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Abstract
There are two main avenues to design space exploration. In the first approach, a simulation is run, analyzed, the problem 
modified, and the simulation run again. In the second approach, an ensemble simulation is performed and the battery of 
results is leveraged to construct a surrogate model for a given quantity of interest (QoI). The first approach allows a practi-
tioner to methodically move through the design space and analyze a solution field. A disadvantage of this technique is that 
each new simulation requires time-consuming setup. The second approach provides the practitioner with a global view of 
the problem, but requires a priori design space limits and the QoI specification. In this work, we introduce an immersive 
simulation software framework that enables practitioners to maintain the flexibility of the first approach, while eliminating 
the burden of setting up new simulations. Immersive simulation can also be used to inform the second approach, establish-
ing limits and clarifying QoI selection prior to the launch of an ensemble simulation. We demonstrate live, reconfigurable 
visualization of on-going simulations coupled with live, reconfigurable problem definition that guides users in determining 
problem parameters. Ultimately, an immersive simulation framework enables more efficient design space exploration that 
reduces the gap between simulations, data analysis, and insight extraction.

Article Highlights

• Introduce and demonstrate an immersive simulation soft-
ware framework that enables in situ visualization and 
problem redefinition.

• Efficient quantity of interest extraction that reduces disk 
storage by a factor of 50,000.

• Demonstrate the compatibility of immersive simulation 
with ensemble simulation and sensitivity analysis.
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1 Introduction

The solution of systems of partial differential equations 
(PDEs) provides scientists, engineers, and other practition-
ers with insight into a wide variety of physical phenomena. 
High-performance computing (HPC) is the driving force 
behind increasingly accurate simulations that are capa-
ble of rapidly solving multi-physics, three-dimensional 
systems, or higher order approximations. The traditional 

simulation workflow for PDE solvers consists of sequential 
steps: meshing, definition of boundary conditions, solver, 
and visualization. This structure leads to numerous ineffi-
ciencies. Problem redefinition and the role of visualization 
as a post-processing step delay engineering/scientific dis-
covery and design. In HPC applications, the practitioner’s 
pursuit of insight is hampered not only by time devoted to 
each new problem redefinition, but also by additional queue 
time. These traditional workflow inefficiencies inhibit design 
space exploration and subsequent ensemble simulation.

One method to address workflow inefficiencies is with 
notification and monitoring systems that query simulation 
data during runtime [38, 40, 46]. While this output does 
provide practitioners with basic solver behavior, such as con-
vergence, it does not permit live reconfigurable simulation. 
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Co-processing, the concept of performing in situ visuali-
zation and analysis while a simulation is on-going, allows 
users to access simulation data immediately and mitigates 
the burden of writing large simulation data to disk [17, 22, 
29, 48]. A summary of in situ methods, infrastructures, 
and applications to HPC is presented in the state-of-the-art 
(STAR) report [7]. The authors observe that while numer-
ous infrastructures are available, only a limited number of 
production quality frameworks have emerged. For instance, 
there are co-processing implementations within VisIt [11] 
using ADIOS [26], Lib-Sim [31], GLEAN [49], and in 
ParaView Catalyst (Catalyst) [1, 4]. A conclud-
ing remark in [7] is that given the entry cost for new in situ 
frameworks is relatively high, a move towards a generic data 
interface would be of great value. More recently, attempts 
have been made to address this concern. The introduction of 
the in situ interface SENSEI [6] and infrastructure ALPINE 
[27] provides an interface between a given solver and a vari-
ety of visualization and analysis routines. While SENSEI 
is designed solely to support Catalyst, Lib-Sim, and 
ADIOS infrastructures, ALPINE plays both the supporting 
role and provides its own execution model and visualization. 
In [5], a performance analysis of SENSEI shows that the 
infrastructure is highly flexible and has low overhead.

A powerful extension of co-processing is computational 
steering, where users can take advantage of real-time simu-
lation feedback to rapidly explore the design space and 
extract insight. Computational steering has been previously 
demonstrated in the flow solver PHASTA with Catalyst 
[52, 56], though steering was accomplished via live edits of 
a solver parameter file, and geometric deformations were not 
implemented. More recently, Catalyst has been used to 
model turbidity currents [9], where steering is introduced 
through application specific LibMesh-sedimentation 
code on solver parameters such as time step and tolerances. 
Another geological application utilized in situ visualization 
in earthquake modeling, but did not use computational steer-
ing [34]. More recently, an approach to “human in the loop” 
scientific workflows employing some elements of compu-
tational steering alongside provenance data monitoring 
enables data reduction and lower execution time [33, 43]. 
In [53], computational steering is enabled via a user inter-
face; however, this software is closed source. These exam-
ples show the current state of computational steering either 
requires the in situ editing of simulation solver parameter 
inputs or are closed source.

Ensemble simulation, informed via prior design space 
exploration, is a useful means of further insight extraction. 
Through visualizing and analyzing solution output across a 
range of different realizations of input parameters, practi-
tioners can better understand how some output quantity of 
interest (QoI) is a function of input variables. The field of 
uncertainty quantification (UQ) addresses the challenge of 

mapping uncertain inputs to output QoIs [19, 28, 54]. Large 
ensembles allow the collection of useful statistics, creation 
of surrogate models for a given QoI, sensitivity analysis, and 
much more. Furthermore, the evaluation of ensembles has 
traditionally been performed in serial, with parallel imple-
mentations that are predominantly ad hoc. While there has 
been some commercial software development in this area 
[2], in this work, we employ the open-source Python library 
libEnsemble, developed at Argonne National Laboratory 
as part of the Department of Energy Exascale Computing 
Project to coordinate the concurrent evaluation of dynamic 
ensembles of calculations on massively parallel resources 
[25]. In [10], libEnsemble is coupled with multiobjec-
tive optimization to achieve better resource utilization for 
HPCs. Having performed an ensemble simulation, the prac-
titioner may access one of several open-source UQ Python 
libraries such as Uncertainpy [47], chaospy [16], and 
UQ-PyL [50]. Additional Python libraries for specific UQ 
fields such as active subspaces are also in use [12]. The pri-
ority research directions for in situ data management identi-
fied by the authors in [37] include ensemble analysis, UQ, 
and surrogate models. We note that there is a distinction 
between random input variables addressed by UQ and design 
variables examined in design space exploration. In this work, 
we apply UQ methodologies to design variables by treating 
them as uniform random variables.

