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Abstract
MR imaging, a noninvasive radiation-free imaging modality commonly used during clinical follow-up, has been widely 
utilized to reconstruct realistic 3D vascular models for patient-specific analysis. In recent work, we used patient-specific 
hemodynamic analysis of the circle of Willis to noninvasively assess stroke risk in pediatric Moyamoya disease (MMD)—a 
progressive steno-occlusive cerebrovascular disorder that leads to recurrent stroke. The objective was to identify vascular 
regions with critically high wall shear rate (WSR) that signifies elevated stroke risk. However, sources of error such as 
insufficient resolution of MR images can negatively impact vascular model accuracy, especially in areas of severe patho-
logical narrowing, and thus diminish clinical relevance of simulation results, as local hemodynamics are sensitive to vessel 
geometry. To improve the accuracy of MR-derived vascular models, we have developed a novel method for adjusting model 
vessel geometry utilizing 2D X-ray angiography (XA), which is considered the gold standard for clinically assessing vessel 
caliber. In this workflow, “virtual angiographies” (VAs) of 3D MR-derived vascular models are conducted, producing 2D 
projections that are compared with corresponding XA images to guide the local adjustment of modeled vessels. This VA-
comparison-adjustment loop is iterated until the two agree, as confirmed by an expert neuroradiologist. Using this method, 
we generated models of the circle of Willis of two patients with a history of unilateral stroke. Blood flow simulations were 
performed using a Navier–Stokes solver within an isogeometric analysis framework, and WSR distributions were quanti-
fied. Results for one patient show as much as 45% underestimation of local WSR in the stenotic left anterior cerebral artery 
(LACA), and up to a 56% underestimation in the right anterior cerebral artery when using the initial MR-derived model 
compared to the XA-adjusted model. To evaluate whether XA-based adjustment improves model accuracy, vessel cross-
sectional areas of the pre- and post-adjustment models were compared to those seen in 3D CTA images of the same patient. 
CTA has superior resolution and signal-to-noise ratio compared to MR imaging but is not commonly used in the clinic 
due to radiation exposure concerns, especially in pediatric patients. While the vessels in the initial model had normalized 
root mean squared deviations (NRMSDs) ranging from 26 to 182 and 31 to 69% in two patients with respect to CTA, the 
adjusted vessel NRMSDs were comparatively smaller (32–53% and 11–42%). In the mildly stenotic LACA of patient 1, 
the NRMSDs for the pre- and post-adjusted models were 49% and 32%, respectively. These findings suggest that our XA-
based adjustment method can considerably improve the accuracy of vascular models, and thus, stroke-risk prediction. An 
accurate, individualized assessment of stroke risk would be of substantial help in guiding the timing of preventive surgical 
interventions in pediatric MMD patients.
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1 Introduction

Patient-specific modeling of vascular networks has proven 
to be a valuable tool in the research of vascular pathologies 
and their treatment. Researchers have used patient-specific 
vascular modeling to detect coronary artery disease [1], to 
inform treatment planning via optimization of graft place-
ment [2], surgical intervention [3] and nanoparticulate drug 
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delivery [4, 5], and to assess aneurysms and their treatments 
[6]. In previous work [7, 8], we have used patient-specific 
modeling to evaluate the hemodynamics within the circle of 
Willis (CoW) of pediatric patients with Moyamoya disease 
(MMD). MMD is a chronic cerebrovascular disease charac-
terized by progressive (non-atherosclerotic) narrowing of 
the major vessels of the CoW that can result in recurring 
stroke events [9]. Since there are no known treatments to 
reverse or slow the vessel narrowing caused by MMD, cur-
rent clinical interventions focus on addressing the compli-
cations of the disease (e.g., recurrent stroke, brain volume 
loss). These include neurosurgical strategies that allow blood 
flow to bypass areas of stenosis, thereby reducing stroke risk. 
Therefore, an individualized assessment of stroke risk, as 
a means of guiding the timing of preventive interventions, 
would be of great clinical benefit. It has been postulated that 
local wall shear rate (WSR) in the CoW arteries may be an 
indicator for disease progression and elevated stroke risk in 
pediatric MMD patients [7, 10]. Critically high local WSR 
values above a 5000  s−1 limit could result in thrombus for-
mation leading to ischemic stroke [11, 12]. Thus, by evalu-
ating WSR, stroke risk in MMD patients can be assessed, 
and clinicians can plan individualized patient follow-up and 
surgical strategies.

Computational fluid dynamics (CFD) simulation has 
been successfully used to evaluate hemodynamic quan-
tities in the major arteries of the CoW [7, 13, 14]. As 
variations in vessel architecture can strongly influence 
local hemodynamics including WSR [7, 15], it is criti-
cally important that computational modeling accurately 
captures a patient’s vascular anatomy. Computed tomog-
raphy angiography (CTA) is often utilized to create three-
dimensional (3D) patient-specific vascular models for 
CFD studies, and many segmentation techniques have 
been developed to improve model accuracy [16]. While 
CTA imaging is generally desirable for this purpose, it is 
not commonly collected during pediatric MMD patient 
follow-up because of the significant radiation burden asso-
ciated with CTA imaging in children. MR time of flight 
(MR TOF), which does not require ionizing radiation, is an 
alternative for reconstructing 3D patient-specific models 
that is more commonly used during clinical follow-up of 
young MMD patients. Given tradeoffs between resolution 
and imaging time—an important factor since pediatric 
patients must be sedated during image collection—MR 
TOF data often have coarse voxel resolution. This can 
affect geometric accuracy, particularly in pediatric patient 
models, where some vessels of interest may only be one or 
two voxel widths in diameter (vessel diameters as small as 
1 mm vs. voxel widths near 0.5 mm). Further, important 
vessel features, such as severe MMD-caused vessel nar-
rowing, can sometimes go unresolved by MR TOF which 
produces insufficient signal in areas of slow blood flow 

