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Abstract
The present study investigates the nonlinear vibrations in thin-walled shells consisting of three-phase polymer nanocom-
posites with regard to the viscoelastic properties of polymer and curved shape of carbon nanotubes (CNTs). To this end, 
a hierarchical micromechanical framework is introduced to study the effective properties of multi-scale hybrid (MSH) 
nanocomposite. Next, the von Kármán-type nonlinearity is considered together with the displacement field of the classical 
shell theory to derive the governing equations in the context of Hamilton’s principle. In addition, the impacts of both axial 
compression and transverse harmonic stimulation on the dynamic response of the system are taken into consideration. After-
ward, the method of harmonic balance is implemented to find the frequency–response relation of the structure. The transient 
response is also achieved with the aid of fourth-order Runge–Kutta method. The results of this work reveal that resonance 
estimation in such hybrid nanomaterial structures will be inaccurate if the softening effect of waviness phenomenon on the 
modulus is ignored. On one hand, it is demonstrated that the amplitude of the dynamic deflection of the shell will be reduced 
with time (i.e., due to the viscoelastic properties of the polymer). On the other hand, it is depicted that rising the content of 
glass fibers (GFs) in the MSH nanocomposite shell results in softer oscillations. The reason for this trend is the reducing 
impact of this change on the content of the CNTs in the composition of the polymer nanocomposite.

Keywords Multi-scale hybrid nanocomposite · Viscoelastic material · Waviness phenomenon · Nonlinear vibrations · Thin-
walled shells

1 Introduction

Since the invention of carbon nanotubes (CNTs) in the 1990s 
[1], various nano-engineered devices were designed thanks 
to the outstanding properties of nanosize elements [2, 3]. In 
other words, the enhanced ultimate stiffness and strength, 
high slenderness ratio, light weight, and high thermal con-
ductivity of CNTs [4] have made them key elements in the 

design of critical instruments. Therefore, implementation of 
CNTs for the purpose of reinforcing polymers can be an effi-
cient means to design structural elements. Keeping this fact 
in mind, many studies can be addressed whose major con-
cern is to monitor the reaction of CNT-reinforced (CNTR) 
nanocomposite structures, in different working conditions, to 
mechanical stimulations [5–42]. Even though these studies 
provided rough data about the general behaviors of CNTR 
polymers, their findings seem to be engineering overestima-
tions because of the fact that practical aspects of designing 
nanocomposites exist in none of them. In other words, all of 
the above studies were accomplished by assuming the CNTR 
polymer to be like a fiber-reinforced one. However, this ideal 
assumption cannot be satisfied in such polymer nanocom-
posites. This mismatch has several reasons, among them 
the wavy shape of CNTs (i.e., reported to originate from 
high slenderness ratio of the CNTs, their topological defect, 
and existing van der Waals (vdW) forces between them 
[43, 44]) is of high significance. To capture this issue while 
tracking the stress–strain curve of the CNTR polymers, a 
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semi-empirical attempt was made in [45]. According to this 
study, a modified homogenization technique for accurate 
estimation of the Young’s modulus of CNTR polymers was 
attained. In addition to the waviness phenomenon, forma-
tion of CNT agglomerates in the microstructure of a CNTR 
polymer weakens the reinforcing power of such nanofillers. 
To cover this issue, a gradual distribution of the agglomer-
ated CNTs across the thickness direction was introduced in 
another micromechanics-assisted study [46]. In this work, 
the entanglement of the CNTs inside the inclusions was kept 
in mind while the Young’s modulus of the CNTR nanocom-
posite was calculated. Recently, the effect of temporal deg-
radation of the properties of polymer on the approximation 
of modulus in nanocomposites has been covered in another 
micromechanical investigation [47].