1.1  Contributions of this work

While numerous studies have demonstrated co-processing, 
to the authors’ knowledge, the valuable link between co-pro-
cessing capabilities, extraction of relevant data from ensem-
ble generation, and subsequent application of UQ techniques 
such as sensitivity analysis, has not been explored. In this 
document, we introduce an immersive simulation software 
framework that enables more rapid design space explora-
tion with computational steering and subsequently informs 
ensemble generation for more efficient insight extraction.

Our work builds directly upon previous implementations 
of Catalyst in the flow solver PHASTA [4, 56]. Earlier 
demonstrations of co-processing functioned with Cata-
lyst hooked directly into the PHASTA solver and required 
a high level of expertise in the interfaces. Our work dif-
fers in that we implement SENSEI to interface between the 
solver and Catalyst, easing the difficulty a practitioner 
may face as they implement immersive simulation. The main 
contribution of this work is to introduce and demonstrate an 
immersive simulation software framework. We describe the 
relationship between a PDE solver and immersive simulation 
software components that enable computational steering and 
modification of physical, geometric, and solver parameters. 
We provide open-source software linkages that others can 
leverage or modify as needed. Equipped with an immersive 
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simulation framework, a practitioner may interact with their 
simulation in situ via the ParaView graphical user inter-
face (GUI) .

We complement these immersive simulation tools with 
a demonstration of libEnsemble for straightforward 
ensemble simulation and chaospy to implement UQ meth-
ods to analyze the ensemble results. We show the ability of 
immersive simulation and ensemble tools to complement 
and enhance one another.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the simulation workflow, first addressing the 
traditional approach in Sect. 2.1 followed by an immersive 
simulation workflow in Sect. 2.2. Next, Sect. 3 details the 
software elements that make up an immersive simulation 
software framework. Section 4 provides a numerical dem-
onstration of immersive simulation tools on a 2D aggressive 
subsonic diffuser with the fluid solver PHASTA. Section 5 
describes ensemble simulation software tools before Sect. 6 
applies the ensemble tools, coupled with an immersive simu-
lation framework, to a global sensitivity analysis. Finally, 
Sect. 7 summarizes this study’s conclusions.

2  The simulation workflow

We now describe the traditional simulation workflow, high-
lighting aspects that inhibit scientists’ and engineers’ abil-
ity to gain insight from their simulations. We then present 
an immersive simulation workflow that alleviates standard 
workflow inefficiencies.

2.1  Traditional simulation workflow

The traditional simulation workflow, whether a lone simula-
tion (Fig. 1a), or an ensemble simulation (Fig. 1b), consists 
of a series of sequential steps. Considering Fig. 1a, we refer 
to components of the workflow that occur before and after 
the solver step as belonging to the pre- and post-processor, 
respectively. First, in the pre-processor, we develop an idea 
into a solvable problem through defining an appropriate 
geometry, mesh, and boundary conditions. Next, we calcu-
late the solution to our problem through our chosen PDE 
solver. Finally, in the post-processing section, we perform 
visualization and data analysis to determine the utility of 
the solution data. If the present results are satisfactory, then 
we have obtained the insight we seek and the simulation 
workflow is complete. Alternatively, if the results are unsat-
isfactory and we want to redefine the problem to explore the 
design space, then we return to the pre-processing region of 
the workflow.

Difficulties with the traditional simulation workflow arise 
due to the computational expense of individual workflow 
components coupled with the persistent need for problem 
redefinition. Solution data may persuade a practitioner to 
return to the pre-processing steps either to ask a new ques-
tion of the simulation, or to improve the method of answer 
to an existing question. As an example, let us consider the 
visualization of a fluid flow. Inspection of high gradient 
regions in the flow, such as boundary and shear layers, may 
reveal that further mesh refinement is needed to accurately 
resolve flow behavior. Alternatively, the practitioner may 
decide geometric adjustments would be a productive line of 

Fig. 1  Traditional singular (a) 
and ensemble (b) simulation 
workflows
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inquiry and be motivated to update the geometry and associ-
ated mesh. The role of problem redefinition as a post-pro-
cessing step in the traditional workflow delays engineering 
and scientific insight.

A vital concern for HPC applications that will grow with 
the arrival of exascale computing is the bottleneck of IO. 
The PDE studied in [15], in which an unsteady flow problem 
is addressed, was scaled up to 3.1 million processes and 92 
billion elements in [39]. To save the complete solution of a 
simulation, this size would generate O(1) terabyte of data per 
second. Although the code can determine a write frequency 
and produce numerous flow statistics, analysis of unsteady 
flow structures is not practical with the traditional simulation 
workflow. To undertake post-processing steps that involve 
writing, and re-reading of data at this rate is unreasonable. 
Additionally, we find conventional methods impractical 
even if we consider specialized libraries that achieve close 
to machine IO bandwidth limit ( 240Gb∕s , or more than 4 s 
to write 1 s of simulation data) [18, 30].

Both the aforementioned traditional workflow concerns, 
i.e., the delay of insight caused by problem redefinition and 
impracticality of visualization in HPC applications, are 
exacerbated when we consider ensemble simulation; see 
Fig. 1b. Managing an array of pre-processor settings and 
tailoring post-processing steps to each ensemble member is 
cumbersome for the practitioner. Additionally, the traditional 
workflow delays the initial setup of an ensemble due to the 
problem redefinition necessary to figure out design space 
limits and adjust a given QoI.

