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Abstract
Whale optimization algorithm (WOA) is a very popular meta-heuristic algorithm. When optimizing complex multi-dimen-
sional problems, the WOA has problems such as poor convergence behavior and low exploration efficiency. To improve 
the convergence behavior of the WOA and strengthen its global exploration efficiency, we propose a novel enhanced global 
exploration whale optimization algorithm (EGE-WOA). First, Lévy flights have the ability to strengthen global space search. 
For unconstrained optimization problems and constrained optimization problems, the EGE-WOA introduces Lévy flights 
to enhance its global exploration efficiency. Then, the EGE-WOA improves its convergence behavior by introducing new 
convergent dual adaptive weights. Finally, according to the characteristics of sperm whales hunting by emitting high-fre-
quency ultrasound, the EGE-WOA introduces a new mechanism for judging the predation status of whales. The judgment 
mechanism is to judge the three predation states of whales by judging the fitness value between the optimal whale individual 
and any whale individual. The proposed new judgment mechanism can indeed effectively improve the global exploration 
efficiency of the WOA. For the exploration efficiency of the unconstrained optimization problems and constrained optimi-
zation problems, the EGE-WOA combines the Lévy flights and judgment mechanism in different ways to achieve efficient 
exploration efficiency and better convergence behavior. The experimental results show that in the optimization process of 
33 unconstrained benchmark functions and 6 constrained real cases, the mean and standard deviation of the EGE-WOA are 
better than other algorithms.

Keywords  WOA · Global exploration efficiency · Judgment mechanism · Continuous optimization · Lévy flights

1  Introduction

The optimization problem is common in all aspects of soci-
ety and life. It is a research hotspot in many fields such as 
image compression [1], path planning aspect [2], structural 
optimization [3, 4], parameter estimation [5], skeletal struc-
ture size optimization [6], distribution system optimization 
aspect [7], and resource scheduling aspect [8]. In many prac-
tical applications, the optimization problem often exhibits 
dynamic, nonlinear, uncertain and high-dimensional char-
acteristics [9]. The complexity of the engineering optimisa-
tion problem leads to an increase in the complexity of the 
algorithm. The increased complexity of the algorithm tends 
to make the algorithm less stable. The complexity of the 
algorithm leads to a significant increase in calculation costs.

To obtain more effective optimisation algorithms, many 
authors have proposed good optimisation algorithms. These 
optimization algorithms are divided into two categories: 
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sequential algorithm and random algorithm. The sequen-
tial algorithm mainly consists of hill climbing method [10], 
Newton iteration method [11], and simplex method [12], 
least squares method [13, 14], etc. These algorithms have 
good convergence behavior. But for complex optimisation 
problems, they are easy to fall into local optimality. The 
random algorithm contains a random term. The random item 
has the characteristics of exploration and search. Under the 
same initial conditions, the random algorithms always inevi-
tably produce different solutions, so the repeatability of the 
algorithms is very poor [15].

Most stochastic algorithms can be thought of as meta-
heuristics. The meta-heuristics are inspired by the phenom-
enon of animal activity in nature. For example, the bat algo-
rithm (BA) [16, 17], the firefly algorithm (FA) [4, 18], the 
gray wolf algorithm (GWO) [19–21], the moth-flame optimi-
zation (MFO) [22], the grasshopper optimisation algorithm 
(GOA) [23], the bacterial foraging optimization(BFO) [24], 
the ant lion optimization(ALO) [25], the harris hawks opti-
mization (HHO) [26], and the barnacles Mating Optimizer 
(BMO) [27]. These meta-heuristic algorithms are emerging 
optimization algorithms [28–30]. Their advantages are that 
the algorithms can suppress local optima to a certain extent 
when solving complex nonlinear problems. Therefore, they 
are usually applied to solve practical engineering problems 
[31].

In 2016, Seyedali Mirjalili proposed a whale optimization 
algorithm (WOA) [32]. After the whale has found its prey, 
the humpback whale first dives to the bottom of the prey and 
then forms a distinctive bubble along a circular path. The 
WOA works in three parts: spiral hunting, envelope hunting 
and searching for prey. Khaled et al. [33] utilized the WOA 
to optimize the scheduling problem of the power system 
and realized the optimal scheduling of reactive power. Yu 
et al. [34] applied the WOA in the parameter optimization 
of the controller, and the optimized parameters can make the 
control system more robust.

However, the WOA still has risks such as low exploration 
efficiency, poor convergence behavior, and the possibility of 
falling into a local optimum. So as to strengthen the optimi-
zation performance of the WOA, many variants of the WOA 
have been proposed. When dealing with complex optimiza-
tion scenarios, Huiling Chen et al. [35] believed that the 
traditional WOA has the problem of easily falling into local 
optimality. To solve the problem, they proposed a balanced 
variant algorithm called BWOA. Compared with the WOA, 
the BWOA is more suitable for optimizing complex scenes. 
Mohammad Tubishat et al. [36] encountered the problem of 
the WOA easily falling into local optima when optimizing 
a large number of data sets. To solve it, they proposed an 
improved algorithm (IWOA). Compared with other meta-
heuristic algorithms, the IWOA is the best in the accuracy 
of sentiment analysis classification.

In 2017, Ying Ling et al. proposed a new whale optimiza-
tion algorithm based on the Lévy flights (LWOA) [37]. In 
2018, Yongquan Zhou used the LWOA to solve engineer-
ing optimization problems [38]. Huiling Chen et al. [39] 
believed that WOA has the disadvantages of poor conver-
gence behavior, low exploration efficiency and easy falling 
into local optimal when optimizing complex unconstrained 
continuous problems. To overcome these shortcomings 
of the WOA, they proposed an enhanced variant called 
RDWOA. Experimental data prove that the RDWOA is a 
promising variant of WOA, which has better exploration 
efficiency than other state-of-the-art algorithms.

Although the WOA, IWOA, BWOA and RDWOA have 
unique search mechanisms for global optimization problems, 
they are not completely suitable for solving complex multi-
dimensional problems. To strengthen the global exploration 
efficiency of the WOA and improve its convergence behav-
ior, we conduct research on it. We believe that the switching 
mechanism of the WOA’s location update formula and the 
two strategies of the RDWOA have some shortcomings.

1.	 The switching mechanism of WOA’s three position 
update formulas relies on uniformly random distribu-
tion parameters, which are random, uncertain and blind.

2.	 The RDWOA’s random spare strategy makes each indi-
vidual approach the optimal individual with a certain 
probability. This can indeed achieve better convergence 
behavior. It can cause premature RDWOA. The prema-
ture phenomenon will reduce the overall exploration 
efficiency of the RDWOA.

3.	 The double adaptive weight strategy proposed by 
RDWOA does improve the development accuracy of 
the algorithm and the global exploration capability. 
However, it can be seen from the iterative curve charac-
teristics of these two weight parameters. In the iterative 
process of the RDWOA, the adaptive weights gradu-
ally tend to diverge rather than converge. This not only 
makes the RDWOA deviate from the local optimum, but 
also affects its convergence behavior.

To optimize the above three shortcomings, while 
strengthening the WOA’s global exploration capabilities and 
improving its convergence behavior, the paper proposes the 
EGE-WOA.

The novelties of the paper are as follows.

1.	 The judging mechanism for whale location update: 
replace the original random value based on the differ-
ence between the fitness of any individual and the best 
individual.

2.	 For constrained optimization and unconstrained optimi-
zation problems, the EGE-WOA introduces Lévy flights 
in different ways, respectively.
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3.	 For constrained optimization and unconstrained opti-
mization problems, the EGE-WOA introduces different 
convergent adaptive weights, respectively.

We arrange our articles in the following order: first, 
related research on the WOA, WOA and RDWOA are 
reviewed in Sect. 2. Section 3 presents the proposed EGE-
WOA. Performance comparison of algorithms, compari-
son data and low-dimensional space and high-dimensional 
space simulation data are recorded in Sect. 4. Section 5 
suggests the efficiency of our EGE-WOA through four real-
world application case. Finally, the conclusions are given 
in Sect. 6.

2 � Related research

The whale is the largest animal in the world. The adult 
whales can grow to 33 m long and weigh 181 tons [40]. 
Whales have infrasound/ultrasonic hearing and rely on 
unique echolocation to search for prey around or transmit 
information to each other. In the whale family, humpback 
whales are huge baleen whales. Due to the lack of chewing 
teeth, they can only prefer to prey on groups of small fish and 
shrimp, so a special foraging behavior has evolved, called 
bubble foraging. According to the hunting characteristics 
of humpback whales, their hunting process includes three 
stages: surrounding prey, spiral search, and random search.

The sperm whale is a large whale. The sound of the 
sperm whale is extraordinary. Its maximum sound reaches 
234 decibels [41]. If humans stay by its side, this kind of 
sound may deaf the human ears. It is the biggest sound in 
the animal kingdom. The rumbling sound waves are like a 
bright light in the dark deep sea, which enables the sperm 
whale to detect the king squid within 500 m, as shown in 
the sub-figure (a, b) in Fig. 1. The squid’s hearing system 
cannot detect the high-frequency ultrasonic waves emitted 
by the sperm whale. Therefore, the squid cannot perceive 
the danger approaching quickly, as shown in the sub-figure 
(b), (c) and (d) in Fig. 1. It makes sperm whales to quickly 
capture their prey, as shown in the sub-figure (e).

