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Abstract
Deep networks can obtain the structural state features and optimize the parameters of the feature layer according to the train-
ing labels. The training data including the damage signals are quite helpful for detection model training, but sometimes the 
industrial damage signals are difficult to obtain, especially in airplane skin and other large structures. In this paper, a deep 
emulational semi-supervised probability imaging algorithm is proposed to present the damage state in the absence of dam-
age samples. A promising signal generation method for simulated damage was implemented through signal encoding, ReLU 
activation and reconstruction with disturbance, and its effectiveness was verified in metal plate structures and anisotropic 
composite plate structures. The experiment results illustrate that the proposed method can detect the damage only using 
normal state signals, presents a good materials generalization in both aluminium plate and composite plate, and has better 
performance than other state-of-art methods.
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1 Introduction

Piezoelectric ultrasonic guided waves technology [1–6] 
has obvious advantages in energy conversion efficiency, 
sensitivity, signal-to-noise ratio, response frequency range 
and portability, which have been identified as a promising 
technology in structural health monitoring. To reduce the 
negative effects of the dispersion and multimodal of piezo-
electric ultrasonic guided wave signals, many scholars pro-
posed innovative theories and new detection methods in the 
signal processing of piezo-ultrasonic guided wave signals. 
At present, artificial intelligence algorithm and image char-
acterization have been improved in guided wave signal pro-
cessing, which further improves the practicability of guided 
wave structural state monitoring technology. These damage 

identification methods based on artificial intelligence can be 
mainly divided into two categories, machine learning-based 
methods and deep learning-based methods.

Machine learning-based ultrasonic guided wave structural 
monitoring method is mainly refers to using Artificial Neural 
Network, Fuzzy theory, Support Vector Machine (SVM), 
Compression sensing, Gaussian mixture model, Bayesian 
method and other pattern recognition methods. It aims to 
obtain information about implicit damage status in ultra-
sonic guided wave signal, which improves detecting accu-
racy and efficiency. Khan [7] introduced the application of 
machine learning technology in quantification and location 
of intelligent structural damage detection, he pointed out that 
the features inputting effectively into the machine learning 
model are the key to damage assessment. Mardanshahi [8] 
proposed a machine learning classification model for detect-
ing matrix cracks automatically in composite materials. The 
model implemented a linear discriminant analysis method 
to improve the classification accuracy. Wang [9] proposed a 
guided wave detection method based on compressive sens-
ing to detect the damage in pipeline structures. The method 
reduced the amount of guided wave detection data as well as 
maintaining the accuracy of defect identification. Peng [10] 
proposed a pipe protection framework based on distributed 
fiber sensing technology and machine learning technology. 

http://orcid.org/0000-0002-2392-2556
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01711-9&domain=pdf


4152 Engineering with Computers (2022) 38:4151–4166

1 3

The framework is used to detect wave propagating and scat-
tering in pipe structure including straight pipe and elbow 
pipe. Jimenez [11] proposed a new method for wind turbine 
blade reliability monitoring based on a nonlinear autoregres-
sion system and linear autoregression model. Harley [12] 
used compressed sensing and sparse representation tech-
nology to study guided wave dispersion curves. Machine 
learning-based structural health monitoring method has 
made abundant achievements and has been widely used 
in all kinds of structure condition monitoring in the study. 
But most machine learning algorithms still need to select 
manually the mode of ultrasonic guided wave signal and rely 
heavily on prior knowledge.

Deep learning-based guided wave monitoring technology 
can extract damage information from original guided wave 
signals by multi-layer nonlinear mapping. It could replace 
the artificial feature extraction in traditional machine learn-
ing with hidden layer representation. Training samples were 
used as baseline signals to update the weights and biases of 
neural networks, the hidden layer, which represents the simi-
larity between test signals and training samples, is used to 
evaluate the current structure state in the monitoring process. 
Liu [13] proposed a Generalized Regression Neural Network 
Based on Time Difference Mapping to improve the damage 
localization accuracy in the plates. Ebrahimkhanlou [14] 
adopted and compared two deep learning methods (stacked 
autoencoder and convolutional neural network) in the acous-
tic emission source localization task. Xu [15] extracted 
several features from the first wave on multiple monitoring 
paths, and input them into the convolutional neural network 
to identify the length of fatigue cracks. Alguri [16] com-
bined digital surrogates with transfer learning to improve a 
wavefield imaging method. Su [17] used Fourier transform 
to extract frequency domain features of signals and estab-
lish a damage classification and recognition model by using 
spectrum with damage characteristics and corresponding 
damage modes as input and output of convolutional neural 
network, respectively. Zhang [18] explored a deep transfer 
learning method to use the monitoring model of one struc-
ture to monitor another structure. When the model structure 
is complex enough, the training data set is sufficient, and the 
computing power is enough, deep-learning-based structure 
status monitoring method can effectively learn the relation-
ship between multi-source monitoring data and structural 
state. But in the incomplete set, some label sample data are 
missing. The existing training set samples are not enough to 
train a good model to meet the monitoring accuracy require-
ments. Moreover, the re-labeling of enough samples will 
consume a lot of human and material resources and even is 
impossible. The incompleteness makes a different distribu-
tion between the original training samples and the new test 
samples, so the dataset should be compensated before model 
training. The data enhancement method mainly refers to the 

