
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4697–4713
https://doi.org/10.1007/s00366-022-01714-6

ORIGINAL ARTICLE

Software tools to enable immersive simulation

Felix Newberry1 · Corey Wetterer‑Nelson1 · John A. Evans1 · Alireza Doostan1 · Kenneth E. Jansen1

Received: 22 November 2021 / Accepted: 23 June 2022 / Published online: 26 August 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
There are two main avenues to design space exploration. In the first approach, a simulation is run, analyzed, the problem
modified, and the simulation run again. In the second approach, an ensemble simulation is performed and the battery of
results is leveraged to construct a surrogate model for a given quantity of interest (QoI). The first approach allows a practi-
tioner to methodically move through the design space and analyze a solution field. A disadvantage of this technique is that
each new simulation requires time-consuming setup. The second approach provides the practitioner with a global view of
the problem, but requires a priori design space limits and the QoI specification. In this work, we introduce an immersive
simulation software framework that enables practitioners to maintain the flexibility of the first approach, while eliminating
the burden of setting up new simulations. Immersive simulation can also be used to inform the second approach, establish-
ing limits and clarifying QoI selection prior to the launch of an ensemble simulation. We demonstrate live, reconfigurable
visualization of on-going simulations coupled with live, reconfigurable problem definition that guides users in determining
problem parameters. Ultimately, an immersive simulation framework enables more efficient design space exploration that
reduces the gap between simulations, data analysis, and insight extraction.

Article Highlights

• Introduce and demonstrate an immersive simulation soft-
ware framework that enables in situ visualization and
problem redefinition.

• Efficient quantity of interest extraction that reduces disk
storage by a factor of 50,000.

• Demonstrate the compatibility of immersive simulation
with ensemble simulation and sensitivity analysis.

Keywords HPC · Scientific visualization · Immersive simulation · in situ simulation · Computational steering

 * Kenneth E. Jansen
 kenneth.jansen@colorado.edu

1 Ann and H.J. Smead Aerospace Engineering Sciences
Department, University of Colorado, Boulder, CO 80303,
USA

1 Introduction

The solution of systems of partial differential equations
(PDEs) provides scientists, engineers, and other practition-
ers with insight into a wide variety of physical phenomena.
High-performance computing (HPC) is the driving force
behind increasingly accurate simulations that are capa-
ble of rapidly solving multi-physics, three-dimensional
systems, or higher order approximations. The traditional

simulation workflow for PDE solvers consists of sequential
steps: meshing, definition of boundary conditions, solver,
and visualization. This structure leads to numerous ineffi-
ciencies. Problem redefinition and the role of visualization
as a post-processing step delay engineering/scientific dis-
covery and design. In HPC applications, the practitioner’s
pursuit of insight is hampered not only by time devoted to
each new problem redefinition, but also by additional queue
time. These traditional workflow inefficiencies inhibit design
space exploration and subsequent ensemble simulation.

One method to address workflow inefficiencies is with
notification and monitoring systems that query simulation
data during runtime [38, 40, 46]. While this output does
provide practitioners with basic solver behavior, such as con-
vergence, it does not permit live reconfigurable simulation.

http://orcid.org/0000-0002-2135-7143
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01714-6&domain=pdf

4698 Engineering with Computers (2022) 38:4697–4713

1 3

Co-processing, the concept of performing in situ visuali-
zation and analysis while a simulation is on-going, allows
users to access simulation data immediately and mitigates
the burden of writing large simulation data to disk [17, 22,
29, 48]. A summary of in situ methods, infrastructures,
and applications to HPC is presented in the state-of-the-art
(STAR) report [7]. The authors observe that while numer-
ous infrastructures are available, only a limited number of
production quality frameworks have emerged. For instance,
there are co-processing implementations within VisIt [11]
using ADIOS [26], Lib-Sim [31], GLEAN [49], and in
ParaView Catalyst (Catalyst) [1, 4]. A conclud-
ing remark in [7] is that given the entry cost for new in situ
frameworks is relatively high, a move towards a generic data
interface would be of great value. More recently, attempts
have been made to address this concern. The introduction of
the in situ interface SENSEI [6] and infrastructure ALPINE
[27] provides an interface between a given solver and a vari-
ety of visualization and analysis routines. While SENSEI
is designed solely to support Catalyst, Lib-Sim, and
ADIOS infrastructures, ALPINE plays both the supporting
role and provides its own execution model and visualization.
In [5], a performance analysis of SENSEI shows that the
infrastructure is highly flexible and has low overhead.

A powerful extension of co-processing is computational
steering, where users can take advantage of real-time simu-
lation feedback to rapidly explore the design space and
extract insight. Computational steering has been previously
demonstrated in the flow solver PHASTA with Catalyst
[52, 56], though steering was accomplished via live edits of
a solver parameter file, and geometric deformations were not
implemented. More recently, Catalyst has been used to
model turbidity currents [9], where steering is introduced
through application specific LibMesh-sedimentation
code on solver parameters such as time step and tolerances.
Another geological application utilized in situ visualization
in earthquake modeling, but did not use computational steer-
ing [34]. More recently, an approach to “human in the loop”
scientific workflows employing some elements of compu-
tational steering alongside provenance data monitoring
enables data reduction and lower execution time [33, 43].
In [53], computational steering is enabled via a user inter-
face; however, this software is closed source. These exam-
ples show the current state of computational steering either
requires the in situ editing of simulation solver parameter
inputs or are closed source.

Ensemble simulation, informed via prior design space
exploration, is a useful means of further insight extraction.
Through visualizing and analyzing solution output across a
range of different realizations of input parameters, practi-
tioners can better understand how some output quantity of
interest (QoI) is a function of input variables. The field of
uncertainty quantification (UQ) addresses the challenge of

mapping uncertain inputs to output QoIs [19, 28, 54]. Large
ensembles allow the collection of useful statistics, creation
of surrogate models for a given QoI, sensitivity analysis, and
much more. Furthermore, the evaluation of ensembles has
traditionally been performed in serial, with parallel imple-
mentations that are predominantly ad hoc. While there has
been some commercial software development in this area
[2], in this work, we employ the open-source Python library
libEnsemble, developed at Argonne National Laboratory
as part of the Department of Energy Exascale Computing
Project to coordinate the concurrent evaluation of dynamic
ensembles of calculations on massively parallel resources
[25]. In [10], libEnsemble is coupled with multiobjec-
tive optimization to achieve better resource utilization for
HPCs. Having performed an ensemble simulation, the prac-
titioner may access one of several open-source UQ Python
libraries such as Uncertainpy [47], chaospy [16], and
UQ-PyL [50]. Additional Python libraries for specific UQ
fields such as active subspaces are also in use [12]. The pri-
ority research directions for in situ data management identi-
fied by the authors in [37] include ensemble analysis, UQ,
and surrogate models. We note that there is a distinction
between random input variables addressed by UQ and design
variables examined in design space exploration. In this work,
we apply UQ methodologies to design variables by treating
them as uniform random variables.

1.1 Contributions of this work

While numerous studies have demonstrated co-processing,
to the authors’ knowledge, the valuable link between co-pro-
cessing capabilities, extraction of relevant data from ensem-
ble generation, and subsequent application of UQ techniques
such as sensitivity analysis, has not been explored. In this
document, we introduce an immersive simulation software
framework that enables more rapid design space explora-
tion with computational steering and subsequently informs
ensemble generation for more efficient insight extraction.

Our work builds directly upon previous implementations
of Catalyst in the flow solver PHASTA [4, 56]. Earlier
demonstrations of co-processing functioned with Cata-
lyst hooked directly into the PHASTA solver and required
a high level of expertise in the interfaces. Our work dif-
fers in that we implement SENSEI to interface between the
solver and Catalyst, easing the difficulty a practitioner
may face as they implement immersive simulation. The main
contribution of this work is to introduce and demonstrate an
immersive simulation software framework. We describe the
relationship between a PDE solver and immersive simulation
software components that enable computational steering and
modification of physical, geometric, and solver parameters.
We provide open-source software linkages that others can
leverage or modify as needed. Equipped with an immersive

4699Engineering with Computers (2022) 38:4697–4713

1 3

simulation framework, a practitioner may interact with their
simulation in situ via the ParaView graphical user inter-
face (GUI) .