[17]. In addition, vessels oriented parallel to the imaging 
slice plane can be poorly resolved. Therefore, the accu-
racy of MR-derived models may not be adequate to reli-
ably predict stroke risk in pediatric MMD patients. X-ray 
angiography (XA), a minimally invasive imaging tool, is 
also commonly used to visualize a patient’s vasculature 
during clinical evaluation and follow-up. While the 2D 
projections obtained from XA cannot be used alone for 
3D geometry reconstruction, they offer accurate depictions 
of vessel diameter and MMD-related vessel narrowing is 
typically well resolved. Lumen boundaries are also gener-
ally better defined in 2D XA images than 3D MR or CTA 
images.

Given the need for accurate vascular models for stroke 
risk assessment in MMD patients, we have developed a 
method of 3D vascular model reconstruction that uses 
a combination of MR and XA patient imaging data. We 
hypothesize that by using 2D XA images as a reference 
for correct vessel caliber, MR-derived 3D models can be 
adjusted to improve accuracy. Our method involves com-
puting 2D projections of the MR-derived 3D models onto a 
virtual detector plane using geometric parameters that mimic 
the clinical XA imaging setup (i.e., patient position in rela-
tion to the X-ray source and detector). The 2D projections 
are compared to the XA images and vessels in the 3D model 
are locally adjusted until the two agree. The effectiveness of 
the proposed adjustment methods in improving geometric 
accuracy is evaluated by comparing the resulting CoW mod-
els to 3D CTA images that were also available in the patient 
records. Treating the CTA images as a more accurate 3D 
representation of the patient’s vascular anatomy compared 
to MR [18], we  then assess if the MR-derived models have 
improved accuracy after XA-based adjustment.

2  Methods

In this work, we generated CoW models from de-identified 
imaging data of two patients who were retrospectively 
selected from a Texas Children’s Hospital database under 
an institutional review board-granted waiver of written 
authorization for consent. The selection criteria were (1) 
the availability of MR TOF, XA, and CTA imaging data in 
patient history, and (2) a history of stroke with visible vascu-
lar narrowing in the affected side. Patient 1 is diagnosed with 
MMD and presented with a stroke involving the right middle 
cerebral artery (RMCA). Patient 2 is a non-MMD patient, 
who suffered a right-side stroke. Evidence of severe occlu-
sion in the RMCA was found on imaging. While unresolved, 
dehydration, inflammation, and viral infection including pos-
sible COVID infection, were suggested as potential causes 
for the stroke in patient 2.
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2.1  Vascular model creation

To create patient-specific models of the CoW suitable for 
blood flow simulations, we employ a four-stage process 
whereby an initial representation is segmented from clini-
cal MR TOF patient data and adjusted using clinical XA 
imaging data. This model creation process is summarized in 
Figs. 1 and 2 and detailed in the following sections.

2.1.1  Generating the initial 3D model

We start with MR TOF data output as an image stack in a 
.NRRD file format. Prior to segmenting the CoW from the 
image stack, 3D Slicer (version 4.10.2) is used to resam-
ple the volume to yield voxel sizes with linear dimensions 
reduced by at least one half. This improves the segmentation 
results, especially in smaller vessels that are at most one or 
two voxels in diameter prior to the resampling. 3D Slicer is 
then used to segment the resampled image stack using inten-
sity thresholding and other manual methods. The segmented 
label map is then exported as a triangulated surface mesh as 
a .STL file. The surface mesh is then post-processed using 
MeshMixer (version 3.5, Autodesk Inc., San Rafael, CA, 

USA) to locally smooth the segmented surface and repair 
any mesh errors resulting from the segmentation process. 
The resulting triangulated surface mesh is exported as a new 
.STL and is considered the initial model or mesh (Fig. 1A).

2.1.2  Aligning the 3D model with XA imaging axis

To compare vessel geometry of the CoW model to that 
seen on XA images, we must align the model to the XA 
imaging view. Metadata from XA imaging including “dis-
tance source to patient”, “distance source to detector”, 
“positioner primary angle”, and “positioner secondary 
angle” are used to define the imaging axis in a virtual 
space, mimicking the XA setup for each XA image. Cen-
terlines, extracted from the CoW model, are used to find a 
position and orientation, relative to the imaging axis and 
virtual X-ray source, such that the CoW model centerlines 
align with the XA image when projected along the imag-
ing axis onto the virtual detector plane (Fig. 1B). This is 
done by selecting a set of reference points on the model 
centerlines at vessel intersections and target points on the 
XA images that correspond to the same vessel intersec-
tions. Using custom algorithms implemented in Matlab 

Fig. 1  Graphical flow chart showing processes for model creation and 
XA-based adjustment. A An initial model is created by segmenting 
an MR TOF image stack. B Model centerlines are used to align the 
model relative to a virtual X-ray source and detector mimicking clini-
cal XA image acquisition. C A virtual angiogram is computed of the 
model and D compared to the corresponding clinical XA image. If 

the virtual angiogram of the model and the clinical angiogram dif-
fer, the model is locally adjusted (E), and a new virtual angiogram is 
computed. The adjust–virtual angiography–compare steps (C–D–E) 
are iteratively repeated until there is good agreement  between the 
two angiograms. F Comparison of final adjusted model (green) to ini-
tial model (color figure online).



