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Abstract
In the target matrix optimization paradigm (TMOP), it has long been understood that one must create a set of target matrices 
before the mesh can be optimized. But there is still no general method to create correct, effective targets in response to a specific 
mesh quality improvement goal. The TMOP literature describes how certain sets of target matrices can be used to control the 
shape or size of mesh elements, but those examples address only a fraction of the problems that can occur in mesh quality 
improvement and were not derived from a general framework for target matrix construction. In this work, a general method 
of target construction is introduced based on an independent set of geometric parameters that are intrinsic to the Jacobian 
matrices upon which TMOP is based. The parameters enable a systematic approach to target definition and construction. The 
approach entails two parts. The first part defines correspondences between available primary data (stuff about the mesh and/
or the physical solution) and secondary data (e.g., a field of error estimates). Once the correspondences are established, the 
primary data are processed into intermediate field data existing on mesh sample points. The second part creates a model that 
represents the values of the geometric target parameters as functions of the secondary data. The model is then tested numeri-
cally to establish model constants and effectiveness. This systematic approach to target construction is illustrated in a set of 
examples to show how it can be applied to common problems in mesh optimization such as equalization of geometric proper-
ties, preservation of existing good quality, and adaptation of the mesh to the physical solution. The result is a systematic method 
of target construction for TMOP that can be applied to a wide variety of planar and volume mesh quality improvement tasks.

Keywords  Mesh optimization · Mesh quality · Target matrix · Mesh quality improvement

1  Introduction

Mesh quality may be defined as those features of a mesh 
that impact simulation robustness, accuracy, and efficiency. 
Features such as mesh resolution, the spatial distribution of 
the nodes, mesh geometry, mesh smoothness, mesh topol-
ogy, the type of elements in the mesh, and order of the ele-
ment basis functions (if any) can all be considered to be 
aspects of mesh quality. In any simulation, the practitioner 
should be concerned with the quality of the meshes they are 
using. The quality of meshes can, in some cases, be assessed 
visually, through the use of mesh diagnostics, and/or values 
of quality metrics. In other cases, a mesh quality issue is 

noticed through the examination of the numerical solution. If 
a quality issue is identified by any of these means, one most 
likely will want to consider methods for improving the mesh 
quality. Mesh optimization via node movement strategies 
such as the target matrix optimization paradigm (TMOP) 
is one option [15] that is considered in detail here. Other 
node-movement options include [1, 7, 10, 19, 20, 23–26].

1.1 � Introduction to mesh quality improvement

Mesh generation is a numerical procedure used to create 
meshes on a given physical domain. Often, these meshes 
lack sufficient quality according to one measure or another. 
In mesh quality improvement (MQI), one presupposes 
the existence of an initial mesh whose quality is to be 
improved, through various methods. Two basic categories 
of mesh quality improvement methods are mesh topology 
changes and node movement. In general, the term “mesh 
optimization” is often used interchangeably with the term 
“mesh quality improvement” and can include both topology 
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changes and node movement. However, for our purposes, 
we refer to mesh optimization as a numerical optimiza-
tion method in which the initial mesh vertex coordinates 
are changed (thus creating node movement) to minimize an 
objective function that is a function of the coordinates and 
which represents a measure of global mesh quality.

A considerable number of mesh optimization methods have 
been proposed over the years. One of the more famous meth-
ods is the variational method leading to the Winslow smooth-
ing procedure [25]. In this procedure, the Euler–Lagrange 
equations of the variational principle consist of a homog-
enous, quasi-linear, second order elliptic set of partial dif-
ferential equations. The method yields smooth, non-inverted 
meshes on any given physical domain. The method has been 
extended to multi-block structured and finite element meshes.

Winslow is an example of an unweighted optimization 
method (i.e., a method that does not employ problem-specific 
weightings). Unweighted mesh optimization methods essen-
tially provide a “generic” mesh optimization method in which 
details of the mesh improvement problem are not taken into 
account. There is only one solution to the Winslow equations, 
and thus only one optimal mesh exists for a given domain. 
If the Winslow mesh lacks sufficient quality with respect 
to a particular application, there is nothing one can do. To 
address this issue, many mesh optimization methods intro-
duce weighting functions to create weighted methods that 
can potentially control the properties of the optimal mesh. 
In the case of Winslow, for example, weighting functions P 
and Q convert the set of elliptic equations to a set of Poisson 
equations [24]. By selecting appropriate forms and values for 
the weighting functions, one can control additional properties 
of the mesh in addition to smoothness (e.g., clustering mesh 
vertices toward a particular point in the domain).

Ever since the introduction of such weightings, a major 
issue in mesh optimization has been to find weighting func-
tions and values that achieve the desired quality improve-
ment. To this point, success has been rather mixed, and so 
efforts continue to strengthen this aspect of mesh optimiza-
tion. This situation was a major motivation for the creation 
of the target matrix optimization paradigm. To address the 
full range of situations in which the issue of mesh qual-
ity arises, TMOP introduces weighting functions in the 
form of target matrices, which, unlike P and Q, have a well 
understood geometric meaning. A major thrust in TMOP 
is to include not only the targets within the metrics, but to 
describe the entire process of target matrix construction, in 
which one starts with a specific mesh quality improvement 
problem and proceeds through various steps until a full set of 
target matrices has been determined, prior to numerical opti-
mization. This article summarizes what is currently known 
about the targets and this procedure.

The main contribution in this paper, which is an abridged 
version of [16], is to provide a methodology for creating a 

set of target matrices suitable for a particular simulation. As 
there are many different simulations and simulation types, 
many different target sets are needed to cover all the dif-
ferent potential simulations. There is currently a gap in the 
mesh optimization literature, because it fails to explain how 
one can systematically create such targets given any indi-
vidual application; the methodology proposed in this paper 
is intended to fill this gap. As such, this work is a methodol-
ogy paper, not a computational algorithms paper. The output 
of the methodology, when applied to a particular applica-
tion, is an approach to creating a set of target matrices. The 
approach must then be implemented in code and tried. As 
such, the need to provide numerical confirmation of every 
target set suggested in this paper is not critical. It is not mesh 
optimization using a particular set of targets that needs to be 
demonstrated here, but only that the proposed methodology 
is reasonable and well designed. This is demonstrated by the 
examples given in Sect. 3.5.

1.2 � Introduction to the target matrix optimization 
paradigm

The basic objects and concepts used in the target matrix 
optimization paradigm (TMOP) are reviewed in order to set 
the stage for this study on target construction (see also [15]). 
The main ingredients of TMOP are (1) the sample point 
concept, (2) the active Jacoban matrix, (3) the target matrix, 
and (4) the local quality metric(s).

1.2.1 � Sample points

TMOP assumes that, for each mesh element, there is a map 
from a logical element to the physical element. The basis 
of the map is specified prior to optimization, and can be 
low order (i.e., first order) or high order (order greater than 
first). A sample point is a fixed point within the logical ele-
ment at which we wish to measure local quality. Prior to 
mesh optimization, a set of sample points within the logi-
cal element is selected and remains fixed throughout the 
optimization procedure. This set of sample points could be, 
for example, the set of Gaussian integration points within 
the element. The sample points can be assigned a global 
index k so that (�k, �k) indicates the kth sample point within 
a 2D mesh. Each sample point of a planar mesh has a cor-
responding location (xk, yk) in physical space. Unlike the 
logical coordinates, the coordinates of the physical sample 
points may change during the optimization procedure when 
a node movement strategy is applied. Sample points enable 
one to measure both the quality of elements and the quality 
within elements. This is critical, because quality can vary 
within, for example, hexahedral elements and in high-order 
elements.
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1.2.2 � Active matrices

At every sample point, TMOP requires both an active and a 
target matrix. For planar meshes, the active matrix is a 2 × 2 
matrix and has four elements.1 A volume mesh requires the 
active matrix to be 3 × 3 , with nine elements. The active 
matrix is denoted by A and the active matrix at sample point 
k (a global index) is Ak . In general, the active matrix can 
vary from one sample point to the next. The active matrix 
represents the Jacobian of the map from the logical element 
to a physical element of the active mesh. The active matrix 
is a function of the nodal coordinates of the element and 
thus changes during the mesh optimization procedure. An 
important goal of mesh optimization is to ensure that, in 
the optimal mesh, det(A) > 0 at each sample point. Occa-
sionally, we make use of the notation A =

[
�1, �2

]
 in which 

the two vectors �1 and �2 are the column vectors of A2×2 
or A =

[
�1, �2, �3

]
 when A is 3 × 3 . The collection of active 

matrices {A} is the set of all active matrices in the mesh; 
thus Ak ∈ {A} for all k. We call {A} the active matrix set. In 
general, Ak changes as the mesh is optimized, which is why 
the terminology “active matrix” is used.

1.2.3 � Target matrices

TMOP requires that, for every sample point k, at which Ak 
exists, a corresponding target matrix Wk be defined at the 
same sample point. If A is a d1 × d2 matrix, then so is W. 
Unlike the active matrix, the target matrix does not change 
during mesh optimization. In general, the target matrix can 
vary from one sample point to the next. Each target matrix 
is defined prior to mesh optimization. The target matrix rep-
resents the ideal Jacobian matrix toward which the active 
matrix will evolve during the mesh optimization procedure. 
A fundamental assumption we make is that, by construc-
tion, det(W) > 0 (and therefore, W−1 exists). This ensures 
that the target matrix represents a location in the mesh at 
which the ideal Jacobian determinant is positive. Occasion-
ally, we make use of the notation W =

[
�1,�2

]
 in which 

the two vectors �1 and �2 are the column vectors of W2×2 
or W =

[
�1,�2,�3

]
 when W is 3 × 3 . With this approach, 

there is no essential difference between targets for low order 
meshes and targets for high-order meshes. Targets can pro-
vide a specific problem-dependent definition of mesh quality.

The collection of target matrices {W} is the set of all tar-
get matrices in the mesh; thus Wk ∈ {W} for all k. We call 
{W} the target matrix set. The target matrix set need not be 
self-consistent (i.e, the set does not necessarily imply that a 
corresponding mesh exists). In mesh optimization this is not 
a major difficulty because the objective function implicitly 

defines a compromise between inconsistent sets of targets 
(e.g., as in least squares methods). However, the more the 
targets can be made to correspond to a mesh that exists, the 
more the optimization will improve quality. This is one rea-
son why the target construction phase is so important. The 
target matrix set is defined prior to the beginning of the mesh 
optimization procedure. In general, the set will be different 
for every particular mesh and every mesh quality improve-
ment goal. Target Matrix Set “smoothness” (however, that 
is defined) is necessary if the optimal mesh is to be smooth.

1.2.4 � Local quality metrics

To measure mesh quality, TMOP uses local quality metrics. 
Local quality metrics are functions from a matrix to a scalar. 
The value of a local quality metric is measured at sample 
points of the mesh. Two common forms of local quality 
metrics are � = �(T) and � = �(A,W) , with T = AW−1 the 
weighted Jacobian matrix. The values of these metrics are 
�k = �(Tk) and �k = �(Ak,Wk) , where k is the global sample 
point index. Local quality metrics in TMOP do not measure 
mesh quality in an absolute sense. Rather, through the target 
matrix mechanism, the metrics measure quality relative to 
the set of targets provided (i.e., the targets constructed essen-
tially define mesh quality in geometric terms).

1.2.5 � Sets of matrices

Certain sets of matrices in connection with TMOP have been 
defined previously. The main matrix set with which we are 
concerned is Md , the set of d × d matrices with real ele-
ments. The cases d = 2 and d = 3 are important in planar and 
volume meshing, respectively. The following subsets of Md 
also play an important role: Ms

d
 , the set of singular matrices, 

M
∼s
d

= Md ⧵M
s
d
 , the set of non-singular matrices, Mp

d
 , the 

set of matrices whose determinant is positive, and Md
d
 , the 

set of degenerate matrices.

Definition 1  A matrix X ∈ Md is degenerate if one or more 
of its column vectors is zero. Define M∼d

d
 to be the set of 

non-degenerate matrices.

Clearly, Md
d
⊂ M

s
d
.

1.3 � Development of the target matrix paradigm

Methods for mesh quality improvement via node movement 
must, in some fashion, define relations between a definition 
of mesh quality and the mesh geometry. For example, if mesh 
quality is defined to be a solution-adapted mesh, then vari-
ous solution-based quantities such as gradient, Hessian, flow-
vectors, error estimates, etc. must be connected to the mesh 
geometry (i.e., to volume, shape, and orientation). The exact 1  The active matrix is 3 × 2 for a mesh on some surface.
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manner in which these relations are made varies from one MQI 
method to the next.