We complement these immersive simulation tools with
a demonstration of libEnsemble for straightforward
ensemble simulation and chaospy to implement UQ meth-
ods to analyze the ensemble results. We show the ability of
immersive simulation and ensemble tools to complement
and enhance one another.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the simulation workflow, first addressing the
traditional approach in Sect. 2.1 followed by an immersive
simulation workflow in Sect. 2.2. Next, Sect. 3 details the
software elements that make up an immersive simulation
software framework. Section 4 provides a numerical dem-
onstration of immersive simulation tools on a 2D aggressive
subsonic diffuser with the fluid solver PHASTA. Section 5
describes ensemble simulation software tools before Sect. 6
applies the ensemble tools, coupled with an immersive simu-
lation framework, to a global sensitivity analysis. Finally,
Sect. 7 summarizes this study’s conclusions.

2 The simulation workflow

We now describe the traditional simulation workflow, high-
lighting aspects that inhibit scientists’ and engineers’ abil-
ity to gain insight from their simulations. We then present
an immersive simulation workflow that alleviates standard
workflow inefficiencies.

2.1 Traditional simulation workflow

The traditional simulation workflow, whether a lone simula-
tion (Fig. 1a), or an ensemble simulation (Fig. 1b), consists
of a series of sequential steps. Considering Fig. 1a, we refer
to components of the workflow that occur before and after
the solver step as belonging to the pre- and post-processor,
respectively. First, in the pre-processor, we develop an idea
into a solvable problem through defining an appropriate
geometry, mesh, and boundary conditions. Next, we calcu-
late the solution to our problem through our chosen PDE
solver. Finally, in the post-processing section, we perform
visualization and data analysis to determine the utility of
the solution data. If the present results are satisfactory, then
we have obtained the insight we seek and the simulation
workflow is complete. Alternatively, if the results are unsat-
isfactory and we want to redefine the problem to explore the
design space, then we return to the pre-processing region of
the workflow.

Difficulties with the traditional simulation workflow arise
due to the computational expense of individual workflow
components coupled with the persistent need for problem
redefinition. Solution data may persuade a practitioner to
return to the pre-processing steps either to ask a new ques-
tion of the simulation, or to improve the method of answer
to an existing question. As an example, let us consider the
visualization of a fluid flow. Inspection of high gradient
regions in the flow, such as boundary and shear layers, may
reveal that further mesh refinement is needed to accurately
resolve flow behavior. Alternatively, the practitioner may
decide geometric adjustments would be a productive line of

Fig. 1 Traditional singular (a)
and ensemble (b) simulation
workflows

Idea

Geometry

Meshing

Boundary
Conditions

Solver

Visualization Data Analysis

Problem
Redefinition?

Insight

No

Yes

P
re
-p
ro
ce
ss
in
g

P
os
t-
pr

oc
es
si
ng

(a) Traditional simulation workflow.

Idea

Geometry

Meshing

Boundary
Conditio

Solver

Visualization

Problem
Redefiniti

P
re
-p
ro
ce
ss
in
g

P
os
t-
pr

oc
es
si
ng

ryry

gg

y
ns
ry
on

ConditioCCCon

tiontion
VisualizationVisVisu

finition?efinitio
Redefiniti

ii
a

n

et

-p
r

ree
-

ndnd

pr-p
ooc

ehh

i
gnggg

R

VV

P
oos
t-
pr

o

RR

oc
es
si
nngn

cce

finition?n YeYYefinitio ProblemProbleProble
Redefiniti

R

VVVV

P
ooos
t--
pr-

??

oo

RRR

o??

in
ce
ss
isi
ngn

cce

YesYY
finition?n

YeYY
efinitio ProblemProbleProble

Redefiniti
R

P
ooos
t--
pr-

??

oo

RRR
finition?nefinitioR

YY

P
ooos
t--
pr-

??

oo

RRR

o??

in
ce
ss
i

Y

si
c YcY

Geometry

Meshing

ryry
GeometryoGG o

ggn

et

ce

hh

i
gngngggg

ryry
GeometryoGG o

MeshingeMMe

oundaryu
ConditionsCon

er

Visualizationo

YeYY sProblem
Redefinition?n YesYY

et

gngngggg

Geometry

Meshing

Boundary
Conditions

Solver

Visualization

Problem
Redefinition? Yes

P
re
-p
ro
ce
ss
in
g

P
os
t-
pr

oc
es
si
ng

Data Analysis

Problem
Redefinition?

Insight

Yes

No

P
os
t-
pr

oc
es
si
ng

(b) Traditional ensemble simulation workflow.

4700 Engineering with Computers (2022) 38:4697–4713

1 3

inquiry and be motivated to update the geometry and associ-
ated mesh. The role of problem redefinition as a post-pro-
cessing step in the traditional workflow delays engineering
and scientific insight.

A vital concern for HPC applications that will grow with
the arrival of exascale computing is the bottleneck of IO.
The PDE studied in [15], in which an unsteady flow problem
is addressed, was scaled up to 3.1 million processes and 92
billion elements in [39]. To save the complete solution of a
simulation, this size would generate O(1) terabyte of data per
second. Although the code can determine a write frequency
and produce numerous flow statistics, analysis of unsteady
flow structures is not practical with the traditional simulation
workflow. To undertake post-processing steps that involve
writing, and re-reading of data at this rate is unreasonable.
Additionally, we find conventional methods impractical
even if we consider specialized libraries that achieve close
to machine IO bandwidth limit (240Gb∕s , or more than 4 s
to write 1 s of simulation data) [18, 30].

Both the aforementioned traditional workflow concerns,
i.e., the delay of insight caused by problem redefinition and
impracticality of visualization in HPC applications, are
exacerbated when we consider ensemble simulation; see
Fig. 1b. Managing an array of pre-processor settings and
tailoring post-processing steps to each ensemble member is
cumbersome for the practitioner. Additionally, the traditional
workflow delays the initial setup of an ensemble due to the
problem redefinition necessary to figure out design space
limits and adjust a given QoI.

2.2 Immersive simulation workflow

An immersive simulation workflow intends to mitigate some
of the standard workflow inefficiencies through live, recon-
figurable simulation. In essence, a new co-processing stage
integrates steps from both pre-processing, such as problem
definition, and post-processing, such as visualization and
data analysis, to be contemporary with the on-going/live
advancement of the flow solver; see Fig. 2.

Co-processing methods aim to vastly reduce the quantity
of data storage through in situ visualization that the user is
able to interact with and calibrate to their specific needs [22,
48]. In co-processing, the visualization pipeline is shifted
from being a post-processing step within the PDE solver
workflow to be concurrent with the simulation. The progres-
sion of HPC from present petascale to future exascale com-
puting, coupled with corresponding increase in simulation
complexity, such as multi-scale and multi-physics, further
enhances the desire for co-processing as opposed to tradi-
tional post-processing capabilities.

Immersive simulation couples co-processing that allows
live visualization with computational steering that allows
live problem redefinition. When immersed, a practitioner is

capable not only of visualizing their problem solution in situ,
but also of intuitively redefining the problem definition for
rapid exploration of the design space. The practitioner may
choose to steer solver parameters, boundary conditions,
and even the problem geometry depending on what aspects
of the problem space engage them. In the HPC setting, an
immersive simulation practitioner can avoid the queue time
associated with each new problem redefinition. In this man-
ner, the behavior of different combinations of input parame-
ters can be quickly understood and inform appropriate limits
for subsequent or concurrent ensemble simulations.

3 Software tools for immersive simulation

In this section, we describe the core components of an
immersive simulation software framework; see Fig. 3. This
framework enables multiple forms of immersive simulation
that work with a traditional PDE solver to perform both
live, reconfigurable visualization and live, reconfigurable
problem definition. The colored boxes indicate software
components, while the grey boxes show functionality. Thin
arrows out of the in situ infrastructure Catalyst, or inter-
face SENSEI, represent data extraction/compression, while
thin arrows into these components relay analyst input via
the ParaView GUI. Large data streams, shown by thick
arrows, correspond to the full solution state (problem mesh
and solution). The analyst obtains insight, shown by a wide
arrowhead, through engagement in an immersive simulation
through the ParaView GUI. A crucial aspect of immer-
sive simulation is that the commands related by the analyst

Idea

Parametric Geometry

Parametric Meshing

Parametric Boundary
Conditions

SolverLive, Reconfigurable
Visualization

Live, Reconfigurable
Problem Redefinition

Data Analysis

Problem
Redefinition?