expansion of data samples through sample generation, so 
as to achieve the purpose of enhancing the training effect. 
Mao [19] proposed an abnormal data identification method 
by combining Generative Adversarial Networks (GAN) with 
autoencoder and verified the accuracy and robustness of the 
method in incomplete bridge data sets. Lei [20] proposed 
a data generation method based on a Deep Convolutional 
Generative Adversarial Network to solve the problem of lost 
data caused by sensor failure or transmission failure. The 
method generated virtually the lost signals by using the orig-
inal signals as input to the deep learning model. Xiong [21] 
proposed a new method for missing signal reconstruction 
based on Generative Adversarial Networks. The applicabil-
ity of this method in missing signal reconstruction is verified 
in structural health monitoring of nuclear power plant. For 
piezoelectric ultrasonic guided wave signals, the data-based 
method can be implemented by adding noise, translation, 
phase space reconstruction and other ways. Incomplete set 
knowledge transfer is a challenging frontier field in structural 
health monitoring. The key lies in the transfer and utiliza-
tion of related ultrasonic guided wave knowledge to enhance 
the universality and generalization ability of the ultrasonic 
guided wave monitoring model. However, the research of 
structural health monitoring algorithm based on knowledge 
transfer is still in the initial stage [22], its application needs 
further exploration and research in the industry.

To further visually indicate the shape and position 
of the damage, researchers improve many imaging 
algorithms in guided wave signal, such as Computer-
ized Tomography (CT), delay-and-sum imaging and 
probability tomography. Huthwaite [23] proposed a 
thickness estimation method based on dispersion char-
acteristics for the generation of guided wave thickness 
diagrams, realizing flat plate corrosion tomography. Hay 
[24] used embedded sensors and Lamb wave ultrasonic 
tomography to detect material loss of components on the 
underside of aircraft wings. Prasad [25] studied the key 
influencing factors of ultrasonic guided wave tomog-
raphy in a multilayer anisotropic composite plate. The 
experiments proved that truncating guided wave signal, 
optimizing sensors placement and normalizing the imag-
ing features can effectively improve the imaging quality. 
Khodaei [26] proposed a numerical model of ultrasonic 
propagation in composite laminates and improved a 
delayed stacking imaging algorithm, which was veri-
fied by impact damage imaging in reinforced aluminum 
plates and composite plates. The key step of ultrasonic 
guided wave imaging method is to obtain imaging char-
acteristics, which means that the appropriate signal 
processing method is particularly important to obtain 
effective damage indicators. Commonly, it is necessary 
to select the first wave or a specific mode for construc-
tion state analysis. After structural identification using 
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the artificial intelligent method, the ultrasonic guided 
wave imaging algorithm can avoid the feature selection 
by using modal analysis and time/frequency domain 
analysis. However, there are few algorithms that com-
bine imaging and deep learning.

Based on the above analysis, the application of arti-
ficial intelligence algorithm still has the following key 
problems in ultrasonic guided wave structural monitoring. 
First, the deep learning method can replace the manual 
process with layer extraction of the neural network, but 
it is difficult to train the model when the labeled real 
damage samples are missing. Moreover, the imaging algo-
rithms combined with deep learning have not received the 
deserved attention. In this paper, a novel deep emulational 
semi-supervised knowledge probability imaging (DESK-
PI) method is proposed to monitor the state of the struc-
ture with an incomplete set of missing damage samples 
and realize automatic extraction and imaging characteri-
zation of multi-sensor damage indicators. Experiments on 
aluminum plate and composite plate show that DESK-PI 
method can obtain the damage index of structure effec-
tively. The experimental result of damage imaging shows 
that the proposed method has good generalization perfor-
mance in different samples. Comparison results also show 
that the monitoring performance of DESK-PI is superior 
to other methods. The method relies less on prior knowl-
edge and applies the ultrasonic guided wave intelligent 
monitoring technology to structures without enough dam-
age samples.

The remainder of this paper is organized as follows: 
Section 2 presents the process of the proposed approach. 
Section  3 analyses the experimental results. Finally, 
Sect. 4 concludes the whole works.

