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Abstract
We propose FiberNet, a method to estimate in-vivo the cardiac fiber architecture of the human atria from multiple catheter 
recordings of the electrical activation. Cardiac fibers play a central role in the electro-mechanical function of the heart, yet 
they are difficult to determine in-vivo, and hence rarely truly patient-specific in existing cardiac models. FiberNet learns the 
fiber arrangement by solving an inverse problem with physics-informed neural networks. The inverse problem amounts to 
identifying the conduction velocity tensor of a cardiac propagation model from a set of sparse activation maps. The use of 
multiple maps enables the simultaneous identification of all the components of the conduction velocity tensor, including 
the local fiber angle. We extensively test FiberNet on synthetic 2-D and 3-D examples, diffusion tensor fibers, and a patient-
specific case. We show that 3 maps are sufficient to accurately capture the fibers, also in the presence of noise. With fewer 
maps, the role of regularization becomes prominent. Moreover, we show that the fitted model can robustly reproduce unseen 
activation maps. We envision that FiberNet will help the creation of patient-specific models for personalized medicine. The 
full code is available at http:// github. com/ fsahli/ Fiber Net.

Keywords Cardiac fibers · Physics-informed neural networks · Cardiac electrophysiology · Anisotropic conduction 
velocity · Eikonal equation · Deep learning

1 Introduction

In recent years, the future vision of precision cardiology 
through digital twinning has gained traction [1, 2]. In such 
scenarios, a digital replica of a patient’s heart is generated Carlos Ruiz Herrera and Thomas Grandits contributed equally to 
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from a variety of measurements in the clinic. Such replica 
can be used in a multitude of ways, from predicting interven-
tion outcomes to building cohorts for augmented drug trials. 
However, building such cardiac digital twins faces several 
difficulties, such as dealing with noisy measurements, or 
the problem of having multiple possible parametrizations 
explaining the encountered measurements, mathematically 
known as ill-posedness [3].

The fiber distribution in the heart is a key determinant of 
cardiac function and, as such, it has a prominent role in digi-
tal twinning [4]. The electrical stimulus activating the myo-
cardium travels at different speeds, depending on whether 
the propagation occurs along or across the fibers [5]. More 
precisely, the electrical conduction within the myocardium is 
anisotropic, because the electrical propagation is faster in the 
direction of the fibers. There are multiple determinants of 
anisotropic conduction, and some may uncover a pathologi-
cal condition [6]. Therefore, an imprecise knowledge of the 
anisotropic conduction in digital twinning may yield wrong 
predictions or even non-physiological behaviors.

In patient-specific models, cardiac fibers are generally 
arranged following some rules, dictated by prior histologi-
cal knowledge on their distribution in the heart [4, 7]. These 
algorithms are well established for the ventricles [8]. More 
recently, some rule-based methods and atlas-based for the 
atria have also been proposed [9–13]. In all cases, the fiber 
field is anatomically-tailored, but technically speaking not 
yet patient-specific. Diffusion-Tensor Magnetic Resonance 
(DT-MR) imaging of the heart, the gold-standard tool for 
sub-millimeter imaging of cardiac fibers [14–16], is unfor-
tunately not feasible in-vivo for the atrial wall.

A clinically viable way to infer the local fiber direction 
is based on the conductivity properties of the tissue. Clini-
cally, the conduction velocity (CV) can be indirectly deter-
mined with an electroanatomical mapping system [17, 18], 
a minimally invasive, catheter-based tool to record the local 
activation of the endocardial wall. Electroanatomical maps 
are common in clinical electrophysiology, because they are 
routinely acquired before ablation therapy, and are relatively 
easy to export in text format for further inspection. By com-
paring the local CV obtained from multiple maps, it is there-
fore possible to derive the direction of fastest conduction, 
that is the fiber direction [19].

In this work, we similarly aim at determining the fib-
ers from multiple maps. Rather than working locally, we 
solve an inverse problem where the conductivity tensor can 
be deduced from the activation map through a propagation 
model, namely the eikonal equation [20, 21]. This formula-
tion has a number of advantages. First, as the fiber field is 
recovered, we simultaneously fit a predictive model that, 
in principle, can faithfully reproduce the observed activa-
tions. Second, the model can extrapolate, in a physiological 
manner, the activation map in regions where data are scarce 

or absent [22]. Third, the inverse problem can be easily 
informed by prior histological knowledge on the fiber dis-
tribution through a regularization term or, more generally, a 
Bayesian approach, for instance using rule-based fiber fields 
[13]. Therefore, the fiber field could be extrapolated as well 
in a consistent and physiological manner.

Physics-informed neural networks (PINNs) are a recently 
developed variant of machine learning-based methods to 
efficiently solve inverse problems that are governed by par-
tial differential equations [23]. They have been shown to 
accurately model complex physical problems with a small 
number of known data points. Unlike regular neural net-
works which typically require vast amounts of labeled data 
to make accurate predictions, PINNs can learn much quicker 
to simulate this kind of system due to the incorporation of 
physical laws—represented as systems of partial differential 
equations—into their loss functions. Moreover, PINNs are a 
genuinely mesh-free method, overcoming the issue of gen-
erating meshes of complex domains like the heart. In fact, 
the model and data are penalized at collocation and data 
points, respectively, while neural networks representing the 
quantities of interests can be evaluated at any spatial loca-
tion. Thus, no topological information from the geometrical 
model is required.

In this work, we propose FiberNet, a PINN-based method 
to solve the inverse problem of identifying fibers in the heart 
from electroanatomical maps (Fig. 1). This is achieved by 
simultaneously fitting multiple neural networks to multiple 
electroanatomical maps while using a common network that 
predicts the conduction velocity tensor at different locations. 
In this sense, FiberNet extends our previous work on the 
same problem [21, 22, 24], which only used a single activa-
tion map and was based on a different representation of the 
conductivity tensor. We extensively validate FiberNet with 
several numerical experiments and real data. The first set of 
experiments consists of a completely synthetic example with 
a 2-D planar geometry and a 3-D atrial geometry, where we 
compare the single- and multi-map approaches. Second, we 
apply FiberNet to an atlas of diffusion tensor image fiber 
fields of human atria [25]. Here, the ground-truth activation 
times are generated with the Fast Iterative Method (FIM) 
simulation for triangular surfaces [26, 27]. Moreover, we 
validate the predictive capabilities of FiberNet by first fitting 
the fibers on training maps, and then generating an unseen 
map and attempting to predict it using the learned fibers. 
Finally, we apply FiberNet to clinically obtained EAMs of 
the left atrium, thus proving the feasibility of the approach 
in the clinical setting.