2.1 � A brief of WOA

2.1.1 � Surround prey

Whales can identify the location of their prey through echo-
location and surround the prey. In the process of surrounding 
the prey, the current local optimal solution is the whale clos-
est to the food. At this time, other whales gradually approach 
the whale that represents the optimal solution. In this way, 
the encirclement of the prey by the whale is completed.

The location update formula of each individual is as 
follows:

where Xlocal(t) represents the spatial position coordinates 
of the whale in the tth iteration, and Xbest(t) represents the 
spatial position coordinates of the optimal whale in the tth 
iteration. A and B are the coefficient matrices:

(1)

{
Xlocal(t + 1) = Xbest(t) − A ⋅ B

B = |C ⋅ Xbest(t) − Xlocal(t)|
,

(2)

⎧⎪⎨⎪⎩

A = 2h ⋅ rand − h

B = 2 ⋅ rand

h = 2 − h ⋅ t∕tmax

,

(a)

(b)

(c)

(d)

(e)

Fig. 1   A sperm whales use ultrasound to catch squid in this process
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where rand obeys [0 1] uniform random distribution. tmax is 
the maximum number of iterations. h represents the iteration 
variable, which decreases linearly from 2 to 0.

2.1.2 � Spiral search prey

Gradually narrow the encircling circle in a spiral upward 
way to obtain the food. This algorithm design includes two 
mechanisms, shrinking envelopment and spiral update space 
location, and assumes that the selection of shrinking envel-
opment mechanism and spiral update location probability 
are both 0.5:

where b stands for constant, and l obeys [− 1 1] uniform 
random distribution.

2.1.3 � Random search prey

When the coefficient vector |A|≥ 1, it means that the whale 
is swimming outside the shrinking enclosure. At this time, 
individual whales conduct a random search based on each 
other’s position, and the mathematical model is as follows:

where Xrand(t) is the location of a random whale.

2.2 � Brief introduction of RDWOA

2.2.1 � Random spare method

The method is to replace the current individual’s of the tth 
dimensional vector with the best individual’s corresponding 
vector values based on certain conditions. The condition is 
shown in the following equation:

where rand obeys [0 1] uniform random distribution. iter 
represents the current iteration value. Max_iter represents 
the maximum iteration value.

When the condition satisfies inequality (6), the random 
backup mechanism is started. Although the method improves 
its convergence behavior and exploration ability, it may also 
lead to premature RDWOA, and reduce its exploration effi-
ciency and convergence behavior.

(3)

{
Xlocal(t + 1) = Xbest(t) + Bp ⋅ e

bl cos(2�l)

Bp = |Xbest(t) − Xlocal(t)|
,

(4)B = C ⋅ Xrand(t) − Xlocal(t),

(5)Xlocal(t + 1) = Xrand(t) − A ⋅ B,

(6)tan(𝜋 ⋅ (rand − 0.5)) < (1 − iter∕Max_iter),

2.2.2 � Dual adaptive weight

When the individual’s position is not updating, s will 
automatically increase by 1.

w1 and w2 have the same curve characteristics. We take 
w1 as the research object.

In the whole iterative process of the algorithm, when 
s takes different values, the curve characteristics change 
greatly.

Figure 2 shows the curve characteristic of w1 when s is 
a different constant. From the analysis of the local static 
graph, when the constant s takes different values, the curve 
characteristic of w1 changes greatly. When s = 1, the curve of 
w1 linearly converges to 0. When s = 200, the curve charac-
teristic of w1 converges to 0 non-linearly. When s = 500, the 
curve characteristic of w1 is emitted and does not converge.

The first half of RDWOA is as follows, when FE/
MaxFEs <  = 0.5:

The second half of RDWOA is as follows, when FE/
MaxFEs > 0.5:

For unconstrained optimization problems, it is dem-
onstrated that compared with the FA, BA and IWOA, the 
RDWOA has better global exploration performance.

3 � Proposed EGE‑WOA

The optimization problems can be summarized into con-
strained optimization and unconstrained optimization prob-
lems [42]. The constrained optimization problems refer to a 
nonlinear programming problem with constraints. For exam-
ple, the 5 real cases in Sect. 5.

The unconstrained optimization problems refer to the 
selection of the optimal solution according to a certain index 

(7)w1 = (1 − iter∕Max_iter)1−tan(pi×(rand−0.5)×s∕Max_iter).

(8)w1 = (2 − 2 × iter∕Max_iter)1−tan(pi×(rand−0.5)×s∕Max_iter).

(9)Xlocal(t + 1) = w1 × Xbest(t) − A × B,

(10)Xlocal(t + 1) = w1 × Xbest(t) + Bp ⋅ e
bl cos(2�l),

(11)Xlocal(t + 1) = w1 × Xrand(t) − A × B.

(12)Xlocal(t + 1) = Xbest(t) − w2 × A × B,

(13)Xlocal(t + 1) = Xbest(t) + w2 × Bp ⋅ e
bl cos(2�l),

(14)Xlocal(t + 1) = Xrand(t) − w2 × A × B.
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from all possible alternatives of a problem. For example, the 
36 benchmark functions in Table 1.

3.1 � The Lévy flights’ method

Lévy flights have been applied to optimization and optimal 
search, and the results show that it has strong global search 
capabilities [43]. In view of the Lévy flights’ method can 
improve the algorithm’s ability to explore the global space, 
the EGE-WOA introduces it. As shown in the following 
formula:

where v and µ obey the standard normal distribution.� is 
shown in the following formula:

where τ is the standard Gamma function.
The Lévy flights’ method will only be used when the spa-

tial positions of all individuals are not changing. Therefore, 
the paper uses the method when iter/Max_iter < 0.5:

(15)Levy(�) ∼
� × �

|v|1∕� ,

(16)� =

[
�(1 + �) × sin(� × �∕2)

�((1 + �)∕2) × � × 2(�−1)∕2

]1∕�
, (� = 1.5)

In the formula, the spatial dimension of each individ-
ual X(t) is D; XD(t) is the D-dimensional location space. 
Lévy(D) is the Lévy distribution with a number of D.

3.2 � The new random spare method

The method is to replace the current individual’s of the tth 
dimensional vector with the best individual’s corresponding 
vector values based on certain conditions. The condition is 
as shown in the following equation:

3.3 � The convergent adaptive weight

It can be seen from Figure 2 that the weight curve charac-
teristics of the RDWOA are divergent and unstable, which 
weakens the global exploration efficiency.

The paper proposes a new nonlinear, convergent adaptive 
weight:

(17)XD(t) = XD(t) × Lévy(D).

(18)rand < 1 − 0.5.*iter/Max_iter.

Fig. 2   The curve characteristics of w1 with different s values
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Figure 3 shows the curve characteristic of the new adap-
tive weight. Compared with Fig. 2, the curve characteristic 
in Fig. 3 is convergent and nonlinear.

(19)

{
w11 = 2 × (rand − 0.5) ⋅ 1∕ exp(tan(iter ⋅ �∕Maxiter))

w22 = 0.5 × (rand − 0.5) ⋅ 1∕ exp(tan(iter ⋅ �∕Maxiter)
.

Table 1   Description of the 33 
benchmark functions

Function ID Equation description

D = 15
 F1 f1(x) =

∑d

i=1
x2
i
, xi ∈ [−100, 100]

 F2 f2(x) =
∑d

i=1
�xi� +∏d

i=1
�xi�, xi ∈ [−600, 600]

 F3 f3(x) =
∑d

i=1
(
∑i

j=1
xj)

2
, xi ∈ [−100, 100]

 F4 f4(x) = max{|xi|, 1 ≤ i ≤ n}, xi ∈ [−100, 100]

 F5 f5(x) =
∑d

i=1
ix4

i
+ random[0, 1), xi ∈ [−30, 30]

 F6 f6(x) =
∑d

i=1
i × �xi�, xi ∈ [−20, 20]

 F7 f7(x) =
∑d

i=1
�xi�i+1, xi ∈ [−100, 100]

 F8 f8(x) =
∑d

i=1

∑i

j=1
x2
j
, xi ∈ [−65.536, 65.536]

 F9 f9(x) =
1

4000

∑d

i=1
x2
i
−
∏d

i=1
cos(

xi√
i
) + 1, xi ∈ [−600, 600]

 F10
f10(x) = −20 exp

�
−0.2

�
1

d

∑d

i=1
x2
i

�
− exp

�
1

d

∑d

i=1
cos(2�xi)

�
+ 20 + exp(1), xi ∈ [−100, 100]

 F11
f11(x) =

∑d

i=1
x2
i
+
�∑d

i=1
0.5xi

�2

+
�∑d

i=1
0.5ixi

�4

, xi ∈ [−100, 100]

