands the 
graph convolution receptive field. Moreover, we employ 
Jumping connection to aggregate information under dif-
ferent hierarchical representations. Finally, an MLP clas-
sifies data into different classes.

3.3  Graph convolution layers

Similar to CNNs, spatial GNNs extract hidden features of 
vertices on the graph by aggregating the features of neigh-
bors. Depending on the aggregation method, there are many 
different graph convolution operations. Since different neigh-
bors may have different influences on the hidden features of 
the vertice, we adopt GAT [29] as the convolutional layer. It 
assigns different weights to different vertices in the neigh-
borhood. Specifically, the inputs of the h th graph convolu-
tion are the feature matrix, Xh =

[
xhT
1
, xhT

2
, ..., xhT

N

]
∈ ℝ

N×m , 
and the adjacency matrix, Ah ∈ ℝ

N×N , where N is the num-
ber of the vertices, m is the dim of input features, xh

i
 is the 

features of vertice i in layer h. It then produces a new feature 
matrix X�

h
∈ ℝ

N×n as the input of the pooling layer, where n 
is the dim of output features. Suppose the weight between 
vertice i and vertice j is �ij , then the hidden features of the 
vertice i are attained by

where � is the ReLU function, W is the transform matrix 
and Ni is the indexes of neighbours of vertice i. To sum up, 
GAT performs as

As the GNN gets deeper and deeper, it suffers from over-
smoothing [32]. Over-smoothing leads to possible degra-
dation of the performance of the network as it gets deeper 
and deeper. To avoid this, we adopt residual connection, 
which is proposed by Li et al. [33] and Li et al. [34], to 
tackle this problem. We computer the Xres

h+1
 instead of Xh+1 

(10)xh
i

�
= �

(
∑

j∈Ni

�ij�xh
j

)

(11)X�
h
= GAT(Xh,Ah)

i j ji

Fig. 2  Element i and j share one edge. Each element can obtain the 
adjacencies of the identical nodes on the other elements. The lines 
show the connection between the elements. Thus, in this case the con-
nection strength of the two elements is 8

Fig. 3  The proposed network 
for mesh quality evaluation. 
Through preprocessing, the 
mesh is represented with the 
input feature matrix X and 
the adjacency matrix A. The 
network learns the features of 
the mesh and then predicts the 
mesh quality by classifying 
it into predefined categories. 
The GraphConv layer extracts 
features with message passing 
among the vertices. The Graph-
Pooling layer coarsens the graph 
by scoring the nodes the retain-
ing the most valuable vertices
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and let the input feature dim equal to output feature dim to 
enable addition between residuals and original input matrix. 
Additionally, LayerNorm [35] and activation function � are 
performed before the graph convolution. Figure 3 shows the 
structure of the graph convolution layers.

3.4  Pooling layers

The mesh may consist of millions of mesh elements. By 
pooling the graph into smaller sizes, the network could learn 
local features from mesh elements and reduce its parameters 
and computing overhead. Due to a large number of mesh 
elements, it is inefficient to perform node-cluster pooling 
methods (e.g. DiffPool [30]) since they require to compute 
the assignment matrix. Therefore, we adopt SAGPool [36] , 
implemented with sparse operations, to pool the graph data.

More specifically, the SAGPool first obtains the self-
attention scores Z ∈ ℝ

N of the nodes by Graph Convolu-
tion. Further top ⌈kN⌉ vertices are selected based on the 
value of Z, where k ∈ (0, 1] is the pooling ratio. Finally, the 
reconstructed feature matrix X′

h
 and adjacency matrix Ah are 

obtained by

3.5  Jumping connection

To classify the graph, we need a representation of the entire 
graph. The commonly used graph representation methods 
are global average readout operation and global maximum 
readout operation. The former utilizes the average features of 
all vertices as graph representation, while the latter uses the 
maximum features of all vertices. To enhance the robustness 
of the algorithm, we concatenate the above two representa-
tions together. The readout operation is

where the two pooling operations output representations in 
ℝ

n.
Additionally, to consider graph representations under dif-

ferent levels, we apply JK-Net [37] to concatenate graph 
representations under different levels. The effectiveness 
of the JK-Net and the analysis of different connect in JK-
Net are demonstrated with experiments. The final repre-
sentation is then input to an MLP with SoftMax output for 

(12)
X�
h
= Xres

h
+ Xh

= GAT(�(LayerNorm(Xh)),Ah) + Xh

(13)

idx =top − rank(Z, ⌈kN⌉)
Zmask =Z[idx],X

�
h
= X�

h[idx,∶]

Xh+1 =X
�
h
⊙ Zmask , Ah+1 = Ah[idx,idx]

(14)gh = [global_avg_pool(Xh), global_max_pool(Xh)]
T

classification. Between fully connected layers, BatchNorms 
[38] are adopted to stable the training process.