This paper is structured as follows. In Sect. 2, we review 
some of the existing methods to estimate the conduction 
velocity from sparse activation recordings, a highly relevant 
topic for this work. FiberNet is introduced in Sect. 3, along 
with the PINN framework. The identifiability of the fibers 
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from single and multiple maps and the role of the regulariza-
tion are discussed in Sect. 3.3. The last part of our work is 
devoted to numerical validation and applications. In Sect. 4, 
we verify the robustness to noise of FiberNet in a synthetic 
2-D example and on a 3-D atrial geometry. An extensive 
benchmark with a publicly available atrial fiber atlas [12, 
25] is given in Sect. 5. Finally, in Sect. 6, we apply FiberNet 
to a clinical data set. A discussion and outlook are provided 
in Sect. 7.

2  Related works

The problem of identifying cardiac fibers from electrical data 
of atrial activation has been considered only very recently, 
see e.g. [19, 21, 22, 24]. More broadly, however, the topic 
is related to the identification of the local conduction veloc-
ity (CV) of the tissue, for which several methods have been 
proposed thus far. In this section, we briefly review the most 
common approaches. We group them into two categories: 
data-driven and physics-driven methods. In the former, the 
CV is directly estimated from the data through either geo-
metrical or statistical arguments; in the latter, the conduction 
parameters of a cardiac model are fitted to the data; hence, 
the CV is a byproduct of the forward model.

2.1  Data‑driven methods

Trivially, the CV is the ratio between the distance traveled by 
an activation front in a given amount of time. The activation 

time can be detected from local electrograms obtained with 
contact mapping systems. The location of the electrodes on 
the catheter is also tracked with good accuracy. Therefore, 
with sufficient coverage of the atrial surface, it is possible to 
estimate the local CV in a purely data-driven manner, with 
no prior assumption on the underpinning physiology.

A first class of methods estimates the local CV �(x) at 
some given location x on the basis of the temporal differ-
ences in activation between x and its neighbors [17, 28–31]. 
These methods are easy to implement and very fast to exe-
cute. Here, the main challenge is dealing with noise and 
inconsistency in the data. Both the location and activation 
time are subject to noise, hence their incremental ratio, the 
CV, is greatly susceptible to large variations due to uncer-
tainty. In this scenario, least-squares approaches [29, 30] 
may perform better than purely geometric methods [17, 28]. 
Nonetheless, a careful pre-processing of the input data is 
always necessary, to avoid unrealistically fast or slow CVs 
[17, 32]. In some cases, very high CVs may actually be due 
to physiological phenomena, such as breakthroughs and 
front collisions where, however, the CV is not well-defined.

Rather than estimating the CV from point-wise measure-
ments, other authors suggested to first interpolate or recover 
a smooth activation map from the data, say �̃�(x) , and then 
compute the conduction velocity from its definition, that is

This has been recently done with Gaussian Process Regres-
sion (GPR) on manifolds [18]. In GPR, the properties of the 

(1)𝜃(x) = ‖∇�̃�‖−1.

Fig. 1  FiberNet translates a set of electroanatomical maps into a 
continuous estimate of the fiber field and conduction velocity. These 
estimates can be used for simulating cardiac activation in a predictive 

model based on the eikonal equation. Internally, FiberNet uses phys-
ics-informed neural networks to constrain the parameter space during 
the training phase
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kernel (smoothness, correlation length) can be optimized 
to capture the physics of the problem and reduce generali-
zation error. Furthermore, GPR is probabilistic by nature 
and enables uncertainty quantification in CV estimates and 
active learning [33].

Since cardiac conduction is anisotropic [6], the value 
of �(x) also depends on the propagation direction p . In all 
previous methods, therefore, the estimated CV depends on 
the activation map, since p = ∇�̃�(x)∕‖∇�̃�(x)‖ . With the 
use of multiple activation maps, or by accounting for prior 
knowledge on the fiber distribution, it is actually possible to 
simultaneously estimate the longitudinal and transverse CV, 
as recently proposed  [19]. In this case, it is tacitly assumed 
that the CV in the myocardium obeys a Riemannian metric, 
that is �(x, p) =

√
D(x)p ⋅ p , for some symmetric, positive 

definite tensor field D(x) . In the 2-dimensional case, as for 
the atrial surface, the tensor D(x) is determined by three 
independent parameters, e.g., the fiber angle and the CV 
along and across the fibers. Therefore, at least 3 independent 
activation maps are required to uniquely identify D.

Interestingly, from Eq.  (1) with �(x, p) as above, we 
recover the anisotropic eikonal equation [20], see also 
Eq.  (3) in Sect.  3.2. Therefore, D(x) may be recovered 
by imposing Eq.  (1) for multiple activation maps �̃�i(x) , 
i = 1,… ,M at each point x of the surface [19]. The corre-
sponding algebraic system for M = 3 , however, may have no 
unique solution. For instance, this may happen when ∇�̃�i(x) 
and ∇�̃�j(x) , for i ≠ j , are parallel at some x . Similarly, it may 
happen that the fitted D(x) is not positive-definite; hence, 
there is no physiological solution. An alternative approach, 
valid for an arbitrary number of maps and always ensuring 
at least one solution, is based on minimizing the residual

on the space of parameters defining D . It is worth noting 
that finding D can be understood as a fitting-an-ellipse-to-
points problem, for which more robust algorithms are avail-
able [34].

Finally, it is worth mentioning that there exist methods 
for estimating the CV directly from the temporal dynamics 
of the electrograms, without the need for the activation map 
[35, 36].

2.2  Physics‑driven methods

Data-driven methods may suffer when data are scarce or 
unevenly distributed, as it often happens with electroanatom-
ical maps. In absence of data, prior physiological knowledge 
may, however, be enforced to still recover a plausible CV. 
Physics-driven (or physiology-driven) approaches follow 
this path. For cardiac electrophysiology, several propagation 

(2)
M∑
i=1

(√
D(x)∇�̃�i(x) ⋅ ∇�̃�i(x) − 1

)2

,

models can be used to constrain the CV to the activation 
map. These models can be based on the eikonal equation 
[21, 22, 24, 33], reaction-diffusion systems [37–39], or a 
multi-fidelity combination thereof [40]. The typical work-
flow aims at minimizing the observational residual between 
simulated and recorded activation, by optimizing the (dis-
tributed) conductivity parameters of the model. Once the 
optimal parameters of the model have been obtained, the 
local CV is trivially computed.