2.2  Immersive simulation workflow

An immersive simulation workflow intends to mitigate some 
of the standard workflow inefficiencies through live, recon-
figurable simulation. In essence, a new co-processing stage 
integrates steps from both pre-processing, such as problem 
definition, and post-processing, such as visualization and 
data analysis, to be contemporary with the on-going/live 
advancement of the flow solver; see Fig. 2.

Co-processing methods aim to vastly reduce the quantity 
of data storage through in situ visualization that the user is 
able to interact with and calibrate to their specific needs [22, 
48]. In co-processing, the visualization pipeline is shifted 
from being a post-processing step within the PDE solver 
workflow to be concurrent with the simulation. The progres-
sion of HPC from present petascale to future exascale com-
puting, coupled with corresponding increase in simulation 
complexity, such as multi-scale and multi-physics, further 
enhances the desire for co-processing as opposed to tradi-
tional post-processing capabilities.

Immersive simulation couples co-processing that allows 
live visualization with computational steering that allows 
live problem redefinition. When immersed, a practitioner is 

capable not only of visualizing their problem solution in situ, 
but also of intuitively redefining the problem definition for 
rapid exploration of the design space. The practitioner may 
choose to steer solver parameters, boundary conditions, 
and even the problem geometry depending on what aspects 
of the problem space engage them. In the HPC setting, an 
immersive simulation practitioner can avoid the queue time 
associated with each new problem redefinition. In this man-
ner, the behavior of different combinations of input parame-
ters can be quickly understood and inform appropriate limits 
for subsequent or concurrent ensemble simulations.

3  Software tools for immersive simulation

In this section, we describe the core components of an 
immersive simulation software framework; see Fig. 3. This 
framework enables multiple forms of immersive simulation 
that work with a traditional PDE solver to perform both 
live, reconfigurable visualization and live, reconfigurable 
problem definition. The colored boxes indicate software 
components, while the grey boxes show functionality. Thin 
arrows out of the in situ infrastructure Catalyst, or inter-
face SENSEI, represent data extraction/compression, while 
thin arrows into these components relay analyst input via 
the ParaView GUI. Large data streams, shown by thick 
arrows, correspond to the full solution state (problem mesh 
and solution). The analyst obtains insight, shown by a wide 
arrowhead, through engagement in an immersive simulation 
through the ParaView GUI. A crucial aspect of immer-
sive simulation is that the commands related by the analyst 
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to reconfigure the simulation are conveyed with small data 
streams. With this setup, an analyst can operate the live visu-
alization and problem definition for swift simulation feed-
back and insight extraction. We now provide some context 
on the integration of core immersive simulation software 
components SENSEI, Catalyst, and ParaView with 
the PDE solver. While we use the fluid solver PHASTA, 
many aspects of the links between software and all of the 
resulting advantages are general. We note that Catalyst 
and Para-View are open-source platforms developed by 
Kitware.

3.1  SENSEI in situ interface

SENSEI is a generic in situ interface best summarized by 
the underlying premise of “write once, use everywhere” [6]. 
The interface supports a number of in situ infrastructures, 
such as VisIt/Libsim, Catalyst, and ADIOS. Simu-
lation output is mapped to the VTK data model via a data 
adaptor and an analysis adaptor, while an in situ bridge links 
the respective adaptors and prompts in situ analysis. An in-
depth description of SENSEI is provided in [6] as well as 
a brief view from the simulation code, and the perspective 
of different choices of in situ infrastructure. In the SENSEI 
repository, mini-apps are provided as a guide for different 
PDE solver applications. The mini-app topics span SENSEI 
Python bindings, C++ solvers for dynamic periodic oscil-
lators, the Mandelbrot set and vortex simulation, and the 
PHASTA mini-app that we build upon for this work.

The minimum requirement to implement the SENSEI 
mini-app with a given PDE solver is the introduction of 
SENSEI specific data streams that pass the problem mesh 
and solution to enable live, reconfigurable visualization 
(large data stream). However, if computational steering is 
desired, the specific variables identified to perform that 
computational steering (small data steam) are also needed. 
In that case, the PDE solver must define these steering vari-
ables in such a way that the appropriate sections of the code 
that depend on these variables are able access these variables 

to complete the bi-directional communication that enables 
computational steering.

In general, the linking of software to enable immersive 
simulation appears in three places. First, the SENSEI mini-
app bridge must be updated to match any parameters the 
practitioner seeks to pass from their PDE solver. As shown 
in [6], the bridge is custom to the implementation code, and 
requires initialization, analysis, and finalization steps. In this 
work, we focus on how this bridge communicates with the 
PDE solver from the solver’s view, and also on the practi-
cal implementation in terms of necessary scripts at runtime. 
From the perspective of the PHASTA solver, the abbrevi-
ated simulation code to highlight the SENS-EI footprint is 
presented in Fig. 4. Within the simulation script, we make 
calls to subroutines that initialize, perform co-processing, 
and finalize the interaction of the interface with the solver.

These subroutines are defined in a second PDE solver 
script sensei_interface.f shown in Fig. 5. Figure 5 essen-
tially refines the main simulation routine calls to SENSEI 
by providing additional context. The routines called here are 
defined in the SENSEI PHASTA bridge. For instance, the 
initialization subroutine calls any in situ analysis adaptor, 
such as Catalyst, before communicating mesh details 
vital to live visualization and a set of fields determined by 
the user.

For the full context of these scripts, we refer the interested 
reader to our GitHub repository www. github. com/ SimNa 
utilus/ nauti lusFl ow that documents the links between the 

Fig. 3  Immersive simulation 
software framework
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PDE solver PHASTA and in situ interface SENSEI. In our 
implementation of an immersive simulation framework, we 
initially setup the main solution variables, such as mesh 
coordinates, velocity and pressure fields, for live visualiza-
tion. Next, we improve the framework with the introduc-
tion of steering parameters or more complex fields that are 
passed to SENSEI.