D = 30
 F12 Composition function 1 (D = 30), [− 100, 100]
 F13 Composition function 2 (D = 30), [− 600, 600]
 F14 Composition function 3 (D = 30), [− 100, 100]
 F15 Composition function 4 (D = 30), [− 100, 100]
 F16 Composition function 5 (D = 30), [− 35, 35]
 F17 Composition function 6 (D = 30), [− 35, 35]
 F18 Composition function 7 (D = 30), [− 100, 100]
 F19 Composition function 8 (D = 30), [− 65, 65]
 F20 Composition function 9 (D = 30), [− 600, 600]
 F21 Composition function 10 (D = 30), [− 35, 32]
 F22 Composition function 11 (D = 30), [− 100, 100]
D = 48
 F23 Composition function 1 (D = 48), [− 100, 100]
 F24 Composition function 2 (D = 48), [− 600, 600]
 F25 Composition function 3 (D = 48), [− 100, 100]
 F26 Composition function 4 (D = 48), [− 100, 100]
 F27 Composition function 5 (D = 48), [− 35, 35]
 F28 Composition function 6 (D = 48), [− 35, 35]
 F29 Composition function 7 (D = 48), [− 100, 100]
 F30 Composition function 8 (D = 48), [− 65, 65]
 F31 Composition function 9 (D = 48), [− 600, 600]
 F32 Composition function 10 (D = 48), [− 32, 32]
 F33 Composition function 11 (D = 48), [− 100, 100]

Fig. 3   The curve characteristics of w11
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3.4 � The judgment mechanism of the whale’s 
position update formula

Based on this habit of whales, we propose a new algorithm 
that uses whale ultrasound to determine the distance between 
individuals, as a switching mechanism for the whale position 
update formula, instead of WOA’s original whale switch-
ing mechanism. We design different judgment mechanisms 
according to the types of continuous optimization problems 
(unconstrained optimization and constrained optimization 
problems).

According to the difference between the fitness value 
of the current best individual and any individual, a new 
judgment value of the switching position update formula 
is proposed:

where f(x*(t)) stands for the adaptive fitness value of the best 
individual. f(xrand(t)) is the adaptive fitness value of any 
individual. d is the difference between the current optimal 
individual and the fitness value of any individual.

3.4.1 � For continuous unconstrained optimization problems

The EGE-WOA proposed in the paper consists of two parts.
The first half of the EGE-WOA is as follows, when FEs/

MaxFEs <  = 0.2:

The second half of the EGE-WOA is as follows, when 
FE/MaxFEs > 0.2:

3.4.2 � For continuous constrained optimization problem

The EGE-WOA proposed in the paper consists of two parts:

(20)d = |f (x∗(t)) − f (xrand(t))|,

(21)Xlocal(t + 1) = w11 × Xbest(t) − A × B,

(22)Xlocal(t + 1) = w11 × Xbest(t) + Bp ⋅ e
bl cos(2�l),

(23)Xlocal(t + 1) = w11 × Xrand(t) − A × B.

(24)Xlocal(t + 1) = Xbest(t) − w22 × A × B,

(25)Xlocal(t + 1) = Xbest(t) + w22 × Bp ⋅ e
bl cos(2�l),

(26)Xlocal(t + 1) = Xrand(t) − w22 × A × B.

(28)L = Levy(1).

The first half of the EGE-WOA is as follows, when FEs/
MaxFEs <  = 0.2:

The second half of the EGE-WOA is as follows, when 
FE/MaxFEs > 0.2:

3.5 � Opposition‑based learning method (OBL)

OBL was first proposed by Tizhoosh [44] in 2005. The 
detailed description of OBL is as follows:

1.	 Suppose x is any real number in the interval [lb, ub]. The 
relative number xop of x is as follows:

	   where lb ≤ ub, lb and ub are any real number. Simi-
larly, we apply it to multi-dimensional situations.

2.	 Suppose IP(x1, x2,…, xn) is a point in the n-dimensional 
system. Each xi is in the interval of [1b(i), ub(i)].

The opposite number OP of IP is defined as

where xiop is the coordinate of OP.

3.6 � Random distribution method

After each iteration, the position of each individual whale 
will be randomly redistributed in the area of radius k. The 
purpose of the method is to enhance the global search capa-
bility of the WOA:

where k = |ub − lb|∕2 ∗ s , and s is the population size.

(28)Xlocal(t + 1) = Xbest(t) − w22 × A × B,

(29)
Xlocal(t + 1) = Xbest(t) + Bp ⋅ e

bl cos(2�l) + sign(rand − 0.5) × L,

(30)Xlocal(t + 1) = Xrand(t) − w22 × A × B.

(31)Xlocal(t + 1) = Xbest(t) − w22 × A × B × L,

(32)
Xlocal(t + 1) = Xbest(t) + Bp ⋅ e

bl cos(2�l) + sign(rand − 0.5) × L,

(33)Xlocal(t + 1) = Xrand(t) − w22 × A × B.

(34)xop = lb + ub − x,

(35)xiop = lb(i) + ub(i) − xi, ∀i ∈ [1, n],

(36)X(t + 1) = X(t) + k × rand × sign(rand − 0.5),
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 #EGE-WOA

Initialize the whale population Xi(i=1,2,3,4.....,n)

Calculate the fitness of them f(Xi)

the optimal whale location and f(Xbest)

While(iter<Maxiter)

Update w11,w22,a
if (Unconstrained optimization problem)

for each of individual whale 

if (rand <1-0.5×t/Max_iter)

The search position of the best whale individual replaces the individual

end if
Calculate the fitness of each individual f(Xbest)

end for
for each individual whale

Update A,C,l,b
for each position dimension of the agent

if (iter/Max_iter>0.2)

Update d use Eq.(20)

if d>6

Update the location by the formula (26).

else if 2<d<=6

Update the location by the formula (24).

else
Update the location by the formula (25).

end if
else

Update d use formula (20)

if d>30

Update the location by the formula (23).

else if  1<d <=30

Update the location by the formula (21).

else
Update the location by the formula (22).

end if
end if

end for
end for

for each search agent

if the fitness of all individual whale keep unchanged

if iter/Max_iter <0.5

for each individual whale

Update the location by the formula (17).

end for
end if

end if
end for

else if (constrained optimization problem)

for each individual whale

Update A,C,l,b,L
for each position dimension of the agent

if (iter/Max_iter>0.2)

Update d use Eq.(20)

if d>6

Update the location by the formula (33).

else if 2<d<=6

Update the location by the formula (31).

else
Update the location by the formula (32).

end if
else

Update d use Eq.(20)

if d>30

Update the location by the formula (30).

else if  1<d <=30

Update the location by the formula (28).

else
Update the location by the formula (29).

end if
end if

end for
end for

%The L vy flights method

for each search agent

if the fitness of all individual whale keep unchanged

if iter/Max_iter <0.5

for each individual whale

Update the position of N individuals in the group of whales by equation (17)

end for

end if
end if

end for
%Random distribution method

for each search agent

Update the position of N individuals in the group of whales by equation (36)

end for
%Random spare method

for each search agent

Update the position of N individuals in the group of whales by equation (6)

end for
%Opposition-based learning method(OBL)

for each search agent

Update the position of N individuals in the group of whales by equation (35)

end for
%For all 4×N individuals

for each search agent

  Choose the best N individuals out of 4×N individuals in the four methods

end for
end if

Check whether there is any whale individual location search range, if so, make 

random corrections.

Calculate the fitness of he whale group individual f(Xi)

Update the optimal whale individual and f(Xbest)

iter=iter+1

end while
Return the optimal whale Xbest

4 � Numerical simulations

4.1 � Benchmark function

We choose 33 benchmark functions [45, 46] in Table 1. The 
33 benchmark functions belong to unconstrained optimiza-
tion problems (Fig. 4; Table 2). 

4.2 � Comparison with other variant algorithms

The population search space D is 30. The algorithm runs 
independently 20 times, recording its mean and variance.

As can be seen in Table 3, the mean and Std of the EGE-
WOA and BMO are the smallest. It reflects that in the pro-
cess of optimizing the benchmark function, the EGE-WOA 
and BMO have the highest exploration efficiency. For F5, 
F16 and F27, the mean and variance of the EGE-WOA are 
the smallest.

Compared with the GWO, FA, BA, MFO, BFO, FPA, 
GOA, ALO and HHO, the EGE-WOA has very obvi-
ous advantages. Its mean and variance are the smallest. 
Therefore, the EGE-WOA has a strong global exploration 
efficiency.

In Fig. 5, compared with the GWO, FA, BA, MFO, BFO, 
FPA, GOA, ALO and HHO, the convergence behaviors of 
the EGE-WOA and BMO are the best. Compared with the 
BMO, the convergence behavior of the EGE-WOA is sig-
nificantly better than that of the BMO. For F4, F6 and F7, 
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compared with the GWO, FA, BA, MFO, BFO, FPA, GOA 
and ALO, the HHO has better convergence behavior. The 
convergence behavior of the BMO is significantly better than 
that of the HHO. The convergence behavior of the EGE-
WOA is the best. Therefore, in general, the global explora-
tion efficiency and convergence behavior of the EGE-WOA 
is the best.

4.3 � Compared with other variant algorithm

To objectively verify the global optimization performance of 
the EGE-WOA on 33 benchmark functions of unconstrained 

optimization, compare it with five representative whale algo-
rithms: WOA, LWOA, BWOA, IWOA, and RDWOA.