Insight

No

Yes

P
re
-p
ro
ce
ss
in
g

P
os
t-
pr

oc
es
si
ng

C
o-
pr

oc
es
si
ng

Fig. 2 Immersive simulation workflow

4701Engineering with Computers (2022) 38:4697–4713

1 3

to reconfigure the simulation are conveyed with small data
streams. With this setup, an analyst can operate the live visu-
alization and problem definition for swift simulation feed-
back and insight extraction. We now provide some context
on the integration of core immersive simulation software
components SENSEI, Catalyst, and ParaView with
the PDE solver. While we use the fluid solver PHASTA,
many aspects of the links between software and all of the
resulting advantages are general. We note that Catalyst
and Para-View are open-source platforms developed by
Kitware.

3.1 SENSEI in situ interface

SENSEI is a generic in situ interface best summarized by
the underlying premise of “write once, use everywhere” [6].
The interface supports a number of in situ infrastructures,
such as VisIt/Libsim, Catalyst, and ADIOS. Simu-
lation output is mapped to the VTK data model via a data
adaptor and an analysis adaptor, while an in situ bridge links
the respective adaptors and prompts in situ analysis. An in-
depth description of SENSEI is provided in [6] as well as
a brief view from the simulation code, and the perspective
of different choices of in situ infrastructure. In the SENSEI
repository, mini-apps are provided as a guide for different
PDE solver applications. The mini-app topics span SENSEI
Python bindings, C++ solvers for dynamic periodic oscil-
lators, the Mandelbrot set and vortex simulation, and the
PHASTA mini-app that we build upon for this work.

The minimum requirement to implement the SENSEI
mini-app with a given PDE solver is the introduction of
SENSEI specific data streams that pass the problem mesh
and solution to enable live, reconfigurable visualization
(large data stream). However, if computational steering is
desired, the specific variables identified to perform that
computational steering (small data steam) are also needed.
In that case, the PDE solver must define these steering vari-
ables in such a way that the appropriate sections of the code
that depend on these variables are able access these variables

to complete the bi-directional communication that enables
computational steering.

In general, the linking of software to enable immersive
simulation appears in three places. First, the SENSEI mini-
app bridge must be updated to match any parameters the
practitioner seeks to pass from their PDE solver. As shown
in [6], the bridge is custom to the implementation code, and
requires initialization, analysis, and finalization steps. In this
work, we focus on how this bridge communicates with the
PDE solver from the solver’s view, and also on the practi-
cal implementation in terms of necessary scripts at runtime.
From the perspective of the PHASTA solver, the abbrevi-
ated simulation code to highlight the SENS-EI footprint is
presented in Fig. 4. Within the simulation script, we make
calls to subroutines that initialize, perform co-processing,
and finalize the interaction of the interface with the solver.

These subroutines are defined in a second PDE solver
script sensei_interface.f shown in Fig. 5. Figure 5 essen-
tially refines the main simulation routine calls to SENSEI
by providing additional context. The routines called here are
defined in the SENSEI PHASTA bridge. For instance, the
initialization subroutine calls any in situ analysis adaptor,
such as Catalyst, before communicating mesh details
vital to live visualization and a set of fields determined by
the user.

For the full context of these scripts, we refer the interested
reader to our GitHub repository www. github. com/ SimNa
utilus/ nauti lusFl ow that documents the links between the

Fig. 3 Immersive simulation
software framework

Analyst

ParaView Graphical User Interface

Catalyst In Situ
Infrastructure

SENSEI In Situ
Interface

Live, Reconfigurable
Problem Definition

Live, Reconfigurable
Visualization

PDE Solver

Large Data Streams

Small Data Streams

Large Insight Streams

Fig. 4 Pseudocode of the SENSEI footprint in PDE solver simulation
script

http://www.github.com/SimNautilus/nautilusFlow
http://www.github.com/SimNautilus/nautilusFlow

4702 Engineering with Computers (2022) 38:4697–4713

1 3

PDE solver PHASTA and in situ interface SENSEI. In our
implementation of an immersive simulation framework, we
initially setup the main solution variables, such as mesh
coordinates, velocity and pressure fields, for live visualiza-
tion. Next, we improve the framework with the introduc-
tion of steering parameters or more complex fields that are
passed to SENSEI.

Having setup the PDE solver to communicate fields to
SENSEI, we next address the implementation at runtime.
As noted, several in situ infrastructures are supported. The
practitioner can setup the desired analysis type with ease in
the equivalent of senseiPhasta.xml; see Fig. 6. This script is
called via sensei_adaptors_init() during the SENSEI initial-
ization steps in Fig. 5. While the SENSEI bridge is created
during initialization, the analysis it facilitates, for instance
via Catalyst, is reconfigurable during a simulation run.

3.2 Catalyst in situ infrastructure

Catalyst , formerly the ParaView co-processing
library [15], is an in situ visualization library with an adapt-
able API that is built on VTK [41] and ParaView [1].
Through building the library with VTK, Catalyst can
access a plethora of useful algorithms such as IO writers,
visualization filters, and graphics rendering. The visualiza-
tion pipelines can be described in C++ or Python, and the
ParaView GUI facilitates the generation of Catalyst
co-processing Python scripts both directly, and via a Python
trace and shell. Additionally, Catalyst is designed to con-
nect visualization pipelines remotely through server–client
architecture. While the addition of the Catalyst adaptor

to solvers must to some degree inhibit solver performance,
this influence has been shown to be negligible when com-
pared to the savings in file I/O and data management [15].
In our numerical example, we implement Catalyst with
the fluid solver PHASTA via the SENSEI in situ interface,
specifically through analysis adaptor in Fig. 6.

A powerful function of Catalyst that has been alluded
to is the setup of ParaView pipelines. The entire pipeline
script can be generated intuitively from a ParaView GUI
session that writes out a Catalyst co-processing script,
as shown in Fig. 7. The co-processing script can be tailored
to specific problems and is loaded automatically when live
visualization is launched to facilitate the user’s analysis. The
practitioner can update the pipeline live through the Catalyst
connection in the ParaView GUI.

Having described the implementation of the interface
SENSEI and infrastructure Catalyst, we are equipped
with an immersive simulation framework of Fig. 3. With
these immersive simulation tools in hand, a practitioner can
leverage interactive visualization and problem redefinition
for efficient design space exploration.

4 Numerical demonstration: immersive
simulation tools

We demonstrate the utility of immersive simulation tools
on a 2D aggressive subsonic diffuser simulated in PHASTA
[52]. In this section, we first describe the diffuser model
equipped with parametric geometry deformation and then
illustrate the application of immersive simulation tools
described in Sect. 3. Code examples of the implementation
of immersive simulation tools in PHASTA can be found in

Fig. 5 Pseudocode of the PDE solver link between simulation script
in Fig. 4 and SENSEI

Fig. 6 Pseudocode of the runtime XML description that configures
in situ analysis routines [6]

4703Engineering with Computers (2022) 38:4697–4713

1 3

our GitHub repository www. github. com/ SimNa utilus/ nauti
lusFl ow.

4.1 2D aggressive subsonic diffuser

Aircraft frequently requires air intake systems that reroute
air from the free stream velocity and slow it to speeds appro-
priate for the engine [3]. The intake arrives at the compres-
sor on the aerodynamic interface plane (AIP). It is desirable
that the AIP air exhibits low swirl, low distortion, and high
pressure recovery; with minimal increase of the intake drag,
lest engine performance is inhibited [32]. Therefore, under-
standing of intake flow is imperative to effective simulation
of engine performance.

Typical intake geometries consist of a duct to direct
the flow connected to a diffuser that, via an increase in

cross-sectional area, trades upstream kinetic energy for a rise
in downstream static pressure. This increase in area produces
an adverse pressure gradient that encourages separated flow.