Physics-driven approaches are generally more robust 
than purely data-driven methods, as they allow one to weigh 
data fidelity against model fidelity, through a regularization 
term. More importantly, physics-driven methods poten-
tially provide a predictive model of cardiac electrophysiol-
ogy; thus, they can be employed in personalized therapeutic 
approaches [41]. However, they have a significantly higher 
computational footprint, both in terms of memory and time. 
Moreover, some other parameters, such as the early activa-
tion sites, may potentially influence the CV reconstruction 
[21]. In this respect, a good trade-off between purely data-
driven and physics-driven methods consists in accounting 
for the physics only weakly [23, 24, 33], for instance through 
a penalization term in the loss function such as Eq. (2), 
rather than enforcing the model point-wise. This observa-
tion further motivates the method presented below.

3  Methods

3.1  Propagation model

Let S ⊂ ℝ
3 be a smooth orientable surface representing, for 

instance, the left atrial endocardium. We model cardiac acti-
vation with the anisotropic eikonal equation [20]. We do not 
consider diffusion or curvature correction terms. The eikonal 
equation models the arrival times �(x) resulting from the 
spread of an electric activation wavefront within the myocar-
dium, propagating with direction-dependent CV. The equa-
tion reads as follows

where D(x) ∈ ℝ
3×3 is a symmetric, positive-definite tensor 

field representing the conductivity. Specifically,

is the conduction velocity in direction p.
We define the local fiber direction as the direction of 

fastest propagation and we denote it by l(x) ∈ ℝ
3 . Since 

the propagation is constrained on the atrial surface, l(x) is 
orthogonal to n(x) , the normal direction of S . A generic way 
to represent D is therefore as follows:

(3)
√
D(x)∇�(x) ⋅ ∇�(x) = 1,

(4)�(x, p) =
√
D(x)p ⋅ p
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where t(x) ∈ ℝ
3 is the transverse vector field, orthogonal to 

both l  and n , while vl and vt are the conduction velocities 
respectively along l and t . We note that the velocity in the 
normal direction is zero.

Given an orthonormal basis of the tangent space of S at a 
location x , denoted by {v1(x), v2(x)} , we formulate the fiber 
and transverse directions as

where a ∈ [−1, 1] is the cosine of the angle between the fiber 
direction and v1(x) . While any orthonormal basis on the tan-
gent space would be feasible (even piecewise-constant), later 
regularization techniques greatly benefit from the smooth-
ness of the basis. We therefore employed the vector heat 
method [42], implementing parallel transport of vectors on 
manifolds, to propagate a first initial vector across the entire 
atrial surface, thus to obtain v1(x) . The second vector field 
v2(x) is obtained by orthogonalization. See also Appendix 1 
and Fig. 11.

In summary, the conductivity tensor is defined by 3 scalar 
fields,

• a(x) ∈ [−1, 1] , the cosine of the fiber angle in the {v1, v2} 
basis,

• e1(x) ∶= v2
l
(x) ≥ 0 , the square of the longitudinal velocity, 

and
• e2(x) ∶= v2

t
(x) ≥ 0 , the square of the transversal velocity.

3.2  Learning fibers from multiple maps

We consider the problem of simultaneously identifying a(x) , 
e1(x) and e2(x) from a set of M ≥ 1 electroanatomical maps. 
For convenience, we define

so that the conductivity tensor D(x) , through Eqs. (5)–(7), 
is a function of d(x) , that is

We solve the identification problem with the PINN frame-
work, extending our previous work [24]. Here, we approxi-
mate each activation map �m(x) , m = 1,… ,M , and the 
conductivity parameters vector d(x) with a total number of 
M + 1 artificial neural networks,

(5)D(x) = v2
l
(x) l(x)⊗ l(x) + v2

t
(x) t(x)⊗ t(x),

(6)l(x) = av1(x)⊗ v1(x) +
√
1 − a2v2(x)⊗ v2(x),

(7)t(x) = −
√
1 − a2v1(x)⊗ v1(x) + av2(x)⊗ v2(x),

d(x) =
[
a(x), e1(x), e2(x)

]
,

D(x) = D̃
(
d(x)

)
.

where ��m
 and �D denote the trainable parameters of the 

networks. The approximated conductivity tensor trivially 
follows, D̂(x) = D̃

(
d̂(x)

)
 . The output layer of �̂�m(x) is the 

sigmoid function, hence it ranges in [0, 1], whereas for d̂(x) 
we consider a sigmoid scaled by a factor C > 0 for e1 and e2 , 
and a hyperbolic tangent activation function for the angle a.

To train our model, we take into consideration the data 
from the maps, the residual from the eikonal equation, and 
regularization terms. In Fig. 2 we present a schematic of our 
approach. We build a loss function that includes all these 
components, as follows:

where �m , �e and �a are hyper-parameters. The hyper-param-
eter �m controls the relevance of eikonal equation, while 
the hyper-parameters �e and �a control the amount of regu-
larization applied to the conduction velocities and angles, 
respectively. We also collect all the neural network weights 
{��m

}N
m=1

 in a single vector ��.
In detail, we consider a set of data points, denoted by 

xm,i ∈ S , where m = 1,… ,M indicates the map number, 
and i = 1,… ,Nm the point number. For each point, we con-
sider a recorded activation time, denoted by �m(xm,i) . Each 
activation map is also divided by a factor Tmax , so that the 
data range in [0, 1]. Furthermore, we have a set of colloca-
tion points yj ∈ S , j = 1,… ,NC , where the eikonal model 
is enforced. The terms in the loss function are as follows,

 We note that the eikonal model is not enforced for all x ∈ S , 
as generally done in PDE-constrained optimization, but 
rather on a set of collocation points {yj}

NC

j=1
 . In this respect, 

the method is mesh-free, since there is no need for a trian-
gulation of S to represent the quantities of interest. Moreo-
ver, the eikonal equation is never actually solved, an impor-
tant aspect since we do not have a precise knowledge of the 
earliest activation sites.