3882 Engineering with Computers (2022) 38:3879–3891

1 3

(version 2019b, The MathWorks Inc, Natick, MA, USA), 
a range of  rotations and translations about the three coor-
dinate axes are then tested to determine which model ori-
entation and position produces the best alignment. This is 
done by optimizing a cost metric, C , defined as the root 
mean square of the distances between the projected refer-
ence points and their corresponding target points where 
P
n
 and T

n
 are the nth projected reference point and target 

point, respectively, and N is the total number of reference/
target pairs considered:

Initially, a 3D domain of rotations about each axis is sys-
tematically sampled, with uniform spacing, over a wide 
range of values and the resulting cost metric for each ori-
entation is computed. We chose a spacing density of 31 in 
each dimension resulting in  313 rotational orientations tested 
for each iteration. For subsequent iterations, the test range 
is reduced in size and centered about the orientation that 
previously produced the minimum cost metric. For each XA 
image, between 10 and 15 iterations are typically required 

C =

�
1

N

�
‖P

n
− T

n
‖2

to determine the optimal alignment. Using this process, the 
model is aligned to each of the XA images.

2.1.3  Algorithmic adjustment of 3D model geometry using 
XA images

After determining the alignment of the initial model for 
each XA image, Rhino and Grasshopper (version 6, Robert 
McNeel & Associates, Seattle, WA, USA) are used to apply 
algorithmic adjustment to the CoW model based on each XA 
image. In this process, local vessel diameters of the CoW 
model are measured at set intervals along each vessel. After 
superimposing the clinical XA image on the virtual detec-
tor plane, vessel lumen edges are manually delineated on 
the XA images and confirmed by an expert neuroradiolo-
gist, and target vessel diameters are determined. The model 
diameters are then projected onto the virtual detector plane 
(Fig. 1C) and compared to the target diameters to generate 
scale factors that are used to locally expand or contract the 
3D model radially about the vessel centerline. This process 
is repeated for each XA image. After adjustment in all six 
views—that is coronal and sagittal views of both the left 

Fig. 2  The vascular modeling pipeline. The circle of Willis vascula-
ture is segmented from MR TOF images (A) as a triangulated surface 
mesh (B) using 3D Slicer. 2D projections of the segmented mesh are 
registered to (C) XA images. The vessel diameters along the mesh 
are locally adjusted to match XA images. D The adjustments made 

across the entire mesh. Adjustments made along the LACA are high-
lighted in the insets. The adjusted surface mesh is used to generate 
the solid NURBS mesh (E). Each vessel corresponds to a volumetric 
NURBS patch. The insets show the NURBS patch, control net, and a 
cross-section for the RACA (color figure online).
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ICA (LICA) and right ICA (RICA), and coronal and sag-
ittal views of the basilar artery (BA)—the mesh is manu-
ally adjusted using Meshmixer to smooth out any unwanted 
artifacts from the algorithmic adjustment and to manually 
adjust at vessel intersections where the algorithmic process 
cannot be applied.

2.1.4  Manual adjustment of 3D model geometry to achieve 
agreement with XA images

Finally, a series of manual adjustments are made to the 3D 
model to improve its agreement with the XA images. Virtual 
angiographies of the adjusted model onto the detector plane 
of each XA image are computed after orientating the model 
to the imaging axis based on the alignments determined ear-
lier. The virtual angiographies result in 2D projections of 
the model which are overlaid onto the XA images enabling 
comparison of the model’s vessel geometry to the vessel 
geometry shown on the XA images (Fig. 1D). The model is 
manually adjusted using Meshmixer in areas where the pro-
jection does not agree with the vessel geometry as depicted 
on the XA image (Fig. 1E). This involves locally adjusting 
the vessel boundaries using Meshmixer’s mesh editing tools 
to either expand or reduce the vessel radius, make slight 
adjustments to vessel curvature, and correct the geometry 
at vessel junctions. This manual adjustment-projection-com-
pare process is iteratively repeated for each area of concern 
until good agreement is achieved, as confirmed by an expert 
neuroradiologist. This process typically takes 5–10 iterations 
for each focus area in each XA image. Overall, the manually 
adjustment process can take up to several hours depending 
on the amount of deviation between the model and the XA 
images. The final adjusted model (Fig. 1F) is then exported 
as a surface mesh and processed for nonuniform rational 
B-spline (NURBS) mesh generation.