2  Deep emulational semi‑supervised 
knowledge probability imaging method

In this paper, a novel deep emulational semi-supervised 
knowledge probability imaging method is proposed to moni-
toring the health state of the plate structure. The DESK-PI 
method, which can be divided into four stages as Fig. 1, can 
automatically capture the damage index and visually present 
the damage.

In the first step, the ultrasonic guided wave signals 
obtained by the sensor array need to be standardized to 
improve the consistency of signal samples. Secondly, the 
deep features of input signals are extracted using a locally 
connected network, and the signals would be reconstructed 
later. Third, the hidden representation of normal state signals 
is used to generate analog abnormal signals, and different 
types of signals are identified through the triplet network. 
The corresponding damage index can be obtained by com-
paring the normal state signal, positive and negative distur-
bance signals and test signals. Finally, probabilistic imaging 
technology is implemented to visualize the damage state.

2.1  Signal standardization

For an ultrasonic guided wave monitoring system with Np 
sensors, the ultrasonic guided wave data set of the monitor-
ing st ructure in  the normal  st ructural  sta te 
Ωhealth =

{
�
n
health

}Ns

n=1
 and unlabeled test data set (before 

standardization) Ωtesting =
{
�
n
testing

}Nt

n=1
 were obtained. Ns 

and Nt are the numbers of samples in the training set and test 
set, respectively. The signal normalization process is divided 
into sensor channel normalization and sample 
normalization.

Fig. 1  The framework of DESK-PI method
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Sensor channel normalization is used to reduce the dif-
ferences caused by different sensor installation positions 
when multiple receiving sensors are used, such as to correct 
the arrival time of received signals affected by the installa-
tion position. The threshold segmentation method is used 
to standardize the input signal. Meanwhile, to obtain the 
complete first wave mode, the segmentation position of each 
sensor is aligned with the nearest sensor. All samples are 
divided according to the following equation.

where Xi is the signal sample received by the ith sensor, Xmax 
is the maximum of the training set, Si is the start point of the 
segmentation signal, Tmax is a percentage threshold in signal 
standardization, which is set as 10% in this work.

Sample normalization is used to avoid the training differ-
ences of signals with different amplitudes during the training 
of deep network models. The signal amplitudes of different 
receiving sensors vary greatly, so the neural network model 
tends to reconstruct the signals with higher amplitudes. 
Therefore, each training sample should be normalized, the 
formula is as follows:

where Xi is the ith element in the training sample, Nf is the 
normalization factor, max(X) and min(X) are the maximum 
and minimum of the training sample. As for the Standardiza-
tion factor Nf, Standardization factor can be matched with 
the learning rate to improve the fitting effect. The usual prac-
tice is to set Nf to 1 and adjust the learning rate. We used 
the Adam optimizer's default learning rate (0.001) with Nf 
set to 10.

2.2  Data expansion mechanism for analog damage 
signal generation 

The generation method of simulated structural damage sig-
nal can be expressed by the following formulas:

where Xnormal is the normal ultrasonic guided wave signal, 
Xsimdamage is the simulated structural damage signal, RH is the 
hidden layer representation of ultrasonic guided wave sig-
nal, R̂H is the hidden layer representation after disturbance; 

(1)Si = min
[
where

(
Xi > Xmax × Tmax

)]

(2)S
i
← S

i
−min(S

i
),

(3)Xi ←
Xi −min(X)

max(X) −min(X)
× Nf −

(
Nf∕2

)
,

(4)RH = Encoder
(
XNormal

)

(5)Xsimdamage = Decoder
(
R̂H

)
,

Encoder and Decoder are locally connected encoding net-
work and decoder reconstruction network, respectively.

By adding disturbance into the hidden representation, 
the simulated auxiliary training signal is generated. The 
decoder can generate a reconstructed signal that is differ-
ent from the normal state signal. Different auxiliary train-
ing signals can be obtained by controlling the amplifica-
tion ratio parameter Rd and the random disturbance Da, and 
the random disturbance Da obeys the normal distribution 
of N(0,1). And then the simulated hidden representation 
can be amplified by:

where Ri
H is the ith hidden representation element, which 

meets the amplification condition. Different disturbance 
coefficients are set to generate a simulated damage sample 
for every simulated normal sample. For simulated damage 
samples, the disturbance size is set to between 0.5 and 10% 
of the hidden representation amplitude. For simulating nor-
mal samples, the disturbance is set to less than  10–4%.