Having setup the PDE solver to communicate fields to 
SENSEI, we next address the implementation at runtime. 
As noted, several in situ infrastructures are supported. The 
practitioner can setup the desired analysis type with ease in 
the equivalent of senseiPhasta.xml; see Fig. 6. This script is 
called via sensei_adaptors_init() during the SENSEI initial-
ization steps in Fig. 5. While the SENSEI bridge is created 
during initialization, the analysis it facilitates, for instance 
via Catalyst, is reconfigurable during a simulation run.

3.2  Catalyst in situ infrastructure

Catalyst , formerly the ParaView  co-processing 
library [15], is an in situ visualization library with an adapt-
able API that is built on VTK [41] and ParaView [1]. 
Through building the library with VTK, Catalyst can 
access a plethora of useful algorithms such as IO writers, 
visualization filters, and graphics rendering. The visualiza-
tion pipelines can be described in C++ or Python, and the 
ParaView GUI facilitates the generation of Catalyst 
co-processing Python scripts both directly, and via a Python 
trace and shell. Additionally, Catalyst is designed to con-
nect visualization pipelines remotely through server–client 
architecture. While the addition of the Catalyst adaptor 

to solvers must to some degree inhibit solver performance, 
this influence has been shown to be negligible when com-
pared to the savings in file I/O and data management [15]. 
In our numerical example, we implement Catalyst with 
the fluid solver PHASTA via the SENSEI in situ interface, 
specifically through analysis adaptor in Fig. 6.

A powerful function of Catalyst that has been alluded 
to is the setup of ParaView pipelines. The entire pipeline 
script can be generated intuitively from a ParaView GUI 
session that writes out a Catalyst co-processing script, 
as shown in Fig. 7. The co-processing script can be tailored 
to specific problems and is loaded automatically when live 
visualization is launched to facilitate the user’s analysis. The 
practitioner can update the pipeline live through the Catalyst 
connection in the ParaView GUI.

Having described the implementation of the interface 
SENSEI and infrastructure Catalyst, we are equipped 
with an immersive simulation framework of Fig. 3. With 
these immersive simulation tools in hand, a practitioner can 
leverage interactive visualization and problem redefinition 
for efficient design space exploration.

4  Numerical demonstration: immersive 
simulation tools

We demonstrate the utility of immersive simulation tools 
on a 2D aggressive subsonic diffuser simulated in PHASTA 
[52]. In this section, we first describe the diffuser model 
equipped with parametric geometry deformation and then 
illustrate the application of immersive simulation tools 
described in Sect. 3. Code examples of the implementation 
of immersive simulation tools in PHASTA can be found in 

Fig. 5  Pseudocode of the PDE solver link between simulation script 
in Fig. 4 and SENSEI 

Fig. 6  Pseudocode of the runtime XML description that configures 
in situ analysis routines [6]
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our GitHub repository www. github. com/ SimNa utilus/ nauti 
lusFl ow.

4.1  2D aggressive subsonic diffuser

Aircraft frequently requires air intake systems that reroute 
air from the free stream velocity and slow it to speeds appro-
priate for the engine [3]. The intake arrives at the compres-
sor on the aerodynamic interface plane (AIP). It is desirable 
that the AIP air exhibits low swirl, low distortion, and high 
pressure recovery; with minimal increase of the intake drag, 
lest engine performance is inhibited [32]. Therefore, under-
standing of intake flow is imperative to effective simulation 
of engine performance.

Typical intake geometries consist of a duct to direct 
the flow connected to a diffuser that, via an increase in 

cross-sectional area, trades upstream kinetic energy for a rise 
in downstream static pressure. This increase in area produces 
an adverse pressure gradient that encourages separated flow.

The diffuser model we study is motivated by a 3D tran-
sonic diffuser with two significant simplifications made to 
reduce computational expense: the model is a 2D slice of 
the 3D geometry midplane and the flow is treated as incom-
pressible as opposed to compressible. Shifting from 3D to 
2D greatly reduces the number of elements in the simula-
tion mesh, and treating the flow as incompressible permits 
a much larger time step while maintaining a converging 
simulation. We emphasize the severity of the model sim-
plifications on the diffuser; the purpose of this simulation 
is to demonstrate an immersive simulation software frame-
work and to capture quantitatively the influence of upper and 
lower blowers on core flow behavior.

The diffuser geometry, depicted in Fig. 8, is considered 
compact with a length to diameter ratio of L∕D ∼ 1.03 and 
a high expansion ratio of ER= 2.2 . Active flow control is 
implemented through two tangential blowers, denoted as the 
upper blower (UB) and lower blower (LB). The blowers are 
designed to inhibit or delay flow separation on their respec-
tive surfaces. We prescribe a trapezoid waveform inflow 
condition to both the UB and LB, where we set the wave’s 
mean, amplitude, and period. The time the trapezoid wave 
spends rising, falling, and at the maximum value of the wave 
is set to 1.5e − 3 s , 1.5e − 3% and 4e − 3 s , respectively. We 
have fixed the period to 8e − 3 s for the study and ensured a 
temporal resolution of 80 time steps for each blower period 
with a time step of d t = 1e − 4 s.

The incompressible flow through the diffuser is modeled 
with an inflow Mach number M∞ ≈ 0.052 and bulk Reyn-
olds number Reb ≈ 4e4 . This Reynolds number is similar 
to the 2D plane diffuser experiments [8, 35]. The computa-
tional mesh made up of 241k tetrahedral elements is shown 
in Fig. 8. The mesh is only one element deep (into the page 
as displayed in Fig. 8), and periodic boundary conditions 
are employed in the depth direction to model 2D flow. Every 
boundary layer has first point off the wall is set to 2e − 6m 
and a stretching ratio of 1.25 to maintain y+ < 1 at the wall 

Fig. 7  Pseudocode of the Catalyst co-processing script that ena-
bles in situ visualization and loads a chosen ParaView pipeline [4]

Fig. 8  2D aggressive subsonic diffuser geometry a entire geometry, b close-up of the blower control region showing the UB and LB

http://www.github.com/SimNautilus/nautilusFlow
http://www.github.com/SimNautilus/nautilusFlow
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boundaries. The mesh is further refined at the entrance of the 
blowers and downstream to resolve the recirculating region.