2.1.5  Reconstruction of solid NURBS model

The adjusted surface mesh from the previous step is used to 
generate a volumetric NURBS reconstruction of the CoW 
(Fig. 2). This is done according to the procedures defined 
in a previous report [19]. The NURBS generation uses a 
template-based vascular modeling [20] software built with 
the computer-aided design (CAD) package Rhinoceros 3D. 
First, a skeletonization algorithm is applied to the surface 
mesh to extract the vessel centerlines and topology. Along 
each centerline, a set of minimal torsion perpendicular 
frames are constructed at regular intervals. At branch points, 
where multiple vessel centerlines intersect, the frames are 
folded to define conforming NURBS patch interfaces. The 
fold angle is interpolated along a length of the centerline to 
avoid self-intersection and provide a higher quality param-
eterization. A closed intersection curve between the mesh 

and each frame is computed and interpolated with a NURBS 
curve. The control points of the NURBS curves are then 
lofted together to create the control net for the multi-patch 
NURBS surface reconstruction of the adjusted surface mesh. 
Finally, the surface control points are extruded in the radial 
direction to the centerline to obtain a volumetric NURBS 
reconstruction of the CoW that is used for analysis. Element 
sizes and refinements are chosen according to mesh inde-
pendence studies [7, 8]. Each branch in the vasculature is a 
quadratic NURBS solid with 16 elements in the circumfer-
ential direction and 17 elements in the radial direction. The 
element size in the radial direction is graded such that there 
are more elements near the boundary to resolve the boundary 
layer in the blood flow simulation. The NURBS geometry 
is maximally smooth in the radial and axial directions and 
contains four C0 knot lines in the circumferential direction 
corresponding to the folding axes.

2.2  Blood flow simulations

Figure 3 illustrates the simulation setup. The details of the 
governing equations and solution strategy can be found 
in previous works [7, 8] and references therein. Briefly, 
blood flow is assumed to be governed by the unsteady 
Navier–Stokes equations subjected to boundary conditions 
as follows. A pulsatile inflow condition [21] is imposed at the 
three inlets: LICA, RICA, and BA, with a parabolic inflow 
profile [22] (Fig. 3E). A no-slip Dirichlet boundary condi-
tion is set on the vessel wall, and a traction-free boundary 
condition is prescribed at all the outlets for simplicity [7]. 
Blood is assumed to be a Newtonian fluid with a density of 
1060 kg/m3 and a dynamic viscosity of 0.0035 Pa-s. The sys-
tem of equations is solved by implementing a residual-based 
variational multiscale method using a Newton–Raphson 
procedure with a multistage predictor–corrector algorithm 
applied at each time step. The generalized-alpha method is 
used for time advancement. Within an isogeometric analysis 
framework [23], quadratic NURBS are used to describe both 
the geometry and the solution space. The CoW model of 
patient 1 and patient 2 has 138,720 and 149,600 volumetric 
quadratic NURBS elements and is divided into 40 and 34 
subdomains, respectively, where each subdomain is assigned 
to a compute core [7]. WSR is computed from the equation 
of wall shear stress vector: τ = (σ ∙ n) − ((σ ∙ n) ∙  n)n, where 
(σ ∙ n) is the traction vector, σ is the stress tensor, and n is 
the unit normal.

2.3  Assessment of model accuracy

To determine if the XA-adjustment process described above 
improves accuracy of the reconstructed CoW geometry, we 
use CTA imaging data as a reference. For our analysis, the 
working assumption is that CTA images provide a more 
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accurate 3D representation of vessel caliber, especially 
in areas of vessel narrowing compared to MR TOF [18]. 
Thus, by comparing the MR-derived XA-adjusted models 
of a patient’s CoW to corresponding CTA imaging, we can 
determine whether the XA-adjusted model more closely 
represents the patient’s geometry than the MR-derived 
initial model. To do this, we quantify how much deviation 
exists between vessel cross-sectional areas taken from the 
models (initial and adjusted) and the corresponding vessel 
cross-sectional areas extracted from the CTA images. For 
our analysis, we focus on the major vessels of the anterior 
circulation: terminal internal carotid arteries (ICAs), proxi-
mal middle cerebral arteries (MCAs), and proximal anterior 
cerebral arteries (ACAs) [24].

2.3.1  MR and CTA volume co‑registration

First, we co-register the CTA image stack and the MR image 
stack from which the initial 3D model was segmented. This 
brings the vessels in the 3D model in approximate align-
ment with the CTA images and allows for direct comparison 
between the two. Prior to co-registration, regions of interest 
in each set of images were defined to isolate the vessels of 
interest in the CoW and reduce vessel misalignment related 
to high pixel intensities corresponding to boney structures. 
Rigid co-registration (translation and rotation only) was 

performed in 3D slicer using the built-in general registra-
tion module that optimizes alignment using a Mattes Mutual 
Information cost metric.

2.3.2  Vessel cross‑sections

Vessel cross-sections are obtained from the initial and 
adjusted models using planes perpendicular to the respective 
vessel centerlines (Fig. 4A). These are taken at an interval of 
0.1 mm along each centerline. These planes are then used to 
extract slices from the co-registered CTA volume resulting 
in perpendicular cross-sections of each vessel that corre-
spond to the model cross-sections.