The diffuser model we study is motivated by a 3D tran-
sonic diffuser with two significant simplifications made to
reduce computational expense: the model is a 2D slice of
the 3D geometry midplane and the flow is treated as incom-
pressible as opposed to compressible. Shifting from 3D to
2D greatly reduces the number of elements in the simula-
tion mesh, and treating the flow as incompressible permits
a much larger time step while maintaining a converging
simulation. We emphasize the severity of the model sim-
plifications on the diffuser; the purpose of this simulation
is to demonstrate an immersive simulation software frame-
work and to capture quantitatively the influence of upper and
lower blowers on core flow behavior.

The diffuser geometry, depicted in Fig. 8, is considered
compact with a length to diameter ratio of L∕D ∼ 1.03 and
a high expansion ratio of ER= 2.2 . Active flow control is
implemented through two tangential blowers, denoted as the
upper blower (UB) and lower blower (LB). The blowers are
designed to inhibit or delay flow separation on their respec-
tive surfaces. We prescribe a trapezoid waveform inflow
condition to both the UB and LB, where we set the wave’s
mean, amplitude, and period. The time the trapezoid wave
spends rising, falling, and at the maximum value of the wave
is set to 1.5e − 3 s , 1.5e − 3% and 4e − 3 s , respectively. We
have fixed the period to 8e − 3 s for the study and ensured a
temporal resolution of 80 time steps for each blower period
with a time step of d t = 1e − 4 s.

The incompressible flow through the diffuser is modeled
with an inflow Mach number M∞ ≈ 0.052 and bulk Reyn-
olds number Reb ≈ 4e4 . This Reynolds number is similar
to the 2D plane diffuser experiments [8, 35]. The computa-
tional mesh made up of 241k tetrahedral elements is shown
in Fig. 8. The mesh is only one element deep (into the page
as displayed in Fig. 8), and periodic boundary conditions
are employed in the depth direction to model 2D flow. Every
boundary layer has first point off the wall is set to 2e − 6m
and a stretching ratio of 1.25 to maintain y+ < 1 at the wall

Fig. 7 Pseudocode of the Catalyst co-processing script that ena-
bles in situ visualization and loads a chosen ParaView pipeline [4]

Fig. 8 2D aggressive subsonic diffuser geometry a entire geometry, b close-up of the blower control region showing the UB and LB

http://www.github.com/SimNautilus/nautilusFlow
http://www.github.com/SimNautilus/nautilusFlow

4704 Engineering with Computers (2022) 38:4697–4713

1 3

boundaries. The mesh is further refined at the entrance of the
blowers and downstream to resolve the recirculating region.

In this study, we examine the QoI measuring the recircu-
lating region length defined as

where ūx denotes the time-averaged stream-wise velocity and
dwall the distance from the wall. We integrate with respect
to dwall to penalize recirculating regions that extend further
into the core body of the flow. In the case where separation
occurs in both the lower and upper walls, we add the respec-
tive integrals together prior to taking the square root to find
the length.

4.1.1 Parametric geometry deformation

To explore the effect of UB location along the curved upper
extent of the diffuser, a custom parametric mesh modifi-
cation tool was developed which slides the UB tangen-
tially along the curved surface, moving the mesh vertices
smoothly, allowing for geometric design exploration in situ
without the need for re-meshing or multiple hand-generated
CAD configurations. This procedure relies on Sederberg’s
freeform deformation algorithm [42] with a geometry-fitted
collection of 493 background non-uniform rational B-Spline
(NURBS) patches deformed in unison with a custom geom-
etry management algorithm. The geometry modification is
driven by a single parameter � varying continuously from
0 to 1 representing locations far down the curve of the dif-
fuser and past midway up the diffuser, as depicted in Fig. 9b.
These extents were chosen to limit mesh distortion under
geometry modification. Figure 9a illustrates the collection of
background NURBS patches already deformed to the � = 1
extent.

This geometry deformation algorithm was custom
designed for the diffuser problem, employing low-level
Open-CASCADE commands. The general procedure here

(1)�r =

√

∫ūx<0

dx dwall,

is extensible to other 2D geometric considerations. Further-
more, this procedure is a proof of concept for how geometric
variables can be included in immersive simulation design
space exploration procedures. Future improvement to this
procedure may incorporate higher level abstractions for
parametric geometry modification such as the programma-
ble CAD system Engineering Sketchpad [21]. More general
tools for geometric modification to HPC applications are
presented in [51].

4.2 Computational steering

We employ Catalyst, SENSEI, and the ParaView
GUI to implement live visualization and computational
steering on the 2D diffuser. The parameters for which we
enable steering are the mean and amplitude of the UB and
LB velocities, the UB position parameterized between � = 0
and � = 1 , as shown in Fig. 9b, and the weight term w, use-
ful for assessing time-averaged quantities. The QoI we are
interested in, the recirculating region defined in Sect. 4.1,
is measured as a time average to account for the transient
boundary conditions on the UB and LB. We update the time-
averaged stream-wise velocity with

where ux is the present time step’s stream-wise velocity and
ū
t0
x denotes the previous time step’s averaged stream-wise

velocity. Increasing w weighs recent steps more heavily and
“shortens” the time-average interval, while decreasing w
reduces the weight of new time steps and “lengthens” the
time-average interval. In general, we set w = 0.01.

To equip PHASTA with the steering parameters, the
chosen fields must be passed from the PHASTA solver to
SENSEI, and the SENSEI PHASTA adaptor updated for
these fields as described in Sect. 3. Once implemented, the
steering parameters can be interacted with during a Cata-
lyst live visualization; see Fig. 10. The user can adjust
a given steering parameter, for instance the UB position,

ūx = wux + (1 − w)ū
t0
x ,

Fig. 9 Parametric 2D aggressive subsonic diffuser geometry: a spline track used to guide the deformation of the background NURBS surfaces; b
close-up of the blower control region showing blower position set to � = 0 and � = 1

4705Engineering with Computers (2022) 38:4697–4713

1 3

and immediately see how this alteration impacts the flow
behavior. In Fig. 10, we see a complex Catalyst VTK
pipeline that determines regions in the diffuser flow with
negative time-averaged stream-wise velocity and calculates
the associated recirculation length. Note that the practition-
er’s interaction with the ParaView GUI allows them to
create, visualize, and explore different VTK pipelines and
easily examine other QoIs. In this manner, the practitioner
can directly observe the effect of variations in key param-
eters on their QoIs, gain insight more rapidly, and do so
without saving the visualized flow data to disk.

Prior to a more complete sensitivity analysis, we lev-
erage computational steering to clarify QoI selection and
setup design space limits for subsequent ensemble simu-
lation. Our recirculation length QoI, defined in Sect. 4.1,
initially accounted for the upper recirculation area alone and
integrated over dy rather than dwall . Computational steer-
ing allows us to observe the lower separation area and trial
integration with respect to distance from the wall. Live
adjustments of the blower control steering parameters sug-
gest that low values of UB velocity mean, i.e., < 1.43% total
diffuser mass flow rate, produce negligible reduction in the
upper recirculation area. High values, > 2.85% , result in
fully attached flow, indicate that additional velocity would
be a poor use of flow mass. Similar testing of the LB mean
produces an interval of [0.00, 2.34] . The LB mean is useful

at small percentages too, because the diffuser geometry
means that lower separation occurs only when the core flow
is pulled up by large UB action. This tug of war effect can be
seen in Figure 10. Finally, we decide to examine the interval
[0, 1] for blower position � . While a higher blower position
improves this QoI, our study here is 2D and incompressible;
hence, we stay conservative in our design space constraints.

5 Software tools for ensemble sensitivity
analysis

In Sect. 4.2, we employed immersive simulation to explore
the design space of the 2D diffuser problem and to deter-
mine a QoI. Our next objective is to leverage this informa-
tion to spawn an ensemble simulation. We first, in Sect. 5.1,
provide background on global sensitivity analysis. Next, in
Sects. 5.2 and 5.3, we present software useful for efficient
ensemble generation and the application of UQ techniques,
respectively.