While the target matrix optimization paradigm has been 
studied for some time, the theory outlined in Sect. 1.2 is 
incomplete, particularly with regard to a general description 
of how the connection between mesh quality and mesh geom-
etry is made for each of the mesh quality improvement goals 
listed in Ref. [16]. This article is a major step in filling this gap.

Various analytic relationships between planar mesh geom-
etry and the Jacobian matrix are explored in Sect. 2 in order to 
understand how they can be exploited in target construction. 
Due to lack of space, the case of volume meshes whose verti-
ces lie in ℜ3 and A ∈ M3 is not presented in this article. The 
volume case has been fully worked out in [16]. Section 2.1 
defines a standard set of scalar geometric parameters that 
can be derived from any mesh consisting of triangular and/or 
quadrilateral elements. Section 2.2 shows how one defines the 
target matrix given the values of these geometric parameters. 
Section 2.3 deals with the problem of extracting the standard 
parameters from a given active matrix so that local quality 
metrics may be evaluated. Finally, Sect. 2.4 gives a matrix 
decomposition of the Jacobian matrix in terms of “size,” 
“shape,” and “orientation” factors.

Prior to numerical optimization of the active mesh, one 
must endow the targets at every sample point with numeri-
cal values by some algorithm. In the case that no algorithm 
is available, one must be devised. The process by which 
this is done, described in Sect. 3, is called target construc-
tion. There are three phases in target construction, begin-
ning with formulating a strategy that takes into account the 
mesh simulation and context (Sect. 3.1.1), continuing with 
a determination on which geometric parameters are the most 
important to control (Sect. 3.1.2), and finally, establish-
ing correspondences between primary data and particular 
geometric parameters (Sect. 3.1.3). In the second phase of 
target construction, one identifies sources of primary data 
and devises algorithms for converting the primary data to 
secondary data. Secondary data consist of either mesh func-
tionals (Sect. 3.2.1) or simulation functionals (Sect. 3.2.2). 
In the final stage of target construction, one develops vari-
ous models relating the functionals to values of the target 
geometric parameters (Sects. 3.3.1, 3.3.2). In Sect. 3.5, 
examples of target construction are provided that illustrate 
how the construction of targets depends on the mesh quality 
improvement goal.

2 � Relations between matrices 
and geometric parameter sets

A standard set of geometric parameters that are meaning-
ful in mesh quality are defined. The parameters are related 
to the elements of any 2 × 2 matrix. When considering the 

active matrix A, the parameters describe the geometry of the 
tangent vectors to the mapping at the sample point within 
the active mesh. When considering the target matrix W, the 
parameters represent the local geometry of the target mesh at 
the sample point. Various relationships between the TMOP 
matrices and their geometric parameters are important in 
measuring geometric mesh quality and in constructing the 
target matrices.

Planar meshes contain two-dimensional mesh elements 
such as triangles, quadrilaterals, or polygons. While planar 
meshes can exist in both ℜ2 and ℜ3 , it shall be assumed in 
this paper that a planar mesh belongs to ℜ2 . Any planar 
mesh in ℜ3 can be transformed into a planar mesh in ℜ2 . 
Each triangular or quadrilateral element in ℜ2 has a map-
ping from a two-dimensional logical space to points within 
the element. The boundaries of the physical elements can 
be curved in the high order element case. Rather than try to 
characterize the quality of a planar element directly, TMOP 
first measures local quality at sample points within the ele-
ment. The set of sample points within an element can then be 
combined via some averaging technique to create an element 
quality metric. The present section, however, is concerned 
with the definition and construction of targets at a given 
sample point of a planar mesh element.

Before elaborating on the active and target matrices, it is 
useful to gather together some important geometry-related 
facts about square matrices with real elements. Geometry is 
emphasized because mesh quality improvement generally 
involves controlling geometric properties of a given mesh.

2.1 � Geometric parameters for meshes in ℜ2

At a given sample point in a 2D mesh element, there exists 
the two tangent vectors to the element mapping. From the 
two tangent vectors, various geometric quantities can be 
defined: the lengths of the two tangents, the angle between 
them, the two angles between the tangents and the x-axis, 
the aspect ratio, and the area of the parallelogram between 
the two tangents. We refer to these parameters as length ( �1 , 
�2 ), skew angle ( � ), orientation ( � , �′ ), aspect ratio ( � ), and 
area/volume ( � ). There are various relations between these 
quantities:

It is also useful to define a “size” quantity � by

� =�� − �,

� =
�2

�1

,

� =�1�2 sin�.

� = �1�2.
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We will call these quantities the first order geometric param-
eters of planar mesh quality. In general, at every sample 
point, the value of each parameter can be different from its 
value at another sample point (e.g., area will differ from one 
sample point to the next).

Due to the relations above, only four of the parameters 
are needed to create a parameter set �2 in which each of the 
parameters in �2 is fully independent of the others in the set. 
We elect to define �2 ∈ ℜ4 as follows:

We call �2 the standard independent geometric parameter 
set for planar mesh quality. The components of �2 are size, 
orientation, skew, and aspect ratio. The non-standard param-
eters may be calculated from the parameters in �2 . If 𝜁 > 0 , 
then the standard geometric parameters are well-defined. 
In general, the values of the standard parameters can have 
the following ranges: 0 ≤ � , −𝜋 < 𝜃 ≤ 𝜋 , −𝜋 < 𝜙 ≤ 𝜋 , and 
0 ≤ � . Define the subset P of ℜ4 by the Cartesian product

Then, in general, �2 ∈ P.
The two tangent vectors at a sample point can thus be 

used to define the standard geometric parameter set at the 
sample point. We use the notation

to indicate the values of the standard parameters at sample 
point k.

The Jacobian of the element map is a matrix whose col-
umns consist of the tangent vectors. Since the parameters 
reflect the geometry of the tangent vectors, the geometry 
can also be associated with the Jacobian matrix. In fact, the 
Jacobian matrix must be a function of the parameters. This 
observation is exploited in the next few sections.

From the definition of a degenerate matrix, it is clear that 
a matrix in M2 (such as the Jacobian) is degenerate if and 
only if � = 0.

If the values of the standard parameters are obtained 
from the active matrix, one can indicate this by the notation 
(�A, �A,�A, �A) . Likewise, if they are related to the target 
matrix, the notation (�W , �W ,�W , �W ) indicates this. Where 
the context is clear, the subscripts are not used.

2.2 � A parametric definition of the � × 2 target 
matrix

The target matrix W is a matrix which is constructed prior 
to mesh optimization in such a manner that W ∈ M

p

2
 . In 

that case, 𝜁W > 0 and the geometric parameters are all well 
defined. The target matrix is expressed in terms of the target 
parameters as

�2 = (� , �,�, �).

P ≡ [0,∞) × (−�,�] × (−�,�] × [0,∞).

�2(k) = (�k, �k,�k, �k)

Equation 1 is called the standard parameterization of W.
With W ∈ M

p

2
 , the range of the parameter values is 

restricted to a subset PW ⊂ P . Equation (1) shows that there 
exists a mapping � from the set PW to the matrix set Mp

2
 . For 

the purpose of target matrix construction, the ranges of the 
geometric parameters is restricted to 0 < 𝜁 and 0 < 𝜙 < 𝜋 . 
These restrictions guarantee that det(W) = 𝜁 sin𝜙 > 0 (the 
target mapping is non-singular) and that 0 < 𝜌 < ∞ . There-
fore, the set PW is

The target matrix W can be usefully represented parametri-
cally, as in equation 1, given parameters � , � , � , and � . When 
�2 ∈ PW , one can replace � in (1) with �

sin�
 if one wants to 

specify the target in terms of the area/volume parameter. 
Values of these parameters must be supplied at every sample 
point in order to construct the set {W} prior to mesh quality 
assessment and improvement. The process of determining 
these values is called target parameter construction; this 
process is discussed in the Sect. 3.

2.3 � Parameter extraction from the 2 × 2 active 
matrix

A slightly different situation holds for the active matrix, 
because A is not constructed; rather, it is given by the mesh. 
That is, the geometric parameters of A, which can be denoted 
by �2(A) ≡ (�A, �A,�A, �A) , are implicitly defined by the 
mesh, both before and during mesh optimization. These four 
geometric parameters, which are referred to as the active 
geometric parameters, are a measure of existing geomet-
ric mesh quality, whereas the four target parameters are a 
statement of desired geometric quality. With respect to the 
active matrix, then, the question is given A, find �2(A) . This 
is called the extraction problem.

Because A is given, it is not guaranteed that A ∈ M
p

2
 . If 

it were, the method described in the previous section can be 
used to find the active parameters. Unfortunately, the most 
that can be said is that A ∈ M2 . The active matrix could be 
degenerate, singular, or have a negative determinant, par-
ticularly if it corresponds to a poor quality initial mesh. If A 
is degenerate, then �A = 0 , �A is undefined, and possibly �A 
and �A are as well. On the other hand, if A is non-degenerate, 
all four geometric parameters exist. Therefore, given A non-
degenerate, it is possible to extract �2(A) from A, using one 
extraction function for each geometric parameter (see [16] 
for the explicit functions). The extraction functions for the 

(1)W(� , �,�, �) =
√
�

⎛
⎜⎜⎝

1√
�
cos �

√
� cos(� + �)

1√
�
sin �

√
� sin(� + �)

⎞
⎟⎟⎠
.

PW = (0,∞) × (−�,�] × (0,�) × (0,∞).
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active mesh have domain M∼d
2

 and result in a point �2(A) in 
the set

Extraction is used in TMOP for (1) assessing geometric 
quality of the active mesh, (2) evaluating mesh quality met-
rics, and (3) target matrix construction. Only (3) is relevant 
to this article so further discussion of this topic in relation 
to TMOP is left to a future article.

2.4 � Parametric factors of the 2 × 2 target matrix

Given W ∈ M
p

2
 , the parametric representation of W in Eq. 1 

has the following matrix factorization (or decomposition):

where

Equation 2 is called the parametric factorization of W2×2 . 
Notice that each factor is a function of a single geometric 
parameter. The matrix R(�) is called the orientation matrix; 
R is a rotation matrix [i.e., det(R) = 1 , RtR = I ]. The matrix 
Q(�) is called the skew matrix; Q is upper triangular with 
unit column vectors. The matrix D(�) is called the aspect 
ratio matrix; D is diagonal, with unit determinant. Taking 
the determinant of both sides of the factorization relation, 
one finds � = � sin� , as expected.

Define the shape matrix S by S ≡ QD and the shape+size 
matrix U by U =

√
� S . Thus

The matrix S is upper triangular with determinant equal to 
sin� . The matrix U is upper triangular with determinant � . 
Except for W itself, these matrices are referred to as incom-
plete target matrices.

The active matrix, when non-degenerate, may also be 
factored similarly, to produce factors, RA , QA , DA , SA , and 
UA , as needed. The incomplete matrix factors are used in 
some TMOP local quality metrics, to be discussed in a future 
article. Target construction may require the construction of 
one or more of the incomplete factors rather than all of W.

PA = (0,∞) × (−�,�] × (−�,�] × (0,∞)

(2)W(� , �,�, �) =
√
� R(�)Q(�)D(�),

R(�) ≡

�
cos � − sin �

sin � cos �

�
,

Q(�) =

�
1 cos�

0 sin�

�
,

D(�) =

�
1√
�

0

0
√
�

�
.

W =
√
� R(�)Q(�)D(�)

=
√
� R(�) S(�, �)

=R(�)U(� ,�, �).

3 � The target construction methodology

A standard set of geometric parameters (volume, skew, 
aspect ratio, orientation) has been identified for both planar 
and volume meshes. The active and target matrices A and W 
form a pair at each sample point of the mesh. Likewise, the 
active and target geometric parameters form a pair at each 
sample point. The active parameters are determined by the 
active mesh; they can be extracted from the active matrix. 
The main focus of this section is the assignment of the tar-
get parameter values that indicate the target mesh quality 
towards which the active parameter values will evolve during 
mesh optimization via node movement. The target parameter 
values (and perhaps the target matrix) are assigned prior to 
initiating the optimization procedure.