𝜙m(x) ≈ �̂�m(x) ∶= NN(x;�𝜙m
), m = 1,… ,M

d(x) ≈ d̂(x) ∶= NN(x;�D),

(8)L(��,�D) ∶= Ldata + �mLeiko + �eLcv + �aLang,

Ldata =
1

M

M∑
m=1

1

Nm

Nm∑
i=1

(
�̂�(xm,i) − 𝜙(xm,i)

)2
,

Leiko =
1

MNC

M∑
m=1

NC∑
j=1

(
Tmax

√
D̂(yj)∇�̂�m(yj) ⋅ ∇�̂�m(yj) − 1

)2

,

Lcv =
1

NC

NC∑
j=1

(
H𝛿e

(
∇e1(yj))

)
+ H𝛿e

(
∇e2(yj))

))
,

Lang =
1

NC

NC∑
j=1

H𝛿a

(
∇a(yj)

)
.
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For the regularization terms, we consider the Huber Total 
Variation function

The Huber total variation penalization is used in this prob-
lem as an additional restriction for the minimization because 
it has been shown to favor piecewise constant solutions [43]. 
We use a different penalization for the fiber angle and the 
conduction velocities to be able to have more control over 
their individual regularity, as shown in Sect. 4.

In summary, we train the neural networks with the loss 
function  (8) to find the weights �� and �D , with hyper-
parameters �m , �e , �a , �e , �a.

3.3  Identifiability

In view of the discussion in Sect. 2.1, multiple activations 
are required to reconstruct the fiber field. More precisely, 
at least 3 maps, along with some conditions, are needed to 
uniquely determine d(x) . We show here that thanks to the 
proposed regularization mechanisms this is not the case for 
FiberNet. In fact, we can always obtain an estimate of the 
fiber field, even from a single map, as done in [24]. How-
ever, multiple maps will significantly improve the estimation 

(9)H�(q) =

�
1

2�
‖q‖2, if ‖p‖ ≤ �,

‖q‖ − 1

2
�, otherwise.

of the fiber field and the CVs, as we extensively show in 
Sect. 4.

As an example, let us consider the problem in a 2-D 
square domain, and suppose that the true conductivity ten-
sor is D ∈ ℝ

2×2 , a symmetric, positive-definite, constant 
tensor. Here, the fiber direction is the principal eigenvector 
of D . If we start an activation at the origin, the true activa-
tion map is as follows:

We construct now multiple conductivity tensors yielding the 
same activation map. We can rewrite the eikonal model as

where �(x, p) is the conduction velocity in the propagation 
direction p . Then, as anticipated above, the most trivial 
choice is:

We can also reproduce Eq. (10) with an isotropic model but 
spatially-varying conduction velocity:

(10)�(x) =
√
D−1x ⋅ x.

�(x, p)‖∇�(x)‖ = 1, p =
∇�(x)

‖∇�(x)‖ ,

�1(x, p) =
√
Dp ⋅ p.

�2(x, p) =

√
D−1x ⋅ x

D−1x ⋅ D−1x
.

Fig. 2  Schematic representation of the physics-informed neural net-
works employed in this work. We use multiple neural networks to 
represent each of the activation times received for training. We use 
one neural network to represent the conduction velocity tensor. From 

here, we can compute the fiber orientation. We train all the networks 
simultaneously to satisfy the data from the activation time maps 
and the eikonal equation, which links activation times to conduction 
velocities
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Even by enforcing a space-varying anisotropic model,

we can still find multiple choices, besides D̃(x) = D . Con-
sider the following transversely isotropic tensor:

where l(x) is the fiber direction. After substituting it in the 
previous expression, we have

thus, by choosing l  such that l(x) ⋅ p = 0 for all x and 
e2(x) = �2

2
(x) , we obtain a solution for any choice of 

e1(x) > e2(x) . Alternatively, by taking l(x) = p and 
e1(x) = �2

2
(x) , we again have an infinite number of solutions 

by varying e2(x) < e1(x) . Therefore, as expected, a single 
map is not sufficient to fully qualify the tensor D from an 
algebraic point of view. See Fig. 3 for a visual example.

Which fiber field is the learning algorithm going to pre-
fer? Suppose we have a map sampled from Eq. (10) in 
absence of noise. Then, all the above choices for � cancel 
the fidelity term and the eikonal penalization term in the 
loss function, because they faithfully reproduce the true 
activation map. All these cases are global minima of the 
loss function (8), at least when no regularization is present. 
The neural networks would simply interpolate the data, in 
a least-squares sense. In the presence of regularization, 
however, the landscape of the loss function differs signifi-
cantly. In fact, �1 would likely be favored because, being 
constant in space, it has the smallest Huber norm amongst 
all possible choices. However, this choice is mostly dic-
tated by the prior assumption encoded by the regularization 
itself, rather than the data, thus the reconstructed fibers 
may sensibly differ from the ground truth, especially in the 
presence of heterogeneity. Therefore, a reliable method for 
reconstructing the fibers should rely on multiple maps, as 
proposed in our approach.

𝜃3(x, p) =

√
D̃(x)p ⋅ p,

D̃(x) = e2(x)I +
(
e1(x) − e2(x)

)
l(x)⊗ l(x),

�3(x, p) =

√
e2(x) +

(
e1(x) − e2(x)

)(
l(x) ⋅ p

)2
,

4  Numerical assessment

We implemented FiberNet using Tensorflow [44]. For all 
experiments, we use 4 CPUs of an AMD EPYC 7702 
64-Core Processor in parallel for a fixed number of iterations 
of ADAM [45] with mini-batches and the default hyper-
parameters. We ran 4 different sets of experiments: a syn-
thetic 2-dimensional case, a synthetic 3-dimensional case on 
a patient-derived geometrical model, 7 different cases where 
the fiber orientations were measured with DT-MR imaging, 
and one case where 3 different maps were obtained for a 
patient. For each of these experiments, we report both acti-
vation time and fiber orientation error. For the activation 
times, we report the root mean squared error. We quantify 
the fiber error as: 1

NS

∑
S arccos (f ⋅ f̂ ) , where f  is the ground 

truth direction of the fibers used to generate data and f̂  is the 
predicted fiber direction, which is obtained as the eigenvec-
tor associated of with largest eigenvalue of D̂ . The data fidel-
ity error is measured as the root mean squared error (RMSE) 
of (𝜙 − �̂�) of all the surface points. For the case of having 
multiple maps, the same RMSE measurement is used but the 
error is of (𝜙m − �̂�m),∀m . We fix the following hyper-param-
e t e r s  f o r  a l l  t h e s e  e x p e r i m e n t s : 
{�a ∶ 10−9, �e ∶ 10−3, �a ∶ 10−3} . The remaining hyper-
parameters used in each experiment are specified in each 
section.