5.1 Sensitivity analysis

Parameter sensitivity is central to achieving an optimal
design and performing UQ. Through visualization of a solu-
tion subject to deviations from nominal parameter values

Fig. 10 ParaView GUI displaying the Catalyst live visualization and SENSEI computational steering. On the left, the pipeline browser
shows the visualization pipeline and steering parameters

4706 Engineering with Computers (2022) 38:4697–4713

1 3

in boundary conditions, material properties, or geomet-
ric parameters, a user can navigate the design space with
greater efficacy and confidence. In variance-based sensitivity
analysis, the variance of a given QoI is decomposed into
fractions that are attributed to specific input parameters, or
interactions of those parameters. Monte Carlo simulation is
a popular candidate for obtaining sensitivity metrics, but can
become infeasible for computationally demanding models.
A suitable alternative is to use a UQ technique to approxi-
mate the QoI with an expansion in multivariate orthogonal
polynomials, known as the polynomial chaos (PC) expansion
[19, 55]. We next describe PC expansions followed by their
application to global sensitivity analysis. We note that our
PC expansion is described with random input variables gen-
eral to the UQ field. Our implementation of the PC expan-
sion treats design variables as uniform random variables.

5.1.1 Polynomial chaos expansions

We consider the scalar QoI, u(�) , assumed to have finite
variance, as a function of a d-dimensional vector of random
inputs � ∶= (�1,… ,�d) with joint probability density func-
tion f (�) . The PC expansion approximates the QoI as

where �j(�) is a multivariate orthogonal polynomial evalu-
ated at the random inputs and weighted by deterministic
coefficients cj . The polynomials �j(�) are chosen to be
orthogonal with respect to the probability measure f (�) . For
instance, if � follows a jointly uniform or Gaussian distribu-
tion, then �j(�) are multivariate Legendre or Hermite poly-
nomials, respectively [55]. We assume �j(�) are normalized,
such that �[�2

j
(�)] = 1 , where �[⋅] represents the mathemat-

ical expectation operator. The expansion is truncated to a
finite number of terms as

An expansion with total order p and dimension d has
P =

(p+d)!

p!d!
 terms. As P → ∞ , for a sufficiently smooth u(�) ,

the PC expansion converges in the mean-square sense to u.
The PC coefficients can be used to determine QoI statistics,
construct a surrogate model, or perform sensitivity analysis.
For instance, the QoI mean and variance can be computed
from the PC expansion coefficients as �PC = c1 and
�2

PC
=
∑P

j=2
c2
j
 , respectively. To identify PC coefficients

� = (c1,… , cP)
T in (2), we generate realizations of � denoted

by � . We seek to solve for � in the linear system from N
independent samples of � as

u(�) =

∞
∑

j=1

cj�j(�),

(2)u(�) ≈

P
∑

j=1

cj�j(�).

where

If the resulting regression problem is over-determined,
with N > P , we employ least-squares approximation [20,
23], whereas if it is under-determined, with N < P , we apply
compressed sensing [13, 14, 24, 36]. Compressed sensing
methods are advantageous, because they reduce the number
of sample evaluations to determine PC coefficients.

5.1.2 Global sensitivity analysis via PC expansions

The first-order Sobol’ indices, S�k
 , measure the effect of

varying one parameter alone, �k , averaged over the varia-
tions in other parameters. Total indices, ST

�k
 , refer to the vari-

ation in the QoI accounted for by one parameter and any
interactions it has with other input parameters. In this work,
we apply global sensitivity analysis analytically as a post-
processing of PC expansion coefficients [44]. The first order
Sobol’ indices are given by

where, Ik is a set of indices for which �j(�) , j = 1,… ,P ,
is a function of only �k . Similarly, the total Sobol’ indices
are given by

where IT
k
 is a set of indices for which �j(�) , j = 1,… ,P , is

a function of �k and any other inputs.

5.2 Ensemble generation via libEnsemble

In this work, we employ libEnsemble, an open-source
Py-thon library developed at Argonne National Laboratory
as part of the Department of Energy Exascale Computing
Project to coordinate the concurrent evaluation of dynamic
ensembles of calculations on massively parallel resources
[25]. libEnsemble aims to achieve extreme scaling, resil-
ience, task monitoring and resource recovery, portability,
and flexibility, and exploit persistent data flow. The ensem-
ble is coordinated via a manager/worker scheme that oper-
ates on several communication protocols.
libEnsemble is implemented through four compo-

nents. The generator function genf produces values for simu-
lations, the simulator function simf performs a simulation for
given values from genf , the allocation function determines

(3)� ≈ ��,

(4)� (i, j) ∶= �j

(

�i
)

and � ∶=
(

u
(

�1
)

,… , u
(

�N
))T

.

(5)S�k
=
∑

i∈Ik

c2
i

�2

PC

,

(6)ST
�k

=
∑

i∈IT
k

c2
i

�2

PC

,

4707Engineering with Computers (2022) 38:4697–4713

1 3

whether genf or simf should be called, and the calling script
defines the parameters for the previous three functions and
executes libEnsemble. The libEnsemble user manual
[25] provides more detail on each of these components, and
various tutorials. In Fig. 11 we show an abbreviated ver-
sion of the calling script. Note, in our application, we have
no generator function, because simf reads inputs directly
from a file. In the calling script, we specify the number of
workers, and the number of simulations. For example, an
HPC job may use 50 nodes in total, but require 2 nodes per
simulation. In this case, the number of workers would be
25. In Fig. 11, we first setup the PHASTA executable. Next,
we create an ID number for each simulation before defining
parameters for the simulation and generation functions. An

exit criterion is specified to terminate the ensemble when
the maximum number of simulations is reached. Finally, the
ensemble is launched. As simulations complete and work-
ers become available new simulations are launched. Other
ensemble manager tools are also available, for instance, UQ
Pipeline [45].

5.3 Sensitivity analysis with chaospy

We use the Python library chaospy to perform UQ PC-
based sensitivity analysis [16]. More generally, chaospy
includes a suite of UQ methods such as low-discrepancy
sampling, quadrature creation, polynomial manipulations,
among others. A collection of Jupyter notebooks lets users
explore the variety of chaospy applications.

We present pseudocode of the chaospy enabled sen-
sitivity analysis in Fig. 12. The main idea is to construct
a PC expansion and use the coefficients to calculate Sobol
indices in Sects. 5.1.1 and 5.1.2, respectively. We note that
in this pseudocode, we do not include the validation error.
In practice, we recommend reserving ≈ 20% of samples to
compute the PC expansion validation error, and use this to
calibrate the polynomial order p.

6 Numerical demonstration: ensemble
simulation tools

We have now courtesy of an immersive simulation frame-
work, established design space limits and confidence in our
choice of QoI. We are also equipped with software tools to
perform ensemble simulation and analyze the results. In this
section, we demonstrate the utility of Catalyst during the
collection of ensemble data, and carry out a global sensitiv-
ity analysis on the 2D aggressive subsonic diffuser.

6.1 Catalyst pipeline QoI extraction

The Catalyst library is successfully interfaced with
PHA-STA via SENSEI to enable real-time QoI extraction.
First, the PHASTA adaptor file is edited to include additional
fields that facilitate QoI computation. This adaptor file deter-
mines the fields that are passed from the PHASTA solver
to ParaView during a simulation. Next, PHASTA is built
with SENSEI enabled and the updated adaptor file. Finally,
a ParaView pipeline is saved to a Python co-processing
script that is read during the PHASTA run at a specified fre-
quency. The execution of the Catalyst co-processing step
results in some computational overhead which we assess via
a strong scalability study.

We performed a strong scalability study on the Argonne
Leadership Computing Facility’s Theta computational
resource with a ∼ 2572 K element mesh of the diffuser, Fig. 11 Pseudocode of the libEnsemble calling script

4708 Engineering with Computers (2022) 38:4697–4713

1 3

partitioned to run on 6, 12, 24, and 48 cores, with 1 MPI
process per core. Theta is a 11.69-petaflops Intel-Cray super-
computer. Each simulation computes 25 time steps, and saves
output data at 2 step intervals. In Fig. 13, we plot the scalabil-
ity study timing results for no write, conventional write, and
Catalyst write cases. The results are computed as the aver-
age of three repetitions. No write denotes a PHASTA run that
neither saves data to restarts or via the Catalyst pipeline.
Conventional write indicates that a restart file containing the
entire flow solution is written every 2 time steps. Catalyst
write employs the Catalyst QoI pipeline to efficiently
extract data every 2 time steps.