A critical issue in TMOP is to understand, in a general 
way, how to assign values to the target mesh parameters. In 
the ideal situation, one can use either a published method to 
assign the values or an existing algorithm in a mesh optimi-
zation code. If neither is available, one can consider devel-
oping their own method for assigning the target parameter 
values. This section describes the process by which a new 
method for assigning the target parameter values can be 
developed.2 We call this process Target Construction (or 
target parameter construction).

Definition 2  Target Construction is a process by which one 
develops a numerical algorithm that takes primary data and 
converts it into values of the target parameters at every mesh 
sample point.3 The process takes into account the mesh qual-
ity improvement goal, facts about the mesh, and the simula-
tion. The resulting numerical algorithm is called a Target 
Construction Method.

One can, of course, develop a target construction method 
without following the process to be described. However, a 
general description of the target construction process should 
help those who wish to create an effective method appro-
priate to the given mesh quality improvement goal and the 
problem context.

At present, there are only a few proven target construc-
tion methods, e.g., “shape improvement” (Example I in 
Sect. 3.5.1.1) and “shape improvement with size equaliza-
tion” (Example II in the same section). In the long term, one 
or more target construction methods for each of the mesh 
quality improvement goals listed in section 1.1 of [16] are 

2  It is expected that, over time, more and more methods for assigning 
target parameter values will be developed so that one will not have to 
develop a new method each time a mesh is to be optimized.
3  We shall discuss what we mean by primary data in Sect. 3.1.3.
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envisioned. In this vision, the practitioner with a mesh qual-
ity issue would be able to consult the list of quality improve-
ment goals to find an appropriate target construction method 
that they could use directly or adapt to their specific prob-
lem. In the meantime, barring the existence of an appropri-
ate target construction method, one must devise their own 
method. The purpose of this section is to assist and encour-
age the development of new methods.

Three sequential phases within target construction are 
proposed: (1) target construction strategy, (2) secondary data 
algorithms, and (3) target parameter model development.

3.1 � Target construction strategy

In the first phase of target construction, one develops an 
overall target construction strategy to determine the mesh 
quality improvement goal and to sketch an approach to the 
problem of assigning appropriate values of the target param-
eters. It is assumed that at this point the practitioner has 
assessed the quality of their meshes, found them lacking, 
and determined a mesh quality improvement goal. The prac-
titioner has determined that there is no appropriate target 
construction method that already exists and has decided to 
develop a new method. In developing a strategy, one deter-
mines the relevant target parameters and how they will be 
treated, and examines the available primary data.

Strategy development itself entails a number of sub-
phases that are described in Sects. 3.1.1–3.1.3. These sub-
phases are referred to as context assessment, parameter 
control decision, and correspondence chain description, 
respectively.

3.1.1 � Mesh and simulation context assessment

As background information for the target construction pro-
cess, it is helpful to determine the mesh and simulation con-
text. This information can bear on the approach selected at 
various stages in the target construction process.

The mesh context concerns basic facts about the initial 
mesh to be optimized. Basic information needed to char-
acterize the mesh context includes the spatial dimension 
of the object on which the mesh resides, the type of mesh 
(e.g., structured or unstructured), and the type of elements 
(e.g., simplicial or non-simplicial). In addition, one should 
consider information concerning number of mesh elements, 
mesh connnectivity, and whether or not the initial mesh is 
inverted or tangled.

The simulation context concerns basic facts about the 
simulation code and the particular simulation. This includes, 
for example, physics type, physical boundary conditions, 
and discretization method. Obtaining answers to these 
questions before engaging in target construction is a good 
idea, because it can clarify the optimization goal, identify 

possible sources of primary data, and assist in target model 
development.

3.1.2 � Target parameter control decision

As noted previously, there are four groups of target param-
eters: volume, orientation, shape, and aspect ratio.4 In the 
volume mesh case, there are several target parameters within 
each of these groups. In this phase of developing a target 
construction strategy, one decides which target parameter 
groups will be controlled and which will not. Parameters 
within a particular parameter group are controlled if values 
of the target parameters in the group are or will be assigned 
(at all the sample points) in target construction.5 If, on the 
other hand, values are not assigned for a particular parameter 
group, then the group is not controlled.

It would seem at first thought that one would always want 
to control all four parameter groups to achieve the highest 
mesh quality. The four groups are often not equally impor-
tant, however. Volume is perhaps the most important param-
eter, closely followed by skew. Aspect ratio is important if 
the physics of the problem is anisotropic or if it is isotropic. 
Control over orientation is probably the least often required. 
Overall, the relative importance of the groups depends on 
the particular simulation at hand and on the mesh optimiza-
tion goal. In addition, assigning values at every mesh sample 
point to a parameter or parameter group can be challenging, 
especially when the physics does not dictate that the param-
eter needs to be controlled. Thus, it is fortunate that there 
exist mesh quality metrics that allow one to abstain from 
controlling a particular parameter group if desired. In some 
cases, abstaining on one parameter group may allow better 
control over another parameter group. One cannot abstain on 
too many parameters at once, however, so a balance between 
controlling and abstaining is needed.

The decision to control or not control the parameter 
groups can be represented by a sequence of four letters, one 
for each of the groups (i.e., volume, orientation, skew, and 
aspect ratio). Each group can be assigned only the letters C 
or A, standing for “control” and “abstain” (i.e., not control). 
There are 24 = 16 possible combinations of these letters, 
yielding 16 possible decisions one can make. If one wants 
to control volume and shape, for example, the control deci-
sion is represented as C − A − C − C . The control decision 

4  For 2D meshes, each parameter group has one parameter. For 3D 
meshes, some parameter groups contain more than one variable. For 
example, while in 2D, there is only one skew parameter � , in 3D 
there are three skew parameters �1,�2,�3 that form the skew group.
5  If one wants to control a particular parameter within a parameter 
group, one will usually want to control all the other parameters in the 
group as well. There may be the rare occasions where one wants to 
control only some of the parameters within a group.
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determines (1) which target parameter groups need to be 
assigned values in target construction, (2) an associated 
(incomplete) target matrix, and (3) the metric type.6 Contin-
uing the example, if the control decision is C − A − C − C , 
then one will need to assign values to the target parameters � , 
� , and � at each sample point of the mesh. Items (2) and (3) 
are intertwined. Metric type refers to local quality metrics 
that control only the parameters one has decided to control; 
in the example of C − A − C − C , one controls the volume 
parameter, and thus the required metric type is a “volume + 
shape” metric. Volume + shape metrics are functions of the 
active and target parameters (�A, �W ) , (�A,�W ) and (�A, �W ) . 
Some volume + shape metrics are directly functions of these 
parameters, while others can be expressed in terms of the 
volume + size matrices UA and UW . Due to lack of space, 
this topic is discussed in detail elsewhere [17].

Therefore, how does one make the cision? Basically, 
the decision is made in light of the identified mesh quality 
improvement goal, the mesh and simulation context, and 
the available primary data. If, for example, the mesh quality 
improvement goal is to improve the shape of the mesh ele-
ments, then one needs to control the skew and aspect ratio 
parameters. Such a goal tacitly implies that the volume and 
orientation parameters are not particularly important (except 
for keeping the volume positive), and thus one can abstain on 
those parameters. The control decision for “shape” improve-
ment is thus A − A − C − C . In general, one might wish to 
abstain on a parameter group, because (1) it is unimportant 
with respect to the mesh quality improvement goal or (2) it 
is important but there is no primary data that can be con-
verted into appropriate values of the particular parameter. 
By abstaining on a particular parameter group, the optimiza-
tion procedure should be able to produce an optimal mesh 
more in tune with the controlled parameters (and the qual-
ity improvement goal) than otherwise. Although a control 
decision always results in one of the four-letter combina-
tions of A and C, the decision should be restricted so that 
the corresponding metric type is one of the effective types 
mentioned above.7 In nearly all instances, one will want to 
control the skew parameter because it directly impacts the 
local volume (which one wants to be positive). Thus, the 16 
4-letter combinations is effectively reduced to 8.

Once the control decision has been made, one need con-
sider only the controlled parameter groups in the rest of the 
target construction process.

3.1.3 � Establishing data correspondences

As noted earlier, target construction results in an algorithm 
(or series of algorithms) that takes data and converts it into 
values of the target parameters. As an preliminary step, one 
frequently first converts the data into “intermediate” data 
and subsequently converts the intermediate data into target 
parameter data.

Definition 3  Primary data consist of geometric data and 
simulation data that is accessible from the simulation state 
prior to target construction and which is useful in construct-
ing targets. See Table 1 for examples.

Definition 4  Secondary data primarily consists of data that 
is computed from the primary data and can be considered as 
functionals of the primary data. See Table 2 for examples.

Definition 5  Tertiary (or Parameter) Data consists of data 
corresponding to values of the controlled target parameters 
over the set of sample points. Parameter data is computed 
from Secondary Data.

Primary data refer to data that comes mainly from the 
simulation, the simulation state, or even a priori knowl-
edge concerning the simulations. Primary data generally 
comes from two kinds of sources: (1) geometric sources 
and (2) simulation sources. Geometric data sources consist 
of items that are largely independent of any physical infor-
mation and independently of the simulation that is to be 
performed. This includes information and data concerning 

Table 1   Examples of geometric primary and secondary data

Source Primary data Secondary data

Physical domain Geometric description: Bounding box and 
centroid

(CAD data, etc.) Domain ‘diameter’
(Domain topology) Aspect ratio
(Domain symmetries) Orientation
(Dimension) Subregion indicators

Initial mesh Mesh type Domain area or volume
Mesh connectivity Boundary parameteri-

zation
Element type(s) Isotropic element shape
Vertex coordinates Mesh Jacobian
Boundary flags Active parameter values

Local quality metric 
values

Mesh statistics
Sizing functions

Reference mesh Vertex coordinates Reference Jacobian
Mesh statistics

7  It is recognized that, in more complex situations, the mesh quality 
improvement goal may require one to make multiple control deci-
sions, for example, one for each sub-region of the physical domain.

6  An extensive discussion of ‘metric type’ and how it is determined 
by the control decision can be found in [17].
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the physical and computational domain, the mesh type, 
the mesh topology, element type, the coordinates of the 
initial mesh, and the coordinates of any reference meshes. 
Simulation data sources consist of items that are available 
from physical information and the simulation itself. Simu-
lation data can be used as primary data for target matrix 
construction at the beginning of the simulation or as the 
simulation proceeds, while geometric data are generally 
available prior to the simulation. An exception to the latter 
might be the case in which the domain deforms with time.

3.1.3.1  Geometric primary and  secondary data  There 
are three potential sources of geometric primary data. 
First, there is the contextual information described in 
Sect. 3.1.1. Information concerning significant mesh sub-
regions, domain size or aspect ratio, and whether the mesh 
is dynamic or static may be important.

The second potential source of geometric primary data 
(and one which is often neglected) is the initial mesh. The 
initial mesh contains primary data such as that listed in 
Table 1. From these quantities, one can calculate second-
ary data: the area or volume of the computational domain 
and thus an average local or cell area/volume. From the 
boundary discretization, one can determine a boundary 
parameterization or arclength. From element type, one can 
determine the isotropic element shape (skew and aspect 
ratio). One can also compute the initial mesh Jacobian 
matrix (and determinant) at every sample point. From that 
one can extract values of the initial mesh active geomet-
ric parameters. One can calculate the initial mesh quality 
using various metrics. One can calculate mesh statistics 
(e.g., average, minimum, maximum, variance) on such 
quantities as length or area/volume. One can compute a 
local “sizing” function [22]. The initial mesh can thus be 
used to calculate a wealth of secondary data valuable in 
constructing target matrices.

The third potential source of geometric primary data is 
a reference mesh, i.e., a mesh whose connectivity can be 
put into a one-to-one correspondence with the initial mesh. 
Reference meshes can be obtained from (1) the initial or 
computational mesh at an earlier time in the simulation 

(applies to moving mesh or deforming domain problems) 
or (2) a mesh generated “from scratch” on a similar domain 
with the same mesh topology (applies mainly to structured 
meshes). As with the initial mesh, the vertex coordinates of 
the reference mesh can be used to calculate secondary data 
such as the reference Jacobian matrix and to calculate refer-
ence mesh statistics on length or area/volume.

3.1.3.2  Simulation primary and secondary data  The physi-
cal simulation creates primary data such as that shown in 
Table 2. Other fields can be obtained from the coefficients 
of the governing partial differential equations. Each type of 
physics simulation will have its own set of primary data that 
can perhaps help determine the input parameters in the tar-
get matrix set.