4.1  Synthetic 2D example

For the first set of numerical experiments, we use a flat 
domain defined as Ω ∶= [−1, 1] × [−1, 1] discretized with 
a regularly spaced grid of 35 × 35 points. We generate a 
triangular mesh with these points. We create synthetic 
maps by solving the eikonal equation with a fast iterative 
method [27]. We select 5 earliest activation sites using a 
random Latin hypercube design, to avoid selecting points 
that are close and effectively generate the same map. We 
set the conduction velocity tensors in the domain with a 
piece-wise constant function:

Fig. 3  Multiple conductivity tensors reproducing the same activation map. The tensor is represented with its eigenvectors rescaled by the eigen-
values. The solution with lowest Huber norm is �1(x, p) , which also corresponds to the ground truth
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From the solution, we select 245 points, using a Latin hyper-
cube design, as data to train the physics-informed neural 
networks. We feed the neural networks with either 1, 2, 3, 
or 5 of the generated maps. We split data points between 
maps, such that the total amount of points remains constant. 
The synthetic fiber orientations and the 5 maps used to train 
the model are shown in Fig. 4. We set the hyperparame-
ters to [�m ∶ 10−2, �a ∶ 10−9, �e ∶ 10−3, �a ∶ 10−3] , while 
for �e , the regularization of the conduction velocities, we 
run a sensitivity study between the values 10−9 and 10−3] . 
We use 5 hidden layers of 10 neurons for each of the net-
works that predict �̂� and 5 hidden layers of 5 neurons each 
to approximate D̂ . Each network is then trained for 3000 
Adam mini-batch iterations with batch-size 32. Each of these 
tests is repeated 5 times using the same set of activation sites 
and sample points to quantify the variability of the training 
process.

In Fig. 4, we show the results for a representative case 
with median error for �e = 10−5 . First, we observe that 
the quality of the approximation of the activation maps 
decreases as the number of maps increases since there are 
fewer data points per map. However, the accuracy in the 
reconstruction of the maps does not translate into a more 
precise reconstruction of the fiber field. For instance, when 
only one map is used, the activation map is near perfectly 
reconstructed, but we can observe large fiber errors, some 
of them up to nearly 90◦ . With 2 maps, the errors are 
greatly reduced, however, there is a region of large fiber 
error near the lower right corner. For 3 and 5 maps, the 
errors are concentrated near the transition in fiber orienta-
tion, which is to be expected, as there are not enough data 
points to clearly define that boundary.

The fiber orientation errors for varying degrees of �e 
are presented in Fig. 5. As shown in the right panel, we 
observe that for a larger amount of maps, the fiber error is 
decreased. Nonetheless, the gains from going from 1 to 3 
maps are considerably bigger than going from 3 to 5 maps. 
We also see that the results tend to be more robust to the 
level of regularization when we feed the model with 3 or 5 
maps. The results for 1 and 2 maps show great variability, 
which reflects the ill-posedness of this inverse problem 
when less than 3 maps are available.

4.2  Atrial geometry with rule‑based fibers

In this numerical experiment, we consider a patient-
specific geometry of the left atrium. Fibers have been 

(11)D(x, y) =

⎧
⎪⎪⎨⎪⎪⎩

�
1 0

0
1

2

�
x + y < 0,

�
1

2
0

0 1

�
otherwise.

semi-automatically assigned from histological in a previ-
ous work [46], shown in Fig. 6. The reference longitudinal 
vl and transverse velocity vt are respectively set equal to 
0.6 m/s and 0.4 m/s. The smooth basis necessary for the 
cosine of the fiber angle a(x) is obtained from the atrial 
basis provided in Appendix 1 (see also Fig. 11). With the 
reference conductivity tensor, we generate 5 activation 
maps using an eikonal solver [27], by pacing at 5 differ-
ent locations well apart from each other. The first pacing 
site is randomly placed, whereas the subsequent ones are 
obtained through the farthest point sampling approach.

We train physics-informed neural networks that are 
fed either with 1, 3, or 5 maps. We use 870 measurement 
points that are split between the different cases, such that 
the total number of points remains constant.The density 
ranges 9.9 samples/cm2 when we use 1 map to 1.9 sam-
ples/cm2 . We set the hyperparameter to �m = 10−4 . We 
use neural networks of 7 hidden layers with 20 neurons 
to approximate �̂� and one neural network with 5 hidden 
layers with 20 neurons each to generate D̂ . Each network 
is then trained for 30,000 Adam mini-batch iterations 
with batch-size 32. We also perform a sensitivity test for 
the regularization of conduction velocities and vary the 
parameter �e between 10−9 and 10−3.

The results of the effect of conduction velocity regulariza-
tion on the fiber error in this case are presented in Fig. 7. First, 
we observe that the fiber error is considerably higher when one 
map is used, compared to the cases with 3 and 5 maps. We see 
that increasing the regularization tends to decrease the error for 
all cases. Nonetheless, the case with one map is more sensitive 
to the amount of regularization applied than the cases of 3 and 
5 maps. As in the 2D case, we see that increasing from 1 to 3 
maps has a much bigger effect on fiber error than going from 
3 to 5. We also note that the variability in the results decreases 
for all cases compared to the 2D case.

We show an example of these results with the case of median 
error and �e = 10−5 in Fig. 6. In the right column, we can see the 
ground truth fiber distribution and the five maps fed to the dif-
ferent models. In general, we observe that all the maps are well 
reconstructed. However, we see regions of large fiber errors when 
training with one map. We see that the cases trained with 3 and 5 
maps tend to concentrate the errors around the zones where there 
are sharp transitions in fiber directions, such as near the mitral 
annulus. Other regions of high error for all cases are near the 
pulmonary veins, which have a circumferential fiber orientation, 
which is hard to capture, most likely due to a lack of data.