In the above-mentioned studies, bi-phase nanocompos-
ites consisting of polymer and CNT were discussed. Recent 
studies, however, have shown that three-phase nanocompos-
ites, referred to as multi-scale hybrid (MSH) nanocompos-
ites, have potential to better match the design criteria in the 
field of structural mechanics. In these hybrid nanomateri-
als, the third phase belongs to macro-scale fibers such as 
glass or carbon fibers (GFs/CFs). In the middle 2010s, some 
researchers started to analyze static and dynamic behaviors 
of MSH nanocomposite structures. In one of the initial 
efforts in this area, first-order shear deformation theory 
(FSDT) was hired to probe nonlinear free vibration behav-
iors of rectangular sandwich plates made of smart piezo-
electric MSH nanomaterials [48]. By means of a rheological 
solid element, the viscoelastically damped oscillations of 
sandwich beams consisting of MSH nanocomposites were 
tracked in [49]. Investigation of the nonlinear dynamic prop-
erties of MSH nanocomposite blades was done in [50] once 
the nanomaterial-made blade seemed to be rotating around 
its longitudinal axis. In another geometrically nonlinear 
study, finite element method (FEM) was employed in [51] to 
probe low-velocity impact features of MSH nanocomposite 
plates positioned in a hygrothermal environment. According 
to the classical theory of thin beams, nonlinear deflection, 
critical postbuckling temperature, and bifurcation properties 
of MSH nanocomposite beams were determined in [52] via 
simple Halpin–Tsai homogenization algorithm. Using the 
well-known Rayleigh–Ritz FE solution, the modal charac-
teristics of MSH nanocomposite thick beams were studied 
in [53]. In another endeavor, the same authors surveyed the 
bi-axial buckling problem of rectangular plates consisting 
of MSH nanocomposites [54] in the framework of classi-
cal theory of thin plates. Lately, the destroying influence 
of the CNT agglomerates on the buckling-mode failure and 
oscillation frequency of MSH nanocomposite structures was 
covered in [55–57] and [58, 59], respectively.

Based on the above literature review, it can be easily 
realized that the impacts of wavy shape of the CNTs and 

time-varying modulus of the polymer on the dynamic 
characteristics of MSH nanocomposite structures have not 
been paid enough attention. In the solitary work in this 
field, the vibrational behaviors of viscoelastic three-phase 
nanocomposite plates were studied in [60]. To cover this 
lack in the literature and by recalling the broad application 
of nanocomposite shells as aerospace structures, structural 
devices, marine structures, energy storage devices, highly 
sensitive strain sensors, etc., we decided to probe the 
nonlinear vibration of MSH nanocomposite thin-walled 
shells subjected to a hard-type harmonic stimulation. In 
this regard, the viscoelastic properties of the matrix will be 
considered to be like that expressed in [47]. Afterward, the 
modified version of the Halpin–Tsai method will be imple-
mented to consider the effect of curved shape of the nano-
fillers on the dynamic response of the continuous system. 
Next, the classical theory of thin cylindrical shells will be 
mixed with the nonlinear strain–displacement relations of 
von Kármán to derive the nonlinear governing equations 
of the system with the aid of an energy method. Finally, 
the problem will be solved analytically and both tabular 
and illustrative case studies will be depicted for reference.

2  Theory and formulation

2.1  Micromechanical homogenization

Here, the equivalent properties of MSH nanocomposite 
will be obtained. The schematic flowchart implemented 
for modeling the hybrid nanocomposite can be found in 
Fig. 1. The MSH nanocomposite is assumed to be hosted 
by a polymer whose time-varying properties are reported 
in the literature. Polymers promote viscoelastic behavior 
in various working conditions [61]. Thus, it is logical to 
consider the properties of such soft materials to be time 
varying [62]. In this study, an exponential temporal deg-
radation for the polymer’s properties will be considered, 
in accordance with the well-known viscoelastic model of 
Maxwell [47, 63]. Based on this method, the modulus and 
Poisson’s ratio of the polymer can be calculated via [60]:

Fig. 1  Schematic flowchart of modeling of the MSH polymer nano-
composites



559Engineering with Computers (2023) 39:557–574 

1 3

where E0
PM

 and �0
PM

 are the instantaneous elastic modulus at 
the initial time and initial value of Poisson’s ratio, respec-
tively. The parameters �v and �v are stretching exponent and 
characteristic relaxation time, respectively. It is worth men-
tioning that the mass density of the polymer does not vary 
with time and, thus, it can be stated that �PM = �0

PM
.