In Fig. 13, we plot the strong scalability factor, defined as

where t and nc are a given execution time and number of
cores, and tref and ncref are the execution time and number
of cores for the 6 core, no write, reference case. Optimal

(7)sf =
tref × ncref

t × nc
,

scaling would be a horizontal line with a scaling factor of 1.
We observe in Fig. 13 that for all cases, the parallel overhead
increases with number of cores. Importantly, while Cata-
lyst write is marginally less efficient than not writing at
all, its performance is comparable to the conventional write
method.

In the traditional workflow approach, where the QoI cal-
culation is performed as a post-processing step, the entire
solution field must be saved at a given time step to a restart
file of approximately 205 Mb. In the Catalyst write
approach, the file containing the QoI is just 4 Kb, indicating
a storage reduction of approximately 50000 times. These
results demonstrate that the significant memory advantages
of writing output data via the Catalyst pipeline come at
minimal computational overhead. We note that, if a practi-
tioner desires to continue the simulation in the Catalyst
write approach, then they still are required to save a restart
file; we do not address this disk usage in the present study.

6.2 Ensemble generation

We have enabled the straightforward evaluation of ensem-
bles of PHASTA simulations through the implementation of
the libEnsemble Python library described in Sect. 5.2
[25]. libEnsemble facilitates two levels of parallelism.
In the first, an individual PHASTA simulation may employ
numerous processors, in this demonstration, we partition
a 241k element mesh and conduct each simulation with
24 processors. In the second, libEnsemble manages

Fig. 12 Pseudocode of the chaospy sensitivity analysis. Samples
is an array of samples {�i}Ni=1 , and evaluations are the corresponding
simulated QoI � from Eq. (4)

Fig. 13 Strong scalability study comparing the performance of no
write, where no output data are saved, conventional write, where
output data are written to restart files and Catalyst write where
PHASTA is equipped with the Catalyst pipeline for efficient QoI
extraction. We plot the strong scalability factor (7) calculated from
the average of three repetitions of a 25 time step simulation with out-
put data saved at every second step

4709Engineering with Computers (2022) 38:4697–4713

1 3

individual PHASTA evaluations and can launch new simu-
lations immediately after previous simulations are finalized
and resource becomes available. The user selects or provides
functions to generate simulation input, carry out a simula-
tion, and manage the ensemble of simulations. This setup
allows the user to tailor libEnsemble to their specific
solver requirements. For instance, to obtain an ensemble of
PHASTA simulations, we create a custom simulation script
that for a given input realization creates a run directory with
the necessary geometry and restart files, reads the inputs
from file, writes the inputs to the solver.inp script, and exe-
cutes PHASTA.

We have developed and documented a set of PHASTA
specific libEnsemble scripts and that enable the paral-
lel evaluation of ensemble members, allowing much greater
flexibility in job submission. libEnsemble with PHASTA
has been implemented on local resources, and additionally
on the Argonne Leadership Computing Facility’s Cooley
cluster. Cooley has 126 compute nodes, each with 12 cores
and 1 NVIDIA Tesla K80 GPU.

6.3 Global sensitivity analysis

We apply global sensitivity analysis via PC expansions,
detailed in Sect. 5.1.2, to the 2D aggressive subsonic dif-
fuser. Our objective is to understand the influence of the UB
and LB velocities and the UB position on the length of the
recirculation area (1). While the UB and LB provide us with
flow control, the mass flow rate diverted to these blowers
corresponds to a direct loss of thrust. Therefore, we want to
determine a blower configuration that reduces the recircula-
tion area while expending minimal diverted flow.

To explore the design space, we treat the UB and LB
velocities and amplitudes and the UB position as uniform
random variables. The variables and their respective inter-
vals are summarized in Table 1. The limits were determined
through computational steering via in situ exploration of
the parameter space as described in 4.2. Figure 14 shows
the PC-based Sobol indices constructed from 495 samples
using polynomial order p = 4 . The PC validation error was
10.1% . In Fig. 14, we see that the most influential parameter
is the UB velocity mean, while the LB velocity amplitude
has minimal effect on the QoI variance. The UB position
� also plays a significant role. Furthermore, it is apparent
that the recirculation length is sensitive to the interactions
between all the parameters. This matches our expectation
given the tug of war dynamic between the upper and lower
blowers over the core flow.

We plot in Fig. 15 the entire ensemble in terms of mass
cost and recirculation length, colored by the sampled input
parameters. We exclude AL (see Table 1) from Fig. 15 due
to its small sensitivity found in Fig. 14. Mass cost is com-
puted simply as the sum of the UB and LB mean velocities.

Consequently, it is no surprise that in Fig. 15a, c we find
that increasing the mean mass flow rates is correlated with
higher mass cost. However, this increase in mass is corre-
lated with our aim of reducing the recirculation length. The
best-performing samples are those that produce the smallest
recirculation length while expending the least mass. In gen-
eral, these samples correspond to higher blower positions, as
illustrated in Fig. 15d. While Fig. 15d implies that moving
the blower position even further downstream may achieve
better results, we refrain from doing this given the severe
simplifications of this study, namely incompressible and 2D
flow. Future work could transition examination of the blower
position into 3D and compressible flow.

We select a sample, identified by a red circle in Fig. 15,
as flow configuration that yields low recirculation length
and minimizes mass cost. This configuration reduces the
recirculation length to 0, at a mass cost of approximately
4.5% the core mass flow. In Fig. 16, we compare our cho-
sen flow configuration to the diffuser with no active flow

Table 1 Upper blower (UB) and lower blower (LB) input parameters

Velocity metrics are given as a percentage of the total diffuser mass
flow rate

Parameter Symbol Distribution

UB velocity mean �
U

U[1.43, 2.85] %

UB velocity amplitude A
U

U[0.00, 2.13] %

LB velocity mean �
L

U[0.00, 2.34] %

LB velocity amplitude A
L

U[0.00, 1.17] %

UB Position � U[0, 1]

Fig. 14 Global sensitivity analysis of the 2D aggressive subsonic dif-
fuser. This study was carried out in Python with chaospy and an
order p = 4 PC expansion from 495 samples with validation error
10.1% . The sum of the interactions and first order is the total order

4710 Engineering with Computers (2022) 38:4697–4713

1 3

control. The time-averaged stream-wise velocity is plotted.
We observe in Fig. 16a that the recirculation area, outlined
in black, is very large. In Fig. 16b, the core flow has been
bent upwards by the action of the UB and the recirculation
area is reduced to 0.

7 Conclusions

In this work, we introduce an immersive simulation soft-
ware framework that enables practitioners to evade many

(a) Influence of µU . (b) Influence of AL.

(c) Influence of µL. (d) Influence of ϕ .

Fig. 15 Ensemble members in terms of mass cost and recirculation length colored by different input parameters. The chosen optimal flow con-
figuration is circled in red

Fig. 16 Influence of active flow control on the recirculating region showing a no flow control and b the best performing configuration found via
an ensemble of simulations. The recirculation region is outlined in black

4711Engineering with Computers (2022) 38:4697–4713

1 3

of the typical workflow inefficiencies in solving systems
of PDEs. We describe the in situ interface SENSEI and
infrastructure Catalyst and provide software linkages
to show their interaction with the PDE solver. In addi-
tion, we demonstrate the use of complementary ensemble
simulation software tools libEnsemble, for intuitive
evaluation of simulation ensembles, and chaospy, for
straightforward implementation of UQ techniques.

We demonstrate the efficacy of this immersive simula-
tion framework on a 2D diffuser problem in the PHASTA
flow solver. With SENSEI and Catalyst, we implement
computational steering on the diffuser problem, including
parametric geometry deformation, that allows for rapid
design space exploration and eliminates the need of writ-
ing data to disk. We show that using a Catalyst pipe-
line to save output QoI requires minimal computational
overhead, scales well, and reduces memory demands by
approximately 50000 times.

A global sensitivity analysis integrates all the immer-
sive simulation components together. Computational steer-
ing allows the practitioner to test input parameters’ influ-
ence, guide the selection of appropriate parameter limits,
and determine a useful QoI. The ensemble evaluation with
lib-Ensemble is fast, intuitive, and takes full advan-
tage of massively parallel resources. Moreover, the saving
of output QoI with pre-constructed Catalyst pipeline
drastically reduces the total memory footprint. Finally, we
use chaospy to calculate Sobol’ indices and determine
the optimal diffuser configuration.