4  Experiments

In this section, we evaluate our proposed GMeshNet on 
the real mesh benchmark datasets, NACA-Market and 
NACA6510. In Sect. 4.1, we introduce the datasets and the 
features of the input. Section 4.2 demonstrates the train-
ing procedures. The results of the network are discussed 
in Sect. 4.3. Furthermore, we discuss the effect of hyper-
parameters and structures of the Network on the perfor-
mance in the last section.

4.1  Datasets

We evaluate GMeshNet on two mesh benchmark datasets, 
NACA-Market and NACA6510. NACA-Market [11] is a 
two-dimensional structured mesh dataset proposed for the 
mesh quality evaluation task. It has a total of 10240 meshes 
with different sizes. The distorted meshes are generated by 
modifying points and lines of the well-shaped mesh. Meshes 
are classified into eight types depending on their smooth-
ness, orthogonality, and spacing distribution. We verify the 
mesh quality with CFD solver in terms of solution accuracy 
and convergence speed. Figure 4 shows some examples of 
meshes with different properties. To illustrate the generaliza-
tion performance of our network under different airfoils, we 
used the same method to construct the NACA6510 dataset 
(a total of 1024 meshes) from the NACA6510 airfoil, which 
is shown in Fig. 4e. In experiments, we choose the element-
based representation to represent mesh. We leave the point-
based representation for future work because it performs 
poorly in the experiments. Some insights are provided in 
Sect. 4.4.3 to explain the difficulties of learning from point-
based representation. The edge length, the maximum angle 
and the area of the mesh element are adopted as vertices 
features.

4.2  Training procedures

During our training, 10% of the meshes are used as testing 
data to get the final accuracy of the network. 10% of the 
meshes are employed for validation in training. The remain-
ing meshes are adopted as the training data. We select AMS-
Grad [39] with a initial learning rate of 1e-2 as the optimizer, 
and manually adjust the learning rate in the trainning . We 
use cross-entropy as the loss function and add L2 regulariza-
tion with 1e-4 weight decay for the NACA-Market dataset 
and 5e-4 for the NACA6510 dataset. The batch size is set 
to 32. For all pooling layers, the pooling ratio is set to 0.78. 
The experiments are carried out on two RTX Titan GPUs.
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4.3  Network evaluation results

First, we evaluated the accuracy of the network on the test 
set of the NACA-Market. The classification results of dif-
ferent types of meshes are shown in Table 1. O, S, D denote 
the orthogonality, smoothness, and distribution density 
of the mesh, respectively. N-O represents the meshes of 
poor orthogonality, and N-OD represents the meshes poor 
orthogonality and distribution. The W represents meshes 
with good qualities. From the experiment results, we can 

see that GMeshNet achieves high accuracy on the dataset. 
For mesh with good qualities, the network achieves the high-
est accuracy with 99.22%. The network can easily classify 
the meshes with poor orthogonality and distribution. For 
different types of meshes, the accuracy rate is all above 85%, 
which demonstrates the effectiveness of GMeshNet for mesh 
quality evaluation.

Second, we utilize recall on NACA-Market test set to 
evaluate the ability of GMeshNet to identify defects of the 
mesh. In the experiment, we calculate the recall based on 

(a) Mesh with poor distribution (mesh density near the
bound layer is inappropriate)

(b) Mesh with poor smoothness (unsmoothed areas are
colored)

(c) Mesh with poor orthogonality (elements with poor
orthogonality are marked red)

(d) Well-shaped mesh

(e) Mesh in NACA6510 dataset

Fig. 4  Examples of meshes in NACA-Market [11] and NACA6510 dataset

Table 1  Confusion matrix 
of the GMeshNet on NACA-
market

The diagonal elements of the confusion matrix represent the percentages for which the predicted label is 
equal to the true labelfor meshes with different properties. We highlight them in bold

Labels W (%) N-O (%) N-S (%) N-D (%) N-OS (%) N-OD (%) N-SD (%) N-OSD (%)

W 99.22 0.00 0.73 0.00 0.00 0.00 0.00 0.00
N-O 0.00 94.80 0.00 0.00 4.23 0.71 0.00 0.00
N-S 13.28 0.00 87.18 0.00 0.00 0.00 0.43 0.00
N-D 0.78 0.00 0.00 97.25 0.00 0.00 2.16 0.00
N-OS 0.00 13.60 0.73 0.00 85.00 0.35 0.00 0.83
N-OD 0.00 0.40 0.00 0.00 0.00 93.97 0.00 6.67
N-SD 0.00 0.00 1.10 9.02 0.00 0.00 88.79 0.00
N-OSD 0.00 0.00 0.00 0.00 0.77 9.57 0.00 87.92
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the orthogonality, smoothness and distribution of the mesh. 
Recall indicates the percentage of bad meshes identified by 
the network out of all bad meshes. For example, the recall 
of the N-O meshes is defined as