Next, the equivalent properties of CNTR polymer must 
be gathered. To this end and with regard to the important 
influence of the waviness phenomenon on the modulus 
determination in nanocomposites, the semi-empirical modi-
fied Halpin–Tsai method [45] is chosen. Prior to discuss-
ing about the homogenization method, it must be declared 
that the present modeling is based on the fact that a limited 
content of CNTs is utilized in the composition of the hybrid 
nanomaterial. If CNT loadings above 2 wt.% are purposed, 
the present model is not reliable. This issue does not seem 
important herein, because it is not logical to use CNT load-
ings of as high as 2 wt.% or more due to the high probability 
of aggregation phenomenon in such CNT loadings. Once 
CNTR polymers with low reinforcement content are studied, 
the present model can be trusted due to the excellent agree-
ment between model predictions and those of experiments 
[45]. Following this algorithm, the Young’s modulus of the 
CNTR nanocomposite can be computed as:

where

in which α is the orientation factor that must be set to 1/6 
due to very small dimensions of the CNTs in comparison 
with the entire thickness of the structure [64]. In addition, C 
is a geometry-based coefficient which is in charge of captur-
ing the shape of nanofillers. Finally, the sign Cw stands for 
the waviness coefficient which is defined as Cw = 1 − a∕w . 
In this definition, a and w are amplitude and range of the 
wave existing in the CNT, respectively. It is worth mention-
ing that the introduced waviness coefficient varies between 
zero and one where the CNTs are assumed to be like circle 

(1)EPM(t) = E0
PM

exp

(
−

t

�v

)�v

,

(2)�PM(t) = 0.5 − (0.5 − �0
PM

) exp

(
−

t

�v

)�v

,

(3)ENCM =
1 + C�VCNT

1 − �VCNT

EPM,

(4)� =
Cw

[
�ECNT

/
EPM

]
− 1

Cw

[
�ECNT

/
EPM

]
+ C

,

(5)C = 2
lCNT

dCNT
,

(fully curved CNTs) and string (ideal CNTs), respectively. 
Also, the mass density and Poisson’s ratio of the CNTR 
nanocomposite can be achieved using [60]:

Once Eqs.  (3) and (7) are mixed, the shear mod-
ulus of the CNTR polymer will be obtained via 
GNCM = ENCM

/
2
(
1 + �NCM

)
 . In Eqs. (3), (6), and (7), the 

volume fraction of the CNTs can be gathered by [60]:

where �CNT and �PM , respectively, correspond to the mass 
densities of CNTs and polymer. Also, mr is the mass fraction 
of the nanofillers.

At this stage, we find the equivalent properties of the 
MSH nanomaterial. To do so, assume a fiber-reinforced 
composite whose matrix is the CNTR polymer. In this paper, 
GFs are employed as the reinforcing macro-scale fiber. If the 
Young’s modulus, shear modulus, and Poisson’s ratio of the 
GFs are, respectively, EF , GF , and �F , the effective properties 
of MSH nanocomposite can be achieved using [60]:

in which E11 , E22 , and E33 stand for Young’s modulus in 
the axial, transverse, and flexural directions, respectively. 
Besides, in- and out-of-plane shear modules are shown with 
G12 , G13 , and G23 . The signs �12 , �13 , and �23 indicate the 
Poisson’s ratios in different planes. It is worth mentioning 
that in Eqs. (9)–(12), the GFs’ volume fraction VF (i.e., iden-
tical to 1 − V∗

PM
 ) can be defined as [60]:

In the above definition, mf  denotes GFs’ mass fraction.

(6)�NCM = �CNTVCNT + �PMVPM,

(7)�NCM = �CNTVCNT + �PMVPM.

