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Abstract
The ability to impute missing images from a sequence of medical images plays an important role in enabling the detection, 
diagnosis and treatment of disease. Motivated by this, in this manuscript we propose a novel, probabilistic deep-learning 
algorithm for imputing images. Within this approach, given a sequence of contrast enhanced CT images, we train a generative 
adversarial network (GAN) to learn the underlying probabilistic relation between these images. Thereafter, given all but one 
member from a sequence, we infer the probability distribution of the missing image using Bayesian inference. We make the 
inference problem computationally tractable by mapping it to the low-dimensional latent space of the GAN. Thereafter, we 
use Markov Chain Monte Carlo (MCMC) techniques to learn and sample the inferred distribution. Moreover, we propose 
a novel style loss unique to contrast-enhanced computed tomography (CECT) imaging to improve the texture of the gener-
ated images, and apply these techniques to infer missing CECT images of renal masses collected during an IRB-approved 
retrospective study. In doing so, we demonstrate how the ability to infer the probability distribution of the missing image, as 
opposed to a single image recovery, can be used by the end-user to quantify the reliability of the imputed results.

Keywords Bayesian inference · Image imputation · CT imaging · Deep adversarial learning

1 Introduction

Medical image data acquired from ultrasound, X-rays (CT), 
MR and other types of imaging modalities is routinely used 
in detecting, diagnosing and planning treatment for myr-
iad diseases. The problem of missing data is ubiquitous in 
medical imaging. Missing image data can be in the form of 

missing images in a sequence of images, missing regions 
within a single image, or artifacts like blurring, which 
degrade the image significantly. In all these cases, missing 
data leads to the loss in utility of the images, and an accom-
panying loss in the accuracy of detection, diagnosis, and 
treatment planning for a disease.

Missing or lost data can be attributed to many reasons. 
In some cases patients may be initially scanned under one 

Ragheb Raad and Dhruv Patel contributed equally to this work.

 * Assad A. Oberai 
 aoberai@usc.edu

 Ragheb Raad 
 raghebra@usc.edu

 Dhruv Patel 
 dhruvvpa@usc.edu

 Chiao-Chih Hsu 
 hsuchiao@usc.edu

 Vijay Kothapalli 
 vkothapa@usc.edu

 Deep Ray 
 deepray@usc.edu

 Bino Varghese 
 bino.varghese@med.usc.edu

 Darryl Hwang 
 darryl.hwang@med.usc.edu

 Inderbir Gill 
 igill@med.usc.edu

 Vinay Duddalwar 
 vinay.duddalwar@med.usc.edu

1 Aerospace and Mechanical Engineering, Viterbi School 
of Engineering, University of Southern California, 
Los Angeles 90089, CA, USA

2 Radiology, Keck School of Medicine, University of Southern 
California, Los Angeles 90033, CA, USA

3 Urology, Keck School of Medicine, University of Southern 
California, Los Angeles 90033, CA, USA

http://orcid.org/0000-0002-7668-7713
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01712-8&domain=pdf


3976 Engineering with Computers (2022) 38:3975–3986

1 3

protocol, while the final management of the disease might 
require additional, or more thorough, scans. However, this 
may not be feasible due to the patient’s inability to tolerate 
additional scans, logistical issues such as visits to a tertiary 
care center, and restrictions imposed by the insurance pro-
vider. In addition to this, the authors in [1] refer to missing 
image data as the “leaky” radiological pipeline, and lament 
the fact that the transition from analog to digital imaging 
and the advent of standards like PACS and DICOM has not 
eliminated this problem. They point to several causes for 
missing image data that include incompatibility between 
different vendors of medical imaging equipment, saturation 
of the bandwidth of a device, and collateral damage dur-
ing events like server errors. In all these cases, a portion of 
image data is missing which renders useless the portion that 
is collected, or diminishes its value.

Image imputation refers to the task of recovering the 
missing/corrupted part of an image from the part that is 
available/not corrupted. This task has typically relied on 
problem-specific computer vision algorithms. In contrast, 
the advent of new deep learning algorithms has made it pos-
sible to develop techniques that could work well across a 
wide range of image imputation tasks [2, 3]. Further, by rely-
ing on statistical versions of these techniques, it is possible 
to not only impute the missing image data, but also provide 
quantitative measures of confidence in the imputed solution. 
This additional information can allow the clinician to make 
an informed decision about how much to trust the imputed 
data when making their final decision. This principle, that 
is, using novel statistical deep learning techniques to impute 
imaging data, and to provide a measure of confidence in the 
imputation, forms the main thrust of work described in this 
manuscript. While the techniques developed in this manu-
script can be applied to a wide range of image imputation 
tasks, we focus on the task of imputing missing contrast 
enhanced CT (CECT) images of renal tumors.