In the experiment, F1–F11, the number of the search 
agents was set to 15. Each algorithm calculates 50 times 
independently, and the maximum number of iterations of 
all algorithms is 1000. The experimental result data are 
recorded in Table 4.

The data in Table 4 show that in the process of optimizing 
unconstrained benchmark functions, the mean and variance 
of the EGE-WOA are the smallest, such as F2, F3, F4, F5, 
F6, F12, F14, F15, F16, F17, F24, F25, F26, F27 and F28. 
It shows that the EGE-WOA has the best global exploration 
efficiency.

The BWOA, RDWOA and EGE-WOA have the same 
mean and variance such as F1, F7, F8, F9, F10, F12, F18, 
F19, F20, F23, F29, F30 and F31. At this time, they success-
fully avoided falling into the local optimum and obtained the 
global optimum. It shows that the EGE-WOA, BWOA and 
RDWOA have the best global exploration efficiency.

The EGE-WOA and BWOA have the smallest mean and 
variance, such as F11, F22, F32, and F33.

To verify the global exploration efficiency of the EGE-
WOA, the paper selects F1, F2, F3, F4, F5, F11, F12, F14, 
F15, F16, F22, F25, F26 and F27 to display the convergence 
curves of five algorithms in Fig. 6.

From the convergence curves of the six algorithms in 
Fig. 6, it can be seen that the convergence behavior of the 
EGE-WOA is the best. The EGE-WOA can effectively 
enhance the global optimization efficiency of the WOA and 
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Fig. 4   Flow chart of the EGE-WOA

Table 2   Algorithm parameter settings

Algorithms Popula-
tion size

Maximum 
generation

Other parameters

GWO 30 1000 a = [2 0]
FA 30 1000 Alpha = 0.5; betamin = 0.2; 

gamma = 1
BA 30 1000 A = 0.5; r = 0.5
MFO 30 1000 b = 1; t = [−1 1]; a = [−1 −2]
BFO 30 1000 Ns = 4; Nre = 4; Ned = 2; Ped 

= 0.25
FPA 30 1000 p = 0.5
GOA 30 1000 cMax = 1; cMin = 0.00004
ALO 30 1000 I = 1
HHO 30 1000
BMO 30 1000 pl = 7



2442	 Engineering with Computers (2023) 39:2433–2461

1 3

Table 3   Comparison of results for different variant algorithm

GWO FA BA MFO BFO FPA GOA ALO HHO BMO EGE-WOA

D = 15
 F1 Mean 2.2E−75 5.0E+02 1.5E+00 3.9E−16 2.7E+03 8.8E+02 7.4E−03 3.0E−08 2.0E−190 0.0E+00 0.0E+00

Std 2.5E−75 8.8E+01 1.0E−02 3.8E−16 6.1E+02 2.0E+02 1.0E−02 2.5E−08 0.0E+00 0.0E+00 0.0E+00
 F2 Mean 3.6E−42 3.2E+14 1.7E+25 9.0E+02 2.3E+09 1.8E+17 1.3E+20 2.3E+13 1.2E−91 0.0E+00 0.0E+00

Std 3.9E−43 3.9E+14 2.4E+25 4.2E+02 3.0E+09 1.9E+17 1.7E+20 3.2E+13 1.8E−91 0.0E+00 0.0E+00
 F3 Mean 1.6E−29 1.3E+03 3.1E+00 5.8E+03 2.6E+03 3.1E+03 1.8E+02 1.0E+00 4.8E−153 0.0E+00 0.0E+00

Std 2.0E−29 6.8E+02 1.0E+00 1.1E+03 2.7E+02 1.2E+03 7.4E+01 9.9E−01 6.9E−153 0.0E+00 0.0E+00
 F4 Mean 1.3E−21 1.7E+01 5.7E−01 4.5E+01 2.5E+01 1.7E+01 3.4E+00 3.6E−01 6.7E−91 0.0E+00 0.0E+00

Std 6.5E−22 5.8E+00 7.0E−02 1.3E+01 1.0E+00 1.2E+00 1.6E−01 4.7E−01 9.5E−91 0.0E+00 0.0E+00
 F5 Mean 8.9E−04 1.5E+02 3.0E+00 6.6E−02 6.0E+04 7.5E+03 1.3E+01 3.2E−02 2.1E−04 1.6E−04 7.1E−05

Std 4.1E−04 1.5E+02 1.1E+00 6.1E−02 2.1E−01 3.5E+03 1.0E+01 3.1E−03 2.5E−04 8.5E−05 6.1E−05
 F6 Mean 4.0E−43 3.3E+01 4.9E+01 2.0E+00 1.0E+02 1.2E+02 1.6E+02 4.0E+01 1.2E−100 0.0E+00 0.0E+00

Std 3.8E−43 1.2E+01 4.2E+00 2.8E+01 1.0E+02 1.4E+01 6.5E+01 5.6E+00 1.6E−100 0.0E+00 0.0E+00
 F7 Mean 2.3E−161 9.5E+02 7.0E−02 2.5E−74 1.2E+02 2.0E+01 3.3E+00 1.5E−04 3.0E−132 0.0E+00 0.0E+00

Std 3.3E−161 1.3E+03 1.2E−02 3.4E−74 1.0E+02 1.4E+01 4.7E+00 1.9E−04 4.2E−132 0.0E+00 0.0E+00
 F8 Mean 5.9E−77 4.1E+03 2.5E+01 9.7E−15 9.7E+03 4.8E+03 1.0E−01 9.9E−08 3.6E−172 0.0E+00 0.0E+00

Std 3.7E−77 2.1E+03 1.9E+00 4.1E−15 1.3E+04 3.4E+03 6.5E−02 2.0E−08 0.0E+00 0.0E+00 0.0E+00
 F9 Mean 0.0E+00 1.0E+01 1.4E−01 5.6E−02 2.1E+01 1.1E+01 1.6E+00 4.7E−02 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 5.5E+00 1.3E−02 5.3E−05 7.0E+00 1.1E+00 1.3E+00 5.3E−02 0.0E+00 0.0E+00 0.0E+00
 F10 Mean 2.0E+01 1.7E+01 2.0E+01 2.0E+01 2.0E+01 2.0E+01 2.0E+01 2.0E+01 8.7E+00 8.8E−16 8.8E−16

Std 1.6E−01 7.0E−01 1.2E−01 1.2E−01 0.0E+00 4.7E−02 6.8E−02 1.0E−03 1.2E+01 0.0E+00 0.0E+00
 F11 Mean 4.0E−40 1.9E+03 3.9E+00 2.8E+04 2.5E+03 5.6E+03 7.1E+02 3.6E+03 3.1E−172 0.0E+00 0.0E+00

Std 5.7E−40 5.6E+02 9.0E−01 4.6E+03 2.9E+03 1.8E+03 4.6E+02 2.4E+03 0.0E+00 0.0E+00 0.0E+00
D = 30
 F12 Mean 9.4E−64 2.2E+03 2.4E+00 1.8E−10 4.0E+03 1.6E+03 3.1E−02 3.5E−07 2.2E−180 0.0E+00 0.0E+00

Std 7.3E−65 3.2E+02 6.0E−01 1.2E−11 8.0E+01 4.2E+01 2.2E−03 1.2E−08 0.0E+00 0.0E+00 0.0E+00
 F13 Mean 1.0E−23 1.1E+49 1.9E+72 2.8E+03 4.4E+10 6.6E+69 3.7E+59 1.2E+48 8.2E−90 0.0E+00 0.0E+00

Std 2.3E−24 3.5E+48 1.6E+71 3.4E+02 1.2E+09 3.9E+68 1.4E+58 3.2E+47 6.2E−91 0.0E+00 0.0E+00
 F14 Mean 3.7E−21 2.7E+03 1.0E+01 9.0E+03 3.6E+03 6.4E+03 3.6E+02 2.7E+02 6.2E−150 0.0E+00 0.0E+00

Std 1.6E−22 1.5E+03 3.0E+00 6.4E+03 2.1E+03 2.4E+03 3.3E+02 3.3E+02 4.3E−151 0.0E+00 0.0E+00
 F15 Mean 1.2E−17 2.1E+00 2.6E+00 5.0E+01 2.7E+01 2.4E+01 1.1E+01 3.5E+00 2.3E−88 0.0E+00 0.0E+00

Std 2.8E−18 3.0E+00 3.2E+00 1.0E+01 4.7E+00 4.9E+00 6.9E+00 2.2E+00 1.6E−89 0.0E+00 0.0E+00
 F16 Mean 6.6E−04 1.6E+04 3.0E+02 6.7E+06 9.8E+05 9.9E+05 1.1E+04 6.1E−01 1.0E−04 4.4E−05 4.2E−05

Std 2.9E−05 1.0E+04 5.1E+01 6.3E+06 2.0E+05 9.4E+04 9.0E+02 2.3E−01 2.3E−05 6.2E−04 3.1E−04
 F17 Mean 2.5E−36 6.0E+01 7.8E+01 2.0E+02 2.9E+02 3.5E+02 1.2E+02 9.7E+01 8.8E−95 0.0E+00 0.0E+00