(8)VCNT =

(
�CNT

mr�PM
−

�CNT

�PM
+ 1

)−1

,

(9)E11 = EFVF + ENCMV
∗
PM

,

(10)E22 = E33 =
ENCM

1 − VF(1 − ENCM∕EF)
,

(11)G12 = G13 = G23 =
GNCM

1 − VF(1 − GNCM∕GF)
,

(12)�12 = �13 = �FVF + �NCMV
∗
PM

,

(13)�23 =
E22

2G23

− 1,

(14)VF =

(
�F

mf �NCM
−

�F

�NCM
+ 1

)−1

.
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2.2  Classical shell theory

The present section of this article is dedicated to deriva-
tion of the kinematic relations describing the problem. 
There exist different kinematic theories for mathematical 
description of structures’ motion in the solid mechanics. 
Generally, these theories can be categorized into three clas-
sical [65–68], first-order [69–71], and higher-order [72–74] 
theories whose main objective is to simulate thin, moder-
ately thick, and thick structures, respectively. Due to the fact 
that shear deformation can be ignored in the investigation 
of thin structures [75, 76], classical theory of thin-walled 
cylindrical shells is selected in this study. By considering 
the axial displacement, circumferential one, and bending 
deformation shown by u, v, and w, respectively, and keep-
ing the von Kármán-type geometrical nonlinearity in mind, 
the nonvanishing components of the strain tensor can be 
presented as [77]:

In the above definitions, normal ( �0
x
 and �0

y
 ) and in-plane 

shear ( �0
xy

 ) strains are [77]:

Also, longitudinal ( �x ) and circumferential ( �y ) curva-
tures and the in-plane twist ( �xy ) are [77]:

where y = R�.

2.3  Constitutive equations

Herein, the Hook’s law for linearly elastic solids will 
be hired to find a suitable relationship between forces, 
moments, and displacement field components. According 
to this rule, the Cauchy stress and strain tensors can be 

(15)

�xx = �0
x
− z�x,

�yy = �0
y
− z�y,

�xy = �0
xy
− 2z�xy.

(16)

�0
x
=

�u

�x
+

1

2

(
�w

�x

)2

,

�0
y
=

�v

�y
−

w

R
+

1

2

(
�w

�y

)2

,

�0
xy
=

�v

�x
+

�u

�y
+

�w

�x

�w

�y
.

(17)

�x =
�2w

�x2
,

�y =
1

R

�v

�y
+

�2w

�y2
,

�xy =
1

2R

�v

�x
+

�2w

�x�y
,

related to each other via �ij = Cijkl�kl . In this identity, the 
corresponding arrays of Cauchy stress and strain tensors 
are shown with �ij and �kl , respectively, whereas Cijkl indi-
cates the corresponding array of the elasticity tensor. If the 
plane stress condition is considered, the above-mentioned 
identity can be re-written as follows [78]:

where

Now, if the forces and moments are assumed to be 
defined in the following through-the-thickness form 

(Nij,Mij) =
h∕2∫

−h∕2

(1, z)�ijdz, (i, j = x, y) and Eq. (18) is inte-

grated over the thickness of the structure, the following 
expression can be attained:

In the above identity, through-the-thickness rigidities 
of the shell can be expressed as:

2.4  Governing equations

Within this section, the energy method will be imple-
mented for the goal of deriving the motion equations of 
thin-walled cylindrical shell. To this goal, the dynamic 
form of the principle of virtual work will be utilized. 
According to this principle, the variation of the continu-
ous system’s Lagrangian, i.e., defined as L = U + V − T  (U 
and T stand for strain and kinetic energies, respectively, 
and V denotes the work done on the system by external 

(18)

⎧
⎪⎨⎪⎩

�xx

�yy

�xy

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q66

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

�xx

�yy

�xy

⎫
⎪⎬⎪⎭
,

(19)
Q11 =

E11

1 − �12�21
, Q12 =

�12E22

1 − �12�21
,

Q22 =
E22

1 − �12�21
, Q66 =

E11

2(1 + �12)
.

(20)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nx

Ny

Nxy

Mx

My

Mxy

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�0
x

�0
y

�0
xy

−�x
−�y
−2�xy

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

(21)

[An,Bn,Dn] =

h∕2

∫
−h∕2

[1, z,z2]Qn(z)dz, n = (11, 12, 22, 66).
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loadings), over any desired time interval must be set to 
zero [78, 79]. Following this principle as well as con-
sidering the kinematic relations of classical shells, the 
Euler–Lagrange equations can be derived [77]:

In the above set of equations, the in-plane through-the-
thickness inertia of the shell can be calculated via:

(22)
�Nx

�x
+

�Nxy

�y
= I0

�2u

�t2
,

(23)
�Nxy

�x
+

�Ny

�y
−

1

R

(
�Mxy

�x
+

�My

�y

)
= I0

�2v

�t2
,

(24)

�2Mx

�x2
+ 2

�2Mxy

�x�y
+

�2My

�y2
−

Nx

R
+

�

�x

(
Nx

�w

�x
+ Nxy

�w

�y

)

+
�

�x

(
Nxy

�w

�x
+ Ny

�w

�y

)
− ph

�2w

�x2
+ q = I0

�2w

�t2
+ 2�I0

�w

�t
.