In this study, we examine the QoI measuring the recircu-
lating region length defined as

where ūx denotes the time-averaged stream-wise velocity and 
dwall the distance from the wall. We integrate with respect 
to dwall to penalize recirculating regions that extend further 
into the core body of the flow. In the case where separation 
occurs in both the lower and upper walls, we add the respec-
tive integrals together prior to taking the square root to find 
the length.

4.1.1  Parametric geometry deformation

To explore the effect of UB location along the curved upper 
extent of the diffuser, a custom parametric mesh modifi-
cation tool was developed which slides the UB tangen-
tially along the curved surface, moving the mesh vertices 
smoothly, allowing for geometric design exploration in situ 
without the need for re-meshing or multiple hand-generated 
CAD configurations. This procedure relies on Sederberg’s 
freeform deformation algorithm [42] with a geometry-fitted 
collection of 493 background non-uniform rational B-Spline 
(NURBS) patches deformed in unison with a custom geom-
etry management algorithm. The geometry modification is 
driven by a single parameter � varying continuously from 
0 to 1 representing locations far down the curve of the dif-
fuser and past midway up the diffuser, as depicted in Fig. 9b. 
These extents were chosen to limit mesh distortion under 
geometry modification. Figure 9a illustrates the collection of 
background NURBS patches already deformed to the � = 1 
extent.

This geometry deformation algorithm was custom 
designed for the diffuser problem, employing low-level 
Open-CASCADE commands. The general procedure here 

(1)�r =

√

∫ūx<0

dx dwall,

is extensible to other 2D geometric considerations. Further-
more, this procedure is a proof of concept for how geometric 
variables can be included in immersive simulation design 
space exploration procedures. Future improvement to this 
procedure may incorporate higher level abstractions for 
parametric geometry modification such as the programma-
ble CAD system Engineering Sketchpad [21]. More general 
tools for geometric modification to HPC applications are 
presented in [51].

4.2  Computational steering

We employ Catalyst, SENSEI, and the ParaView 
GUI to implement live visualization and computational 
steering on the 2D diffuser. The parameters for which we 
enable steering are the mean and amplitude of the UB and 
LB velocities, the UB position parameterized between � = 0 
and � = 1 , as shown in Fig. 9b, and the weight term w, use-
ful for assessing time-averaged quantities. The QoI we are 
interested in, the recirculating region defined in Sect. 4.1, 
is measured as a time average to account for the transient 
boundary conditions on the UB and LB. We update the time-
averaged stream-wise velocity with

where ux is the present time step’s stream-wise velocity and 
ū
t0
x  denotes the previous time step’s averaged stream-wise 

velocity. Increasing w weighs recent steps more heavily and 
“shortens” the time-average interval, while decreasing w 
reduces the weight of new time steps and “lengthens” the 
time-average interval. In general, we set w = 0.01.

To equip PHASTA with the steering parameters, the 
chosen fields must be passed from the PHASTA solver to 
SENSEI, and the SENSEI PHASTA adaptor updated for 
these fields as described in Sect. 3. Once implemented, the 
steering parameters can be interacted with during a Cata-
lyst live visualization; see Fig. 10. The user can adjust 
a given steering parameter, for instance the UB position, 

ūx = wux + (1 − w)ū
t0
x ,

Fig. 9  Parametric 2D aggressive subsonic diffuser geometry: a spline track used to guide the deformation of the background NURBS surfaces; b 
close-up of the blower control region showing blower position set to � = 0 and � = 1
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and immediately see how this alteration impacts the flow 
behavior. In Fig. 10, we see a complex Catalyst VTK 
pipeline that determines regions in the diffuser flow with 
negative time-averaged stream-wise velocity and calculates 
the associated recirculation length. Note that the practition-
er’s interaction with the ParaView GUI allows them to 
create, visualize, and explore different VTK pipelines and 
easily examine other QoIs. In this manner, the practitioner 
can directly observe the effect of variations in key param-
eters on their QoIs, gain insight more rapidly, and do so 
without saving the visualized flow data to disk.

Prior to a more complete sensitivity analysis, we lev-
erage computational steering to clarify QoI selection and 
setup design space limits for subsequent ensemble simu-
lation. Our recirculation length QoI, defined in Sect. 4.1, 
initially accounted for the upper recirculation area alone and 
integrated over dy rather than dwall . Computational steer-
ing allows us to observe the lower separation area and trial 
integration with respect to distance from the wall. Live 
adjustments of the blower control steering parameters sug-
gest that low values of UB velocity mean, i.e., < 1.43% total 
diffuser mass flow rate, produce negligible reduction in the 
upper recirculation area. High values, > 2.85% , result in 
fully attached flow, indicate that additional velocity would 
be a poor use of flow mass. Similar testing of the LB mean 
produces an interval of [0.00, 2.34] . The LB mean is useful 

at small percentages too, because the diffuser geometry 
means that lower separation occurs only when the core flow 
is pulled up by large UB action. This tug of war effect can be 
seen in Figure 10. Finally, we decide to examine the interval 
[0, 1] for blower position � . While a higher blower position 
improves this QoI, our study here is 2D and incompressible; 
hence, we stay conservative in our design space constraints.

5  Software tools for ensemble sensitivity 
analysis

In Sect. 4.2, we employed immersive simulation to explore 
the design space of the 2D diffuser problem and to deter-
mine a QoI. Our next objective is to leverage this informa-
tion to spawn an ensemble simulation. We first, in Sect. 5.1, 
provide background on global sensitivity analysis. Next, in 
Sects. 5.2 and 5.3, we present software useful for efficient 
ensemble generation and the application of UQ techniques, 
respectively.