In deep learning networks, the autoencoder network is a 
typical fusion network, which can obtain the fusion features 
of ultrasonic guided wave signals through encoding and 
decoding. After signal standardization, locally connected 
networks are used to obtain depth features by dimensionality 
reduction of training signals. The biggest difference between 
locally connected networks and fully connected networks 
is that locally connected networks are used to obtain local 
features of signals and reduce network parameters. As shown 
in Fig. 2, a three-layer auto-encoder contains input layer, 
hidden layer and an output layer. The mapping from input 
layer to the hidden layer is called encoder while the mapping 
from the hidden layer to the output is a decoder.

(6)RH
i
= RH

i
×
(
1 + Da

)
,

Fig. 2  The structure of locally connected auto-encoder
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For the locally connected networks with NL encoding lay-
ers, the calculation result of the first layer of the original 
signal Xi is:

where hi is the ith element of the hidden representation, X 
is the input signal, s is the stride step of locally connected 
networks, l is the input signal length, Wi,j is the jth element 
of the ith weight. The main features can be obtained and the 
signal dimension will be reduced after the locally connected 
calculation. In order to preserve waveform features, a leaky 
Relu function that produces a non-zero slope for negative 
values is used in the dimensionality reduction process:

where the Yi is the activated value, Xi is the weighted sum 
in the neuron, Prelu is the slope parameter of the activation 
function.

After the second layer, the result of the Nl layer can be 
calculated by the following formula:

The decoder can realize the reconstruction of original 
input through:

where 
⌢

Xm is the reconstruction of the input signal, g(⋅) is 
the activation function of the output layer, WT is the weight 
matrix of the decoder and b2 is the bias of the output layer. 
Due to a large number of parameters in the fully connected 
network reconstruction, L2 regularization was adopted to 
avoid overfitting in the reconstruction process.

L2 can reduce the coefficient of some features to 0, thus indi-
rectly realizing feature selection.

(7)
hi =

∑(
Xs∗i−1+j ×Wi,j + bi,j

)
,

i ∈
[
1, l∕s

]
, j ∈ [1, s]

(8)Ŷi = Relu(hi)

(9)Yi =

{
Xi Xi > 0

Xi∕Prelu Xi < 0

(10)Y �
i
=

{
1 Xi > 0

1∕Prelu Xi < 0
,

(11)
h
(Nl)

i
=
∑(

h
(Nl)

s∗i−1+j
×W

(Nl)

i,j
+ b

(Nl)

i,j

)
,

i ∈
[
1, l∕sNl

]
, j ∈ [1, s]

(12)Ŷi = Relu
(
hi
)
.

(13)
⌢

Xm = g
(
WT × hm + b2

)
,

(14)lL2 = ‖W‖2 =
�

i

w2
i

 To make 
⌢

Xm closely approximate Xm , the reconstruction 
error, which is used to update the weight matrix and the 
bias, can be calculated by the mean square error (MSE) loss 
function:

where c is the constant factor of the loss function.
The network parameters can be updated by the backprop-

agation algorithm, and the mean square error is utilized as a 
loss function to calculate the difference between the recon-
struction and the input signal:

2.3  Anomaly monitoring model construction 

Semi-supervised learning is a rapidly developing field in 
deep learning [27–30]. It utilizes potential variables learned 
through unsupervised training to improve the performance 
of supervised learning. This matching pattern is widely used 
in structural health monitoring, especially in the abnormal 
analysis of he structural state.

Triplet network uses three samples to form a training 
group to fit the loss function, whose basic structure is shown 
as Fig. 3.

The triplet network consists of three networks with the 
same feedforward (shared parameters), with one master sam-
ple and two auxiliary samples as inputs, and the network 
outputs the Euclidean distance between the master sample 
and the auxiliary samples. The three inputs are represented 
as x, x + , and x−, and the mapping layer of the network is 
represented as Mw(X). In simple terms, the input signal of 
the triplet network consists of a baseline sample and the 
corresponding positive and negative samples. The baseline 
sample is randomly selected from the training data set, the 
positive samples belong to the same class as the reference 
and the negative samples do not belong to the same class. 
They are randomly selected to form a triad. The relationship 
between them is measured by Euclidean distance, and the 
training parameters make x close to x + and away from x−, 
so as to achieve the recognition task.

Given a baseline signal Xn, a positive signal Xn+ and a 
negative signal Xt, the mapping function Mw() with sharing 
parameters can transfer the inputs to a high-level space. And 
then the distance Ew of the mapped signal can be calculated 
by some distance metric. This distance can be utilized as the 

(15)L

(
Xm,

⌢

Xm

)
= c

‖‖‖‖
Xm −

⌢

Xm

‖‖‖‖

2

+ lL2 ,

(16)WT
new

= WT − �
�L

�WT

(17)b2new = b2 − �
�L

�b2
.
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deviation value from the testing signal to the normal signal. 
For each element (sample) in the triplet, a parameter-sharing 
network is trained to obtain the feature expression of the 
three elements, denoted as:

The Triplet network uses L-2 normal form distance to 
calculate the difference of each sample:

The comparator is to process the vector mentioned above. 
Through training, the distance between x + and x feature 
expression should be as small as possible, and the distance 
between X− and X feature expression should be as large as 
possible. There should be a fixed distance between X + and 
X and the distance between X− and X, which is generally 
chosen as 1.