Std 1.3E−37 1.4E+01 2.4E+01 1.6E+02 2.0E+02 6.4E+01 1.2E+02 2.6E+01 6.4E−95 0.0E+00 0.0E+00
 F18 Mean 4.1E−164 3.4E+02 2.5E−02 5.2E−74 5.3E+01 3.1E+00 7.0E−05 3.1E−04 1.5E−128 0.0E+00 0.0E+00

Std 2.4E−165 4.8E+01 1.2E−03 4.3E−75 5.4E+01 3.1E+00 2.3E−05 3.0E−06 1.1E−129 0.0E+00 0.0E+00
 F19 Mean 2.5E−40 6.7E+04 4.8E+02 8.6E+04 2.7E+05 1.9E+05 3.8E+03 4.3E+02 1.3E−197 0.0E+00 0.0E+00

Std 1.1E−41 1.2E+04 1.0E+02 1.1E+05 1.5E+04 2.1E+04 1.4E+03 1.2E+02 0.0E+00 0.0E+00 0.0E+00
 F20 Mean 0.0E+00 5.1E+01 1.1E+00 5.6E−01 8.8E+01 9.0E+01 1.7E+00 7.0E−02 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 4.5E+00 8.6E−02 1.9E−01 7.0E+01 1.0E+01 3.6E−01 2.7E−02 0.0E+00 0.0E+00 0.0E+00
 F21 Mean 2.0E+01 1.8E+01 2.0E+01 2.0E+01 2.0E+01 2.0E+01 2.0E+01 3.1E+00 8.9E−16 8.9E−16 8.9E−16

Std 9.0E−03 4.2E−01 2.0E−02 1.2E−05 6.1E−02 3.1E−02 3.5E−03 1.3E+00 0.0E+00 0.0E+00 0.0E+00
 F22 Mean 9.3E+00 7.0E+03 3.3E+04 6.3E+04 1.6E+04 3.6E+04 1.3E+04 9.4E+04 2.8E−177 0.0E+00 0.0E+00

Std 1.3E+01 2.6E+03 5.9E+03 3.8E+04 1.2E+02 3.2E+01 2.8E+03 8.6E+03 0.0E+00 0.0E+00 0.0E+00
D = 48
 F23 Mean 1.1E−01 6.7E−01 1.9E−03 1.0E+00 1.0E+00 1.1E+00 3.6E−02 8.2E−03 2.2E−180 0.0E+00 0.0E+00

Std 1.2E−01 9.1E−02 1.8E+00 1.4E+00 1.2E+00 3.8E−01 9.0E−03 7.4E−03 0.0E+00 0.0E+00 0.0E+00
 F24 Mean 5.6E−21 2.1E+68 2.0E+98 5.1E+03 6.5E+09 6.0E+84 2.1E+69 1.2E+04 5.1E−88 0.0E+00 0.0E+00
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improve its convergence behavior. It can effectively avoid 
the risk of falling into a local optimum.

For example, F2, F3, and F4, from the convergence curve 
of the WOA, IWOA, BWOA and RDWOA, it can be seen 
that because they are trapped in the local optimal, they only 
obtain different local optimal solutions, but cannot obtain 
the global optimal solution.

For example, for F11, F12, F14 and F15, the EGE-WOA 
has the best convergence behavior. It has strong global 
exploration capabilities and can effectively avoid falling into 
local optimum. The convergence behaviors of the BWOA 
and RDWOA are worse than that of the EGE-WOA. The 
convergence behaviors of the WOA, LWOA and IWOA are 
the worst. They are unable to obtain the global optimal solu-
tion because they fall into the trap of local optimality.

Although LWOA introduced Lévy flights, it did not use 
Lévy flights correctly. It can be seen from the simulation 
data that for the unconstrained optimization problem of 
multi-dimensional space, LWOA cannot prevent WOA from 
falling into the local optimum.

In summary, the EGE-WOA has the best global explora-
tion capability and convergence behavior. In contrast, the 
optimization efficiency of the RDWOA and BWOA for 
unconstrained optimization problems is significantly better 
than that of the IWOA and WOA (Table 5).

4.4 � The execution time of different algorithms

The execution time of different algorithms is tested on the 
same computer in the same environment. The experimental 
results are recorded in Table 6. Each algorithm runs inde-
pendently 20 times.

Although Lévy flights can enhance the exploration effi-
ciency of EGE-WOA in the search space, it is well known 
that it will increase the execution time of the algorithm.

It can be seen from Table 7 that for F1–F11, the WOA 
has the shortest execution time. The execution time of the 
EGE-WOA is the longest. For the four real cases, the WOA 
and RDWOA have the shortest execution time. Since the 
EGE-WOA introduces Lévy flights, its execution time is the 
longest.

5 � Case studies of real‑world applications

In the section, the purpose is to verify the optimization per-
formance of the six whale algorithms for constrained real 
engineering cases. The WOA, LWOA, IWOA, BWOA, 
RDWOA and EGE-WOA are evaluated in five engineer-
ing real applications: Cantilever beam [47], pressure ves-
sel design [47], speed reducer design [47], a three-bar tress 
design [47], and Welded beam design [42] (Fig. 7).

Table 3   (continued)

GWO FA BA MFO BFO FPA GOA ALO HHO BMO EGE-WOA

Std 4.2E−21 3.0E+68 2.9E+98 1.9E+03 4.2E+09 8.5E+84 2.3E+69 5.4E+02 7.3E−88 0.0E+00 0.0E+00
 F25 Mean 6.8E−06 1.4E+04 1.0E+03 9.0E+04 2.8E+04 2.8E+04 1.3E+04 1.6E+04 1.2E−046 0.0E+00 0.0E+00

Std 7.5E−06 8.3E+03 3.2E+02 8.5E+03 1.0E+03 6.8E+03 7.2E+03 9.9E+02 1.7E−146 0.0E+00 0.0E+00
 F26 Mean 1.2E−08 2.5E+01 3.2E+01 8.5E+01 2.2E+01 3.7E+01 2.5E+01 2.2E+01 7.1E−95 0.0E+00 0.0E+00

Std 7.0E−09 2.2E+00 1.7E+01 4.7E+00 2.4E+01 8.9E+00 8.4E+00 4.0E+00 1.0E−94 0.0E+00 0.0E+00
 F27 Mean 3.5E−03 7.7E+04 4.8E+02 2.1E+04 1.2E+06 1.7E+06 3.4E+04 2.2E+00 1.4E−04 1.9E−04 3.4E−05

Std 4.2E−04 3.2E+04 1.1E+01 3.6E+03 1.7E+04 1.3E+05 1.7E+04 1.1E−01 1.9E−04 2.4E−04 4.2E−05
 F28 Mean 2.6E−21 8.3E−01 1.4E+00 9.4E−01 2.5E+00 2.5E+00 1.0E+00 7.2E−01 1.2E−93 0.0E+00 0.0E+00

Std 2.4E−22 1.4E−01 7.3E−01 1.1E−01 1.5E+00 5.7E−02 1.5E−01 1.3E−01 1.7E−93 0.0E+00 0.0E+00
 F29 Mean 6.5E−162 3.1E+01 2.3E−02 2.8E−72 1.5E+01 1.5E+00 1.3E−03 2.2E−04 1.1E−126 0.0E+00 0.0E+00

Std 8.3E−162 9.6E+00 6.3E−04 3.9E−72 2.0E+01 1.3E+00 1.5E−03 2.1E−04 1.6E−126 0.0E+00 0.0E+00
 F30 Mean 1.5E−01 8.9E+00 9.3E+02 6.3E+02 5.7E+00 2.7E+00 1.1E+00 1.1E−01 9.4E−187 0.0E+00 0.0E+00

Std 1.7E−01 3.2E+00 2.0E+01 7.2E+02 8.0E+00 3.4E−01 1.4E−02 4.7E−02 0.0E+00 0.0E+00 0.0E+00
 F31 Mean 0.0E+00 7.1E+01 1.8E+00 1.8E+00 1.2E+02 1.0E+02 2.9E+00 5.6E−02 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 1.6E+01 9.1E−01 7.9E−01 8.8E+01 3.3E+01 5.2E−01 4.6E−02 0.0E+00 0.0E+00 0.0E+00
 F32 Mean 2.1E+01 1.8E+01 2.1E+01 2.0E+01 2.1E+01 2.1E+01 2.0E+01 1.8E+00 8.8E−16 8.8E−16 8.8E−16

Std 9.6E−03 3.8E−02 4.1E−02 2.1E−07 5.5E−03 1.7E−02 4.5E−04 2.5E+00 0.0E+00 0.0E+00 0.0E+00
 F33 Mean 4.5E−02 1.6E−01 1.0E+00 1.6E+00 2.7E−01 6.9E−01 6.6E−01 2.0E+00 1.4E−177 0.0E+00 0.0E+00

Std 1.7E−02 1.2E−01 1.0E−01 2.5E−01 1.7E−02 1.3E−01 1.9E−01 4.0E−01 0.0E+00 0.0E+00 0.0E+00
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Fig. 5   Simulation curve of the selected function
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Fig. 5   (continued)
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5.1 � Cantilever beam

where 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

The abscissa of Fig. 8 is the number of iterations of each 
algorithm. Its ordinate is the average value of the value 
obtained in each iteration of each algorithm. It can be seen 
from Fig. 8 that when the whale optimization algorithms 
optimize for the constrained realistic engineering case, 
their convergence curves are obviously different from those 
of when they optimize for the unconstrained optimization 
problems.