Table 2 shows the results of recalling a different kind 
of defects. From Table 2, we can see that GMeshNet can 

(15)recallN-O =
N-O meshes identified by the network

all N-O meshes

retrieve almost all bad meshes. Meshes of poor orthogo-
nality and poor distribution can be easily distinguished 
with the accuracy of 99.81% and 99.21%, respectively. In 
comparison with GridNet [11], GMeshNet has comparable 
performance in terms of recall. As for the overall accuracy, 
GMeshNet has 1.11% improvement. But more importantly, 
GMeshNet has the ability to train on all types of meshes 
rather than structure meshes.

Third, we also validate our network by comparing it 
with the widely used CFD-preprocessing software ICEM 
CFD, which utilizes traditional metrics to evaluate mesh 
qualities. As shown in Fig. 5, we can see that the pro-
posed method can correctly discriminate meshes with 
poor distribution, poor smoothness or poor orthogonality. 
Furthermore, the network is superior to traditional qual-
ity metrics. Figure 5d depicts a defective mesh which has 
poor-distribution. However, the ICEM CFD misclassifies it 
as a well-shaped mesh. In contrast, our proposed network 
successfully detects it, which shows the effectiveness of 
the proposed network compared with traditional metrics.

Fourth, to illustrate the generalization performance of 
the network, we validate the network on a different air-
foil mesh dataset, NACA6510. The experimental results 
are shown in Table 3. We can see that the network can 
also achieve satisfying accuracy and recall when the air-
foil changes, which shows the ability of the network to 
learn patterns of meshes with different airfoils. We can 
also observe that due to overfitting on the small-scale 
NACA6510 dataset, the performance is slightly inferior 
to that on NACA-Market.

Table 2  Recall and accuracy of different networks

Mesh property Network

GMeshNet (%) GridNet (%)

Orthogonality 99.81 96.95
Smoothing 88.16 93.46
Distribution 99.21 99.92
Overall accuracy 91.76 90.65

Table 3  Recall and accuracy of 
GMeshNet on the NACA6510 
dataset

Mesh property Recall (%)

Orthogonality 80.73
Smoothing 78.57
Distribution 82.69
Overall accuracy 85.37

(a) Mesh with poor distribution (b) Mesh with poor smoothness

(c) Mesh with poor orthogonality (d) Mesh classified as well-shaped mesh by the mesh metrics
and actually defective

Fig. 5  Visualization of discrimination results on NACA-Market with 
ICEM. Figure  5a–c, shows that our network can discriminate the 
defective meshes in agreement with the traditional metrics. However, 

for some meshes (such as mesh in Fig. 5d) that are actually flawed, 
our network can correctly classify them but the traditional mesh qual-
ity evaluation metrics fail
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In summary, our proposed GMeshNet can evaluate the 
mesh quality with both high accuracy and recall, has a bet-
ter discriminative ability compared to traditional metrics 
and can be applied to different meshes.

4.4  Analysis of hyper‑parameters

In this part, we discuss the effect of hyper-parameters on the 
performance. For the mesh evaluation tasks, selecting the 
appropriate hyper-parameters is beneficial to the network 
performance, and can reduce the computational and storage 
overhead. We only discuss the hyper-parameters that have a 
large impact on the network performance. Due to the long 
training time of the model on the whole dataset, we perform 
hyper-parameter experiments on a subset (1024 meshes of 
the same size) of the dataset. In the experiments, we fix other 
parameters and change the depth of the network and the 
pooling ratio of the pooling layers. The experimental results 
are shown in Table 4.

4.4.1  Depth of the network

As the number of network layers deepens, the performance 
of the network improves to some extend. The average accu-
racy of the 16-layer network has a 2.99% improvement than 
the average accuracy of the 4-layer network. However, A 
deeper network is not necessarily better than a shallower 
network. We can see that the 8-layer networks with 0.7 
pooling ratio achieve the best performmance. A shallow 
network with a suitable pooling rate may be better than a 
deep network with an inappropriate pooling rate. In addition, 
a appropriate number of network layers can also reduce the 
sensitivity of the network to the pooling rate. We can see 
that the performance of the network is less sensitive to the 
pooling rate when the network depth is 25 or 32.