Triplet network model allows learning by comparing 
samples rather than direct data labels, so it can be used as 

(18)Mw(x), Mw(x−), Mw(x+).

(19)

TripletNet(x, x−, x+) =

[
‖‖Mw(x) −Mw(x−)

‖‖2
‖‖Mw(x) −Mw(x+)

‖‖2

]
∈ R2

+
.

(20)Loss
(
d+, d−

)
= ‖‖(d+, d− − 1)‖‖

2

2
= const d2

+

(21)
d+ =

e‖Mw(x)−Mw(x+)‖2

e‖Mw(x)−Mw(x+)‖2 + e‖Mw(x)−Mw(x−)‖2

d− =
e‖Mw(x)−Mw(x−)‖2

e‖Mw(x)−Mw(x+)‖2 + e‖Mw(x)−Mw(x−)‖2

.

an unsupervised learning model. Triplet model is used as 
training samples, which performs much more accurately in 
simple classification tasks with less data and achieves better 
classification results on multiple data sets. After the network 
training, the testing triplet would be input into the network 
to assess the damage index. The testing signals from differ-
ent sensors are standardization, and one model can predict 
the damage index of testing signals from all these sensors to 
assess the structural state.

2.4  Damage imaging mechanism based 
on multipath anomaly characteristics

As a multi-sensor imaging method, probabilistic imag-
ing assigns damage probability to the imaging points and 
improves the imaging performance through a damage prob-
ability distribution. Damage index and time-dependent 
imaging weight are the most important features in probabil-
istic imaging, and the damage probability of each imaging 
discrete point can be calculated by these two parameters:

where Pr(x,y) is the estimated damage probability in the rth 
path, NP is the number of the transmission path of all sen-
sors, Wr(x,y) is the linear attenuation imaging weight.

The damage index was obtained by the triplet network, 
and the linear attenuation weight Wr(x,y) was determined 
according to the arrival time of the damage signal. After 
setting the percentage threshold, the arrival time of scattered 

(22)P(x, y) =

NP∑

r=1

pr(x, y) =

NP∑

r=1

DIr×Wr(x, y),

Fig. 3  The structure of triplet 
network



4157Engineering with Computers (2022) 38:4151–4166 

1 3

signals and normal state signals can be obtained. In the ani-
sotropic structure, the ultrasonic guided wave velocity needs 
to be determined according to the Angle, so the damage 
path cannot be defined directly by the theoretical equation. 
Instead, the damage possibility of discrete imaging point is 
measured by the time difference between the reference point 
and the damage point, which can be obtained by distance 
and sound velocity in each direction, as shown in Fig. 4. 
The calculation formula of time coefficient CT is as follows:

A large CT value means that the larger the distance 
between the reference point and the damage point, the lower 
the damage probability. When CT is 0, the reference point 
and damage point are considered to coincide. During the 
imaging process, Wr(x,y) is calculated by CT and imaging 
weights of linear decay:

where � is the scaling coefficient of linear attenuation weight 
Wr(x,y), which is set as 2 in this work.

After calculating the damage probability value point 
by point, the damage image of the plate structure can be 
obtained, and the position with the highest total damage 
probability is the most possible location of the damage.

3  Experimental verification

3.1  Data description

In this section, aluminum plate and composite plate are 
introduced as verification structures for semi-supervised 
condition monitoring. Multi-sensor imaging can combine 
ultrasonic guided wave data from multi-sensor arrays, which 
can effectively improve the accuracy of structure monitoring. 
A piezoelectric ultrasonic guided wave sensor is installed on 
the monitoring structure to stimulate and receive signals. 
When there is damage in the structure, the ultrasonic guided 

(23)
CT =

(
Δt� − Δt

)
∕t0 =

[(
t
�

1
+ t

�

2
− t0

)
−
(
t1 + t2 − t0

)]
∕t0

(24)Wr(x, y) =

{
1 − CT∕𝛾 , CT < 𝛾

0, CT ≥ 𝛾
,

wave propagation in the monitoring structure will change 
and be acquired by the receiving sensor. Damage localiza-
tion of non-isotropic structures like the composite plate is a 
more challenging problem due to the inconsistency of ultra-
sonic characteristics in different directions.