2.3.3  Detection of lumen boundary on CTA 

With the goal of comparing cross-sectional lumen areas 
between the CoW model geometry and the CTA images, we 
extract the lumen boundary from each cross-sectional slice 
along the vessel centerline (Fig. 4B). The lumen boundary 
is detected based on an analysis of CTA pixel intensity taken 
along a line extending from the center of the vessel (greatest 
intensity) to beyond the lumen boundary (least intensity). 
The inflection point of this pixel intensity profile is identified 
along with the amplitude between the peak intensity and the 
lowest intensity. The lumen boundary is taken as the point 
where the pixel intensity is equal to the inflection point plus 

Fig. 3  A volumetric NURBS mesh of the CoW (A) is generated from 
the adjusted CoW surface mesh. A close-up of a bifurcation (B) is 
shown to highlight the mesh quality and refinement used in the com-
putation. The cross-section of the NURBS mesh (C) is shown to 
highlight the boundary layer refinement (D) used in the simulation. 
The equations and boundary conditions for the blood-flow simula-
tion is presented, where u represents velocity, p is pressure, f is the 

external force, μ is dynamic viscosity, ρ is density, t is time, and n 
is the unit normal. A pulsatile inflow condition [21] is prescribed at 
the three inlets. The inflow at the two ICAs and BA are given by the 
red and blue waveforms, respectively. A no-slip boundary condition is 
imposed along the vessel walls, and a traction-free boundary condi-
tion is applied at each outlet
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an offset value. This offset value, defined as a percentage 
of the profile amplitude, is calibrated using neuroradiolo-
gist input. This process is repeated at several angular posi-
tions relative to the center of the vessel producing a series 
of points outlining the lumen. To calibrate the offset value, a 
sample set of vessel cross-sections was provided to an expert 
pediatric neuroradiologist who estimated vessel caliber from 
clinical CTA images. The neuroradiologist marked 3–5 
points on each image corresponding to his visual estimate of 
the lumen boundary (Fig. 4B). Calibration of the offset value 
is achieved by determining the offset value that produces the 
lumen boundary with the least average distance to the points 
marked by the neuroradiologist. The optimal offset value is 
identified for each slice, and a mean offset for each vessel is 
calculated and used for detecting the lumen boundary.

2.3.4  Comparison of cross‑sectional areas

Cross-sectional areas of the initial and adjusted models 
are found by computing the areas enclosed by the rings 
produced by intersecting the perpendicular planes with 

the model surface meshes. Likewise, corresponding cross-
sectional areas are computed using the detected lumen 
boundaries on CTA. As an example, Fig. 4C shows these 
cross-sectional areas for one vessel (patient 1—RMCA) 
plotted against the position along the vessel centerline. 
To compare the cross-sectional areas of the models to 
the cross-sections extracted from CTA images, along the 
length of each vessel, the root means squared deviation 
(RMSD) was computed:

where A
model,n and A

CTA,n are the cross-sectional areas in 
the nth slice taken from the model and CTA images, respec-
tively, and N is the total number of slices taken for that ves-
sel. The RMSD values are then normalized by the mean 
cross-sectional area, taken from the CTA images, for a given 
vessel. The normalized RMSD (NRMSD) is then given by

RMSD
vessel

=

�∑N

n=1

�
A
model,n − A

CTA,n

�2

N

Fig. 4  Overview of XA-adjustment verification strategy. A Several 
planes (yellow) along the length of a vessel of the 3D model (RMCA 
of the initial patient 1 model shown), perpendicular to its centerline, 
are used to extract vessel cross-sections (red curves). B An example 
CTA slice corresponding to one of the perpendicular planes in (A). 
The cross-section of the model superimposed on the CTA slice is 
shown by the red curve. Determination of the vessel lumen bound-
ary on the CTA slice (blue curve) is guided by assessment of lumen 

extent provided by a trained neuroradiologist (green dots). C Cross-
sectional areas of the model vessel and CTA vessel are computed in 
each slice and plotted against the position along the vessel center-
line. The top plot compares the initial model (red curve) to the CTA-
extracted lumen area (blue curve) and the bottom plot compares the 
adjusted model (red curve) to the CTA images (blue curve). These 
curves are used to compute the RMSD for each vessel (color figure 
online).
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3  Results

Clinical imaging data, including XA and MR TOF, were 
used to create two patient-specific CoW models. The initial 
models, derived from the MR TOF volumetric data alone, 
were adjusted using XA images and the procedures outlined 
above. A comparison of the initial and adjusted models for 
the two patients can be seen in Fig. 5. The XA-based adjust-
ment of patient 1’s CoW model generally resulted in vessels 
with reduced caliber. In contrast, the XA-based adjustment 

NRMSD
vessel

=
RMSD

vessel

mean
(
A
CTA,vessel

)
of the patient 2 model resulted in larger vessel calibers in 
general.