As Table 2 shows, the primary data present in the simula-
tion can be further processed to create secondary data. From 
symmetric-matrix data, one can obtain real eigenvectors 
and eigenvalues, which, in turn are useful for determining 
directions and aspect ratios. From vector fields, one obtains 
directions and lengths. Primary solution data can be used 
to recover the solution Hessian matrix and to create spa-
tially dependent a posteriori error estimates. The literature 
describes many different methods for creating some types of 
secondary data (e.g., Hessian recovery methods [8], a pos-
teriori error estimates [27], and interpolation error [5, 9]).

3.1.3.3  Correspondences between  primary, secondary, 
and parameter data  The primary and secondary data men-
tioned in Tables 1 and 2 identifies only what kinds of data 
can potentially be of use in target construction. One needs 
in addition to identify the specific primary data and the spe-
cific secondary data that will be used in target construction. 
Specifying primary or secondary data include determining 
the form of the data and the locations of the data on the 
mesh or physical domain.

Beyond identification of the specific primary and second-
ary data that will be used, one needs to determine a corre-
spondence chain between the primary and target data.

Table 2   Examples of simulation 
primary and secondary data

Source Primary data Secondary data

Scalar fields The solution Gradient, Hessian
Material indicator function Error estimates
Streamlines

Vector fields Solution gradient or flux Directions, lengths
Velocity
Electric and magnetic fields

Matrix/tensor fields Permeability matrix Eigenvectors, eigenvalues
Stress tensor
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Definition 6  A Correspondence Chain is a mapping that 
identifies, for a controlled target parameter, (1) the specific 
secondary data that will be used to compute the controlled 
parameter data and (2) the specific primary data that will be 
used to compute the specific secondary data.

One correspondence chain is needed for each target 
parameter that is to be controlled. As an example, one might 
define a correspondence chain between a particular simula-
tion density field (the primary data), a particular error esti-
mator (the intermediate data), and the volume parameter. In 
this example, the local volume in the optimal mesh is to be 
adapted to the simulation densify field.

Note that, if multiple correspondence chains are needed, 
one is free to choose the primary data sources for each 
chain independently of what the primary data is in a differ-
ent chain. For example, the skew angles can be constructed 
from the primary data “element type” while the area/volume 
parameter can be constructed from primary data consisting 
of the initial mesh vertex coordinates. At the same time, 
the direction parameter group could be constructed from 
primary data corresponding to a simulation-produced vec-
tor field. Flexibility in terms of mixing and matching data 
sources is quite important in being able to find appropriate 
values for the target parameters.
3.1.3.4  The PIE decision  When creating correspondence 
chains that identify specific data, it is helpful to keep in mind 
what can be referred to as the PIE decision. For each of the 
parameter groups, one has basically four options in defining 
how the group will be constructed. The four options are (P) 
preserve, (I) improve, (E) equalize, or (A) abstain. In the 
preserve option, one seeks to retain the quality present in 
the initial mesh, with respect to the given input parameter. 
Thus, the specific primary data in the correspondence chain 
will be the initial mesh if one chooses the preserve option. 
In the improve option, the parameter group is constructed so 
as to improve upon the quality existing in the initial mesh 
because the existing initial mesh quality is inadequate (with 
respect to the given parameter). In the equalize option, the 
parameter group is constructed by assigning a value that is 
constant over all sample points.8 In this way, quantities such 
as area, volume, or size can be equalized over the mesh. 
Strictly speaking, one would do this only in an attempt to 
improve the quality of the mesh with respect to the given 
parameter group, so equalization can be viewed as a special 
case of the improve option. Finally, the abstain option is 

used when there is no good primary data source for creating 
acceptable values for a given parameter group. This option 
was discussed in Sect. 3.1.2.

As an example, consider the area/volume parameter 
group. In r-adaptivity, one often seeks to adapt (improve) 
mesh quality by varying the area/volume of mesh elements 
according to some scalar quantity such as an a posteriori 
error estimate. In mesh generation, one often equalizes cell 
area/volume in the absence of any specific knowledge about 
the particular physical simulation that the mesh will facili-
tate. In some mesh quality improvement problems, the area/
volume of mesh elements has already been adapted to the 
solution; in that case, one wants the area/volume construc-
tion procedure to preserve the existing area/volume, i.e., not 
obliterate it during mesh optimization. Finally, it is often the 
case in mesh generation in the absence of simulation infor-
mation to be indifferent or neutral to element area/volume, 
as in shape optimization. In this case, one abstains from 
controlling the area/volume parameter. One also abstains 
when there is no relevant primary data for the construction 
of the parameter group.

The “preserve” option, if selected, usually calls for 
extracting values of geometric parameters from the refer-
ence mesh, so the latter becomes the specific primary data 
in the correspondence chain. The “equalize” option most 
often calls for constants available or computable from mesh 
and simulation data. The skew parameter is very often deter-
mined by the isotropic element data; this would fall under 
the equalize option. “Improve” is the most difficult option 
to achieve since it often requires model development. These 
options are illustrated in Sect. 3.3.

In the PIE decision, one assigns to each correspondence 
chain (representing one target parameter) either P, I, or E. 
Including the control/abstain option there are, in theory, 
44 = 256 possible PIE combinations that can be made, rang-
ing from P-P-P-P (preserve everything) to A-A-A-A (abstain 
from all). In practice, the number of useful combinations is 
probably much smaller. Nevertheless, the large number of 
combinations provides a great deal of flexibility.

Finally, note that most often if a particular set of PIE 
decisions is made, it usually applies to every sample point 
of the mesh. For example, if one chooses to preserve the area 
parameter, one wants to preserve it at every mesh sample 
point. However, in some cases it may be desirable to pre-
serve area on one set of sample points and to equalize it on 
the remaining sample points. The flexibility to do this should 
be available in any general optimization code.

Having identified the mesh and simulation context, made 
the parameter control decision, and established the necessary 
correspondence chains, one now has a complete target con-
struction strategy. Note that a correspondence chain defines 
only the mapping between the various levels of data; it does 

8  The term “equalize” is used to mean “making the values of a geo-
metric parameter equal at all sample points of the mesh.” Equalize 
is a special case of “equi-distribution” in which the product of a 
geometric parameter and a scalar weight is made the same over all 
sample points. Non-trivial equi-distribution is included under the 
“improve” option of PIE.
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not tell one how the data is to be converted. The latter ques-
tion is addressed in Sect. 3.2.

3.2 � Primary to secondary data conversion 
algorithms

The purpose of the algorithms mentioned in this section is 
to convert primary mesh or simulation data into values of 
one or more mesh or solution functionals over the mesh. 
The correspondence chains determine exactly which primary 
data and which secondary data will be the input and output 
of each algorithm needed in this phase. The secondary data 
must ultimately be defined at the mesh sample points. If 
not, then the interpolation of the secondary data to the sam-
ple points must be done in the target parameter calculation 
phase. The algorithms in this section provide examples as 
to how the primary data are converted.

3.2.1 � Algorithms for mesh functionals

Examples of primary mesh data include mesh connectivity, 
vertex or nodal coordinates, and element types. Examples of 
secondary mesh data include isotropic element coordinates, 
the Jacobian matrix of a reference mesh, and mesh statistics. 
Algorithms for calculating the latter are described next.

3.2.1.1 Isotropic element coordinates from element type. 
This subsection covers a rather trivial but important exam-
ple. The most commonly used mesh elements are the trian-
gle, quadrilateral, tetrahedron, hexahedron, triangular prism, 
and pyramid.

Definition.
An isotropic element, as the term is used here, is defined 

as a straight-sided element for which all angles within a 
given face are equal. The isotropic forms of the first four ele-
ment types are the equilateral triangle, the square, the equi-
lateral tetrahedron, and the cube. Isotripc elements define the 
targeted shape of an element but not its size or orientation. 
They are used if the application has isotropic physics or in 
lieu of detailed knowledge of what element shape is best for 
the given application.

The primary data in this example are the element type. 
If the mesh is a hybrid mesh then each element will likely 
have a flag associated with it that tells the element type; 
this flag is the primary data. If the mesh consists of only 
one element type, then one has (in principle) just one flag 
per mesh. Given the element type, one can define (as sec-
ondary data) the vertex coordinates of the isotropic element 
(see Table 3).9 Isotropic elements need not have unit edge 
lengths. However, in terms of defining vertex coordinates 
for the isotropic element, assuming unit edge length is con-
venient. Thus, the vertex coordinates in the table have been 
defined for isotropic elements with unit edge lengths. Note 
that there is no conversion algorithm involved in this exam-
ple, only a look-up table. One can, of course, provide their 
own definition of the coordinates of an isotropic element. 
From the coordinates of an isotropic element, one can cal-
culate the corresponding target skew and aspect ratio param-
eters, but this activity does not conceptually belong to the 
calculation of secondary data this latter activity is discussed 
in Sect. 3.3.1). Coordinates for the isotropic 3D element 
types can be found in [16].

3.2.1.2 Reference mesh Jacobian from a reference mesh. 
A reference mesh is a mesh that exists and has the same 
topology (connectivity) as the mesh that is to be optimized. 
An important example of a reference mesh is the initial 
mesh; this is the mesh whose quality is to be improved via 
optimization. Another example of a reference mesh occurs 
in deforming domain problems: in that context, the refer-
ence mesh can be the active mesh at some earlier time in the 
deformation process. In yet another example of a reference 
mesh, one may be able to use a moving mesh at an earlier 
time as the reference mesh. In many optimization problems, 
the initial mesh has quality that is, in part, adequate or com-
patible with the optimization goal. When that is the case, we 
can use the local Jacobian matrices of the reference mesh to 
calculate all or part of the target matrix. Suppose the element 
mapping has the form

with N the number of element nodes (or control points), �n 
the coordinates of the nth node in the reference mesh, and �n 
the nth basis function. Then the element reference Jacobian 
matrix at the point (�1, �2, �3) has elements

�(�1, �2, �3) =

N∑
n=1

�n �n(�1, �2, �3)

Aref
i,j
(�1, �2, �3) ≡

�xi

��j
=

N∑
n=1

cn,i
��n

��j
.

Table 3   Two-dimensional isotropic elements

Isotropic element Vertex Coordinates

Equilateral Triangle 0 (0, 0)
1 (1,0)
2 �

1

2
,

√
3

2

�

Unit square 0 (0, 0)
1 (1, 0)
2 (1, 1)
3 (0, 1)

9  These coordinates are not unique, but uniqueness is not needed for 
the present purpose.
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The element reference Jacobian matrix at the sample points 
can be found by evaluation of the above at the logical sample 
points.

In this example of primary to secondary data conversion, 
the reference mesh nodal coordinates are the primary data 
and the reference mesh Jacobian matrix (which can be con-
sidered to be a mesh functional) is the secondary data. Once 
the reference mesh Jacobian is calculated, one can use it to 
compute values of the target parameters at the sample points. 
This latter step converts secondary data into parameter data 
and is discussed in Sect. 3.3.1.

3.2.2 � Algorithms for simulation functionals

Primary data related to the simulation are commonly avail-
able in the form of scalar and vector fields for the dependent 
variables in the PDE, along with PDE coefficients related 
to material properties. This data can be used to compute 
secondary data (i.e., solution/simulation functionals) such 
as gradients, flux, Hessians, error indicators, interpolation 
error, and a posteriori error estimates. Methods for doing 
so are better known to the simulation community than to 
the meshing community. Here we provide only some Refs. 
to methods for converting simulation primary data into sec-
ondary simulation data. For gradient recovery methods, see 
Refs. [6, 11, 18, 27]. For an introduction to Hessian recovery 
methods, see Refs. [8, 12, 21]. For interpolation error, see 
Refs. [3, 4, 9].

3.3 � Target parameter model development

The final phase of target construction is concerned with the 
conversion of secondary data into target parameter data. 
Because the final phase often entails devising an ad hoc 
model of target parameter behavior as a function of second-
ary data, complete with arbitrary constants whose values 
must be determined, it is referred to as target parameter 
model development. As an example, one might wish to 
devise a model that relates local a posteriori error estimates 
to the target volume parameter � . Clearly, in that case, one 
wants a function that decreases monotonically as the error 
increases. Beyond that, it is often unclear what type of func-
tion or model is most useful, so numerical experiments may 
be warranted. In such cases, model development is clearly 
an art, not a science.