 Case 1. Aluminium plate damage detection

The structural size of aluminum plate is 200 × 100 mm 
and the thickness is 7 mm, as shown in Fig. 5. The test plat-
form includes an arbitrary waveform generator, amplifier, 
piezoelectric sensors and data acquisition card. The sensors 
are all circular piezoelectric transducers with a size of 10 
× 1 mm. Artificial damage is made on the back of the alu-
minum plate, and the damage depth is gradually increased 
from 1 to 6 mm.

A 5-peak 200 kHz sinusoidal signal was used as an exci-
tation signal, with a sampling frequency of 5 MHz and a 
sampling length of 2.5 K. Thirty samples were collected for 
each damage degree, including 30 normal samples and 180 
damage samples. Ultrasonic-guided wave signals of different 
damage degrees are shown in Fig. 6. In the experiment, only 
one receiver PZT was arranged to verify the validity of the 
proposed damage index.

 Case 2. Composite plate damage detection

The size of the composite plate is 600 × 600 mm and 
the thickness is 3 mm, as shown in Fig. 7a. In our previous 
study [31, 32], the velocity of this composite material in all 
directions has been calculated, and the results are shown 
in Fig. 7b. The sensors were the same as the aluminum 
plate experiment. A 200 kHz 5-peak sinusoidal signal was 
adopted with a sampling frequency of 10 MHz and a sam-
pling length of 5 K. Total of 16 PZT sensors were used in the 
250 mm radius ring, with one PZT sensor installed at 22.5 
degrees intervals. In the experiment, 4 damage conditions of 
5 mm, 10 mm, 15 mm and 20 mm were set. For each dam-
age, 450 ultrasonic guided wave samples were collected by 
15 PZT sensors (30 samples each PZT).

Fig. 4  Schematic diagram of damage detection

Fig. 5  Test specimen (aluminum)
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3.2  Reconstruction results

Traditional autoencoder networks can reduce information 
redundancy, but the hidden layer representation obtained by 
fully connected mode is a global feature. Local connection 
network can extract local features of ultrasonic guided wave 
signals and generate abnormal signals by slightly changing 
local features. In this step, the simulated abnormal signal 
reflects the change of local ultrasonic guided wave mode, 
which is similar to the characteristics of the real damage 
signal. The local connection encoder structure adopted in 
this paper is shown in Fig. 8.

The initial parameters were determined by the trial and 
error method, and the optimal parameters were determined 
according to the training error. The network hyperparam-
eters of encoder E and decoder D are shown in Table 1. The 
encoder consists of five local connection layers and one 
flatten layer. The input length of the encoder is set to 512, 

which is about the length of the first wave. In particular, 
multiple kernel parameters are employed to extract features 
from the original signal, which is equivalent to a multi-chan-
nel local connection network. In the coding process, local 

Fig. 6  Receiving signals (After 
standardization)

(a) PZT installation (b) Velocity-direction curve

Fig. 7  Test specimen (composite)

Fig. 8  The structure of locally connected autoencoder network
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connection size is set to 2, and leakage Relu function with a 
slope parameter of 0.3 is implemented to preserve waveform 
characteristics. The mean square error function was used for 
network training, and all networks were optimized with a 
learning rate of 0.001.

(1) Case 1: Aluminium Plate

The reconstruction results of the input signal are 
shown in Fig. 9a. It can be seen that the reconstruction 
error between the reconstructed signal and the origi-
nal signal is very small. This means that the ultrasonic 
guided wave characteristics in the original signal are well 
extracted. Local characteristics of the original signal are 
obtained by local connection, the waveform and envelope 

characteristics of the original signal are obtained by reduc-
ing network parameters and computation.

It indicates that the waveform features will change the 
reconstructed signal when the disturbance is added into 
the hidden representation, thus constructing the simulated 
abnormal signal. Random disturbance is added to the hid-
den representation as shown in Fig. 9b, and part of signal 
points with hidden features are changed. The reconstructed 
analog abnormal signal is shown in Fig. 9c. Through the 
comparison with the input signal, it is found that part of 
the amplitude of the reconstructed signal changes with the 
random disturbance, which is similar to the real damage 
mechanism shown in Fig. 9. (The OS means the origi-
nal signal, the RS means the reconstructed signal, the 
PR means the positive representation, the NR means the 

Table 1  The structures of 
encoder E and decoder D

Layer name Activation function Parameter name Parameter size Output size

E Input – – – (1024, 1)
LocallyConnected1D LeakyReLU Kernels 16 × (2, 1) (1024, 16)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (512, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (256, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (128, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (64, 8)
LocallyConnected1D LeakyReLU Kernels 1 × (2, 1) (32, 1)
Flatten – – – (32)

D Dense LeakyReLU Node Number 32 (32, 1)
Dense LeakyReLU Node Number 512 (32, 1)

Fig. 9  Reconstruction signal of noisy signal



4160 Engineering with Computers (2022) 38:4151–4166

1 3

negative representation and the DS means the damage 
signal.)