The f(x) in Table 7 records the optimal mean values of the 
six curves in Fig. 8. In Fig. 8 and Table 7, the optimal mean 
(f(x)) of the LWOA is the largest. The optimal means of the 
WOA and RDWOA are the smaller than that of the LWOA. 
The optimal mean of the BWOA is smaller than those of the 
WOA and RDWOA. The optimal mean value of the IWOA 
is smaller than that of the BWOA. The optimal mean of the 
EGE-WOA is the smallest. The convergence behavior of the 
EGE-WOA in Fig. 8 is the best (Fig. 9).

5.2 � Pressure vessel design (PVD)

min f (x) = 0.0624 × (x1 + x2 + x3 + x4 + x5),

S.T.g =
61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0,

min f (Ts, Th,R, L) = 0.6224TsRL + 1.7781ThR
2 + 3.1661T2

s
L + 19.84T2

h
L,

s.t.

⎧⎪⎪⎨⎪⎪⎩

g1 = −Ts + 0.0193R ≤ 0,

g2 = −Th + 0.0095R ≤ 0,

g3 = −�R2L −
4

3
R3 + 1296000 ≤ 0,

g4 = L − 240 ≤ 0,

where �
1.5 × 0.0625 ≤ Ts, Th ≤ 99 × 0.0625, and10 ≤ R, L ≤ 200.

For the constrained practical engineering problem, com-
paring the mean iteration curves of six whale optimization 
algorithms in Fig. 10, it can be seen that LWOA has the 
worst convergence behavior. The convergence behavior of 
the WOA is better than that of the RDWOA. The conver-
gence behavior of the BWOA is slightly better than that of 
the WOA. The convergence behavior of the EGE-WOA is 
the best.

From the f(x) of the five algorithms in Table 8, it can be 
seen that the f(x) of the LWOA is 15,331.3268, which is the 
largest. The f(x) of the EGE-WOA is 5653.7587, which is 
the smallest. When optimizing the constrained real case, the 
optimization efficiency of the EGE-WOA is the best.

5.3 � Speed reducer design (SRD)

The purpose of structural optimization is to minimize the 
total weight of the reducer (Fig. 11). The mathematical for-
mula for this case is as follows:

Table 5   Experimental setting of 
algorithm execution time

Algorithms Population Maximum itera-
tions

Others

WOA 15 100 Intel(R) Core(TM) i3 CPU, M 380 at 2.53 GHz
LWOA 15 100
IWOA 15 100
BWOA 15 100
RDWOA 15 100
EGE-WOA 15 100
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Fig. 6   The convergence trend of 
test functions
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Fig. 6   (continued)
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Table 6   The experimental 
results

Function Total execution time (unit: seconds)

WOA LWOA IWOA BWOA RDWOA EGE-WOA

F1 (D = 20) 1.462964 3.001193 2.709741 2.965421 1.938859 5.431570
F2 (D = 20) 1.593143 2.880463 2.852629 3.092103 1.990761 6.728632
F3 (D = 20) 2.883729 7.074165 7.319616 7.274490 3.198738 28.656872
F4 (D = 20) 1.650080 3.082130 3.343207 3.261090 2.215706 9.215300
F5 (D = 20) 1.698621 3.128064 3.144437 3.383307 2.085150 9.989183
F6 (D = 20) 1.569469 2.995794 2.838852 2.872859 1.775724 6.484316
F7 (D = 20) 1.464601 2.888759 2.642589 2.865362 1.783504 5.245892
F8 (D = 20) 2.308270 3.970877 5.507108 5.396888 2.632238 20.609869
F9 (D = 20) 1.764807 3.098186 3.274632 3.283923 2.054318 8.823530
F10 (D = 20) 1.772231 3.192341 4.140871 3.695845 2.128136 11.530761
F11 (D = 20) 1.642378 3.139327 3.166271 3.266846 1.906539 9.374125
Cantilever beam (D = 5) 1.021254 2.058539 2.219194 1.645368 0.886621 6.235161
Pressure vessel design (D = 4) 0.725120 2.120635 2.711728 1.478308 0.813754 5.754369
Speed reducer design (D = 7) 1.116023 2.331069 2.656215 2.405323 1.411247 9.689023
A three-bar truss design (D = 2) 0.748537 1.950901 2.104448 1.401960 0.939795 5.365924

Table 7   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design variables (x) f(x)

Cantilever beam x1 x2 x3 x4 x5

WOA 6.1099 6.5552 4.8083 3.5642 2.6479 1.4780
LWOA 9.4023 13.620 10.276 14.5407 7.4935 3.4528
IWOA 6.2911 5.5158 4.2591 3.4754 2.1535 1.3538
BWOA 5.6259 5.7054 5.1576 3.6918 2.3649 1.4068
RDWOA 5.8287 6.2194 5.1771 4.0634 2.7235 1.4984
EGE-WOA 5.8247 4.9733 4.3818 3.4739 2.1143 1.3426

Fig. 7   Schematic of cantilever beam

Fig. 8   The convergence curves of different algorithms
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where 2.6 ≤ b ≤ 3.6, 0.7 ≤ m ≤ 0.8, 17 ≤ z ≤ 28,

7.3 ≤ l1, l2 ≤ 8.3, 2.9 ≤ d1 ≤ 3.9, 5.0 ≤ d2 ≤ 5.5.

In Fig. 12, the convergence behaviors of the WOA and 
LWOA are the worst. The convergence curve of the BWOA 
is significantly better than that of the RDWOA. The con-
vergence behavior of the EGE-WOA is the best. From the 

min f (b,m, z, l1, l2, d1, d2) = 0.7854bm2(3.3333z2 + 14.9334z − 43.0934) − 1.508b(d2
1
+ d2

2
)

+7.477(d3
1
+ d3

2
) + 0.7854(l1d

2
1
+ l2d

2
2
),

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
27

bm2z
P − 1 ≤ 0,

g2 =
397.5

bm2z2
− 1 ≤ 0,

g3 =
1.93

mzl3
1
d4
1

− 1 ≤ 0,

g4 =
1.93

mzl3
1
d4
2

≤ 0,

g5 =

�
(
745l1

mz
)2 + 1.69 × 106

110d3
1

− 1 ≤ 0,

g6 =

�
(
745l1

mz
)2 + 157.5 × 106

85d3
2

− 1 ≤ 0,

g7 =
mz

40
− 1 ≤ 0,

g8 =
5m

B − 1
− 1 ≤ 0,

g9 =
b

12m
− 1 ≤ 0,

f(x) in Table 9, it can be seen that the f(x) of the EGE-WOA 
is 2616.6264, which is the smallest. The f(x) of WOA and 
LWOA is 2695.7386 and 2695.7386, which are the largest. 
Through comparison, it can be seen that when optimizing 
the speed reducer design case, the exploration efficiency of 
the EGE-WOA is the best (Fig. 13).

Ts:Shell thickness, Th:Spherical head thickness

R:Radius of cylindrical shell, L:Shell length

Fig. 9   Schematic of pressure vessel. Ts: shell thickness, Th: spherical 
head thickness, R radius of cylindrical shell, L shell length

Fig. 10   The convergence curves of different algorithms
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Table 8   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design variables (x) f(x)

PVD Ts Th R L

WOA 23.0755 10.796 58.8452 49.5818 6343.6463
LWOA 33.4376 23.9068 55.4388 69.6095 15,331.3268
IWOA 25.1715 10.5405 64.4467 13.4387 5750.7708
BWOA 24.0285 9.81518 60.0310 35.2914 5835.3514
RDWOA 25.8516 13.2493 54.2852 76.4037 8957.4802
EGE-WOA 16.9187 8.94271 51.7607 10.2304 5653.7587

Fig. 11   Speed reducer

Fig. 12   The convergence curves of different algorithms

Table 9   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design variables f(x)

SRD b m z l1 l2 d1 d2

WOA 2.73483 0.70860 17.0883 7.47217 7.39572 3.11303 5.3192 2695.7386
LWOA 2.64195 0.70179 17.5954 7.51391 7.68144 3.13573 5.2865 2692.0636
IWOA 2.73094 0.71280 17.0000 7.45131 7.45649 2.94305 5.2865 2637.2741
BWOA 2.65295 0.71933 17.0350 7.49423 7.45337 2.91356 5.2879 2628.1483
RDWOA 2.70791 0.70428 17.3488 7.7878 7.57307 2.90000 5.3409 2677.1575
EGE-WOA 2.60000 0.70000 17.0000 7.30000 7.30000 2.90000 5.28644 2616.6264

Fig. 13   Schematic of three-bar tress

Fig. 14   The convergence curves of different algorithms
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5.4 � A three‑bar truss design

with �
l = 100cm,P = 2KN∕CM2, and � = 2KN∕CM2(0 ≤ A1,A2 ≤ 1).