Our future research includes a plethora of advance-
ments to immersive simulation capabilities. While the
application of UQ techniques as a post-processing analy-
sis is useful, the ability to establish sample limits during
computational steering and launch ensembles interactively
from within Para-View GUI would lead to yet more
rapid insight extraction. In this work, we provide a proof
of concept for parametric geometry deformation that is
designed specifically for this problem’s geometry. More
general geometric deformation tools are an interesting line
of inquiry.

Acknowledgements The work was supported by National Science
Foundation grant 1740330 (SSE) and Department of Energy under
Grant No. DE-SC0021411 (FASTMath SciDAC). This research used
resources of the Argonne Leadership Computing Facility, which is
a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357 made available to our group under the DOE
Aurora Early Science Program (Data and Learning). Ben Matthews
provided valuable assistance. The SENSEI enhancements developed by
Kitware were supported by the Office of Science, Office of Advanced
Scientific Computing Research, of the U.S. Department of Energy
under a subcontract from Lawrence Berkeley National Laboratory No.
7566608, through the grant “Scalable Analysis Methods and In Situ
Infrastructure for Extreme Scale Knowledge Discovery.”

Funding The work was supported by National Science Foundation
Grant 1740330 (SSE) and Department of Energy under Grant No.
DE-SC0021411 (FASTMath SciDAC).

Availability of data and materials The datasets generated during and/
or analyzed during the current study have been uploaded to the GitHub
page.

Code availability The software used in this study has been made avail-
able and is published at the GitHub page www. github. com/ SimNa uti-
lus/ nauti lusFl ow.

Declarations

Conflict of interest The authors have no relevant financial or non-fi-
nancial interests to disclose.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

 1. Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for
large data visualization. Visualization Handbook 717(8)

 2. ANSYS (2016) ANSYS Fluent - CFD Software | ANSYS. http://
www. ansys. com/ produ cts/ fluids/ ansys- fluent. Accessed 18 Jan
2021

 3. Asghar A, Stowe RA, Allan WDE, Alexander D (2017) Entrance
aspect ratio effect on S-Duct inlet performance at high-subsonic
flow. J Eng Gas Turbines Power 139(5), 052602. https:// doi. org/
10. 1115/1. 40352 06

 4. Ayachit U, Bauer A, Geveci B, O’Leary P, Moreland K, Fabian N,
Mauldin J (2015) Paraview catalyst: enabling in situ data analysis
and visualization. In: Proceedings of the First Workshop on in situ
infrastructures for enabling extreme-scale analysis and visualiza-
tion, pp 25–29

 5. Ayachit U, Bauer A, Duque EP, Eisenhauer G, Ferrier N, Gu
J, Jansen KE, Loring B, Lukic Z, Menon S, et al. (2016) Per-
formance analysis, design considerations, and applications of
extreme-scale in situ infrastructures. In: SC’16: Proceedings of
the International Conference for high performance computing,
networking, storage and analysis, IEEE, pp 921–932

 6. Ayachit U, Whitlock B, Wolf M, Loring B, Geveci B, Lonie D,
Bethel EW (2016) The sensei generic in situ interface. In: 2016
Second Workshop on in situ infrastructures for enabling extreme-
scale analysis and visualization (ISAV), IEEE, pp 40–44

 7. Bauer AC, Abbasi H, Ahrens J, Childs H, Geveci B, Klasky S,
Moreland K, O’Leary P, Vishwanath V, Whitlock B et al (2016)
In situ methods, infrastructures, and applications on high perfor-
mance computing platforms. Comput Graph Forum 35:577–597
(Wiley Online Library)

 8. Buice CU, Eaton JK (1996) Experimental investigation of flow
through an asymmetric plane diffuser. CTR Annu Res briefs
1996:243–248

 9. Camata JJ, Silva V, Valduriez P, Mattoso M, Coutinho AL (2018)
In situ visualization and data analysis for turbidity currents simu-
lation. Comput Geosci 110:23–31

 10. Chang TH, Larson J, Watson LT, Lux TC (2020) Managing com-
putationally expensive blackbox multiobjective optimization

http://www.github.com/SimNautilus/nautilusFlow
http://www.github.com/SimNautilus/nautilusFlow
http://www.ansys.com/products/fluids/ansys-fluent
http://www.ansys.com/products/fluids/ansys-fluent
https://doi.org/10.1115/1.4035206
https://doi.org/10.1115/1.4035206

4712 Engineering with Computers (2022) 38:4697–4713

1 3

problems wwth libensemble. In: 2020 Spring Simulation Confer-
ence (SpringSim), IEEE, pp 1–12

 11. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire
D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H,
Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O,
Durant M, Favre JM, Navrátil P (2012) Visit: an end-user tool
for visualizing and analyzing very large data. In: High Perfor-
mance Visualization–Enabling Extreme-Scale Scientific Insight,
pp 357–372

 12. Constantine P, Howard R, Glaws A, Grey Z, Diaz P, Fletcher L
(2016) Python active-subspaces utility library. J Open Source
Softw 1(5):79

 13. Diaz P, Doostan A, Hampton J (2018) Sparse polynomial chaos
expansions via compressed sensing and d-optimal design. Comput
Methods Appl Mech Eng 336:640–666

 14. Doostan A, Owhadi H (2011) A non-adapted sparse approximation
of pdes with stochastic inputs. J Comput Phys 230(8):3015–3034

 15. Fabian N, Moreland K, Thompson D, Bauer AC, Marion P,
Gevecik B, Rasquin M, Jansen KE (2011) The paraview coproc-
essing library: a scalable, general purpose in situ visualization
library. In: 2011 IEEE Symposium on large data analysis and
visualization, IEEE, pp 89–96

 16. Feinberg J, Langtangen HP (2015) Chaospy: an open source tool
for designing methods of uncertainty quantification. J Comput Sci
11:46–57

 17. Foster I, Ainsworth M, Allen B, Bessac J, Cappello F, Choi JY,
Constantinescu E, Davis PE, Di S, Di W, et al (2017) Computing
just what you need: online data analysis and reduction at extreme
scales. In: European Conference on parallel processing, Springer,
pp 3–19

 18. Fu J, Liu N, Sahni O, Jansen KE, Shephard MS, Carothers CD
(2010) Scalable parallel i/o alternatives for massively parallel par-
titioned solver systems. In: 2010 IEEE International Symposium
on parallel & distributed processing, Workshops and Phd Forum
(IPDPSW), IEEE, pp 1–8

 19. Ghanem RG, Spanos PD (1991) Stochastic finite element method:
response statistics. In: Stochastic finite elements: a spectral
approach. Springer, New York, NY, pp 101–119

 20. Hadigol M, Doostan A (2018) Least squares polynomial chaos
expansion: A review of sampling strategies. Comput Methods
Appl Mech Eng 332:382–407

 21. Haimes R, Dannenhoffer J (2013) The engineering sketch pad: a
solid-modeling, feature-based, web-enabled system for building
parametric geometry. In: 21st AIAA computational fluid dynamics
conference, AIAA, p 3073

 22. Haimes R, Jordan K (2001) A Tractable Approach to understand-
ing the results from large-scale 3D transient simulations. In: 39th
Aerospace Sciences Meeting and Exhibit, AIAA, p 918

 23. Hampton J, Doostan A (2015) Coherence motivated sampling and
convergence analysis of least squares polynomial chaos regres-
sion. Comput Methods Appl Mech Eng 290:73–97

 24. Hampton J, Doostan A (2015) Compressive sampling of polyno-
mial chaos expansions: convergence analysis and sampling strate-
gies. J Comput Phys 280:363–386

 25. Hudson S, Larson J, Wild SM, Bindel D, Navarro J-L (2019)
libEnsemble Users Manual. Argonne National Laboratory. Revi-
sion 0.5.2. https:// build media. readt hedocs. org/ media/ pdf/ liben
semble/ latest/ liben semble. pdf. Accessed 16 Dec 2019

 26. Kuhlen T, Pajarola R, Zhou K (2011) Parallel in situ coupling of
simulation with a fully featured visualization system. In: Proceed-
ings of the 11th Eurographics Conference on parallel graphics and
visualization (EGPGV), Eurographics Association Aire-la-Ville,
Switzerland, vol 10, pp 101–109