5.1  Sensitivity analysis

Parameter sensitivity is central to achieving an optimal 
design and performing UQ. Through visualization of a solu-
tion subject to deviations from nominal parameter values 

Fig. 10  ParaView GUI displaying the Catalyst live visualization and SENSEI computational steering. On the left, the pipeline browser 
shows the visualization pipeline and steering parameters
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in boundary conditions, material properties, or geomet-
ric parameters, a user can navigate the design space with 
greater efficacy and confidence. In variance-based sensitivity 
analysis, the variance of a given QoI is decomposed into 
fractions that are attributed to specific input parameters, or 
interactions of those parameters. Monte Carlo simulation is 
a popular candidate for obtaining sensitivity metrics, but can 
become infeasible for computationally demanding models. 
A suitable alternative is to use a UQ technique to approxi-
mate the QoI with an expansion in multivariate orthogonal 
polynomials, known as the polynomial chaos (PC) expansion 
[19, 55]. We next describe PC expansions followed by their 
application to global sensitivity analysis. We note that our 
PC expansion is described with random input variables gen-
eral to the UQ field. Our implementation of the PC expan-
sion treats design variables as uniform random variables.

5.1.1  Polynomial chaos expansions

We consider the scalar QoI, u(�) , assumed to have finite 
variance, as a function of a d-dimensional vector of random 
inputs � ∶= (�1,… ,�d) with joint probability density func-
tion f (�) . The PC expansion approximates the QoI as

where �j(�) is a multivariate orthogonal polynomial evalu-
ated at the random inputs and weighted by deterministic 
coefficients cj . The polynomials �j(�) are chosen to be 
orthogonal with respect to the probability measure f (�) . For 
instance, if � follows a jointly uniform or Gaussian distribu-
tion, then �j(�) are multivariate Legendre or Hermite poly-
nomials, respectively [55]. We assume �j(�) are normalized, 
such that �[�2

j
(�)] = 1 , where �[⋅] represents the mathemat-

ical expectation operator. The expansion is truncated to a 
finite number of terms as

An expansion with total order p and dimension d has 
P =

(p+d)!

p!d!
 terms. As P → ∞ , for a sufficiently smooth u(�) , 

the PC expansion converges in the mean-square sense to u. 
The PC coefficients can be used to determine QoI statistics, 
construct a surrogate model, or perform sensitivity analysis. 
For instance, the QoI mean and variance can be computed 
from the PC expansion coefficients as �PC = c1 and 
�2

PC
=
∑P

j=2
c2
j
 , respectively. To identify PC coefficients 

� = (c1,… , cP)
T in (2), we generate realizations of � denoted 

by � . We seek to solve for � in the linear system from N 
independent samples of � as

u(�) =

∞
∑

j=1

cj�j(�),

(2)u(�) ≈

P
∑

j=1

cj�j(�).

where

If the resulting regression problem is over-determined, 
with N > P , we employ least-squares approximation [20, 
23], whereas if it is under-determined, with N < P , we apply 
compressed sensing [13, 14, 24, 36]. Compressed sensing 
methods are advantageous, because they reduce the number 
of sample evaluations to determine PC coefficients.

5.1.2  Global sensitivity analysis via PC expansions

The first-order Sobol’ indices, S�k
 , measure the effect of 

varying one parameter alone, �k , averaged over the varia-
tions in other parameters. Total indices, ST

�k
 , refer to the vari-

ation in the QoI accounted for by one parameter and any 
interactions it has with other input parameters. In this work, 
we apply global sensitivity analysis analytically as a post-
processing of PC expansion coefficients [44]. The first order 
Sobol’ indices are given by

where, Ik is a set of indices for which �j(�) , j = 1,… ,P , 
is a function of only �k . Similarly, the total Sobol’ indices 
are given by

where IT
k
 is a set of indices for which �j(�) , j = 1,… ,P , is 

a function of �k and any other inputs.

5.2  Ensemble generation via libEnsemble

In this work, we employ libEnsemble, an open-source 
Py-thon library developed at Argonne National Laboratory 
as part of the Department of Energy Exascale Computing 
Project to coordinate the concurrent evaluation of dynamic 
ensembles of calculations on massively parallel resources 
[25]. libEnsemble aims to achieve extreme scaling, resil-
ience, task monitoring and resource recovery, portability, 
and flexibility, and exploit persistent data flow. The ensem-
ble is coordinated via a manager/worker scheme that oper-
ates on several communication protocols.
libEnsemble is implemented through four compo-

nents. The generator function genf  produces values for simu-
lations, the simulator function simf  performs a simulation for 
given values from genf  , the allocation function determines 

(3)� ≈ ��,

(4)� (i, j) ∶= �j

(

�i
)

and � ∶=
(

u
(

�1
)

,… , u
(

�N
))T

.

(5)S�k
=
∑

i∈Ik

c2
i

�2

PC

,

(6)ST
�k

=
∑

i∈IT
k

c2
i

�2

PC

,
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whether genf  or simf  should be called, and the calling script 
defines the parameters for the previous three functions and 
executes libEnsemble. The libEnsemble user manual 
[25] provides more detail on each of these components, and 
various tutorials. In Fig. 11 we show an abbreviated ver-
sion of the calling script. Note, in our application, we have 
no generator function, because simf  reads inputs directly 
from a file. In the calling script, we specify the number of 
workers, and the number of simulations. For example, an 
HPC job may use 50 nodes in total, but require 2 nodes per 
simulation. In this case, the number of workers would be 
25. In Fig. 11, we first setup the PHASTA executable. Next, 
we create an ID number for each simulation before defining 
parameters for the simulation and generation functions. An 

exit criterion is specified to terminate the ensemble when 
the maximum number of simulations is reached. Finally, the 
ensemble is launched. As simulations complete and work-
ers become available new simulations are launched. Other 
ensemble manager tools are also available, for instance, UQ 
Pipeline [45].