Over 90% of renal tumors are asymptomatic and are iden-
tified incidentally in 27–50% of all patients that are imaged. 
While all imaging modalities have their strengths and limi-
tations, the widespread use of CECT imaging has lead to 
the increased detection of kidney cancers. CECT images are 
generated by injecting an intravenous contrast agent into the 
subject and then imaging during four distinct time-points. 
These are the pre-contrast, corticomedullary, nephrographic, 
and excretory time-points. The four phases correspond to 
different phases in the enhancement and therefore character-
ize the masses with reference to their vascularity (quantity of 
neovascularity), and washout (quality of the neovascularity). 
Tumor vasculature (tumor neoangiogenesis) is characterized 
by disorganized branching and shunting and various degrees 
of leakiness. When a radiologist assesses these, they are 
looking at both in relation to the adjacent normal tissue. In 
addition, a qualitative diagnosis of the tumor is often based 

on the combination of analyzing different tissue densities, 
change in density, vascularity and washout, and its margins 
with adjacent normal tissue. Therefore, a conventional diag-
nosis on whether a tumor is benign or malignant is based 
on the qualitative visual inspection of the four CECT phase 
images. More recently, techniques such as radiomics or 
machine learning that rely on quantitative evaluation of these 
images, are also being considered for this task. Further, once 
a decision has been made to treat or resect the renal mass, 
these images are used by the surgeon to plan the surgery. The 
results presented in this present study are an initial attempt 
to recover missing images. In future studies, these will be 
evaluated to determine whether they reveal the diagnostic 
markers that radiologists are looking for.

The loss of any one or more CECT phase images due 
to any of the reasons discussed above negatively impacts 
the management of renal masses. It leads to less accurate 
diagnosis of malignant masses and adversely effects surgical 
planning in cases where surgical intervention is necessary. 
According to [4] images from at least three CECT phases 
are required to characterize a renal mass. We note that the 
problem of missing CECT images is significant. For exam-
ple, from 2011 to 2017 the Keck school Medicine at USC 
curated CECT images from 735 patients. However, out of 
these, images for all four phases are available for only 453 
patients. That is for  40% of the patients at least one image 
is missing. Given that Keck school is a tertiary care center, 
the proportion of missing images is small. For other smaller/
secondary centers this percentage is substantially higher.

In this manuscript, we address the problem of imputing 
missing CECT images by developing a statistical deep-
learning based technique. Our technique uses the informa-
tion encoded in a set of complete CECT images (a set that 
includes all four time-points) to train a generative adversarial 
network (GAN) [5], whose generator learns this distribu-
tion, and can be used to efficiently sample from it. This 
generator is then used to represent the prior in a Bayesian 
inference problem, whose goal is to infer the distribution 
of the CECT image corresponding to a missing time-point, 
given the CECT images at all other time-points. Using the 
GAN allows us to encode the complex information available 
through the sample set as a prior in the inference problem. 
It also allows us to formulate the inference problem in the 
latent space of the GAN, whose dimension is much smaller 
than that of the image itself. This dimension reduction in 
turn allows us to use methods like Markov Chain Monte 
Carlo (MCMC) [6] to efficiently sample from the posterior 
distribution. Once the MCMC chain attains its equilibrium, 
it is used to compute the desired statistics of the posterior 
distribution for the missing image. This includes quantities 
such as the most likely image, and the pixel-wise mean and 
standard deviation. We note that statistics like standard devi-
ation provide a quantitative measure of the uncertainty in the 
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prediction, and may be used to determine the confidence in 
the prediction.

We are not aware of any prior work that attempts to 
impute missing images within a sequence of CECT images 
acquired at different time-points. However, in the broader 
field of medical image imputation, there is significant work 
that has demonstrated effectiveness of modern machine 
learning algorithms for different imaging modalities [2, 3, 7, 
8]. There are also several applications that utilize image-to-
image algorithms that are inspired by GANs. These include 
algorithms like the CycleGAN, StarGAN and CollaGAN 
[9–11]. In most instances these algorithms are utilized in 
applications where medical images from a given domain 
(say T1 or T2 MR images) are translated to another domain 
(say FLAIR image). We note that these algorithms are sig-
nificantly different from the one described in this paper, 
since for a given input image they produce a single out-
put image. More specifically, they do not solve a statistical 
inference problem and therefore are not able to quantify the 
distribution of likely answers.