Each correspondence chain identified in the first phase 
pairs some specific secondary data with specific geometric 
target parameters, so multiple models may be necessary, one 
for each chain. On the other hand, there are cases in which 
models do not need to be developed because the relationship 
between the geometric parameter and the secondary data is 

unambiguous. This is especially true when the secondary 
data consists of mesh functionals.

3.3.1 � Converting mesh functionals to parameter data

Three examples are given in which secondary data in the 
form of mesh functionals is converted into values of target 
parameters.

3.3.1.1  Skew and  aspect ratio parameters from  isotropic 
element coordinates  Isotropic elements can be used to 
find target parameter values for the skew and aspect ratio 
groups, but not the volume or orientation groups. The sec-
ondary data in this case consists of the coordinates of the 
isotropic element (see Table 3). For the triangle element, let 
(u, v) be a point in the isotropic triangle. For 0 ≤ � ≤ 1 and 
0 ≤ � ≤ 1 − � , the points in the triangle are

with (uk, vk) the isotropic element coordinates at vertex 
k = 0, 1, 2 (see Table 3). In that case, the Jacobian matrix 
corresponding to the isotropic element is

The skew angle � is found by extracting it from the ideal 
Jacobian matrix:

Then sin� =

√
3

2
 and � =

�

3
 . Since all the lengths in the 

equilateral triangle are equal, the aspect ratio parameter is 
� = 1 . Proceeding similarly for the unit square element, one 
finds cos� = 0 , sin� = 1 , and � =

�

2
 . Note that the Jacobian 

matrix of these isotropic elements is a constant over the ele-
ment, thus so are the skew and aspect ratio parameters.

Of course, in this example, the computation of the iso-
tropic skew and aspect ratio parameters does not change 
from mesh to mesh or from problem to problem. One can 
simply use the results given in this section as the target val-
ues of the skew and aspect ratio parameters, going directly 
from the element type indicator to the target values. See 
[16] for a description of the isotropic skew and aspect ratio 
parameters for the 3D element types.

3.3.1.2  Target parameter values from  a  reference mesh 
Jacobian  Another example of using mesh functionals to 
find target parameter values is that of using a reference 

u(�, �) =� u1 + � u2 + (1 − � − �) u0
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mesh (see Sect. 3.2.1). The secondary data in this exam-
ple are the set of Jacobian matrices that can be computed 
at the sample points of the reference mesh. Values of the 
target parameters can be found by applying extraction 
functions to the reference mesh Jacobian, as described in 
Sect. 2.3.

As an example, in many optimization problems the ini-
tial mesh has quality that is, in part, adequate or compat-
ible with the optimization goal. When that is the case, one 
can use the local Jacobian matrices of the reference mesh 
to calculate all or part of the target matrix. Let Aref be the 
Jacobian matrix of the reference mesh at some given sam-
ple point (or just A when the context is clear). Then, if one 
wants to create values at every sample point for the area or 
volume parameter � from the reference mesh, then simply 
let � = �Aref

 . Using these values as target parameter values 
implies that one finds the corresponding reference mesh 
values acceptable, or that one wants to preserve those val-
ues in the optimal mesh to be created.

Note that the target parameters calculated from the 
reference mesh may not always satisfy the requirements 
of a valid target matrix input parameter. For example, if 
the reference mesh has poor quality, one might encounter 
sample point locations for which �i = �i(Aref) = 0 or for 
which � = �(Aref) ≤ 0 . If the reference mesh contains such 
points, the reference mesh cannot be used, at least not at 
the sample points where these issues occur. Thus the refer-
ence mesh should have good quality, at least with respect 
to the target parameters of interest.

In the reference mesh example of target matrix input 
parameter construction, the reference mesh vertex coordi-
nates are the primary data, the reference Jacobian matrix is 
the secondary data, and the target parameter data extracted 
from the matrix is the final parameter data.

3.3.1.3  Reference mesh statistics  As a third example of 
converting secondary mesh data into target parameter val-
ues, consider again the Jacobian matrix computed on the 
reference (or initial) mesh. For any given geometric target 
parameter p, one can form the set

{pk} of values over the set of reference mesh sample 
points by using the extraction functions. Then, given val-
ues {pk} , one can calculate parameter statistics over the 
sample points: the average,

the minimum,

the maximum,

p̄ =
1

K

K∑
k=1

pk;

pmin = min
k
{pk};

the standard deviation,

and other statistics.
Mesh statistics can be useful in target parameter model 

development. An important example occurs in the area or 
volume equalization problem where the goal is to create 
equal area or volume elements throughout the mesh. In that 
case, the local area parameter � should be constant, so one 
can set 𝜐 = 𝜐̄ref at all sample points. In this example, the 
vertex coordinates of the reference mesh are the primary 
data, and the reference mesh Jacobian and the parameter 
values calculated therefrom are the secondary data. The final 
parameter data is based on a model that relates a mesh sta-
tistic (or, more generally, some function of a mesh statistic) 
to a set of target parameter values.

3.3.2 � Converting simulation functionals to parameter data

This topic is illustrated with an example in which the model 
is relatively simple. Suppose one wants to adapt a 2D quad-
rilateral mesh to the principal axes of the permeability tensor 
K (a symmetric, positive definite matrix) in a subsurface 
Darcy flow simulation. The first column of the active Jaco-
bian matrix is to be aligned with the principal flow direction 
to improve simulation accuracy. The mesh spacing in that 
direction should be small compared to the normal direction. 
The primary data are the permeability tensor K. The second-
ary data consist of the unit eigen-pairs of K; let those be 
referred to as (�, �) and (�⟂, �⟂) , with � = (cos u, sin u) and 
�⟂ = (− sin u, cos u) and u the angle between the x-axis and 
the direction of � . Define the ratio r ≡

(
1

�

)
�⟂ . If r ≤ 1 , align 

the first column of the active matrix with � , so the orienta-
tion, skew, and aspect ratio target parameters can be chosen 
to be � = u , � =

�

2
 , and � =

1

r
 . On the other hand, if r > 1 , 

align the first column of the active matrix with �⟂ , so the 
orientation, skew, and aspect ratio target parameters can be 
chosen to be � = u +

�

2
 , � =

�

2
 , and � = r.

Three of the four target parameters were defined in the 
Darcy flow example above. If the permeability tensor is not 
a constant, then the orientation and aspect ratio parameters 
will vary from one sample point to the next. The remaining 
target parameter, corresponding to the volume � , can also 
be defined using the tensor. It is reasonable to expect that 
the local mesh volume would be a function of the determi-
nant of K, i.e., � = �(� �⟂) . Here is where model develop-
ment is needed. It seems clear that the volume should be a 

pmax = max
k

{pk};

𝜎(p) =

√√√√ 1

K

K∑
k=1

(
pk − p̄

)2
;
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decreasing function of the determinant, because a relatively 
large determinant means greater flows and thus requires 
smaller element areas. Many functions, of course, satisfy 
this condition − for example,

and

with constants �o , a to be determined. Both functions obey 
� = �o when the determinant is zero and monotonically 
decrease to zero as the determinant approaches infinity. Two 
issues arise in this kind of model development: (1) what is 
a good functional form and (2) what values should be given 
to the constants? From experience, the answer to the first 
question seems to be that the particular functional form is 
often not critical, as long as it is monotonically decreas-
ing. However, in practice, trying several functional forms is 
advisable. Answering the second question generally requires 
numerical experimentation using the simulation of interest. 
In this example, a PDE coefficient matrix and its eigenval-
ues/vectors were used as the secondary data. Other sources 
of secondary data that might be useful in a simulation were 
given in Table 2.

In this Darcy flow example, there are four correspond-
ence chains, one for each of the four geometric parameters 
associated with meshes in ℜ2 . All four chains began with 
the permeability tensor K over the domain as the primary 
data. The first chain connects K to the secondary data det(K) 
and then to the volume parameter � . Since in this chain, 
there was no use of a reference mesh nor of any constant 
data, the chain is an “improve” chain with respect to the 
PIE decision. The second chain connects K to the secondary 
data consisting of the eigenvectors (�, �⟂) of K. The second 
chain then connects the secondary data to values of the ori-
entation parameter � ; this chain is also an “improve” chain. 
The third chain is built upon the fact that the eigenvectors 
of K are orthogonal, suggesting that the skew angle should 
be that of the isotropic quadrilateral element, i.e., �

2
 . In this 

case, one can say that the primary data is K, the secondary 
data are the isotropic angle in a quadrilateral element, and 
the final parameter data are the skew angle. The chain uses 
the “equalize” option since the target skew angle is constant 
over the mesh. The last chain is built upon the idea that the 
ratio of the eigenvalues of K suggest an appropriate value for 
the aspect ratio parameter. In this case, one can say that the 
primary data are K, the secondary data consist of the eigen-
values of K, and the final parameter data is the aspect ratio 
parameter. The chain uses the “improve” option since the 
target aspect ratio is non-constant and does not come from a 

� = �o exp
−a � �⟂

� = �o

{
1 −

2

�
arctan

(
a � �⟂

)}

reference mesh. In summary, the four chains correspond to 
a PIE decision of the form I-I-E-I.

3.3.3 � Summary of the model development phase

In the model development phase, one defines the way in 
which the secondary data in each correspondence chain will 
be converted into values of a particular target parameter. 
There are many ways in which this can be done, and one 
is limited only by one’s ingenuity. The values should all 
be defined over the set of mesh sample points. Once the 
parameter values have all been determined, one can further 
compute various target matrices if needed by the local qual-
ity metric.

3.4 � Summary of the target parameter construction 
process

The three phases in target construction are (1) strategy 
development, (2) secondary data algorithm development/
application, and (3) parameter data model development. 
Although each stage has been carefully described in some 
detail, target construction is not envisioned as a formal pro-
cess. Rather, the description is intended only to guide those 
seeking to define values of the required target parameters 
that are appropriate to a particular mesh quality improve-
ment goal. Although other mesh optimization methods have 
used target parameters of various sorts, this is the first time 
that methods for assigning values to these parameters has 
been systematically described. There are no guarantees that 
the target construction process will result in an adequate 
optimal mesh or that the mesh quality improvement goal 
will be reached. However, at least there is now a rational 
approach to the problem of assigning values of target param-
eters that can be systematically employed in the future. As 
noted earlier, in the long term, this could result in a library 
of target construction algorithms available to the general 
community.

3.5 � Target construction examples for planar meshes

The target construction methodology described in Sects. 
3.1–3.4 is illustrated by ten examples in this section. For 
simplicity of presentation, the examples are in the context of 
planar meshes in ℜ2 ; most of the examples can be extended 
to volume meshes without great difficulty. The examples 
illustrate how a construction method, aimed at a particu-
lar mesh quality improvement problem, is created using 
the methodology outlined above. Some of the construction 
methods have been previously presented in the TMOP lit-
erature, but this is the first time, they are explained in the 
context of the target construction methodology. The seven 
examples in Sect. 3.5.1 illustrate parameter construction 
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based on geometric primary and secondary data, while the 
three examples in Sect. 3.5.2 illustrate parameter construc-
tion based in part on simulation data. Numerical confirma-
tion of the specific construction methods is shown either by 
numerical examples or by citation of the literature. Given 
the large variety of mesh contexts, quality improvement 
problems, primary data types, primary-to-secondary data 
conversion algorithms, and model development opportuni-
ties, many more target construction methods are possible.

Mesh quality improvement begins with an initial mesh 
and ends with an optimized mesh. To improve the initial 
mesh, one must construct the target parameter values. As 
noted in Sect. 3.1, the parameter values are ultimately deter-
mined by primary and secondary data. If the data used to 
construct the parameter values is strictly geometric in nature 
(i.e., does not originate from a physical simulation), then 
the data will be defined at logical locations associated with 
the mesh. As the mesh moves within the domain during the 
optimization procedure, the data moves along with it. On 
the other hand, if some of the data used to construct the 
parameter values is obtained from the simulation, the data 
will most likely be defined at physical locations associated 
with the domain. As the mesh moves within the domain 
during the optimization procedure, the simulation data do 
not move with it. In this case, the physical parameter data 
must be interpolated (or advected) to logical locations in the 
mesh. The interpolation or advection of data occurs during 
the optimization step and therefore has nothing to do with 
the target parameter construction process, which occurs 
prior to optimization. Therefore, target parameter construc-
tion does not depend on whether or not one uses geometric 
or physical data in the target (one can mix and match the 
different types as needed). That said, the final values of the 
target parameters to be constructed must be located at logi-
cal locations within the mesh called sample points, because 
that is where the active and target matrices reside. In the 
examples below, it is assumed that interpolation of the data 
to sample points has taken place at some stage of the pri-
mary–secondary–tertiary data processing; this topic is not 
discussed further in the examples.