5.3  Sensitivity analysis with chaospy

We use the Python library chaospy to perform UQ PC-
based sensitivity analysis [16]. More generally, chaospy 
includes a suite of UQ methods such as low-discrepancy 
sampling, quadrature creation, polynomial manipulations, 
among others. A collection of Jupyter notebooks lets users 
explore the variety of chaospy applications.

We present pseudocode of the chaospy enabled sen-
sitivity analysis in Fig. 12. The main idea is to construct 
a PC expansion and use the coefficients to calculate Sobol 
indices in Sects. 5.1.1 and 5.1.2, respectively. We note that 
in this pseudocode, we do not include the validation error. 
In practice, we recommend reserving ≈ 20% of samples to 
compute the PC expansion validation error, and use this to 
calibrate the polynomial order p.

6  Numerical demonstration: ensemble 
simulation tools

We have now courtesy of an immersive simulation frame-
work, established design space limits and confidence in our 
choice of QoI. We are also equipped with software tools to 
perform ensemble simulation and analyze the results. In this 
section, we demonstrate the utility of Catalyst during the 
collection of ensemble data, and carry out a global sensitiv-
ity analysis on the 2D aggressive subsonic diffuser.

6.1  Catalyst pipeline QoI extraction

The Catalyst library is successfully interfaced with 
PHA-STA via SENSEI to enable real-time QoI extraction. 
First, the PHASTA adaptor file is edited to include additional 
fields that facilitate QoI computation. This adaptor file deter-
mines the fields that are passed from the PHASTA solver 
to ParaView during a simulation. Next, PHASTA is built 
with SENSEI enabled and the updated adaptor file. Finally, 
a ParaView pipeline is saved to a Python co-processing 
script that is read during the PHASTA run at a specified fre-
quency. The execution of the Catalyst co-processing step 
results in some computational overhead which we assess via 
a strong scalability study.

We performed a strong scalability study on the Argonne 
Leadership Computing Facility’s Theta computational 
resource with a ∼ 2572 K element mesh of the diffuser, Fig. 11  Pseudocode of the libEnsemble calling script
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partitioned to run on 6, 12, 24, and 48 cores, with 1 MPI 
process per core. Theta is a 11.69-petaflops Intel-Cray super-
computer. Each simulation computes 25 time steps, and saves 
output data at 2 step intervals. In Fig. 13, we plot the scalabil-
ity study timing results for no write, conventional write, and 
Catalyst write cases. The results are computed as the aver-
age of three repetitions. No write denotes a PHASTA run that 
neither saves data to restarts or via the Catalyst pipeline. 
Conventional write indicates that a restart file containing the 
entire flow solution is written every 2 time steps. Catalyst 
write employs the Catalyst QoI pipeline to efficiently 
extract data every 2 time steps.

In Fig. 13, we plot the strong scalability factor, defined as

where t and nc are a given execution time and number of 
cores, and tref and ncref are the execution time and number 
of cores for the 6 core, no write, reference case. Optimal 

(7)sf =
tref × ncref

t × nc
,

scaling would be a horizontal line with a scaling factor of 1. 
We observe in Fig. 13 that for all cases, the parallel overhead 
increases with number of cores. Importantly, while Cata-
lyst write is marginally less efficient than not writing at 
all, its performance is comparable to the conventional write 
method.

In the traditional workflow approach, where the QoI cal-
culation is performed as a post-processing step, the entire 
solution field must be saved at a given time step to a restart 
file of approximately 205 Mb. In the Catalyst write 
approach, the file containing the QoI is just 4 Kb, indicating 
a storage reduction of approximately 50000 times. These 
results demonstrate that the significant memory advantages 
of writing output data via the Catalyst pipeline come at 
minimal computational overhead. We note that, if a practi-
tioner desires to continue the simulation in the Catalyst 
write approach, then they still are required to save a restart 
file; we do not address this disk usage in the present study.

6.2  Ensemble generation

We have enabled the straightforward evaluation of ensem-
bles of PHASTA simulations through the implementation of 
the libEnsemble Python library described in Sect. 5.2 
[25]. libEnsemble facilitates two levels of parallelism. 
In the first, an individual PHASTA simulation may employ 
numerous processors, in this demonstration, we partition 
a 241k element mesh and conduct each simulation with 
24 processors. In the second, libEnsemble manages 

Fig. 12  Pseudocode of the chaospy sensitivity analysis. Samples 
is an array of samples {�i}Ni=1 , and evaluations are the corresponding 
simulated QoI � from Eq. (4)

Fig. 13  Strong scalability study comparing the performance of no 
write, where no output data are saved, conventional write, where 
output data are written to restart files and Catalyst write where 
PHASTA is equipped with the Catalyst pipeline for efficient QoI 
extraction. We plot the strong scalability factor (7) calculated from 
the average of three repetitions of a 25 time step simulation with out-
put data saved at every second step
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individual PHASTA evaluations and can launch new simu-
lations immediately after previous simulations are finalized 
and resource becomes available. The user selects or provides 
functions to generate simulation input, carry out a simula-
tion, and manage the ensemble of simulations. This setup 
allows the user to tailor libEnsemble to their specific 
solver requirements. For instance, to obtain an ensemble of 
PHASTA simulations, we create a custom simulation script 
that for a given input realization creates a run directory with 
the necessary geometry and restart files, reads the inputs 
from file, writes the inputs to the solver.inp script, and exe-
cutes PHASTA.

We have developed and documented a set of PHASTA 
specific libEnsemble scripts and that enable the paral-
lel evaluation of ensemble members, allowing much greater 
flexibility in job submission. libEnsemble with PHASTA 
has been implemented on local resources, and additionally 
on the Argonne Leadership Computing Facility’s Cooley 
cluster. Cooley has 126 compute nodes, each with 12 cores 
and 1 NVIDIA Tesla K80 GPU.