Recently, Wasserstein GANs have shown promise in effi-
ciently solving statistical inference problems in physics and 
computer vision [12, 13]. This work builds upon those ideas 
and applies them to real-world medical applications. More 
recently, the augmented CycleGAN architecture has also 
been used to accomplish this task, however to our knowl-
edge this approach has not been applied to imputing medical 
images [14]. Indeed, its application to the problem described 
in this manuscript will be an interesting area for future work.

The format of the remainder of this manuscript is as fol-
lows. In Sect. 2, we describe the new image imputation algo-
rithm and the two candidate GAN architectures that are used 
in this study. The code and dataset are available online1. In 
Sect. 3, we apply this algorithm to generate missing CECT 
images for four subjects across four different time-points 
and validate its performance. This includes qualitative com-
parison with the true images, and quantitative comparison 
of metrics associated with the texture of the images. It also 
includes an analysis of the uncertainty predicted by the algo-
rithm and a demonstration of how it may be used in clinical 
practise. We end with conclusions in Sect. 4.

2  Methods

2.1  Overall algorithm

Let xi ∈ Ωxi
⊂ ℝ

Nx , i = 1,… , 4 , denote CECT images, 
each with Nx pixels, corresponding to the four distinct 

time points. Let x = [x1, x2, x3, x4] , be a composite image 
that includes images from all four time-points. Further, let 
S ≡ {x(1),… , x(N)} , be a collection of N such composite 
images. These samples are drawn from an underlying dis-
tribution pX , which is assumed unknown.

In the first stage of our algorithm (see Fig. 1), the set 
S is used to train the generator G of a Wasserstein GAN 
(WGAN) [15, 16] which maps a Nz−dimensional latent 
space vector z ∈ Ωz ⊂ ℝ

Nz to x. The dimension of the latent 
space Nz ≪ Nx , and the samples z are drawn from an uncor-
related Gaussian distribution ( pZ ) with zero mean a unit 
variance.

Fig. 1  Schematic diagram of algorithm

1 https:// github. com/ Raghe bRaad 400/ Proba bilis tic- Medic al- Image- 
Imput ation- via- Deep- Adver sarial- Learn ing

https://github.com/RaghebRaad400/Probabilistic-Medical-Image-Imputation-via-Deep-Adversarial-Learning
https://github.com/RaghebRaad400/Probabilistic-Medical-Image-Imputation-via-Deep-Adversarial-Learning
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For a fully trained WGAN with infinite capacity the push-
forward of pZ by G is weakly equivalent to pX . That is for 
any continuous, bounded function l(x),

which implies that all moment-based statistics, such as the 
mean and variance, will be equal. Thus, sampling x from pX 
is (statistically) equivalent to sampling z from pZ and pass-
ing each sample through the fully-trained generator. We will 
use this relation later in this section.

Next, consider the restriction operator Ri(x) , which acts 
on x and deletes the CECT image corresponding to the i− th 
time-point. We assume that we observe a noisy version of 
this restricted set of images. That is, we observe,

where � ∼ p� is assumed to be an uncorrelated Gaussian with 
zero mean and variance � . The problem we wish to solve 
is: given this noisy, restricted version of the CECT image 
sequence, and the prior knowledge encoded in the set S , 
determine the CECT image corresponding to the missing 
time-point i. 

To solve this problem we rely on Bayesian inference, 
which provides a suitable framework to solve ill-posed 
(inverse) problems and quantifying the underlying uncer-
tainty [17]. We proceed by first defining a prior distribu-
tion pprior for the field x to be inferred, before making the 
measurement/observation y. This distribution is typically 
constructed based on domain knowledge, snapshots and/or 
known constraints on x. Next, the restriction operator Ri is 
used in conjunction with the measurement noise to define 
the likelihood distribution pY∣X(y ∣ x) ∶= p�(y − Ri(x)) . This 
distribution captures the inherent uncertainty and loss of 
information in the measurement about the inferred field. 
Finally, we use Bayes’ rule to obtain an expression for the 
posterior probability of the composite image x, given the 
measurement y

where ℤ is the evidence term which ensures that the integral 
of the the probability density is unity.