The optimization of a three-bar truss design belongs to 
the constrained problem optimization. It can be seen from 
Fig. 14 that, except for the LWOA and RDWOA, the conver-
gence behaviors of the other four algorithms are not much 
different. The convergence behavior of the EGE-WOA is 
slightly better than that of the WOA, IWOA and BWOA. 
It can be seen from Table 10 that the f(x) the EGE-WOA 
is 2.8284, which is slightly smaller than that of the WOA, 
LWOA, IWOA, BWOA and RDWOA. The optimal average 
value of the LWOA is 2.8693, which is the largest (Fig. 15).

5.5 � Welded beam design

Consider: x = [h, l, t, b] = [x1, x2, x3, x4],

subject to

min f (A1,A2) = (2
√
2A1 + A2)l,

s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g1 =

√
2A1 + A2√

2A2
1
+ 2A1A2

P − � ≤ 0,

g2 =
A1√

2A2
1
+ 2A1A2

P − � ≤ 0,

g3 =
1

A1 +
√
2A2

P − � ≤ 0,

min f (x) = 1.10471x2
1
x2 + 0.04811x3x4(L + x2),

g1(x) = �max − �(x) ≥ 0,

g2(x) = �max − �(x) ≥ 0,

g3(x) = x4 − x1 ≥ 0,

g4(x) = 0.10471x2
1
+ 0.04811x3x4(14 + x2) − 5 ≤ 0,

g5(x) = 0.125 − x1 ≤ 0,

g6(x) = �(x) − �max ≤ 0,

g7(x) = P − Pc(x) ≤ 0,

0.125 ≤ h ≤ 2, 0.1 ≤ l, t ≤ 10, 0.1 ≤ b ≤ 2,

Table 10   Experimental result data

The significance of bold indicates that its corresponding optimizer 
has the smallest value of f(x) and the best convergence behavior

Case Optimizer Optimal design variables f(x)

A three-bar tress A1 A2

WOA 0.97888 0.032728 2.8307
LWOA 0.88557 0.210730 2.8693
IWOA 0.98804 0.017577 2.8289
BWOA 0.99844 0.002223 2.8284
RDWOA 0.88643 0.192920 2.8547
EGE-WOA 1.00000 0.0000000 2.8284

Fig. 15   Welded beam structure

Fig. 16   The convergence curves of different algorithms
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It can be seen from Fig. 16 that the convergence curve 
of the LWOA is the worst. The convergence curve of the 
EGE-WOA is slightly better than that of the WOA, IWOA 
and BWOA. It can be seen from Table 11 that the f(x) of the 
EGE-WOA is 1.8433, which is the smallest.

It can be seen from the five cases that LWOA has poor 
convergence behavior and exploration efficiency. It shows 

�(x) =

�
(�)2 + 2�

�
�

��
x2

2R
+ (�

��
)2, �

�

=
P√
2x1x2

, �
��

=
MR

J
,M = P

�
L +

x2

2

�
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��
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2

�2

+

�
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2

�2

J = 2

�√
2x1x2

�
x2
2

12
+

�
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2

�2��
, �(x) =

6PL

x2
3
x4
, �(x) =

4PL3

Ex3
3
x4
,Pc(x) =

4.013E

L2

�
x2
3
x6
4

36

�
1 −

x3

2L

�
E

4G

�
,

P = 6000lb, L = 14in,E = 30 × 106psi, �max = 13600psi, �max = 30000psi, �max = 0.25in,G = 12 × 106psi.

that the Lévy flights introduced by the LWOA do not play a 
positive role. It cannot solve the problem that the algorithm 
is easy to fall into local optimization.

5.6 � The simulation optimal design of section 
parameters of hydraulic support top beam

The structural parts of the hydraulic support mainly include 
the top beam, the cover beam, the front and rear connecting 
rods, the base and so on. They are all box-shaped multi-cav-
ity structures welded by steel plates. Their weight accounts 
for more than 70% of the total weight of the bracket. The 
following will carry out the simulation optimization design 
of structural parameters of the MTZ7200-20/32 hydraulic 
support top beam. The paper chooses to optimize the design 
of the most dangerous section of the roof beam under the 
action of the concentrated load at the middle end, as shown 
in section D–D in Fig. 17. The simulation optimization is 
aimed at the lightest weight.

The simulation optimization problem of the top beam sec-
tion parameters is a constrained minimization problem. The 

general form of its mathematical model is as follows:
The objective function: min f (x).

The nonlinear constraints: gi(x) ≤ 0, i = 1, 2, 3,⋯.
Linear constraints: A(x) = B.

A represents the coefficient matrix of linear constraints. x 
is the design variable. B is a column vector.

Table 11   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design 
variables (x)

f(x)

Welded beam 
design

h l t b

WOA 0.36888 3.0589 5.9828 0.57515 2.9633
LWOA 0.62069 4.3873 5.4899 0.92341 313,110.74
IWOA 0.21639 4.1783 8.2918 0.26241 2.0395
BWOA 0.26943 4.3759 7.6618 0.32294 2.2411
RDWOA 0.32613 3.2267 7.3797 0.52972 21.551
EGE-WOA 0.1250 3.2519 8.874 0.20327 1.8433

Fig. 17   The optimal design section of the MTZ7200 top beam

Fig. 18   The D–D sectional structure
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5.6.1 � The objective function and design variables

The external dimensions of the top beam of the hydrau-
lic support are generally determined in the overall design. 
Therefore, taking the lightest weight is the ultimate goal of 
the simulation optimization design. That is to take the mini-
mum actual material area of the top beam section as the goal 
of the simulation optimization design. According to Fig. 18, 
its objective function is as follows:

In the roof beam structure, the thickness of the upper 
and lower cover plates and the layout and size of the ribs 
should meet the requirements of the strength and stiffness 
of the roof beam. The reasonable selection of these section 
parameters directly determines the weight, reliability and 
structural stress distribution of the top beam. Therefore, it 
is necessary to select the section parameters of the top beam 
as the design variables of its structural simulation and opti-
mization design.

Since the width of roof beam has been standardized, t1, 
t2, t3 and t4 are taken as design variables:

5.6.2 � The constraint condition

The constraint conditions of hydraulic support vary with 
the frame type, external load condition and basic shape of 
section. In addition to the strength conditions, geometric 
constraints should also be met.

5.6.2.1  The strength condition 

1.	 The bending strength condition
	   The maximum bending stress is used for checking 

at the section, and the bending strength condition is as 
follows:

f (x) = 2[Ct1 + t4(t2 + t3)].

x = [t1, t2, t3, t4]
T = [x1, x2, x3, x4]

T.

where �s is the yield limit of the material, MPa. ns is 
the allowable safety factor. �s is the maximum bending 
stress of the calculated section, MPa. M is the maximum 
bending moment of the calculated section, N mm.

	   The g1(x) = ns −
�s

�(x)
≤ 0.

2.	 The shear strength condition
	   When the shear stress of this section is the maximum, 

the shear strength needs to be checked:

where n� is the allowable safety factor. [�] is the allow-
able safety stress, MPa. � is the maximum shear stress 
of the calculated section, MPa. Q is the maximum shear 
force, N.

	   Then, g2(x) = n� −
[�]

�(x)
≤ 0.

5.6.2.2  The geometric constraints 

1.	 The limit of top beam thickness.
	   The thicker the top beam is, the smaller the stress. 

However, considering the ventilation section of the sup-
port, gas emission, pedestrian passing and other factors, 
a limit thickness Tmax is usually given in the design:

�s

�
≥ ns,

� =
3M(2t1 + t4)

t3
4
(t2 + t3) + Ct3

1
+ 3Ct1(t1 + t4)

2
,

[�]

�
≥ n� ,

� =
Q[t1C

t1+t4

2
+

t2
4

2
(t2 + t3)][

t3
4
(t2+t3)

3
+

Ct3
1

3
+ (t1 + t4)

2t1C
]
(t2 + t3)

,

2t1 + t4 ≤ Tmax,

Table 12   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 25.27752 33.37527 44.74445 299.7398 100,163.4405
LWOA 40.11551 41.63783 44.26127 236.3844 118,735.7941
IWOA 19.51727 33.00255 18.06274 386.1154 80,150.4949
BWOA 23.26032 30.84655 25.54706 350.0324 87,788.4794
RDWOA 24.45405 37.35055 36.41292 313.5979 96,278.0539
EGE-WOA 17.60693 12.78929 10.03942 389.5091 78,036.0342
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where Tmax is the ultimate thickness of top beam, mm.
2.	 The limitation of total web thickness.
	   From the point of view of meeting the conditions of 

bending and shear strength, the thinner the web, the less 
material is used. However, considering that the top beam 

of the support should have a certain stiffness, a mini-
mum thickness Cmin should be limited in the design:

where Cmin is the lower bound of the total thickness of 
the web, mm.