6.3  Global sensitivity analysis

We apply global sensitivity analysis via PC expansions, 
detailed in Sect. 5.1.2, to the 2D aggressive subsonic dif-
fuser. Our objective is to understand the influence of the UB 
and LB velocities and the UB position on the length of the 
recirculation area (1). While the UB and LB provide us with 
flow control, the mass flow rate diverted to these blowers 
corresponds to a direct loss of thrust. Therefore, we want to 
determine a blower configuration that reduces the recircula-
tion area while expending minimal diverted flow.

To explore the design space, we treat the UB and LB 
velocities and amplitudes and the UB position as uniform 
random variables. The variables and their respective inter-
vals are summarized in Table 1. The limits were determined 
through computational steering via in situ exploration of 
the parameter space as described in  4.2. Figure 14 shows 
the PC-based Sobol indices constructed from 495 samples 
using polynomial order p = 4 . The PC validation error was 
10.1% . In Fig. 14, we see that the most influential parameter 
is the UB velocity mean, while the LB velocity amplitude 
has minimal effect on the QoI variance. The UB position 
� also plays a significant role. Furthermore, it is apparent 
that the recirculation length is sensitive to the interactions 
between all the parameters. This matches our expectation 
given the tug of war dynamic between the upper and lower 
blowers over the core flow.

We plot in Fig. 15 the entire ensemble in terms of mass 
cost and recirculation length, colored by the sampled input 
parameters. We exclude AL (see Table 1) from Fig. 15 due 
to its small sensitivity found in Fig. 14. Mass cost is com-
puted simply as the sum of the UB and LB mean velocities. 

Consequently, it is no surprise that in Fig. 15a, c we find 
that increasing the mean mass flow rates is correlated with 
higher mass cost. However, this increase in mass is corre-
lated with our aim of reducing the recirculation length. The 
best-performing samples are those that produce the smallest 
recirculation length while expending the least mass. In gen-
eral, these samples correspond to higher blower positions, as 
illustrated in Fig. 15d. While Fig. 15d implies that moving 
the blower position even further downstream may achieve 
better results, we refrain from doing this given the severe 
simplifications of this study, namely incompressible and 2D 
flow. Future work could transition examination of the blower 
position into 3D and compressible flow.

We select a sample, identified by a red circle in Fig. 15, 
as flow configuration that yields low recirculation length 
and minimizes mass cost. This configuration reduces the 
recirculation length to 0, at a mass cost of approximately 
4.5% the core mass flow. In Fig. 16, we compare our cho-
sen flow configuration to the diffuser with no active flow 

Table 1  Upper blower (UB) and lower blower (LB) input parameters

Velocity metrics are given as a percentage of the total diffuser mass 
flow rate

Parameter Symbol Distribution

UB velocity mean �
U

U[1.43, 2.85] %

UB velocity amplitude A
U

U[0.00, 2.13] %

LB velocity mean �
L

U[0.00, 2.34] %

LB velocity amplitude A
L

U[0.00, 1.17] %

UB Position � U[0, 1]

Fig. 14  Global sensitivity analysis of the 2D aggressive subsonic dif-
fuser. This study was carried out in Python with chaospy and an 
order p = 4 PC expansion from 495 samples with validation error 
10.1% . The sum of the interactions and first order is the total order
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control. The time-averaged stream-wise velocity is plotted. 
We observe in Fig. 16a that the recirculation area, outlined 
in black, is very large. In Fig. 16b, the core flow has been 
bent upwards by the action of the UB and the recirculation 
area is reduced to 0.

7  Conclusions

In this work, we introduce an immersive simulation soft-
ware framework that enables practitioners to evade many 

(a) Influence of µU . (b) Influence of AL.

(c) Influence of µL. (d) Influence of ϕ .

Fig. 15  Ensemble members in terms of mass cost and recirculation length colored by different input parameters. The chosen optimal flow con-
figuration is circled in red

Fig. 16  Influence of active flow control on the recirculating region showing a no flow control and b the best performing configuration found via 
an ensemble of simulations. The recirculation region is outlined in black
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of the typical workflow inefficiencies in solving systems 
of PDEs. We describe the in situ interface SENSEI and 
infrastructure Catalyst and provide software linkages 
to show their interaction with the PDE solver. In addi-
tion, we demonstrate the use of complementary ensemble 
simulation software tools libEnsemble, for intuitive 
evaluation of simulation ensembles, and chaospy, for 
straightforward implementation of UQ techniques.

We demonstrate the efficacy of this immersive simula-
tion framework on a 2D diffuser problem in the PHASTA 
flow solver. With SENSEI and Catalyst, we implement 
computational steering on the diffuser problem, including 
parametric geometry deformation, that allows for rapid 
design space exploration and eliminates the need of writ-
ing data to disk. We show that using a Catalyst pipe-
line to save output QoI requires minimal computational 
overhead, scales well, and reduces memory demands by 
approximately 50000 times.

A global sensitivity analysis integrates all the immer-
sive simulation components together. Computational steer-
ing allows the practitioner to test input parameters’ influ-
ence, guide the selection of appropriate parameter limits, 
and determine a useful QoI. The ensemble evaluation with 
lib-Ensemble is fast, intuitive, and takes full advan-
tage of massively parallel resources. Moreover, the saving 
of output QoI with pre-constructed Catalyst pipeline 
drastically reduces the total memory footprint. Finally, we 
use chaospy to calculate Sobol’ indices and determine 
the optimal diffuser configuration.

Our future research includes a plethora of advance-
ments to immersive simulation capabilities. While the 
application of UQ techniques as a post-processing analy-
sis is useful, the ability to establish sample limits during 
computational steering and launch ensembles interactively 
from within Para-View GUI would lead to yet more 
rapid insight extraction. In this work, we provide a proof 
of concept for parametric geometry deformation that is 
designed specifically for this problem’s geometry. More 
general geometric deformation tools are an interesting line 
of inquiry.
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