There are two fundamental challenges in using this for-
mula to infer the posterior distribution pX∣Y . (1) The dimen-
sion of x is large and therefore methods like MCMC cannot 
be easily used to learn the posterior distribution. For exam-
ple, in the problems studied in Sect. 3, this dimension is 
4 × 100 × 100 = 40, 000 and most existing MCMC methods 
work well only for dimension of O(100) . (2) pX is not known 
explicitly; rather it is known only through the set S . Thus it 
is difficult to construct a prior distribution that captures this 

(1)�x∼pX
[l(x)] = �z∼pZ

[l(G(z))],

(2)y = Ri(x) + �,

(3)
pX∣Y (x ∣ y) = pY∣X(y ∣ x)pprior (x)∕ℤ

= p�(y − Ri(x))pX(x)∕ℤ,

information. We address these challenges using the set S to 
train a WGAN and mapping the expression for the posterior 
to the latent space of the WGAN. We accomplish this below 
by utilizing (1) and (3).

The expectation of any continuous bounded function l(x) 
over the posterior density is given by

In the first line of the equation above, we have used the 
definition of pX∣Y (3). The second line follows by defining 
m(x) ≡ l(x)p�(y − Ri(x))∕ℤ . The third line follows from the 
weak equivalence statement for a WGAN (1). The fourth 
line follows from the definition of m(x). The fifth line makes 
use of the definition of the posterior density in the latent 
space, that is,

Equating the left hand side and the final expression on the 
right hand side of (4), we have

Here pZ∣Y is the posterior distribution in the latent space of 
the WGAN and is given by (5).

The pair of equations (5) and (6) allow us to compute 
statistics of the posterior distribution in a computationally 
tractable way. We use the expression in (5) to train a MCMC 
algorithm whose stationary point yields samples that are 
drawn from an approximation of pZ∣Y . This constitutes the 
second stage of our algorithm, and is described in some 
detail in “Appendix A”. Once this is done, we use (6) to 
approximate any statistic of the posterior using the samples 
from the Markov chain trained in Stage 2. That is,

This is the third and final stage of our algorithm. The overall 
algorithm is depicted pictorially in Fig. 1.

2.2  Enhancements to the WGAN

A unique characteristic of CECT images is the presence 
of fine-scale features which cannot be captured simply by 
training the WGAN model using standard adversarial loss. 
Since this fine-scale structure is crucial in making important 

(4)

𝔼x∼pX∣Y
[l(x)] = 𝔼x∼pX

[l(x)p�(y − Ri(x))∕ℤ]

= 𝔼x∼pX
[m(x)]

= 𝔼z∼pZ
[m(G(z))]

= 𝔼z∼pZ
[l(G(z))p�(y − Ri(G(z)))∕ℤ]

= 𝔼z∼pZ∣Y
[l(G(z))].

(5)pZ∣Y (z ∣ y) ≡p�(y − Ri(G(z)))pZ(z)∕ℤ.

(6)�x∼pX∣Y
[l(x)] = �z∼pZ∣Y

[l(G(z))].

(7)�x∼pX∣Y
[l(x)] ≈

1

Nsamp

Nsamp
∑

i=1

l(G(z)).
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diagnostic decisions, it is desirable to have a model which 
can learn these features. For this, we propose a novel style-
based loss in addition to standard adversarial loss for learn-
ing the true prior density. Similar to previous works on deep 
style transfer and texture synthesis [18–20] we propose to 
use a Gramm matrix-based style loss. However, unlike these 
works, we do not rely on a pre-trained classification network 
(VGG-16) to build the Gramm matrix. Instead we rely on 
the features extracted from certain layers of the discrimina-
tor (or critic) D of the GAN to build the Gramm matrix. In 
other words, the discriminator serves the dual purpose of a 
critic for real versus fake image classification and a feature 
extractor for style transfer. 

Specifically, we define the Gramm matrix as 
Gij

l =
∑

k Fik
l
Fjk

l , where Fik
l is the activation of ith filter in 

layer l of the discriminator at location j. We then define the 
style loss by minimizing the Gramm matrices of a batch of 
real and fake samples.

where �l is the relative weight of style loss for each layer. We 
use the first 3 layers to compute the style loss ( b = 3 ) with �l
=10. The total loss is the sum of adversarial and style losses. 
Finally, to introduce the very fine-scale speckle pattern seen 
in the training data, we adapt recent ideas from state-of-the-
art StyleGAN architectures [21] and inject a fixed amount 
of Gaussian noise (with zero mean and identity covariance 
matrix) in the final layer of the generator. We refer to the 
WGAN with style loss and noise as the ”enhanced” formu-
lation. The architecture of the WGAN used in this work is 
described in “Appendix B”.