In the examples that follow, reference is made to certain 
metric types. One outcome of the parameter control deci-
sion is to define the type of metric that should be used in 
the optimization procedure. For example, if the parameter 
control decision is A − A − C − C , then one must use a met-
ric whose type is skew + aspect ratio (i.e., shape). There are 
eight metric types that can potentially arise [17]. Of these, 
only 3–4 metric types have been demonstrated to reliably 
yield acceptable optimal meshes. The parameter control 
decision is thus constrained with those limitations in mind. 
In the examples of 2D target construction below, some of the 
viable metric types are referred to even though they are not 
defined in this document due to lack of space.

3.5.1 � Target parameter construction using geometric data

The target construction examples in this section use only 
geometric data, i.e., data obtained from the problem domain 
or the mesh. The mesh context for all these examples is 
assumed to be that of a conformal, unstructured mesh in ℜ2 
consisting of triangle and/or quadrilateral elements (either 
low or high order).

Example I   Equalize isotropic shape.

The mesh quality improvement goal in this example is 
to create a set of target parameters and matrices that can be 
used to create an optimized mesh in which element shape is 
closer to the isotropic element shape. With shape improve-
ment as the goal, and shape defined as skew + aspect ratio, it 
is clear that the parameter control decision is A − A − C − C . 
Since only skew and aspect ratio (i.e., shape) are to be 
controlled, metric type shape must be used. Furthermore, 
because the shape is to be the same at every sample point, 
the PIE decision is A − A − E − E . The primary data in this 
problem are element type and also the isotropic element ver-
tex coordinates given in Table 3. The secondary data are the 
Jacobian matrix on the isotropic element. Finally, the param-
eter data consist of the values � =

�

3
 and � = 1 if the element 

is a triangle and � =
�

2
 , � = 1 if the element is a quadrilateral 

(see Sect. 3.3.1 on how this is determined).
Shape metrics are functions of the parameters � and � 

only, i.e., they must not also depend on the volume and 
orientation parameters. In some cases, shape metrics are 
defined in terms of the shape matrix

Inserting � =
�

3
 , � = 1 for the isotropic triangle, the shape 

matrix is

For the isotropic quadrilateral, Squad is the identity matrix. 
For an all-triangle mesh, Stri will be used at every sample 
point. For an all-quadrilateral mesh, Squad will be used at 
every sample point. For a hybrid triangle-quad mesh, one 
uses either Stri or Squad at a given sample point, depending 
on the local element type.

Example II   Equalize isotropic shape and equalize local 
volume.

The mesh quality improvement goal in this example is to 
create a set of target parameter values that will encourage the 
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optimized mesh to have elements whose shape corresponds 
to the isotropic element and whose volume is nearly con-
stant. The control decision is C − A − C − C and, therefore, 
the metric type is volume + shape. The associated incom-
plete target matrix is U =

√
�S . The PIE decision is E-A-

E-E and, therefore U will be the same at all sample points. 
The previous example showed how to construct S, so here 
only assignment of � values need be considered. In gen-
eral, volume and size are related in 2D by � = � sin� . To 
equalize the volume over the sample points, set the target � 
equal to the average value of � on the initial mesh; this is an 
example of using the mesh statistics approach described in 
Sect. 3.3.1.3. Since � is known from the element type, one 
can find values of � from � and � . The primary data for the 
volume parameter is the initial mesh and mapping. From 
that, one calculates, as secondary data, the set of initial mesh 
Jacobians and determinants. The target parameter data � is 
just the average of the determinants over the sample points.

Example III   Equalize isotropic shape and preserve local 
volume.

This example is similar to the previous except that, 
instead of equalizing volume, the goal is to preserve the 
initial mesh local volume at each sample point. Clearly this 
goal only makes sense if the set of local volumes of the 
initial mesh are all positive. The control decision is again 
C − A − C − C , but now the PIE decision is P-A-E-E. The 
shape matrix is constructed as in Example I. The target value 
of � is determined by setting it to the determinant of the ini-
tial mesh Jacobian matrix at the given sample point. Thus 
� is not a constant over the mesh, but rather varies with 
sample point. The primary and secondary data for the vol-
ume parameter is the same in the previous example, while 
the target parameter data for � is computed as described in 
Sect. 3.3.1.2, with the initial mesh as the reference mesh.

Example IV   Equalize local volume.

In this example, the goal is to equalize only volume (cell 
area). The control decision is C − A − A − A ; a volume met-
ric is required and the incomplete target is simply � equal to 
a constant. The constant is simply the average of the volume 
parameters in the initial mesh.

Example V  Equalize Isotropic Skew and Equalize Local 
Volume.

In this example, the mesh quality improvement goal 
is to equalize volume and skew. The control decision is 
thus C − A − C − A ; in turn, this requires a volume + 
skew metric and the incomplete target matrix 

√
�Q . The 

PIE decision is E − A − E − A , with � determined by the 
isotropic angle and �  found from setting the target vol-
ume parameter to the average of the volume parameters 
in the initial mesh. Alternatively, the PIE decision could 
be P − A − E − A and the volume would be based on the 
initial mesh volumes at each sample point. That would 
preserve the initial mesh volumes.

Numerical confirmation of Examples I–V.
Examples I–V, each having a different constructed target, 

are used in conjunction with a metric of the appropriate type 
to confirm numerically that the examples work as expected. 
All the confirmation tests used the same initial mesh (with 
first-order elements). The initial mesh is optimized once for 
each example, giving the optimal meshes shown in Fig. 1.

In Example I, the cells in the optimal mesh are closer 
to being squares (the shape of the isotropic quadrilateral 
element). The skew angles are generally closer to 90 
degrees and the aspect ratios closer to 1 compared to the 
initial mesh. The area of the cells has changed compared 
to the initial mesh, some getting larger and some smaller, 
because the volume parameter is not controlled. Orienta-
tion has also changed. The metric was the shape metric

In Example II, both the cell area and cell shape parameters 
are controlled. Cell areas are more nearly equal compared 
to the initial mesh and the shape is generally improved 
although not as much as in Example I. Of course, the areas 
in the optimal mesh are not exactly equal.. The metric used 
in Example II was the shape+volume metric

In Example III, shape is improved while the cell areas in 
the initial mesh are more or less preserved. This example 
also used �9 , but with a different set of targets. In Example 
IV, only area is equalized. Cell areas in the optimal mesh 
are nearly equal, but cells have considerable skew because 
the skew parameter was not controlled. The metric used in 
Example IV was the volume metric

In Example V, the area and skew parameters are controlled, 
but not the aspect ratio parameter. Compared to the initial 
mesh cell areas are more nearly equal, Compared to the other 
optimal meshes, the aspect ratios in the example 3 optimal 
mesh are further from 1 because the aspect ratio parameter 
was not controlled. The composite area + skew metric used 
was

�2(T) =
|T|2
2�

− 1

�9(T) = �||T − T−t||2

�56(T) =
1
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While the differences in these optimal meshes are subtle, 
they do confirm our theoretical expectations. The meshes 
differ, not only because different quality metrics were used, 
but because different targets were used.

Example VI   Preserve a good mesh on a deforming domain.

In this example the physical domain changes with time 
during a simulation due to various forces exerted on the 
domain. It is assumed that the boundary of the domain is 
known at the beginning of each time step. It is also assumed 
that at the previous time step the mesh has acceptable quality 
and includes non-constant features such as anisotropy, bias-
ing, clustering vertices, and perhaps other features. The goal 
is to create target matrices such that the optimized mesh (to 
be used at the next time step) resembles the mesh at the pre-
vious time step and thus preserves the non-constant features. 
There are several variations on this theme, depending on the 

1

2
�56 +

1 − cos(�A − �W )

2 sin�A sin�W

physical problem and the particular features one wishes to 
preserve. In TMOP, this is again described by the parameter 
control and PIE decisions.

In the simplest situation, one wishes to preserve all of 
the features of the mesh at the previous time step (i.e., the 
initial mesh). That is, the goal is to preserve shape, size, and 
orientation of the previous mesh, corresponding to the PIE 
decision P − P − P − P . In that case, the full target matrix 
W is needed. The preservation option requires the use of 
the initial mesh as the reference mesh, with Jacobian Aini . 
Values of the reference Jacobian are found from the mesh at 
the previous time step. Thus, one constructs the set of target 
matrices at each sample point by setting W = Aini . Because 
all of W is used in this situation, one must use metric type 
volume + orientation + shape (VOS). The primary data in 
this example can be considered to be the mesh at the previ-
ous time step, the secondary data are {Aini} , and the final 
data is W = Aini.

A variation on the previous example would be to change 
the PIE decision to P − P − E − P , in which the isotropic 
skew angles replace the angles from the reference mesh.
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Fig. 1   Numerical confirmation of Examples I–V. Upper Left: Initial 
Mesh. Upper middle: Example I. Equalize shape, �2 . Upper right: 
Example II. Equalize shape, equalize area, �9 . Lower left: Example 

III. Equalize shape, preserve area, �9 . Lower middle: Example IV, 
equalize area, �56 . Lower right: Example III. Equalize skew, equalize 
area. Area + skew metric, � = 0.50



4468	 Engineering with Computers (2022) 38:4451–4474

1 3

Another situation that occurs in practice is the need to 
preserve everything except volume. This occurs, for exam-
ple, when the size of the domain is rapidly increasing or 
decreasing with time. In this case, one can either abstain 
on volume (giving A − P − P − P ) or one can recalculate 
the local volume at each sample point as time passes. In 
the former, the mesh at the earlier time is the reference 
mesh, and one would calculate the matrix R(Aref) S(Aref) 
from the reference mesh and use that as the incomplete tar-
get matrix, along with a orientation + shape (OS) metric. 
Volume would not be controlled and should change auto-
matically as needed, with this selection. In the latter pos-
sibility, the PIE decision is I − P − P − P , in which data 
must be found for the size factor � (or, equivalently the 
volume factor � ). One way to do this would be to compute 
the total volume of the domain (V), both at the previous 
and at the current time steps ( n, n + 1 ). This requires the 
use of the mesh at time step n and the mesh at time step 
n + 1 . The latter mesh conforms to the updated domain 
boundary and is considered the initial mesh in the optimi-
zation procedure for time step n + 1 . Then, at each sample 
point, let

Since, in two dimensions, � = � sin� , one has �n = �n sin�n 
and �n+1 = �n+1 sin�n . In the latter, one can use �n in place 
of �n+1 because the intention is to preserve the skew angle. 
Thus

This approach would only work well if the domain volume 
is changing uniformly. In the I − P − P − P case, one must 
use a VOSA (volume + orientation + shape) metric, with 
Wn = �n+1 R(Aref) S(Aref).

See [14] for examples of target construction for the 
deforming domain problem.

Example VII   Increase a short edge length.

Suppose that in two dimensions, at some sample point, 
the edge that defines �2 in the initial mesh is unacceptably 
small. Let �min > 0 be the smallest acceptable edge length in 
the mesh and assume �2 < �min . The goal is to construct the 
target parameters such that in the optimized mesh the small 
edge length �2 at the same sample point has been increased. 
Let the new edge length be �2 + Δ�2 . At the same time, let’s 
preserve the length �1 at the same sample point, i.e., there 
should be no change in �1 as a result of the mesh optimiza-
tion. In fact, let f ≥ 1 be a user input and let us suppose that 
we desire �2 + Δ�2 = f �min after optimization.

�n+1 =
Vn+1

Vn
�n.

�n+1 =
Vn+1

Vn
�n.

Recall that in two dimensions, � = �1 �2 and � =
�2

�1

 . 
Thus,

Then, since a goal is to preserve �1,

and thus �Δ� = � Δ� , or

This means that, for some � ≠ 0 , one needs Δ� = � � and 
Δ� = � �.

Furthermore,

from which one finds

So, if 𝛽 > 0 , then Δ�2 > 0 and the length of the small edge 
will increase under optimization. Finally, in terms of f and 
�min,

with 𝛽 > 0.
Therefore, in this target construction method, one first 

writes the target matrix in the parametric form in Equa-
tion 2.2. For the given sample point at which the small edge 
occurred, set � = �init and � = �init from the initial mesh. 
Then replace � in the target with � + Δ� = (1 + �) �init and 
replace � in the target with � + Δ� = (1 + �) �init (where � is 
given in the last formula above, with �2 the value of �2 on the 
initial mesh). A metric of type VOSA preserves orientation 
and skew, while improving size and aspect ratio with the 
revised target matrix. The PIE decision is thus I − P − P − I.