In recent work [7, 8], we have used CoW models derived 
from pediatric MMD patient imaging data to assess stroke 
risk through blood flow simulation and an analysis of pre-
dicted WSR distributions. We conducted similar simula-
tions using the initial and XA-adjusted CoW models for the 
two patients included in the present study and compared 
the WSR distributions of the pre- and post-adjustment mod-
els (Fig. 6). The maximum WSRs in each vessel of interest 
from the initial and XA-adjusted models for both patients are 
shown in Table 1. For patient 1, the initial model resulted 
in a surface-averaged peak systolic WSR of 5290  s−1 and 
the adjusted model produced a surface-averaged peak WSR 
of 9827  s−1. The adjusted model produced focal areas with 
greater maximum WSR at peak systole than the initial 

Fig. 5  Comparison of initial 
(blue) and XA-adjusted models 
(green) for patient 1 (top panels) 
and patient 2 (bottom panels) 
shown in posterior (left) and 
anterior views (right)

Fig. 6  Comparison of predicted 
WSR (above 5000  s−1 coagula-
tion limit) distributions for the 
initial (left panels) and XA-
adjusted (right panels) models 
of patient 1 (top) and patient 2 
(bottom) (color figure online).
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model. Of note, the proximal left MCA (LMCA) and left 
ACA (LACA) of the adjusted model had maximum WSRs of 
50,370  s−1 and 37,013  s−1, whereas the corresponding ves-
sels of the initial model had maximum WSRs of 37,788  s−1 
and 20,364  s−1, respectively. On the other hand, in proxi-
mal right ACA (RACA) and right MCA (RMCA), maxi-
mum WSRs of 19,550  s−1 and 17,829  s−1 were predicted 
in the initial models, respectively, and  maximum WSRs of 
44,932  s−1 and 54,198  s−1 were predicted in the adjusted 
models, respectively. For patient 2, the initial model resulted 
in a surface-averaged peak systolic WSR of 7942  s−1 and the 
adjusted model produced a surface-averaged peak WSR of 
4763  s−1. In the initial model, the LMCA saw a peak WSR of 
43,402  s−1, while the same vessel in the adjusted model saw 
a maximum WSR of 10,251  s−1. The RACA in the initial 
model had a peak WSR of 14,734  s−1, while the adjusted 
RACA had a peak WSR of 26,211  s−1. (color figure online).

To determine if the XA-based adjustments of the two 
patients’ CoW models improve model accuracy, we com-
pared the geometries to clinical CTA data that was avail-
able for each patient. Specifically, cross-sectional areas taken 
from each model were compared with cross-sectional areas 
extracted from corresponding CTA slices, and the deviations 
between the two were quantified. Figure 7 shows NRMSDs 
between the model cross-sectional areas and CTA lumen 
areas along each vessel for the initial and adjusted models 
for both patients. In most of the vessels considered for the 
two patients, the adjusted model shows less deviation from 
the cross-sectional areas suggested by the CTA images (see 
Table 1). For four of six vessels in patient 1 and five of 
six vessels of patient 2, XA-adjustment resulted in reduced 

NRMSD. Of note, the NRMSD for the RACA in patient 
1 (Fig. 7A) decreased from 182 (of the average CTA area 
in the RACA) to only 48% after adjustment. However, two 
of the six vessels of interest for patient 1 had more devia-
tion from the CTA images after adjustment. The NRMSD 
increased from 31 to 44% for the LMCA after adjustment 
and it increased from 26 to 32% for the RICA. In patient 
2 (Fig. 7B), all the vessels of interest exhibited smaller 
NRMSD in the adjusted model vessels compared to the ini-
tial model with the exception of the RICA that had increased 
NRMSD after adjustment (36 vs. 31% in the initial model).

4  Discussion

With growing focus on expanding personalized medicine, 
patient-specific geometries have been increasingly used to 
make personalized assessments of disease status and enable 
tailored planning of treatment strategies. Recently, we per-
formed patient-specific hemodynamic analysis of the CoW 
with the goals of assessing stroke risk in pediatric MMD 
patients and potentially aiding clinicians in determining if 
surgical intervention may be required [7]. A common, and 
often preferred, source for patient-specific vascular geom-
etries is clinically obtained CTA volumetric data that is 
segmented to create 3D cerebrovascular models. However, 
from a retrospective study of 50 patients we conducted in 
a previous work [7], this type of imaging is not generally 
used in the pediatric MMD patient population as part of 
standard clinical follow-up practice because of radiation 
exposure concerns. Instead, 3D MR TOF imaging, which 
is radiation-free and noninvasive, is typically employed. 
This imaging modality has inherent challenges that make it 
susceptible to insufficient image quality, which can compro-
mise the accuracy of any 3D vascular model created from it. 
Complex and/or slow flow patterns are usually insufficiently 
resolved which can introduce inaccuracies in areas of vessel 
narrowing—a major clinical feature of interest in MMD. 
To improve the accuracy of patient-specific models derived 
from MR TOF data, we have developed a method to locally 
correct vessel geometry using 2D XA imaging data that is 
often collected during MMD patient evaluation.