3  Results and discussion

3.1  CECT image data

The patient population includes renal masses diagnosed on 
abdominal CECT scans with pathological diagnoses con-
firmed after resection at our institution. Patients were iden-
tified by retrospective query of a prospectively maintained 
surgical database of consecutive radical or partial nephrec-
tomies between May 2007 and September 2018. Pathologic 
evaluation was performed by specialized genitourinary 
pathologists. Patients with no evaluable preoperative imag-
ing a year prior to nephrectomy were excluded. Only patients 
with all 4 time-points of the CECT study were included. Our 
final data cohort included 372 patients. For further details 
on the cohort the reader is referred to our prior publications 

(8)Lstyle =

b
∑

l=1

�l ∣ Gij
l(real) − Gij

l(fake) ∣2

[22, 23] in which a subset of these images was used for clas-
sifying malignant lesions.

Three-dimensional regions of interest of the renal masses 
were manually segmented by two senior radiologists using 
Synapse 3D software (Fujifilm, Lexington, MA). Images 
were coregistered by using the normalized mutual informa-
tion cost function implemented in the Statistical Parametric 
Mapping software package (Wellcome Centre for Human 
Neuroimaging). Tessellated 3-D models of the tumor were 
created from segmented voxels using a custom MATLAB 
(MathWorks) code. From this registered volume of CECT 
images at multiple time-points, scans containing the largest 
axial cross-section of the tumor volume were extracted and 
used to train the WGAN as described below.

We remark that each institution has different protocols, 
with the measurement of three-four phases being the most 
common. However, one of the phases may be missing or be 
technically inadequate, for instance due to patient motion 
(happens 3–5% of times). In addition, depending on where 
and how the scan was performed, the scan may be obtained 
in mid-phase. In the present study, we work with a four 
phase setup and assume one of the phases is missing. In a 
follow up study, we will look at additional missing phases 
or nonstandard phases, and how our methodology can be 
extended to work in such a scenario.

CT images in our dataset are created using the Hounsfield 
units, which are a non-dimensional measure of the attenuation 
coefficient of a tissue relative to water. A Hounsfield unit of 0 
corresponds to water, while fat has a value of around − 100 
and cancellous bone of around 350. To present the GAN with 
normalized data, we have converted images from this scale to 
another scale which varies between − 1 and + 1 through a linear 
transformation. In this scale − 1 corresponds to − 200 Houns-
field units and + 1 corresponds to 300 Hounsfield units. Any 
values outside this range are clipped to − 1 and + 1 respectively.

Each image has a dimension of 100 × 100 , with a scale of 
0.9765 mm per pixel in the horizontal and vertical directions. 
Given that it takes at least 5-6 pixels to resolve any feature, the 
proposed method can be expected to work on renal masses of 
size between 0.5 and 9.8 cm.

3.2  Results of image imputation

Using the set of images described above, we train a Was-
serstein GAN with Gradient Penalty (WGAN) [16], to learn 
the underlying distribution of the composite images. The 
dimension of the latent space of the WGAN is 100, which 
is a factor of 400 smaller than the dimension of the com-
posite image. The architecture of the WGAN is described 
in “Appendix B”.

We use the trained WGAN to recover missing CECT 
images. We select a sequence of CECT images for a subject 
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not included in the training set, and delete the image cor-
responding to one of the four time-points. Then using the 
algorithm described in Sect. 2 and depicted in Fig. 1, we 
generate a Markov chain to sample from the approximate 
posterior density. As described in “Appendix A”, the length 
of the chain is suitably chosen to ensure that is has suffi-
ciently converged and is well-mixed. Using the samples in 
the Markov chain, we infer important posterior statistics 
about the missing image. These include (a) the most likely 
guess of the missing image, that is the maximum a-posteriori 
(MAP) estimate, (b) the pixel-wise mean of the image, and 
(c) the pixel-wise standard deviation (SD). This process is 
repeated for each of the four time-points, and then for four 
different subjects. The subjects are chosen such that the cor-
responding renal tumors represent the observed diversity in 
the size and shape of the tumor.

The results of the image imputation algorithm are 
shown in Figs. 2, 3, 4 and 5, where each figure corresponds 
to one of the four subjects. In each figure, the columns 

represent the four time-points of the CECT images. The 
first row contains the true images, while the other rows 
contain the results of the image imputation algorithms. 
In these rows, the images in the first column are obtained 
by assuming that the true image for the pre-contrast time-
point is missing and needs to be imputed, while those for 
all the other time-points are available. Similarly, images in 
the second/third/fourth column are obtained assuming that 
the true images for the corticomedullary/nephrographic/
excretory time-points are to be imputed by making use of 
the images at other time-points. Thus each figure captures 
the ability of the algorithm to impute images for the four 
distinct CECT time-points. In the second and third rows 
of Figs. 2 , 3, 4 and 5 we have shown the MAP estimate 
(the best guess of the imputed image) produced using 
the standard WGAN algorithm and the enhanced WGAN 
algorithm, respectively. In the fourth row we have shown 
the pixel-wise standard deviations evaluated using the 
enhanced WGAN. In “Appendix A” we have described 

Fig. 2  True images, imputed images and their statistics for Subject 1
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our approach of ensuring that the MCMC results have 
converged.