3.	 The boundary conditions.
	   The design variables are not only limited by the speci-

fications of each plate, but also limited by the global or 
local stiffness and deformation, so their values cannot 
be too small:

5.6.2.3  The mathematical model  By substituting the 
known parameters M = 3041 × 106  N  mm, C = 1430  mm, 
σs = nτ = 1.38, σs = 330 MPa, [τ] = 165 MPa, and Q = 3.566 
MN into the objective function and constraints, the math-
ematical model is as follows:

−2(t2 + t3) ≤ −Cmin,

−t1 ≤ −10,−t2 ≤ −10,−t3 ≤ −10,−t4 ≤ −50.

min f (x) = 2[1043x1 + x4(x2 + x3)],

Table 13   Experimental result 
data

The significance of bold indicates that its corresponding optimizer has the smallest value of f(x) and the 
best convergence behavior

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 25.09450 41.53853 33.17800 300.5746 97,430.0963
LWOA 31.25082 51.39009 70.61728 259.8934 131,591.2338
IWOA 20.69345 30.57932 30.1403 355.4647 86,356.9014
BWOA 18.56712 35.49955 29.88896 375.2664 87,509.7769
RDWOA 23.16900 42.29871 36.56531 315.8706 98,009.5663
EGE-WOA 17.42181 10.00541 28.61898 349.6498 85,764.8742

Fig. 19   The convergence curves of different algorithms

Fig. 20   The convergence curves of different algorithms

Fig. 21   The convergence curves of different algorithms
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The coefficient matrix A and column vector B of linear 
constraint are

g1(x) = 1.38 −
330(x2 + x3)x

3
4
+ 4.719 × 105x3

1
+ 1.416 × 106x1(x1 + x4)

2

9.123 × 109(2x1 + x4)
≤ 0,

g2(x) = 1.38 −
165(x2 + x3)

[
x3
4
(x2+x3)

3
+

1430x3
1

3
+ 1430x1(x1 + x4)

2
]

3566 × 106 ×
[
715x1(x1 + x4) +

x2
4

2
(x2 + x3)

] ≤ 0,

g3(x) = 2x1 + x4 − Tmax ≤ 0,

g4(x) = Cmin − 2(x2 + x3) ≤ 0,

−x1 ≤ −10,−x2 ≤ −10,−x3 ≤ −10,−x4 ≤ −50.

According to the different values of Tmax and Cmin, the 
minimization problem of the mathematical model is solved.

Considering the effect of different Tmax and Cmin values on 
the cross-sectional area, we choose eight different Tmax and 
Cmin for simulation optimization (Tables 12, 13).

The first case: when Tmax = 440 mm and Cmin = 80 mm. 
The optimization curves and data of the six whale optimiza-

tion algorithms for the f(x) are as follows (Fig. 19).
The second case: when Tmax = 440  mm and 

Cmin = 120 mm. The optimization curves and data of the six 
whale optimization algorithms for the f(x) are as follows 
(Fig. 20).

The third case: when Tmax = 440 mm and Cmin = 160 mm. 
The optimization curves and data of the six whale optimiza-
tion algorithms for the f(x) are as follows (Fig. 21).

A =

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 0 1

0 −2 −2 0

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tmax

−Cmin

−10

−10

−10

−50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 22   The convergence curves of different algorithms

Fig. 23   The convergence curves of different algorithms

Fig. 24   The convergence curves of different algorithms
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Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 24.40032 44.70096 44.90829 300.0924 104,895.2481
LWOA 46.67345 47.00782 82.80762 185.2508 147,086.8826
IWOA 20.15372 48.28946 32.12598 343.5569 97,294.6936
BWOA 22.49702 66.63666 14.20119 326.811 99,690.9320
RDWOA 29.26249 26.44685 73.99081 261.4931 114,215.2917
EGE-WOA 17.61107 27.77492 13.308 323.8953 97,100.2436

The fourth case: when Tmax = 440 mm and Cmin = 240 mm. 
The optimization curves and data of the six whale optimiza-
tion algorithms for the f(x) are as follows (Fig. 22).

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 30.88702 90.23891 44.67687 241.2454 128,540.2534
LWOA 44.85422 63.15818 129.6596 173.4766 163,692.6104
IWOA 20.35711 73.59813 47.5478 317.4275 119,354.0369
BWOA 20.27847 50.32282 70.06599 318.5292 119,014.8264
RDWOA 30.91130 27.1493 110.7774 255.1978 132,821.1814
EGE-WOA 17.59403 10.08118 10.4889 266.9102 118,791.0842

The fifth case: when Tmax = 400 mm and Cmin = 160 mm. 
The optimization curves and data of the six whale optimiza-
tion algorithms for the f(x) are as follows (Fig. 23).

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 30.26314 39.09114 49.06834 271.2596 111,059.3476
LWOA 36.90048 79.22142 49.25809 216.5744 134,363.2622
IWOA 22.72781 51.88702 28.51705 321.9593 99,184.5120

Fig. 25   The convergence curves of different algorithms Fig. 26   The convergence curves of different algorithms
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Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

BWOA 23.78628 32.7138 48.68922 307.8309 99,727.9174
RDWOA 26.5803 40.33903 64.66502 280.8413 114,842.3755
EGE-WOA 18.97744 25.59272 15.29235 317.9446 97,152.6332

The sixth case: when Tmax = 360 mm and Cmin = 160 mm. 
The optimization curves and data of the six whale optimiza-
tion algorithms for the f(x) are as follows (Fig. 24).

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 37.65714 44.42424 48.54884 214.1215 117,723.1160
LWOA 38.50779 161.3716 103.8331 195.9281 184,941.4289
IWOA 24.86709 33.70215 47.81462 299.0856 100,649.1497
BWOA 28.68981 47.134 34.06963 268.7986 103,480.5820
RDWOA 31.32396 35.98665 55.68149 251.4981 110,704.1973
EGE-WOA 23.37292 18.00547 12.62175 297.5980 99,315.4843

The seventh case: when Tmax = 320  mm and 
Cmin = 160 mm. The optimization curves and data of the six 
whale optimization algorithms for the f(x) are as follows 
(Fig. 25).

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 33.83567 73.77938 33.84293 228.454 119,554.4854
LWOA 53.5757 120.2834 170.555 142.1108 191,718.6022
IWOA 32.56013 31.65445 49.404 242.3646 107,234.3334
BWOA 32.93235 43.19313 38.09523 239.6881 107,679.7659
RDWOA 51.21735 104.5579 51.75729 168.4327 153,268.0284
EGE-WOA 29.75091 37.49873 28.57456 255.7566 104,284.7457

The eighth case: when Tmax = 300 mm and Cmin = 160 mm. 
The optimization curves and data of the six whale optimiza-
tion algorithms for the f(x) are as follows (Fig. 26).

Case Optimizer Optimal design variables (x) f(x)

Hydraulic sup-
port top beam

t1 t2 t3 t4

WOA 33.59803 33.59092 120.5783 219.466 143,773.5264
LWOA 47.45665 171.0472 116.2638 156.2057 202,026.0851
IWOA 37.12945 47.78879 38.6945 215.4439 114,859.8591
BWOA 39.69094 56.74338 24.04799 204.0625 115,766.3774
RDWOA 60.89707 101.6072 69.36508 128.3987 166,081.0218
EGE-WOA 34.44039 10.00754 10.40055 227.2008 109,277.5338
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From the convergence curves and optimization results of 
the above eight cases, it can be seen that the convergence 
behavior of EGE-WOA is better. Its optimization efficiency 
is the highest.

6 � Conclusions

In the process of global continuity optimization, the WOA 
has the problems of poor exploration efficiency and weak 
convergence behavior. To improve the global exploration 
efficiency of the WOA, IWOA and BWOA were proposed. 
Although these two algorithms have improved the global 
exploration efficiency and convergence behavior of the 
WOA to a certain extent, they have not effectively avoided 
the risk of falling into the local optimum. The exploration 
efficiency of the RDWOA for unconstrained continuous opti-
mization problems is significantly higher than that of the 
IWOA, BWOA and WOA. From the experimental data in 
Sect. 5, it can be seen that compared with the WOA, IWOA 
and BWOA, the RDWOA has very poor exploration effi-
ciency for constrained continuous optimization problems. Its 
convergence behavior is also significantly worse than other 
variant algorithms.

To enhance the exploration efficiency and convergence 
behavior of the WOA in unconstrained and constrained con-
tinuous optimization problems, we propose a novel whale 
optimization algorithm (EGE-WOA).

For the unconstrained global continuous optimization 
problem, it can be seen from the experimental results of 33 
benchmark functions that compared with the WOA, IWOA, 
BWOA and RDWOA, the global exploration efficiency and 
convergence behavior of the EGE-WOA have been signifi-
cantly improved. The EGE-WOA can effectively avoid the 
risk of the algorithm falling into a local optimum.

For the constrained global continuous optimization prob-
lem, it can be seen from the experimental results of five 
real engineering application cases that compared with the 
WOA, IWOA, BWOA and RDWOA, the EGE-WOA still 
has a strong global exploration efficiency and a better con-
vergence curve.

In summary, the EGE-WOA can strengthen the global 
exploration efficiency and convergence behavior of the 
WOA.

In the future, we will research and apply whale optimiza-
tion algorithm in many aspects, for example, in multi-objec-
tive optimization. In practical applications, we use WOA 
to provide the best parameters for image segmentation and 
machine-learning models.
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