Using the XA-based adjustment process, we can generate 
3D vascular models that show improved agreement with 2D 
XA images, the current reference standard for evaluating 
neurovascular lesions [25]. In the present study, we have 
adopted this approach for two patients selected based on the 
availability of clinical data using all three of the following 
imaging modalities: MR TOF, XA, and CTA. The goal is to 
compare the XA-adjusted CoW model to CTA images of the 
same patient. Given the rarity of such cases, only patient 1 
is a pediatric MMD patient. Patient 2 is a non-MMD patient 
who presented with clinical symptoms of right sided stroke 

Table 1  A summary of simulation (maximum WSR) results and 
model accuracy (NRMSD) for initial and adjusted models

Vessel Maximum WSR  (s−1) NRMSD (%)

Initial model Adjusted model Initial model Adjusted 
model

Patient 1
LACA 20,364 37,013 49 32
LMCA 37,778 50,370 31 44
LICA 18,217 28,522 81 35
RACA 19,550 44,932 182 28
RMCA 17,829 54,198 82 53
RICA 17,335 37,631 26 32
Patient 2
LACA 10,885 20,181 45 30
LMCA 43,402 10,251 69 42
LICA 10,112 10,576 36 11
RACA 14,734 26,211 37 22
RMCA 50,887 43,291 48 21
RICA 16,492 12,981 31 36
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and whose imaging revealed evidence of a focal high-grade 
stenosis in the RMCA. When we compare patient-specific 
geometries before and after XA-based adjustment, we see 
significant changes in local vessel geometry including more 
accurate representations, relative to XA images, of vessels 
that exhibit MMD-related vessel narrowing as noted by 
the patient’s history. For example, patient 1’s RMCA and 
LACA were identified by clinicians as exhibiting narrow-
ing and both vessels are significantly impacted by the XA-
adjustment process where the average vessel diameters were 
reduced by 48% and 30% after adjustment in the two vessels 
respectively. In patient 2, one of the most impacted vessels 
was the LMCA which increased in local diameter by 132% 
where the initial model was the narrowest.

We performed hemodynamic simulations on the initial 
and adjusted geometries of both patients and demonstrated 
that the distribution and magnitudes of WSR values in the 
CoW can be highly sensitive to geometric variations with 
potential implications for clinical relevance of the results. 
The simulation results show that, following adjustment, 
the surface-averaged WSR in the full CoW models at peak 
systole increased by 86% in patient 1 (from 2.1× that of a 

healthy control case [7] to 3.9× the control) and decreased 
by 40% in patient 2 (from 3.1× to 1.9× that of the control) 
relative to the initial models. Furthermore, in these two 
patients the maximum WSR in several vessels of interest at 
peak systole changed by more than 70% after adjustment. 
For patient 1, the presence of focal regions of critically 
high WSRs at least 120% greater than seen in the previ-
ously simulated control in 5 of 6 vessels of interest of the 
adjusted model may be an indicator of impending secondary 
stroke contralateral to the primary stroke event. However, 
the results from the initial model, with fewer areas of severe 
WSR (only one vessel with max WSR greater than 20% of 
the that seen in the control), might not indicate stroke risk 
at all, thus negatively impacting preventive intervention 
measures. This underscores the need for accurate patient-
specific geometries in noninvasive assessment of stroke risk 
in pediatric cerebrovascular disease and guiding the timing 
of surgical intervention.

While XA-based adjustment allows us to locally correct a 
3D vascular model such that it agrees with the vessel geom-
etry depicted on XA images, we currently do not know if the 
adjusted model is more representative of the patient’s 3D 

Fig. 7  Comparison of NRMSD 
values for each vessel before 
(blue bars) and after XA-based 
adjustment (green bars) for A 
patient 1 and B patient 2 (color 
figure online).
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vessel anatomy than the initial MR-segmented model. To 
verify that our adjustment methods improve vascular model 
accuracy, we use CTA imaging as an additional reference 
for comparison. CTA is widely used for 3D vascular model 
reconstruction and provides stronger signal in the vascula-
ture, particularly in narrowed vessels, than MRI data [26, 
27]. Thus, we consider the CTA volume a more accurate 3D 
representation of the patient’s CoW compared to MR TOF 
and examine if the adjusted model more closely matches the 
CTA images than the initial MR-derived model. The agree-
ment between model and CTA was assessed by comparing 
the cross-sectional areas of the vessels of the model and 
of the vessels depicted in the CTA volume. Cross-sectional 
areas were collected at several points throughout the vessel 
and a NRMSD was calculated for each vessel of the ini-
tial and adjusted models. The NRMSD for a vessel gives 
a measure of how much, on average, the local vessel size 
in the model deviates from what the CTA images suggest 
the vessel size should be. For all vessels of interest (in both 
patients) except for three, the NRMSD is reduced following 
adjustment. This indicates that overall, the adjusted models 
more closely match the CTA images than the initial models 
and is evidence that the XA-based adjustment procedure 
may improve accuracy of MR-derived vascular models.

While these results are promising and support the effec-
tiveness of our proposed adjustment procedures, the verifica-
tion approach used herein has limitations. For our purposes, 
the CTA volumetric data are considered as accurate repre-
sentations of the patient-specific vascular anatomy. While 
CTA is commonly used to this end in computational studies, 
whether the CTA data provides a good “ground truth” of 
target geometries is unknown. Cerebrovascular lesions in 
pediatric patients are particularly challenging to image [25]. 
Factors such as insufficient slice resolution, low contrast in 
smaller vessels, bone artifacts, and suboptimal synchroniza-
tion between the contrast injection and image acquisition 
may negatively impact the accuracy of the vessel representa-
tions in the CTA volume. In addition, to extract the vessel 
cross-sectional areas from the CTA slices, we use algorith-
mic lumen boundary detection guided by the input of an 
expert pediatric neuroradiologist. These algorithms rely on 
image pixel intensity which can vary from vessel to ves-
sel within the same CTA volume and among different CTA 
volumes. Thus, defining a standard method for identifying 
the lumen boundary is challenging. Furthermore, the clini-
cian’s assessment of vessel caliber was done solely based 
on visual inspection where subjectivity and factors such as 
image brightness and contrast can impact the consistency of 
the results slice to slice. To minimize human error, a more 
comprehensive analysis should be performed utilizing inputs 
from multiple trained neuroradiologists.