(2) Case 2: Composite Plate

Figure 10a shows the original signal and its reconstructed 
signal in the composite plate. There is little difference 
between the original signal and the reconstructed signal, 
which proves the proposed method is effective. The hidden 
representation is good at extracting the characteristics of the 
OS after encoding.

The hidden representations with different levels of dis-
turbance are shown in Fig. 10b. The sampling points of the 
hidden representation are randomly selected to change by the 
program. There are the reconstructions shown in Fig. 10d. 
The reconstruction of the positive representation and nega-
tive representation simulate signals with different levels of 
damage. It can be seen in Fig. 10c that the constructions are 
very close to the real damage signals. Meanwhile, it can be 
seen from Fig. 10b, d that the disturbance makes the hidden 
representation locally changed. This change makes a dif-
ference between the original signal and simulated damage 
signals.

Simulated damage signals can be got by adding distur-
bance obeying a normal distribution to the hidden layer. The 
reconstructed signals are presented, which shows the influ-
ence of random disturbance has certain regularity. It is con-
cluded that partial waveform and amplitude would change 
after reconstruction. The validity of the proposed simulated 

damage signal is verified, integrating the results of the signal 
in aluminum plate and composite plate.

3.3  Damage index and imaging results

The structural parameters of triplet networks are shown in 
Table 2. Four layers are employed in the triplet network, and 
finally the values of normal and abnormal state signal in a 
dense layer will be contrasted to obtain the Euclid distance. 
The initial segment of the signal is zero signal, and no sig-
nal distortion occurs in the hidden layer. At the end of the 
signal, an incomplete hidden signal may be reconstructed 
into a complete wave packet. Therefore, the input length of 
the triplet network is set to 1024, and the input signal would 
contain several modes of the monitoring signal. The binary 
cross entropy is used for triplet network training, and the 
‘adam’ optimizer with a learning rate of 0.001 is utilized.

(1) Case 1: Aluminium Plate

As the damage index, the Euclidean distance was 
obtained after the Triplet network training the test signals 
and base signals. Test signal samples are classified accord-
ing to damage index, as shown in Fig. 11a. The output of the 
triplet networks has two values, the first value representing 
the difference from the normal state and the second value 
representing the difference from the damage signal. The 
orange line represents the damage index and the blue line 
represents the difference with damage signal. In Fig. 11b, the 

Fig. 10  Reconstruction signal of the noisy signal
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Table 2  The structures of triplet 
networks

Layer name Activation function Parameter name Parameter size Output size

Input*3 – – – (1024, 1)
LocallyConnected1D LeakyReLU Kernels 16 × (2, 1) (1024, 16)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (512, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (256, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (128, 8)
LocallyConnected1D LeakyReLU Kernels 8 × (2, 1) (64, 8)
LocallyConnected1D LeakyReLU Kernels 1 × (2, 1) (32, 1)
Flatten – – – (32)
Dense LeakyReLU Node Number 32 (32, 1)
Lambda*2 euclidean_distance (2, 1)
Dense*2 Softmax Node Number 1 (2, 1)

Fig. 11  The damage index in 
aluminium plate
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box diagram is employed to represent the distribution of the 
damage index of testing samples corresponding to different 
damage degrees, where the length of the box represents the 
range of the calculated damage index, and the red line repre-
sents the median. The outliers represent the misrecognition 
points. The result shows that the distribution of the damage 
indices of test samples corresponding to different damage 
degrees is consistent with the previous linear diagram.

The average damage index of each 30 sampling points is shown 
in Fig. 11c. The result shows the validity of the proposed method. 
The damage index reflects the damage degree of test signals, they 
are positively correlated in general with less influence of guide 
wave multi-modes. The damage index increases more and more 
slowly with the enlargement of the damage degree. The damage 
index of 2 mm depth of damage is slightly higher than 1 mm.

(2) Case 2: Composite Plate

The structural characteristics of composite plates are 
more complex than aluminium plate. On the one hand, the 
propagation velocity of a guided wave in a composite plate is 
anisotropic. On the other hand, multilayer structures accen-
tuate the multimodal and dispersion characteristics of guided 
waves, which makes waveform overlap more serious and 
damage waveforms more difficult to identify. To overcome 
these difficulties, a multi-sensors fusion monitoring system 
is proposed to obtain more information about damage, which 
makes contributions to structural state imaging. Figure 12a 
shows the damage index of the experimental signal in a com-
posite plate. The average value of each 30 sampling points 
is shown in Fig. 12b. As same as Fig. 11, the damage index 
is increased with the increase of damage level for each sen-
sor. It proves the ability of the network to recognize damage 

in multi-sensors fusion monitoring system. The sensors of 
large damage index are PZT2, PZT9, PZT16, which forms 
the paths sensitive to damage by transmitting PZT1.