 27. Larsen M, Ahrens J, Ayachit U, Brugger E, Childs H, Geveci
B, Harrison C (2017) The alpine in situ infrastructure: Ascend-
ing from the ashes of strawman. In: Proceedings of the In Situ

Infrastructures on Enabling Extreme-Scale Analysis and Visuali-
zation (ISAV), pp 42–46

 28. Le Maître O, Knio OM (2010) Spectral methods for uncertainty
quantification: with applications to computational fluid dynamics.
Springer Science & Business Media, Berlin

 29. Li S, Marsaglia N, Garth C, Woodring J, Clyne J, Childs H (2018)
Data reduction techniques for simulation, visualization and data
analysis. Comput Graph Forum 37:422–447 (Wiley Online
Library)

 30. Liu N, Fu J, Carothers CD, Sahni O, Jansen KE, Shephard MS
(2010) Massively parallel i/o for partitioned solver systems. Paral-
lel Process Lett 20(04):377–395

 31. Lofstead JF, Klasky S, Schwan K, Podhorszki N, Jin C (2008)
Flexible io and integration for scientific codes through the adapt-
able io system (adios). In: Proceedings of the 6th International
Workshop on challenges of large applications in distributed envi-
ronments, pp 15–24

 32. Longley JP, Greitzer EM (1992) Inlet distortion effects in air-
craft propulsion system integration. In: AGARD LS-183, Steady
and Transient Performance Prediction of Gas Turbine Engines, p
6-1–6-18

 33. Mattoso M, Dias J, Ocana KA, Ogasawara E, Costa F, Horta F,
Silva V, De Oliveira D (2015) Dynamic steering of hpc scientific
workflows: a survey. Futur Gener Comput Syst 46:100–113

 34. Mu D, Moran J, Zhou H, Cui Y, Hawkins R, Tatineni M, Campbell
S (2019) In-situ analysis and visualization of earthquake simula-
tion. In: Proceedings of the practice and experience in advanced
research computing on rise of the machines (learning), pp 1–5

 35. Obi S, Aoki K, Masuda S (1993) Experimental and computational
study of turbulent separating flow in an asymmetric plane dif-
fuser. In: Ninth Symposium on Turbulent Shear Flows, vol 305,
pp 305–312

 36. Peng J, Hampton J, Doostan A (2014) A weighted �
1
-minimization

approach for sparse polynomial chaos expansions. J Comput Phys
267:92–111

 37. Peterka T, Bard D, Bennett JC, Bethel EW, Oldfield RA,
Pouchard L, Sweeney C, Wolf M (2020) Priority research direc-
tions for in situ data management: enabling scientific discovery
from diverse data sources. Int J High Perform Comput Appl
34(4):409–427

 38. Pintas JT, de Oliveira D, Ocaña KA, Ogasawara E, Mattoso M
(2013) Scilightning: a cloud provenance-based event notification
for parallel workflows. In: International Conference on service-
oriented computing, Springer, pp 352–365

 39. Rasquin M, Smith C, Chitale K, Seol S, Matthews B, Martin J,
Sahni O, Loy R, Shephard MS, Jansen KE (2014) Scalable fully
implicit finite element flow solver with application to high-fidelity
flow control simulations on a realistic wing design. Comput Sci
Eng 16(6):13–21

 40. Santos E, Tierny J, Khan A, Grimm B, Lins L, Freire J, Pascucci
V, Silva CT, Klasky S, Barreto R, et al. (2009) Enabling advanced
visualization tools in a web-based simulation monitoring system.
In: 2009 Fifth IEEE International Conference on e-Science, IEEE,
pp 358–365

 41. Schroeder W, Martin KM, Lorensen WE (1998) The visualization
toolkit an object-oriented approach to 3D graphics. Prentice-Hall,
Inc.

 42. Sederberg TW, Parry SR (1986) Free-form deformation of solid
geometric models. In: Proceedings of the 13th annual conference
on Computer graphics and interactive techniques. Association for
Computing Machinery, New York, NY, pp 151–160

 43. Souza R, Silva V, Coutinho AL, Valduriez P, Mattoso M (2020)
Data reduction in scientific workflows using provenance monitor-
ing and user steering. Futur Gener Comput Syst 110:481–501

https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf
https://buildmedia.readthedocs.org/media/pdf/libensemble/latest/libensemble.pdf

4713Engineering with Computers (2022) 38:4697–4713

1 3

 44. Sudret B (2008) Global sensitivity analysis using polynomial
chaos expansions. Reliab Eng Syst Saf 93(7):964–979

 45. Tannahill J, Lucas DD, Domyancic D, Brandon S, Klein R (2011)
Data intensive uncertainty quantification: applications to climate
modeling. In: Proceedings of the 2011 High Performance Com-
puting Networking, Storage and Analysis Conference. Association
for Computing Machinery, New York, NY

 46. Tchoua R, Klasky S, Podhorszki N, Grimm B, Khan A, Santos
E, Silva C, Mouallem P, Vouk M (2010) Collaborative monitor-
ing and analysis for simulation scientists. In: 2010 International
Symposium on collaborative technologies and systems, IEEE, pp
235–244

 47. Tennøe S, Halnes G, Einevoll GT (2018) Uncertainpy: a python
toolbox for uncertainty quantification and sensitivity analysis in
computational neuroscience. Front Neuroinform 12:49

 48. Thompson D, Fabian ND, Moreland KD, Ice LG (2009) Design
issues for performing in situ analysis of simulation data. Technical
Report SAND2009-2014, Sandia National Laboratories pp 7–18

 49. Vishwanath V, Hereld M, Morozov V, Papka ME (2011) Topol-
ogy-aware data movement and staging for i/o acceleration on blue
gene/p supercomputing systems. In: SC’11: Proceedings of 2011
International Conference for high performance computing, net-
working, storage and analysis, IEEE, pp 1–11

 50. Wang C, Duan Q, Tong CH, Di Z, Gong W (2016) A gui platform
for uncertainty quantification of complex dynamical models. Envi-
ron Model Softw 76:1–12

 51. Wetterer-Nelson C, Jansen KE, Evans JA (2021) Interactive geom-
etry modification of high performance finite element simulations.
in progress

 52. Whiting CH, Jansen KE (2001) A stabilized finite element method
for the incompressible Navier-Stokes equations using a hierarchi-
cal basis. Int J Numer Meth Fluids 35(1):93–116

 53. Whitlock BJ, Laganella C, Duque EP (2021) Scoreboard: man-
agement and creation of in situ and in transit data extractions via
computational steering. In: AIAA Scitech 2021 Forum, AIAA, p
1599

 54. Xiu D (2010) Numerical methods for stochastic computations.
Princeton University Press

 55. Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial
chaos for stochastic differential equations. SIAM J Sci Comput
24(2):619–644

 56. Yi H, Rasquin M, Fang J, Bolotnov IA (2014) In-situ visualization
and computational steering for large-scale simulation of turbulent
flows in complex geometries. In: 2014 IEEE International Confer-
ence on Big Data (Big Data), IEEE, pp 567–572

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Software tools to enable immersive simulation
	Abstract
	Article Highlights
	1 Introduction
	1.1 Contributions of this work

	2 The simulation workflow
	2.1 Traditional simulation workflow
	2.2 Immersive simulation workflow

	3 Software tools for immersive simulation
	3.1 SENSEI in situ interface
	3.2 Catalyst in situ infrastructure

	4 Numerical demonstration: immersive simulation tools
	4.1 2D aggressive subsonic diffuser
	4.1.1 Parametric geometry deformation

	4.2 Computational steering

	5 Software tools for ensemble sensitivity analysis
	5.1 Sensitivity analysis
	5.1.1 Polynomial chaos expansions
	5.1.2 Global sensitivity analysis via PC expansions

	5.2 Ensemble generation via libEnsemble
	5.3 Sensitivity analysis with chaospy

	6 Numerical demonstration: ensemble simulation tools
	6.1 Catalyst pipeline QoI extraction
	6.2 Ensemble generation
	6.3 Global sensitivity analysis

	7 Conclusions
	Acknowledgements
	References