The above challenges in assessing the accuracy of MR-
derived and XA-adjusted models all originate from the need 

of a known target geometry for comparison. In the future, 
additional verification of our XA-based adjustment method 
using known CoW geometries is planned. The goal is to gen-
erate multiple physical 3D printed CoW models of known 
geometry, collecting MR TOF and XA imaging data of 
the physical models while mimicking the clinical settings 
for patient imaging, and reconstructing XA-adjusted MR-
derived vascular models from the imaging data following 
the procedures discussed here. These models can then be 
directly compared to the corresponding known geometries 
to determine how well the XA-based adjustment performs 
and whether it produces a more accurate model.

Planned future work also includes implementation of a 
more sophisticated scheme for ensuring optimum alignment 
of the 3D models to the XA imaging axis (see Sect. 2.1.2) 
using, for example, genetic algorithms [28] or gradient 
descent algorithms [29]. In addition, techniques for the 
direct registration of the 3D MR volume to 2D XA image to 
determine the model orientation prior to segmentation will 
also be investigated. Recent work in this widely researched 
area has demonstrated a radon-based approach for 2D/3D 
registration that eliminates the need to compute 2D projec-
tions at each candidate model orientation [30].

In this study, segmentation of MR TOF imaging data 
involved using manual techniques. Machine learning algo-
rithms have recently been used to significantly automate this 
process. These approaches have been adopted to produce 
2D segmentations of coronary arteries from XA images 
[31] and 3D segmentations of the coronary network from 
CTA images [32], significantly speeding up the image-based 
vascular model creation pipeline. For example, automated 
methods of segmenting multirow detector CTA data have 
been used to efficiently calculate the fractional flow reserve 
metric (FFR_CT) to noninvasively assess coronary disease 
severity [33, 34] in clinic. Neural network-based algorithms 
have also been applied to the segmentation of neurovascular 
aneurysms using 3D rotational XA images [35]. Of interest 
to our work, given our reliance on MR TOF as the most 
common volumetric data associated with MMD treatment, 
Kandil et al. [36] used automated algorithms to segment 
MR TOF images of MMD patients. They achieved high 
segmentation accuracy when compared to segmentations 
manually generated by experienced experts. Replacing the 
manual segmentation steps in our process with these auto-
mated approaches in the future could result in significant 
time savings and potentially improve accuracy of the initial 
MR-segmented model. However, in the context of pediat-
ric MMD studies, where only MR TOF imaging is com-
monly available, XA-based model adjustment may still be 
warranted regardless of how the initial MR-segmentation is 
generated. Sugino et al. [18] compared the use of CTA imag-
ing versus MR imaging for the evaluation of MMD patients. 
They concluded that CTA is a more reliable technique for 
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assessing MMD given that MR was shown to overestimate 
the degree of stenosis in diseased vessels. This uncertainty 
in the underlying MR imaging data and the previously men-
tioned challenges associated with MR-segmentation moti-
vated the XA-based adjustment approach presented in this 
work. To our knowledge, this is the first time 2D XA and 3D 
MR TOF imaging are combined to improve cerebrovascular 
model accuracy.

In summary, patient-specific modeling of vascular net-
works has proven to be a valuable tool in the research of vas-
cular pathologies. In previous work, we showed how patient-
specific hemodynamic analysis of the CoW and WSR can be 
used to noninvasively assess stroke risk in pediatric MMD, 
potentially resulting in earlier diagnosis of disease progres-
sion with reduced stroke burden and improved clinical out-
come. These analyses rely on geometrically authentic 3D 
vascular models that can be reconstructed using volumetric 
CTA or MR imaging data, the latter of which is the more 
likely imaging modality for pediatric MMD patients due 
to radiation exposure concerns with CTA. However, MR 
imaging can be suboptimal for 3D model reconstruction 
because of limitations such as insufficient image resolution. 
We developed a method where virtual angiographies of 3D 
MR-derived vascular models are conducted and the result-
ing 2D projections are compared to corresponding 2D XA 
images, which are commonly used to clinically assess vessel 
narrowing. The 3D model is then locally adjusted until its 
2D projections and XA images are in agreement. Through 
blood flow simulations, we demonstrated that local WSR 
distributions in an initial MR-derived model are consider-
ably different from the XA-adjusted model which can lead 
to incorrect stroke risk assessments. A comparative analysis 
with patients’ CTA imaging data suggests that XA-based 
adjustment can improve vascular model accuracy and enable 
more accurate assessments of stroke risk, thereby potentially 
improving individualized treatment and monitoring of pedi-
atric MMD patients.
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