In practice, one can find every sample point in the ini-
tial mesh at which �2 < �min and construct the target 
accordingly.

Of course, it may happen that at some sample points 
�1 < �min . In that case, let’s preserve �2 and increase �1 . 
That is, set

and
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Then,

and

From the first relation, for � ≠ 0 , Δ� = � � and Δ� = −� � 
is a solution. (The alternative solution, Δ� = −� �  and 
Δ� = � � will be discussed momentarily.) From the second 
relation,

Here, 𝛽 > 0 , but while �  will be increased, � will be 
decreased. In that case, �1 is increased but �2 is preserved. 
The alternative solution gives

Here, 𝛽 < 0 . Then, from the alternative solution, one sees 
that Δ𝜁 > 0 and Δ𝜌 < 0 . Therefore, in the alternative solu-
tion, � will be increased and � will be decreased. Thus, the 
alternative solution gives the same result as the original 
solution, i.e. �1 is increased but �2 is preserved.

Finally, this scheme does not guarantee that in the opti-
mal mesh all edge lengths will be greater than �min . It only 
encourages it. If the scheme fails to give the needed improve-
ment, one could consider (1) decreasing the value of f (while 
keeping it greater than 1) or (2) choosing I − A − P − I in 
the PIE decision to provide more flexibility to the mesh opti-
mization. That would require a volume + shape (VS) metric.

3.5.2 � Target parameter construction using simulation data

In these examples, one or more of the target parameter val-
ues is defined in physical space, while others are defined in 
logical space. Thus, some parameters will be interpolated 
(or advected) while others will not.

Example VIII   Adapt local volume to a set of local error 
estimates.

Suppose that, as primary data, one has values of the 
dependent variable in a simulation at the sample points of 
the initial mesh (the one just prior to optimization). Sup-
pose, in addition, that the primary data is processed to give 
secondary data consisting of values {ej} of some scalar error 

Δ

(
�

�

)
=Δ

(
�
2
1

)
.

Δ�

Δ�
= −

�

�

�Δ� − � Δ� =2�2 �1Δ�1.

� =
f �min − �1

�1

.

� = −
f �min − �1

�1

.

estimator at the sample points. From the secondary data, 
compute, as final data, the values of the local area param-
eters {�j} at the sample points. To do this, a function � = �(e) 
is used to convert the local errors into local areas. With such 
a function, one can find �j = �(ej) . Finally, convert the local 
volumes to local sizes {�j} by the usual formulas in 2D or 
3D, if needed.

Assume, for the moment, that one has such a function. 
Next, the parameter control decision must be made. It has 
already been decided to adapt the local volume to the error, 
so the decision must have the form C − X − X − X , with X to 
be determined. Let us abstain from controlling orientation, 
but try to control shape. This gives C − A − C − C for the 
parameter control decision, so one needs a volume + shape 
metric and the incomplete matrix U (see Sect. 2.4). Since 
the volume parameter is to be adapted to the error estimates, 
the PIE decision has the form I − A − X − X . It is reason-
able to assume that in most cases, the skew decision will be 
to equalize the skew angles, so that angles in the adapted 
mesh will be close to the isotropic angle.10 For the aspect 
ratio parameter, it might be best to choose X = P (i.e., to 
preserve existing aspect ratios), especially if the initial mesh 
contains high-aspect ratio elements. So, the final PIE deci-
sion is I − A − E − P.

With the I − A − E − P choice, one need only interpo-
late the values of the local volume during the optimization 
procedure. The other parameters are computed in the usual 
fashion on the initial mesh and do not need to be updated 
during optimization.

The remaining question is how to create an adequate 
function �(e) . To begin, define a non-dimensional error 
parameter, given by

with emin = minj{ej} and emax = maxj{ej} . Then 0 ≤ E ≤ 1 
and

Let 𝜐(e) = 𝜐̃(E) . There are many functions 𝜐̃(E) that may 
suffice for adapting the mesh to the error, so let us first men-
tion some basic requirements on 𝜐̃ . The first requirement is 
that 𝜐̃(E) > 0 for 0 ≤ E ≤ 1 . This guarantees that the targets 
have positive local volume. The second requirement is that 
𝜐̃ should be a strictly decreasing function of E because larger 
errors require smaller local volumes in the adapted mesh. A 
third requirement is that

E =
e − emin

emax − emin

Ej =
ej − emin

emax − emin

.

10  In some rare instances, one might wish to choose Y = I , if one has 
some a priori knowledge about the skew angles.
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where �A is the local volume in the initial mesh.
To proceed further, define the change in the volume at 

point j to be

Substituting this relation into the third requirement on 
𝜐̃ , the requirement on Δṽ is

From the second requirement on 𝜐̃ , one sees that Δ𝜐̃ 
must be a decreasing function of E because for E near 1, 
the change in volume must be negative, while for E near 
0, the change in volume must be positive. In addition, let’s 
require that Δ𝜐̃(E) = 0 at E = Ē , where the latter is the 
average of the {Ej} . Finally, from the first requirement on 
𝜐̃,

for every j. Because the function Δ𝜐̃ is decreasing, its mini-
mum value occurs at E = 1 . Thus (Δ𝜐̃)j ≥ Δ𝜐̃(1) . Therefore, 
it is sufficient to require

The simplest function to satisfy these requirements 
would be a linear function in E. Therefore, assume that 
Δ𝜐̃ has the form

Since it is required that Δ𝜐̃(Ē) = 0 , b = −a Ē and thus

Since this is supposed to be a decreasing function, one 
needs a < 0 . Further

Assuming 
(
𝜐A
)
j
> 0 for all j, the first requirement on Δ𝜐̃,

is satisfied when

Therefore, the range of a must be constrained to

J∑
j=1

𝜐̃j =

J∑
j=1

(
𝜐A
)
j
,

(Δ𝜐̃)j = 𝜐̃j − (𝜐A)j.

J∑
j=1

(Δ𝜐̃)j = 0.

(Δ𝜐̃)j > −
(
𝜐A
)
j

Δ𝜐̃(1) >max
j
{−

(
𝜐A
)
j
} = −min

j
{
(
𝜐A
)
j
}.

Δ𝜐̃ = a E + b.

Δ𝜐̃ = a
(
E − Ē

)
.

Δ𝜐̃(1) = a
(
1 − Ē

)
.

a
(
1 − Ē

)
> −min

j
{(𝜐A)j},

a > −
minj{(𝜐A)j}

1 − Ē
.

Finally, note that with this model,

Thus the constraint on the sum of the deltas is automatically 
satisfied for any a.

The final value of the constructed volume parameter is

with “a” a user input parameter in the specified range.
Of course, many other functional forms for Δ𝜐̃ satisfying 

the requirements may be more suitable for adapting to the 
local error. For example, if ΔE = E − Ē , functions of the 
form aΔE + b (ΔE)3 or tan (ΔE) may work better because 
they are less sensitive to small ΔE but change rapidly with 
larger ΔE . To determine that, however, requires an actual 
simulation with error values available.

Example IX   Adapting to a material indicator function.

In the ICF problem described in earlier work, the domain 
was a quarter circle that was meshed by a multi-block struc-
tured quadrilateral mesh consisting of three blocks. In the 
outer part of the mesh, one had azimuthal symmetry. The 
goal in the problem was to create values for the target param-
eters (the target matrix in particular) so that the mesh would 
be adapted to one or more material layers at distances r1 and 
r2 from the center of the circular domain. The suggested 
target matrix for one layer was

with

and with user parameters 0 < f ≤ 1 and 
√
2 < a < b < 3 . 

Notice that the target matrix here is a function of position 
in physical space and � = �(r) . With this target matrix, the 
optimized mesh is adapted to the material layers by creating 
high-aspect-ratio cells in the ring at distance r =

√
x2 + y2 

from the circle center. The shape metric �2 was used in opti-
mizing the objective function.

−
minj{(𝜐A)j}

1 − Ē
< a < 0.

J∑
j=1

(Δ𝜐̃)j =

J∑
j=1

a
(
Ej − Ē

)

= a

(
J∑
j=1

Ej −

J∑
j=1

Ē

)

= 0.

𝜐̃j =
(
𝜐A
)
j
+ a

(
Ej − Ē

)

W =

(
1 0

0 �

)

𝜌 =

�
f if a <

√
x2 + y2 < b

1 else
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In terms of the construction method presented in this 
document, the parameter control decision is to abstain or 
not abstain on each of the four geometric parameters in 2D. 
Since a shape metric was used, it is clear that the decision 
must have been A − A − C − C . In PIE, the decision was 
A − A − E − I . The skew angle in the target is the isotropic 
skew angle for a quadrilateral element ( �

2
 ) and the aspect 

ratio parameter defined as above. Thus, the correct shape 
matrix in this problem is

With the isotropic skew angle, the skew matrix Q 
becomes the identity matrix. Thus S = D . The aspect ratio 
matrix D can be written

Since shape metrics are invariant to scaling, using the matrix 
W above is equivalent to using S above. As seen previously, 
using S in place of T in �2 gives the same result.

Now consider the more general two-dimensional, two-
material problem in which one is given a discrete material 
indicator function �j with 0 ≤ �j ≤ 1 at physical points (xj, yj) 
in the initial mesh. The goal is to adapt the local mesh vol-
ume to the two materials it contains. Clearly, one needs to 
control volume and skew. Without additional information, 
it makes sense to abstain on the orientation parameter. In 
the ICF problem just described, aspect ratio was controlled 
instead of volume. This was because thin mesh layers at 
distance r were desired. In the more general problem here, 
no such assumption is made, and thus it is better to con-
trol volume instead of aspect ratio. It seems that, in the 
absence of additional information, there are three poten-
tial approaches to aspect ratio: (1) set aspect ratio to 1, (2) 
abstain on aspect ratio, or (3) preserve aspect ratio. The PIE 
decision is I − A − E − E , I − A − E − A , or I − A − E − P , 
respectively. The resulting metric types are VS (volume + 
shape), VQ (volume + skew), and VS, respectively. The 
choice between the three approaches depends on whether 
one believes that the simulation will produce high-aspect 
ratio elements or not; if it might, then option (1) should be 
avoided. Additionally, if one believes that the aspect ratio 
in the optimized mesh should not be too different from the 
aspect ratios in the initial mesh, then option (3) is a viable 
approach. If one expects the aspect ratios to change a lot 
between the initial and optimal meshes, then option (2) is 
the best choice.

Finding the values for the skew and aspect ratios is easy 
once one of the three options above is selected. Next, con-
centrate on finding a model for the volume parameter, given 

S =

�
1 cos�

0 sin�

��
1√
�

0

0
√
�

�
.

D =
1√
�

�
1 0

0 �

�
.

the material indicator. Suppose that � = 1 means that locally 
the only material present is material 1 and � = 0 means that 
locally only material present is material 2. Furthermore, 
assume that one wants the local volume of material 1 to 
decrease monotonically with � [and therefore the local vol-
ume of material 2 (which is 1 − � ) should increase monotoni-
cally with � ]. Suppose that �(1)

ini
 is the local volume of material 

1 in the initial mesh and �(1)
opt

 is the local volume of material 1 
in the optimal mesh (at the same physical location). Assume 
that 𝜐(1)

init
> 0 at all locations. Write �(1)

opt
= �

(1)

ini
+ Δ� . It seems 

reasonable to require that Δ𝜐 < 0 if and only if 𝜄 > 1

2
 . The 

simplest model for Δ� is

with the requirement 0 < m < 2 𝜐
(1)

ini
 to ensure that 𝜐(1)

opt
> 0 

at all locations. The value of m would be a user input 
parameter.

With this model,  the target volume param-
eter is fully defined. The maximum range of �(1)

opt
 is 

0 < 𝜐
(1)

ini
−

m

2
< 𝜐

(1)

opt
< 𝜐

(1)

ini
+

m

2
< 2 𝜐

(1)

ini
 . Other models for Δ� 

can, of course, be developed.

Example X   Alignment of mesh lines to a smooth vector field.