4.4.2  Pooling ratio

The other important hyper-parameter is the pooling ratio k. 
Intuitively, the pooling ratio determines what percentage of 
vertices are left after pooling. A larger k helps to preserve 

the information of the graph, while a smaller k helps to 
quickly reduce the size of the graph resulting to a smaller 
network depth. We can see that the optimal pooling ratio 
is related to the network depth. For 4-layer or 16-layer net-
works, the performance is better at the pooling ratio of 0.5. 
While for 8-layer networks, the appropriate pooling ratios 
is 0.7. 25-layer networks and 32-layer networks achieve best 
result at a pooling ratio of 0.3 and 0.9. On average, 0.5 is 
an appropriate pooling rate for networks of different depths. 
This experience can help us to set the pooling ratio at the 
beginning of constructing the mesh evaluation network.

4.4.3  Representation scheme

In Sect. 3.1 we propose two different representations, but in 
our experiments, we only used the element-based representa-
tion. In fact, we experimented with both representations, but 
the point-based representation fails to achieve satisfactory 
results even for simple discrimination tasks (such as train 
on 256 samples). We believe that the reason for this is that 
the point-based representation loses the information of the 
mesh elements. The mesh quality depends in large part on 
the shape of the mesh elements. However, in the point-based 
scheme mesh nodes become the basic units for feature learn-
ing. Because of the stochastic of neural networks, we cannot 
constrain how the network learns, for example, let it learn 
the norm of the vector which is obtained by subtracting the 
coordinates of two points. Thus, the graph convolution lay-
ers may not capture the edge features. However, we believe 
that the information about the element edges of meshes is 
important for network to determine mesh quality. Future 
work includes the use of convolution layers utilizing edge 
features, so that point-based representations can also achieve 
satisfactory results.

4.5  The analysis of network structure

In this section, we illustrate the effectiveness of JK-Net and 
the effect of the graph convolution layer on the network per-
formance. The purpose of JK-Net is to consider the graph 
representation under different hierarchies in the network. In 
JK-Net, we can use different schemes to aggregate graph 
representations, such as as concatenation and max pooling. 
We test the effect of JK-Net on the performance in different 
aggregation schemes, including without JK-Net, with max 
pooling scheme and with concatenation scheme. The results 
are shown in Table 5. We can see that not using JK-Net the 
network has a large degradation in performance. Compared 
with the max pooling scheme, the concatenation scheme can 
achieve higher accuracy.

In addition to JK-Net, we also compare the effect of 
adopting different graph convolutions on the network per-
formance. We select classical graph convolutions for the 

Table 4  Test accuracy for different hyper-parameters

Network depth 0.3 (%) 0.5 (%) 0.7 (%) 0.9 (%) Avg. (%)

Pooling ratio
  4 81.22 85.12 81.46 82.68 82.62
  8 84.88 84.10 88.29 82.68 84.99
  16 81.71 88.05 85.61 87.07 85.61
  25 86.10 84.63 84.15 85.61 85.12
  32 85.61 84.15 84.39 85.85 85.00
  Avg. 83.90 85.21 84.78 84.78 84.67
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experiment, including GCN [28], GraphSAGE [40], GAT 
[29]. The experimental results are shown in Table 6. We 
can see that the network based on GAT achieves better train 
and test accuracy, which indicates that using that type of 
convolutions makes the network have better learning ability. 
However, the choice of the graph convolution layer has less 
impact on the performance of the network. In summary, we 
recommend GAT as the graph convolution for feature learn-
ing on the mesh.

5  Conclusion

The mesh quality is of great importance for the accuracy of 
CFD simulations. However, the widely used mesh quality 
metrics based on mesh elements have limited usage. The 
mesh quality evaluation still relies on manual work. To 
tackle this problem, we introduce graph neural network into 
the mesh quality evaluation. Firstly, we define two graph-
based representations for meshes, and propose algorithms 
with sparse-implementation to transform any type of mesh 
into the graph. Secondly, a deep graph neural network, 
GMeshNet, is designed for mesh quality evaluation. We 
evaluate our network on NACA-Market and NACA0012 
mesh datasets. The experimental results show the feasibil-
ity of the GNN-based network for mesh evaluation tasks for 
different meshes.

Future work includes extending the classification of the 
whole mesh to the classification of mesh elements. However, 
performances for the meshes with different working condi-
tions (such as when Reynolds number and angle of attack 
change) and topological structures still need to be inves-
tigated in future work. By considering the flow field fea-
tures and working condition features, we believe that GNN 
can deal with different meshes as we have shown when the 

airfoil changes. Moreover, we will focus on applying the 
GNN-based networks to more fields in CFD, including mesh 
generation, mesh optimization, and others.
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