There are several observations to be made here. The 
MAP estimate from both the standard and enhanced 
WGAN correctly predict the changes in the overall 
intensity across the different time-points. That is, the 
time-points in the order of increasing intensity are: pre-
contrast, nephrographic, corticomedullary and excretory. 
Both the MAP estimates also correctly recognize that the 
segmented shape of the tumor does not change from one 
time-point to another.

The texture produced by the standard WGAN is not 
consistent with the texture observed in the true images. 
In particular, we observe swirling patterns of brightness 
in the images imputed using the standard WGAN, that 
are absent from the true images. Further, the true images 
contain pixel-to-pixel variations in intensity that are also 
not seen in the images using the standard WGAN. On the 
other hand, the enhanced WGAN (enhanced by style loss 

and noise) displays a texture that is much closer to that of 
the true images.

3.3  Validation of the texture of the imputed images

Assessing the difference between the texture of true and 
imputed images visually is difficult, and is subject to inter-
observer variability and bias. Statistical methods of assessing 
texture that consider the spatial relationship of pixels within 
a given neighborhood are well suited for this task. Among 
these, the neighborhood-based texture assessment techniques 
that include the grey-level co-occurrence matrix (GLCM), 
grey-level difference matrix (GLDM), grey-level run-length 
matrix (GLRLM) and grey-level size zone matrix (GLSZM), 
are popular [24]. Each of these matrices are obtained by trans-
forming the original image, so as to highlight some of its tex-
ture-based features. GLCM is sensitive to how combinations 
of discretised grey-levels of neighbouring pixels are distributed 
along different image directions. GLDM is similar to GLCM, 

Fig. 3  True images, imputed images and their statistics for Subject 2
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however it works with differences in grey-levels rather than the 
grey-levels themselves. Like the GLCM, GLRLM is also sen-
sitive to the distribution of discretised grey-levels in an image. 
However, whereas GLCM is sensitive to the occurrence of the 
same grey-levels within neighbouring pixels, GLRLM is sensi-
tive to run lengths. A run length is defined as the length of a 
consecutive sequence of pixels with the same grey-level along 
a given direction. The grey-level size zone matrix (GLSZM) 
contains a count of the number of zones of linked pixels. Pixels 
are defined as ”linked” when the neighbouring pixel has the 
identical discretised grey-level value.

Once these matrices are computed we may compute scalar 
metrics that highlight their degree of heterogeneity. For this 
purpose, in this study we compute the entropy of these matri-
ces. That is

(9)H(X) = −
∑

i

�X(i) log2(�X(i)),

where X denotes an image or its corresponding grey-level 
matrix, and �X(i) is the probability of attaining the intensity 
i at any pixel.

In Fig. 6 we have shown the normalized difference in 
entropy between features derived from true and imputed 
images. In this figure, each bar represents the mean value 
of this difference over the 16 images, and the whiskers rep-
resent the standard deviation. Further, ”HIST” refers to the 
entropy of the original images (imputed and true) before 
applying any transformations, and the other labels refer 
to the four matrices described above. In each case, except 
HIST, the difference in the average entropy of the imputed 
and true images is smaller for the enhanced WGAN for-
mulation when compared with the standard WGAN. Fur-
ther, we evaluated the mean (± std. dev.) SSIM metric 
across all 4 patients and all 4 phases as, Standard GAN: 
0.6961 ± 0.1287 , and Enhanced GAN: 0.7496 ± 0.1763 , 
which is clearly higher for the enhanced GAN. This 

Fig. 4  True images, imputed images and their statistics for Subject 3
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validates the improved visual quality of this formulation 
observed in Figs. 2, 3, 4 and 5.