The term “alignment” in meshing has been defined in 
the past by saying that two vectors in ℜ3 are aligned if their 
cross product is zero [2]. The equivalent in two dimensions 
is to say that the area enclosed by the two vectors is zero. 
With this definition, if � and � are aligned, then � = �� , with 
� a real number. In TMOP, however, an alternative definition 
of alignment is used based on target terminology. Recall 
that � is the angle between the x-axis and the first column 
vector of any non-degenerate matrix. In TMOP, two vectors 
in ℜ2 are aligned if their orientation angle with respect to 
the x-axis is the same. This definition of alignment is used, 
because it is more consistent with the target construction 
approach. With the TMOP definition, if � and � are aligned, 
then � = �� , with 𝜆 > 0 . In two dimensions, one can write 
�� = �� when the two vectors are aligned.

In this example, suppose, for the sake of clarity, that one 
has an initial quadrilateral mesh with globally structured 
mesh topology. In addition let there be, as primary or sec-
ondary data, a discrete vector field {�j} defined at points 
(xj, yj) in the physical domain (j is a global index) and pos-
sibly at some discrete time tn . The vector field is processed 
into a final discrete vector field by interpolating it to the 
sample points of the mesh (if not already located there). 
It is assumed that the underlying continuum vector field 
is “smooth” (i.e., there are no abrupt changes in direction 
or length between nearby sample points). Further assume 
that the vector field is non-self intersecting. The feasibility 
of aligning mesh lines with a vector field depends heavily 

Δ� = m
(
1

2
− �

)
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on the orientation of the vector field with respect to the 
domain/mesh boundary. If the boundary vertices are allowed 
to move, better alignment can be achieved, but this is not 
always possible.

The goal in the alignment problem is to assign values to 
the target orientation parameters such that the first column 
(vector) of the active matrix is aligned with � at every sam-
ple point. Controlling only the orientation parameter will 
lead to poor mesh quality with respect to the other geomet-
ric parameters, thus some of the additional parameters need 
to be controlled. Suppose then that the parameter control 
decision is C − C − C − A . Leaving aspect ratio undefined 
provides some flexibility to the optimizer so that perhaps 
the alignment can be more effective. Given this decision, the 
metric type must be VOQ (volume + orientation + skew).

The PIE decision in this example is P − I − E − A (i.e., 
preserve initial volume, improve orientation, and equalize 
the skew angle). From this, one has directly that � = �(Ainit) 
and � = �iso . Since �arch =

�

2
 for a quadrilateral element (and 

thus sin�arch = 1 ), the size parameter is � = � , so � is also 
preserved.

Recall that in two dimensions, �(A) is the angle between 
the x-axis and the mesh vector �1 and �(W) is the angle 
between the x-axis and the target column vector �1 . The 
challenge is to define values for the orientation parameter 
�(W) at every sample point. The most straightforward thing 
to do is to set �(W) = �� , where the latter is the orientation 
of the vector � with respect to the x-axis, at the given sam-
ple point. Doing so should make �(A) ∼ �� in the optimal 
mesh provided the mesh topology allows it. However, if the 
goal is to create alignment on a wide class of smooth vector 
fields, one cannot just try to align �1 with � at every sample 
point. Doing so could produce a very poor quality mesh with 
some vector fields. It may be better, for example, to align −�1 
with � at some sample points and to align to �1 at others. It 
may also be better to try to align ±�⟂

1
 with � at other sample 

points.11 The decision as to which of these vectors should 
be aligned with � has to be made at every sample point. 
Since there are many sample points, an automatic way of 
making the decision is needed. One way to do this goes as 
follows. Given �1 from the initial mesh and the non-zero vec-
tor � at the same location, compute the corresponding unit 
vectors �̂1 and �̂ . Then evaluate the two quantities c ≡ �̂ ⋅ �̂1 
and s ≡ det

(
�̂, �̂1

)
 . Then the alignment decision is made as 

follows: 

1.	 If c ≥ 1√
2
 , then align �1 with � by setting cos �� =

vx

∣�∣
 and 

sin �� =
vy

∣�∣
.

2.	 If c ≤ −
1√
2
 , then align −�1 with � by setting cos �� = −

vx

∣�∣
 

and sin �� = −
vy

∣�∣
.

3.	 If s > 1√
2
 , then align �⟂

1
 with � by setting cos �� =

vy

∣�∣
 and 

sin �� = −
vx

∣�∣
.

4.	 If s < −
1√
2
 , then align −�⟂

1
 with � by setting cos �� = −

vy

∣�∣
 

and sin �� =
vx

∣�∣
.

That completes the definition of the three target parame-
ters � , � , � for this alignment problem. One might wonder 
why we do not try to align the second column vector of A 
(i.e., �2 ) with � in this scheme. The main reason is that the 
orientation of �2 is not directly used in target construction 
(because its orientation is � + � ). Additionally, � = �arch has 
already been specified so that, by controlling � and � , one 
is already controlling the orientation of �2 . Notice also that 
in this scheme, the target parameters are fully defined prior 
to optimization. This is why �1 from the initial mesh is used 
to make the alignment decision in the construction of the 
orientation parameter. Experience has shown that trying to 
update target parameters during the optimization procedure 
can lead to convergence and non-uniqueness issues. Finally, 
note once again that, because the vector field is associated 
with a position in physical space, the target parameters must 
be updated via interpolation or by an advection scheme dur-
ing the optimization procedure. An example of a target con-
struction method for mesh alignment can be found in Ref. 
[13].

3.5.3 � The “Delta” method of target parameter construction

Previously, the task of assigning values to the geometric 
target parameters has been described as a process in which 
a function takes the primary data and converts it to data 
for the parameter at each sample point. While this remains 
valid, there is another way to think about this process. Sup-
pose, instead, that one starts with the initial mesh, whose 
set of Jacobians is {Ai} . One can evaluate each of the non-
abstained parameters on the sample points of the initial 
mesh, giving �i = �(Ai) , �i = �(Ai) , and so on. Define the 
initial target parameter set as {�i, �i,�i, �i} (or, if one has an 
actual target matrix Wi = W(�i, �i,�i, �i) . Using this data in 
the optimization will, of course, result in an optimal mesh 
identical to the initial mesh. However, if any of this data is 
changed, one will have new or partly new target data and 
a different optimal mesh will result. As an example, sup-
pose �i is changed to �o (where o stands for optimal). Let 
�o = �i + Δ� . Then the challenge is to define Δ� (at every 
sample point). Thus, the final target matrix (if there is 
one) can be expressed as either W = W(�o, �o,�o, �o) or as 
W = W(�i + Δ� , �i + Δ�,�i + Δ�, �i + Δ�) . In theory, it is 
possible that for some parameters and some problems it will 

11  If � is a non-zero vector in ℜ2 , then we use the notation 
�⟂ to indicate the vector that is perpendicular to � and obeys 
det

[
�,�⟂

]
> 0.
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be easier to define �o directly and in others it will be easier 
to define Δ� . In practice it will often be easier to define the 
values �o , �o , and perhaps �o in terms of Δ� , Δ� , and Δ� . 
On the other hand, it is probably easier to specify the angle 
parameters �o and �o directly, rather than in terms of Δ� and 
Δ� . An example of the ‘Delta’ method in target construction 
was seen in Example VI.

4 � Summary and conclusion

The Target Matrix Optimization Paradigm is a methodology 
for mesh quality improvement that uses optimization to find 
optimal locations of mesh vertices and nodes. The TMOP 
methodology is general in that it can be applied to a wide 
variety of mesh quality improvement problems, rather being 
limited to just one situation. An important feature of TMOP 
is the use of target matrices (or target parameters) to define 
the local geometric properties of the desired optimal mesh.

Section 2 investigated the relationship between 2 × 2 
matrices and a standard set of geometric parameters rep-
resenting local volume, orientation, skew, and aspect ratio. 
With certain restrictions, the relationship between the matri-
ces and the parameters can be represented as a one-to-one, 
onto map. Given the matrix, one can find the geometric 
parameters; this process is called parameter extraction. 
Given the geometric parameters, one can find the cor-
responding matrix. In the context of TMOP, the matrices 
represent Jacobian matrices of the element mapping at the 
mesh sample points. Thus, one can say that the geometric 
parameters represent the first order geometric quality of the 
mesh (qualities such as curvature cannot be described by 
the Jacobian matrix). Given the active mesh, i.e., the mesh 
that is being optimized, one can find its active Jacobian 
matrices. In turn, one can extract values of the geometric 
parameters from the active matrices. These values are use-
ful in the assessment of mesh quality and in the evaluation 
of local quality metrics in the optimization procedure. On 
the other hand, given the values of the target geometric 
parameters, one can find the target matrix. While the idea 
of matrices having geometric content is not new, the con-
tribution in Sect. 2 is to identify a standard set of geometric 
parameters based on the Jacobian matrix that can be used in 
target construction.

In TMOP, every local quality metric is defined in terms 
of a set of active and corresponding target parameters. The 
active parameter values are extracted from the active mesh 
while the target parameter values are defined prior to the 
mesh optimization procedure. Section 3 describes the pro-
cess in TMOP by which new target construction algorithms 
can be devised. This process is broken into three phases: 
that of developing a construction strategy, developing 
algorithms for converting primary to secondary data, and 

developing models for converting secondary data into final 
target parameter data. In developing the strategy, one begins 
with a mesh quality improvement goal that is appropriate for 
the application. Next, one considers the mesh and simula-
tion context. In the target parameter control decision phase, 
one decides whether to control or abstain on each geomet-
ric parameter. The fact that one can abstain on a parameter 
means, in general, that (1) values of the corresponding tar-
get parameters need not be assigned and (2) there may be 
increased improvement in the parameters that are controlled. 
This flexibility gives greater freedom in the design of mesh 
optimization algorithms. Finally, correspondence chains are 
defined that associate specific primary, secondary, and target 
data to one another so that the flow between data types is 
well-defined. In the next phase of target construction, one 
determines how the primary data in each correspondence 
chain will be converted into secondary data (i.e., into mesh 
or solution functionals). The determination consists of iden-
tifying particular existing algorithms that are suitable for 
the conversion or, in some cases, devising an entirely new 
algorithm. Examples of such algorithms include a poste-
riori error estimation, Hessian or gradient recovery meth-
ods, or other techniques used in mesh adaptivity. In the last 
phase, one determines how the secondary data in each cor-
respondence chain will be converted into values of the target 
parameters at every mesh sample point. Determination may 
consist of a straightforward direct conversion of the data (as 
in the case of skew parameters defined by the isotropic ele-
ment) or may require the development of an ad-hoc model 
that consists of an analytic formula or function relating, 
for example, the determinant of a matrix to the local mesh 
volume parameter. Model development mainly consists of 
determining the best functional form, as well as selecting 
(via numerical experiment) the best values of any constants 
contained within the model. With the completion of the tar-
get construction process, one has a complete description of 
the data and algorithms that will be used to assign values to 
the target parameters in order to address the mesh quality 
improvement goal. This description, along with correspond-
ing software, yields a target construction method.

In the ideal situation, target construction is not needed 
because there already exists an appropriate target con-
struction method corresponding to the mesh quality 
improvement goal, mesh context, and simulation context. 
If this is not the case, then one may engage in the target 
construction process. It is hoped that, over the long term, a 
library of target construction algorithms will be developed 
and made available so that the need to engage in target 
construction becomes gradually less. Various examples 
of target construction for both planar and volume meshes 
were presented in Sect. 3.

Much of the existing mesh optimization literature focuses 
on the definition or selection of quality metrics and/or the 
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numerical optimization procedure. Many of the proposed 
quality metrics do not make use of targets. For methods that 
do include targets, the most glaring gap is the lack of discus-
sion on how to construct a set of targets that are suitable for 
the particular application at hand. The description of target 
construction in this report is thus considered to fill a major 
gap in the mesh optimization literature.

Of course, not all mesh quality improvement problems 
can be solved simply by proper construction of the target 
matrix. On the one hand, target construction is an essen-
tial step in mesh quality improvement; with this document 
there is finally a clear exposition of this topic. On the other 
hand, we still lack firm solutions to a number of the listed 
mesh quality improvement problems, especially in view of 
the large number of contexts in which they may occur. In 
addition to target construction, the solution to these prob-
lems may include (1) choosing or defining a quality metric 
having the right metric type and that can produce unique 
optimal meshes, (2) choosing the right objective function 
template, (3) constructing proper trade-off coefficients, and 
(4) employing other techniques such as the use of a different 
metric in different parts of the domain or adding other terms 
to the basic objective function.
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