5  Atrial geometries with diffusion tensor 
fibers

For the next numerical experiment, we obtain fiber dis-
tributions for 7 different left atrium geometries from dif-
fusion tensor magnetic resonance imaging [12, 16]. The 
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images were taken ex-vivo with an isotropic resolution 
of 0.4 mm and mapped to a biatrial mesh (Fig. 8, bottom 
row). Here, we attempt to learn the endocardial fibers, gen-
erating synthetic activation maps by solving the eikonal 
equation as described in the previous sections with these 

fibers. We randomly select 1020 points on each of the sur-
faces and split them between 1, 3, and 5 maps to obtain 
the activation time data for training. Since the different 
geometries have different surface areas, this numbers of 
measurements corresponds to densities that range from 

Fig. 4  Activation times simulated by the 
runs with median error for hyper-parameters: 
{�m ∶ 10−2, �e ∶ 10−5, �a ∶ 10−9, �e ∶ 10−3, �a ∶ 10−3} for 1, 3 and 
5 activation maps and the corresponding estimated conduction veloci-
ties (first row). The sampled points used for each run are represented 

as black circles and the colors are scaled to the 0.0–3.0 range (with 
white meaning out of range) for the activation time maps and to the 
range 0 ◦–90◦ for the fiber orientation error in the conduction velocity 
maps
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9.06 to 18.68 samples/cm2 for one map, and 1.81 to 3.73 
samples/cm2 when we used 5 maps. In this experiment, we 
also test the robustness to noise of our method. We perturb 
the generated activation maps with Gaussian noise with 
zero mean and standard deviation of 0.1, 1 and 2 ms. We 

also include an additional validation step to test the overall 
performance of the method. We take the predicted and 
ground truth fibers and generate an additional map that is 
initiated from an activation site that is different from the 
maps used for training. Then, we compare these two maps 

Fig. 5  Left panel: fiber orientation error for �m = 10−2 and �a = 10−9 . 
Error values of all runs (shaded areas) and averages for 5 runs (solid 
lines) in 2D case of PINN with 1, 3 & 5 maps as inputs using differ-

ent values of the �e conduction velocity total variation penalization 
weight. Right panel: fiber orientation errors for all regularization val-
ues for different number of maps. The solid line represents the mean

Fig. 6  Predicted fiber orientations and activation times learned with 1, 3 and 5 maps. We show the results for the run with median error and 
hyper-parameters {�m ∶ 10−4, �e ∶ 10−5}
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and compute the error. In this way, we quantify how pre-
dictive are the learned fibers to model different scenarios, 
not included in the original dataset. For all cases, we set 
the hyper-parameters to {�m ∶ 10−4, �e ∶ 10−5} , which are 
the same used in the previous section.

The results of these experiments are presented in Figs. 8 
and 9, and Table 2. In Fig. 8, we show the fiber predictions 
and errors for the 7 different cases. We first note that the 
fibers obtained from DT-MR imaging are not smooth, with 

recurrent abrupt changes in direction. We also note that 
the approximation of the fibers improves as the number 
of maps is increased, which can be noted in the Fig. 8, as 
the high error regions (in yellow) are less frequent for the 
cases with more maps. This qualitative result is confirmed 
in Table 2, where the median fiber errors when training 
with one map range between 24.8◦ and 30.2◦ , and they 
are decreased to the range of 18.3◦ and 23.2◦ when train-
ing with 3 maps, and the range of 16.2◦ and 23.3◦ when 

Fig. 7  Fiber orientation error for �m = 10−4 and �a = 10−9 . Error values of all runs (shaded area) and averages for 5 runs (solid lines) in 3D atrial 
geometry case with 1, 3 & 5 maps as inputs using different values of the �e conduction velocity total variation penalization weight

Fig. 8  Fiber predictions on diffusion tensor fibers. We show the results for 7 different cases when we trained FiberNet with 1, 3 and 5 maps and 
no noise in the activation time data. Errors in the cases with noise can be found in Table 2. All the views are anteroposterior
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training with 5 maps. When we add noise to the activation 
measurements, we observe in the case of 0.1 ms that there 
is no clear trend, as some of the cases tend to improve and 
some cases tend to worsen their accuracy. Nonetheless, 
the variations in fiber errors are small, less than 5 ◦ for 
all cases. When we add 1 ms of noise, the performance 
of the method decreases for all cases and the number of 
maps. The fiber error increases, on average, 13.2◦ when 
training with one map, 12.4◦ when training with 3 maps, 
and 7.5◦ when training with 5 maps. When we add 2 ms 
of noise, the error increases further, on average, to 61.0◦ 
with 1 map, 19.1◦ with 3 maps and 13.1◦ with 5 maps. 
We note here that the hyper-parameters used for the noise 
study where calibrated for a noiseless case with synthetic 
geometry and fibers. Thus, it is expected that tuning these 
parameters, especially �m , which controls the relevance 
of the eikonal equation, might improve the results. Over-
all, we see from the trend that for a fixed amount of data 
points, it is always better to distribute them in different 
maps, especially in the presence of noise. The decrease in 
error is much more pronounced when increasing from 1 to 
3 maps than when increasing from 3 to maps.

For the validation with an additional map, we observe 
in Fig. 9 that in general, using the learned fibers can lead 
to an accurate prediction of an unseen activation pattern. 
In the left panel, we see an example using 3 maps for the 
noiseless case. The map created with the predicted fibers 

is a smoother version of the one created with ground truth 
fibers, as the original data presented significant spatial 
variations. For the cases with 0 and 0.1 ms of noise, we 
see that number of maps used for training does not influ-
ence the predictive capabilities of the methods. For the 
noiseless case, the root mean squared errors in activation 
time, on average, range from 2.7 ms when training with 
5 maps to 4.4 ms when training with one map. However, 
when we inject 1 ms of noise, these differences are more 
pronounced, with an average root mean squared errors 
ranging from 5.4 ms when training with 5 maps to 17.7 
ms when training with one map.

6  Patient‑specific geometry with multiple 
maps

In this final section, we report the application of the pro-
posed methodology to a patient-specific case.