3.4  Utility of estimating standard deviation

One of the advantages of the method described in this paper 
is ability to produce multiple samples drawn from the pos-
terior distribution, instead of producing just a single, most 
likely sample. These samples can be used to compute statis-
tics that shed light on the quality of the imputed image. To 
highlight this, in each of the Figs. 2, 3, 4 and 5, we have also 
plotted the estimated pixel-wise standard deviation in the 
imputed images. These images provide us with a spatial map 
of the degree of uncertainty in the imputed results. When 
observing these images a few things stand out. First, the 

Fig. 5  True images, imputed images and their statistics for Subject 4

Fig. 6  Normalized difference in the entropic metrics for the true and 
imputed images for 4 subjects across 4 time-points
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standard deviation, and therefore the uncertainty is largest 
at the tumor boundaries indicating that the location of the 
tumor boundary in the imputed image may be incorrect by 
about 1–2 pixels. Second, the standard deviation, and hence 
the uncertainty is largest for the nephrographic time-point, 
followed by the corticomedullary, the excretory and the pre-
contrast time-points.

It is of interest to determine how the standard deviation 
computed by our algorithm correlates with true error of the 
most likely (MAP) imputed image. If the two are found to 
be positively correlated, we may use the standard deviation 
as a measure of the error in the MAP of the imputed image, 
and therefore provide the end-user of the algorithm with an 
estimate of the likely error. This correlation is examined in 
Fig. 7, where we have plotted the normalized l2 error versus 
the average (over all pixels) of the computed standard devia-
tion for each of the 16 images (4 subjects across four time-
points). We have done this for the both the standard and the 
enhanced WGAN formulations. In both cases, we observe a 
positive correlation between the standard deviation and the 
normalized error. For the standard formulation the correla-
tion coefficient is 0.79, while for the enhanced formulation 
it is 0.62. We believe that this positive correlation will be 
useful in estimating the reliability of imputed images when 
the proposed approach is applied in a clinical setting.

4  Conclusion

In this manuscript we have developed a method for imputing 
missing medical images that utilizes a WGAN to represent 
the prior distribution in Bayesian inference, and have applied 
it for imputing missing CECT images of renal masses. We 
have also developed a novel architecture for the generator 
of the WGAN which is driven by a style loss and Gauss-
ian noise to accurately model the fine-scale features of the 
CECT images. A distinguishing feature of our method is its 
ability to learn the entire distribution of missing images and 
to sample from this distribution. This allows us to compute 
statistics like pixel-wise standard deviation in addition to 
the most likely guess for the missing image. We have shown 
that these statistics can be used to quantify the uncertainty 
in the imputed images, and provide the end-user quantitative 
estimates of the reliability of the proposed algorithm.

Appendix A Convergence of MCMC 
algorithm

MCMC algorithms are known to suffer from challenges 
when used in high-dimensional spaces, where the mass of 
the target density is typically concentrated in narrow regions 
on a lower dimensional manifold [25]. To fully explore the 
regions of interest, the requirements on the length of the 
Markov chains [26] can make the algorithm computationally 
infeasible. Thus, posing the inference problem on the lower-
dimensional latent space can alleviate this issue.

A number of diagnostic tools are available to analyse the 
convergence of the MCMC algorithm, and thus determine the 
termination length of the generated Markov chains. We direct 
interested readers to [27] for a summary of such techniques. 
In the present work, we use the Gelman-Rubin diagnostic 
[28] which estimates the convergence by considering mul-
tiple Markov chains and evaluating the between-chains and 
within-chains variances.

We consider M chains of length N, each of which is 
generated by the MCMC algorithm from different random 
initial points. Let �m and �2

m
 denote the sample mean and 

variance of the mth chain, and � denote the overall mean 
across all chains, i.e., � =

∑M

m=1
�m∕M . Then, we estimate 

the within-chain variance W, the between-chain variance B 
and the pooled variance V̂  as

(A1)
W =

1

M

M
∑

m=1

�2
m
, B =

N

M − 1

M
∑

m=1

(�m − �)2,

V̂ =
N − 1

N
W +

B

N
.

Fig. 7  Average estimated standard deviation versus the normalized 
L
2

 error for the standard and enhanced WGAN formulations. Subject 
1, ○ ; Subject 2, ◻ ; Subject 3, ⋆ ; Subject 4, ⋄ . Standard GAN, Red; 
Enhanced GAN, Blue
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Finally, we evaluate the potential scale reduction factor 

R̂ =

√

V̂∕W  . Assuming that the initial points of the chains 

were sampled from an over-dispersed distribution compared 
to the target distribution, V̂  is expected to overestimate the 
variance of the target distribution, while W underestimates 
it. Thus, the closer that value of R̂ is to 1, the more assured 
we are about the convergence of the chains.