Substitute the damage index and the time coefficient to 
Eqs. (22), (23) and (24) to calculate, the damage probability 
of each point on the plate can be obtained as the pixel value 
of plate structure state imaging. The damage location is most 
likely to be in the place with the maximum damage probability. 
Different degrees of damages image obtained by the proposed 
are shown in Figs. 13, 14, 15 and 16a. Figures 13, 14, 15 and 
16b shows its result after 97% threshold processing. As can be 
seen in the damage image, the localization of different degrees 
damage is close to reality. The image shape is axisymmetric with 
respect to the sensing path PZT1-PZT9. Because PZT1-PZT9 
is the sensing path which leads the wave through the damage 
front. When the damage probability threshold was set to 97% of 
the maximum, the damage area image was more concentrated 
and closer to the actual damage area. It shows that the proposed 
method behaves well in damage monitoring of composite.

3.4  Method comparisons

To show the superiority in damage feature extraction, the 
proposed method is compared with the traditional autoen-
coder network in simulated damage sample generation. The 
results of using a traditional autoencoder network to recon-
struct the signals in a composite plate are shown in Fig. 17. 
Comparing Fig. 17a with Fig. 10a, it can be seen that both 
methods can reconstruct the original signal well. But as for 
the first wave reconstruction, the result of the traditional 
method produces considerable errors.

It shows that the traditional method can extract the global 
feature of the original signal by adopting fully connected 

Fig. 12  The damage index of 
composite plate signal
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networks. However, there are some shortcomings in the 
local feature extraction of the signal, which brings errors 
to the reconstructed signal. It can be seen in Fig. 17b, c that 
the global shape of the signal is changed when the hidden 
layer representation is disturbed. It shows that the global 
reconstructed signal is greatly affected by the extracted local 
feature when using the traditional method to reconstruct the 
disturbed feature. The change of a single feature point can 
cause a change in the global signal. The traditional method 
brings local error to the signal without disturbance and 
brings global influence to the signal when a disturbance is 

applied. This may not cover the difference caused to the 
signal by damage. The proposed feature extraction method 
can improve the problem with better practicability.

The original damage image and threshold damage image 
obtained by elliptic probability imaging are shown in Fig. 18. 
As can be seen from the original damage image, several elliptic 
bright rings representing the damage probability value are formed. 
With the excitation PZT1 and each receiving PZT as the focus, the 
elliptic bright rings converge and intersect to form a highlighted 
damage region obtained by the algorithm. The result shows that 
the distance between the calculated damaged area and the actual 

Fig. 13  The 5 mm damage 
image of proposed method

Fig. 14  The 10 mm damage 
image of proposed method

Fig. 15  The 15 mm damage 
image of proposed method
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damaged area is large, and the positioning accuracy is not enough. 
It is because the elliptic probability imaging method uses the aver-
age velocity of the guided wave group to calculate the damage 
probability, which causes errors in the calculation of the time coef-
ficient. After the superposition of each channel, the positioning 
error becomes larger. The location errors of the two methods are 
shown in Table 3 under different degrees damage. The results illus-
trate that the proposed method improves the anisotropy of velocity 
and improves positioning accuracy.

4  Conclusion and feature work

To monitor the structural state of sparse data set with 
missing damage samples, a novel deep emulational 
semi-supervised knowledge probability imaging method 
was proposed, which realized automatic extraction and 
imaging characterization of multi-sensor damage indica-
tors. According to the actual requirements of monitoring 

Fig. 16  The 20 mm damage 
image of proposed method

Fig. 17  Reconstruction signal of the noisy signal
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applications, the proposed method can use only the normal 
guided wave signals to train the monitoring model and 
effectively identify the abnormal state. By adding normal 
random disturbance to the ultrasonic guided wave encod-
ing signal, the simulated abnormal state signal is gener-
ated. The encoding mapping distance between the simu-
lated abnormal state signal and the original signal is used 
as the damage index. The proposed method can apply the 
data-driven monitoring technology to the structure with-
out damage data set, and develop a deep learning imaging 
technology with more generalization and less dependence 
on prior knowledge. It also promotes the learning ability 
of the monitoring model by simulating the damage sample, 
recognizes the damage state when the sample is missing 
features and achieves the multipath damage imaging in 
plates. In the future work, the author will also pay more 

attention to the model transfer under different monitoring 
environments to further improve the generalization per-
formance and practicability of the deep learning structure 
monitoring model.
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