6.1  Data acquisition and pre‑processing

Data from a single patient who underwent a pulmonary veins 
isolation (PVI) procedure have been collected at the Institute 
of Cardiocentro Ticino with oral and written informed con-
sent for the investigation. The study has been performed in 

Fig. 9  Validation of conduction velocity tensor predictions with an 
additional map. Left panel, an example of one the cases tested, where 
we create an activation from a point unseen during training. The top 
row shows posteroanterior views and the bottom row shows anter-

oposterior views. Right panel, we show a summary of the results of 
this validation for different number of maps and different levels of 
noise
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compliance with the Declaration of Helsinki. Data consisted 
of an electrophysiological study of the left atrium (LA) right 
before and after PVI performed with an electroanatomical 
mapping system (RHYTHMIA HDx, Boston Scientific, 
USA) equipped with an ultra-density mapping catheter 
(INTELLIMAP ORION, Boston Scientific, USA). A total 
of 3 electroanatomical maps have been acquired before abla-
tion. Each map contained several electrical recordings of 
the extracellular voltage of the endocardial atrial wall, as 
summarized in Table 1.

Each recording consisted of the 3-D location of the 
recording electrode and 700 ms of unfiltered electric signal 
(sampling resolution is 953 Hz). Up to 64 recordings could 
be collected simultaneously, with only a portion of them in 
contact with the wall. Unipolar and bipolar electrograms 
have been automatically aligned in time to the R peak of the 
surface 12-lead ECG, simultaneously recorded. Pre-process-
ing of the maps consisted in excluding electrograms with 
(1) low unipolar amplitude ( < 0.05 mV); (2) poor contact 
as indicated by the system; (3) inconsistent surface P wave; 
(4) discrepancy of > 20 ms between unipolar and bipolar 
activation time. The activation time was computed from the 
unipolar signal as the steepest negative deflection in the sig-
nal after the application of zero-phase forward and reverse 
4th order Butterworth with a cutoff frequency of 120 Hz. 

As reported in Table 1, the pre-processing excluded roughly 
75% of the points, most of them because of low amplitude. 
The analysis has been performed with MATLAB version 
R2021a.

The left atrial anatomy has been obtained from the map-
ping system. The original triangular mesh has been re-
meshed with fTetWild [47] using the default parameters, 
with a final median edge length of 2.1 mm (5112 points). 
Finally, the 3-D location of the electrodes was projected onto 
the atrial surface. It is worth mentioning that the mesh is 
only required for sampling collocation points and visualiza-
tion, as by itself the proposed method is mesh-free.

6.2  Results

The pre-processed maps are shown in Fig. 10, the first 3 col-
umns. We apply our method to these 3 maps and predict the 
fibers. We use the same hyper-parameters as in the previous 
sections. Although we do not have access to the real fiber 
orientations and we cannot compute the fiber error, we can 
check how well we have approximated the activation maps 
provided. Overall, we obtain the root mean squared error of 
2.09 ms on the 3 activation maps. We show the fit for map 1, 
which is the most complete, in Fig. 10, fourth column, dem-
onstrating an excellent agreement with the measurements, 

Table 1  Summary of the 
electroanatomical mapping data 
of the patient-specific case

SR sinus rhythm, CS coronary sinus, EGMs electrograms

Map number Rhythm Pacing location Acquired EGMs Accepted EGMs

1 Paced CS distal 12,405 3663 (29.5%)
2 Paced CS proximal 2713 442 (16.3%)
3 SR – 1563 159 (10.2%)
Total 16,681 4264 (25.6%)

Fig. 10  Results of patient-specific case. On the first 3 columns, we show the data points acquired colored by activation time, on the fourth col-
umn, we show the learned map with the data points on top and on the last column, we show the predicted fiber orientations
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which are shown as discrete points. Finally, in the predicted 
fibers we observe some of the expected features of the left 
atrium fibers in Fig. 10, last column. We see that fibers go 
from the anterior to the posterior region through the atrial 
roof, and we also observe some regions where the fibers are 
aligned to the mitral annulus.

7  Concluding remarks

In this work, we present FiberNet, a novel method to esti-
mate the complete conduction velocity tensor from a set of 
electroanatomical maps. The decomposition of the tensor 
simultaneously provides a patient-specific estimate of the 
fiber directions and conduction velocities. We tested our 
methodology in 2- and 3-dimensional synthetic examples, 
ex-vivo fibers obtained from DT-MR imaging, and clinical 
data. Furthermore, we validated our approach by creating 
an additional map, unseen during training, and we are able 
to accurately predict the activation pattern. This step shows 
that the learned conductivity tensors can be used reliably for 
personalized modeling and digital twinning. From a meth-
odological perspective, we showed that is not possible to 
estimate the conduction velocity tensors from a single map. 
In theory, at least 3 different maps are necessary, although 
having the correct regularization might reduce the error. 
Each map should provide different propagation directions in 
the tissue, albeit not necessarily orthogonal. In our numeri-
cal experiments, we see that for the same number of meas-
urements, distributing them across different maps reduces 
the fiber error. Unsurprisingly, the error of estimating each 
of the maps increases, but this does not affect the accuracy 
of the fiber estimates.

FiberNet is currently limited to work on surfaces, which 
is a reasonable approximation for the atria under several 
circumstances [11]. We plan to extend FiberNet to work with 
solid bodies and apply it to the ventricles. Transmurally, 
fibers rotate from an endocardial to an epicardial direction, 
and these directions may sensibly differ [7]. In these cases, 
besides histological knowledge, we would require additional 
data to learn the activation times transmurally, which might 
come from body surface potentials and prior histological 
knowledge [7, 8, 13]. Along this line, we are currently using 
minimally invasive data, which might limit the applicability 
of our approach. We plan to extend it to work with the sur-
face electrocardiogram, by converting the activation times 
into extracellular potentials through the forward bidomain 
model [48–50]. Our method takes on the order of 15 min to 
train. Even though this is an order of magnitude larger than 
for some of the local methods [17, 19], this is a competi-
tive time to solve an inverse problem [21]. Furthermore, to 
our knowledge, this is the first global method to estimate 
conduction velocity tensor from multiple maps. We plan to 