To demonstrate the utility of this tool, we consider 
the chains generated to impute the missing images at the 
4 time-points for Subject 1. At each time-point, we use 
M = 4 chains for each of the lengths N = 256 K, 512 K, 
1024 K. Since the chains are generated for latent variable 
z ∈ ℝ

Nz , we obtain a vector R̂ ∈ ℝ
Nz for each configura-

tion. To simplify the analysis, we condense this vector to 
a scalar by considering the dimensional mean ± standard 
deviation of R̂ , which is listed in Table 1. Note that these 
scalar value moves closer to 1 as N increases, indicating 
convergence. In practice, a value of �R < 1.2 is considered 
as a good termination threshold. To balance the conver-
gence of the chains and the associated computational cost, 
we use N = 1024 K for all results presented in this work.

Appendix B Architecture 
and hyper‑parameters

We use the axial slice of the 3000 CECT images for train-
ing. The WGAN-GP models, whose architectures are 
described in Tables 2 and 3, are trained with the gradient 
penalty parameter set to 10. We use the ADAM optimizer 
with learning rate of 2 × 10−4 and momentum parameters 
�1 = 0.0, �2 = 0.9 . We perform 5 gradient updates of critic 
per gradient update of generator and train both networks 
in TensorFlow with a batch size of 64. For posterior infer-
ence we sample Markov chain using Hamiltonian Monte 
Carlo (HMC) with No-U Turn Sampler (NUTS) [29] and 

implement it in TensorFlow Probability [30]. We use 
initial step size of 1.0 for HMC and adapt it following 
[31] based on the target acceptance probability. A burn-
in period of 50% is used for all HMC simulations. These 
hyper-parameters are chosen to ensure the convergence of 
the chains.
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Table 1  ̂R values of Markov chains in z used to impute the images at 
the four time-points for Subject 1

Chain length (N)

256 K 512 K 1024 K

Time-point 1 1.13 ± 0.10 1.08 ± 0.08 1.05 ± 0.04
2 1.28 ± 0.23 1.17 ± 0.15 1.12 ± 0.10
3 1.14 ± 0.15 1.09 ± 0.06 1.08 ± 0.06
4 1.19 ± 0.19 1.13 ± 0.17 1.11 ± 0.16

Table 2  Generator architecture

FC, fully-connected layer; Conv, convolutional layer; BN, batch nor-
malization; LN, layer normalization; LReLU, Leaky ReLU activation 
(with � = 0.2 ); BI, bi-linear interpolation

Layer Filter/layer size and 
stride (s)

Output size

Latent input ( z ∈ ℝ
100) – –

FC + BN + ReLU 100×2016 [BS, 2016]
Reshape – [BS, 3, 3, 224]
BI + Conv + BN + ReLU 3×3×192 (s=1) [BS, 6, 6, 192]
BI + Conv + BN + ReLU 3×3×160 (s=1) [BS, 12, 12, 160]
BI + Conv + BN + ReLU 3×3×128 (s=1) [BS, 24, 24, 128]
BI + Conv + BN + ReLU 3×3×96 (s=1) [BS, 48, 48, 96]
BI + Conv + BN + ReLU 2×2×64 (s=1) [BS, 96, 96, 64]
BI + Conv + BN + ReLU 2×2×16 (s=1) [BS, 98, 98, 16]
BI + � ∼ N(0, 1) – [BS, 100, 100, 16]
Conv + Tanh 3×3×4 [BS, 100, 100, 4]

Table 3  Discriminator architecture

FC, fully-connected layer; Conv, convolutional layer; BN, batch nor-
malization; LN, layer normalization; LReLU, Leaky ReLU activation 
(with � = 0.2 ); BI, bi-linear interpolation

Layer Filter/layer size and 
stride (s)

Output size

Conv + LN + LReLU 3×3× 16 (s = 1) [BS, 100, 100, 16]
Conv + LN + LReLU 3×3× 32 (s = 1) [BS, 98, 98, 32]
Conv + LN + LReLU 3×3× 64 (s = 1) [BS, 96, 96, 64]
Conv + LN + LReLU 3×3× 96 (s = 2) [BS, 48, 48, 96]
Conv + LN + LReLU 3×3×128 (s = 2) [BS, 24, 24, 128]
Conv + LN + LReLU 3×3×160 (s = 2) [BS, 12, 12, 160
Conv + LN + LReLU 3×3×192 (s = 2) [BS, 6, 6, 192]
Conv + LN + LReLU 3×3×224 (s = 2) [BS, 3, 3, 224]
FC 2016 × 1 [BS, 1]
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