accelerate the training process by transfer learning [51] and 
also by incorporating prior knowledge of the fiber distribu-
tion in the basis of vectors that we use to locally parametrize 
the surface. In this way, the functions that are approximated 
by the neural network are simpler and can be learned in 
fewer training steps due to spectral bias [52]. FiberNet can-
not be applied during AF in its current formulation, because 
it assumes that all data points for a single map are from 
the same beat or, at least from the same activation pattern. 
However, it could be applied to a patch of tissue covered by 
the catheter, and it should perform comparably to a local 
method in estimating the CV. It is worth remarking that dur-
ing AF, the CV varies beat to beat, due to the restitution 
properties of the tissue. Finally, FiberNet still needs further 
validation, especially in its capability to extrapolate activa-
tion and fibers, as we only tested it using either known fibers 
or known activation maps. We plan to study and optimize the 
performance under noisy conditions to allow the application 
of this method in the clinical setting. We plan to compare 
our approach to existing rule-based methods for generating 
fibers, as recently proposed [10, 13]. In the clinical case, 
it is unclear whether FiberNet estimated the endocardial 
fiber orientation, or rather a transmurally homogenized 
fiber orientation. The results likely depend on the degree of 
endo-epicardial dissociation [46]. Ideally, we will acquire 
data from an animal model where we could obtain electro-
anatomical maps and ex-vivo fiber orientations either from 
histological measurements or diffusion tensor imaging [53].

FiberNet is a new step in the road of personalized medicine. 
We hope this method will aid the creation of patient-specific 
models for accurate diagnosis and procedure planning.

Appendix 1: Smooth basis

When defining a conduction velocity tensor through its 
eigencomponents, as was done in Sect. 3.1, any two non-
coinciding (preferably orthonormal) vectors of the tangent 
space S may be a feasible choice. Computationally, this 2D 
basis could be chosen locally, e.g. on a per-triangle basis. 
However, as the chosen Huber-norm regularization in (8) 
penalizes variation of the parameter vector d , it is greatly 
beneficial to define a smooth basis.

To this end, we computed the first basis v1 of the tan-
gent space using the vector heat method [42]. The vector 
heat method quickly computes parallel transport of a chosen 
vector on the whole manifold by shortly diffusing a given 
initial vector field using the heat equation with the connec-
tion Laplacian Δ∇ = −∇∗

C
∇C for ∇C being the Levi-Civita 

connection of the manifold. The rescaled diffused vectors 
then closely approximate the parallel transport of the initial 
vector field (for numerical and qualitative comparisons, we 
refer to the original paper [42]).
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The initial vector to be transported across the manifold is 
manually selected for each manifold, such that the discontinui-
ties of the vector field are minimal. Discontinuities might arise 
at the cut-locus, i.e. regions equidistant from the given vector, as 
there are multiple possible parallel transports at such locations.

Figure 11 shows such a computed parallel transport from 
the anterior wall of the atria. The resulting vector field is 

smooth in most parts, exhibiting a very low overall variation. 
Such a basis was chosen manually for all meshes.

Appendix 2: DT‑MR imaging errors

See Table 2. 

Fig. 11  Result of transporting a single vector on the anterior wall of the atria across the entire manifold. The resulting vector field is smooth 
except for parts of high curvature such as the left atrial appendage or pulmonary veins

Table 2  Fiber errors for the 7 fiber distributions obtained from DT-MR imaging

Results are presented for different levels of noise standard deviation and the number of maps used for training. Results are presented as median 
(25–75% percentile)

Noise 
(ms)

# of 
maps

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

0.0 1 31.4 (14.2–
54.5)

30.4 (13.4–55.4) 26.2 (10.7–
52.4)

28.4 (11.9—-
55.3)

26.9 (11.3–
51.8)

23.0 (9.7–46.6) 21.5 (9.1–45.7)

0.0 3 22.5 (9.7–44.8) 22.1 (9.6–44.6) 19.7 (8.2–40.8) 21.5 (9.2–42.2) 21.6 (9.3–42.8) 18.6 (7.7–38.5) 17.4 (7.7–36.0)
0.0 5 21.6 (9.4–44.5) 20.1 (8.6–41.9) 17.5 (7.3–39.0) 18.5 (8.0–38.4) 19.8 (8.3–40.5) 17.9 (7.7–38.1) 17.0 (7.6–33.9)
0.1 1 34.5 (15.6–

60.4)
26.5 (11.5–51.6) 24.6 (11.1–

48.9)
30.7 (13.3–

56.4)
27.2 (11.2–

52.6)
28.0 (12.1–

54.0)
25.7 (11.3–49.8)

0.1 3 22.9 (10.1–
45.5)

24.1 (11.0–47.1) 19.4 (8.2–40.2) 20.9 (9.0–42.3) 21.9 (9.6–43.8) 19.7 (8.5–40.4) 18.0 (7.9–36.4)

0.1 5 20.9 (9.1–43.7) 22.1 (9.5–43.6) 17.5 (7.3–39.0) 19.7 (8.8–39.9) 22.4 (10.1–
45.0)

19.8 (8.3–41.3) 14.9 (6.5–31.2)

1.0 1 45.6 (22.4–
67.9)

44.5 (22.0–67.0) 37.2 (18.4–
59.9)

41.4 (19.4–
65.6)

43.6 (20.9–
66.5)

42.6 (20.8–
65.1)

42.5 (20.8–66.2)

1.0 3 38.6 (18.0–
62.8)

29.5 (12.9–54.3) 30.7 (14.2–
54.9)

31.5 (14.4–
55.2)

30.5 (13.7–
55.5)

31.8 (14.3–
55.2)

30.6 (13.7–53.4)

1.0 5 33.0 (14.8–
58.6)

26.6 (11.9–50.5) 24.6 (11.2–
48.0)

26.7 (11.2–
50.4)

25.2 (10.7–
49.1)

25.5 (11.5–
47.8)

26.0 (11.9–48.1)

2.0 1 46.7 (25.3–
68.0)

43.6 (20.6–67.7) 36.4 (18.1–
59.8)

43.2 (21.5–
66.1)

43.1 (19.3–
65.9)

42.8 (20.7–
66.2)

47.8 (24.6–69.7)

2.0 3 44.1 (22.0–
67.2)

41.8 (20.3–66.3) 35.5 (18.0–
59.7)

40.5 (19.8–
63.5)

37.8 (18.3–
61.0)

37.4 (16.9–
61.6)

35.7 (16.8–58.9)

2.0 5 42.9 (21.9–
64.8)

41.1 (20.4–65.2) 31.3 (13.6–
55.8)

35.8 (16.6–
59.7)

34.7 (15.8–
59.5)

33.7 (15.4–
57.6)

34.8 (16.1–59.7)
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