In Eqs. (22)–(24), p and q are the axial compression and 
external distributed load, respectively. In addition, � stands 
for the damping coefficient of the viscose damper below the 
structure. Now, the above motion equations must be pre-
sented in terms of the components of the displacement field 
to achieve the governing equations. To this purpose, substi-
tution of Eq. (20) into Eqs. (22)–(24) yields:

where Lij(.) linear operators can be expressed in the follow-
ing form:

(25)I0 =

h∕2

∫
−h∕2

�dz.

(26)L11(u) + L12(v) + L13(w) + P1(w) = I0
�2u

�t2
,

(27)L21(u) + L22(v) + L23(w) + P2(w) = I0
�2v

�t2
,

(28)

L31(u) + L32(v) + L33(w) + P3(w) + Q3(u,w) + R3(v,w)

−ph
�2w

�x2
+ q = I0

�2w

�t2
+ 2�

�w

�t
,

(29)

L11(u) = A11

�2u

�x2
+ A66

�2u

�y2
,

L12(v) =

(
A12 + A66 −

B12 + B66

R

)
�2v

�x�y
,

L13(w) = −
A12

R

�w

�x
− B11

�3w

�x3
− (B12 + 2B66)

�3w

�x�y2
,

L21(u) =

(
A12 + A66 −

B12 + B66

R

)
�2u

�x�y
,

L22(v) =

(
A66 −

2B66

R
+

D66

R2

)
�2v

�x2
+

(
A11 −

2B11

R
+

D11

R2

)
�2v

�y2
,

L23(w) = −

(
A11

R
−

B11

R2

)
�w

�y
−

(
B11 −

D11

R

)
�3w

�y3
−

(
B12 + 2B66 −

D12 + 2D66

R

)
�3w

�x2�y
,

L31(u) =
A21

R

�u

�x
+ B11

�3u

�x3
+ (B12 + 2B66)

�3u

�x�y2
,

L32(v) =

(
A11

R
−

B11

R2

)
�v

�y
+

(
B11 −

D11

R

)
�3v

�y3
+

(
B12 + 2B66 −

D12 + 2D66

R

)
�3v

�x2�y
,

L33(w) = −
A11

R2
w −

2A12

R

�2w

�x2
−

2B12

R

�2w

�y2
− D11

(
�4w

�x4
+

�4w

�y4

)
− 2(D12 + 2D66)

�4w

�x2�y2
.
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In addition, the nonlinear operators Pi(.) , Q3(.) , and R3(.) 
can be defined as:

3  Analytical solution

Many types of analytical and numerical methods are pre-
sented in the open literature to obtain a solution for the 
dynamic problems of continuous systems [80–86]. In this 
section, an analytical framework will be introduced to solve 
the governing equations of the problem. In this method, i.e., 
founded on the basis of Galerkin’s technique, the displace-
ment field components for a thin shell with both ends simply 
supported (S–S) will be considered as [77]:

in which U(t) , V(t) , and W(t) are the unknown Fourier coef-
ficients regarding the oscillation amplitudes. Also, the 
longitudinal and circumferential half-mode numbers are 

(30)

P1(w) = A11

�w

�x

�2w

�x2
+ (A12 + A66)

�w

�y

�2w

�x�y
+ A66

�w

�x

�2w

�y2
,

(31)P2(w) =

(
A66 −

B66

R

)
�w

�y

�2w

�x2
+

(
A11 −

B11

R

)
�w

�y

�2w

�y2
+

(
A12 + A66 −

B12 + B66

R

)
�w

�x

�2w

�x�y
,

(32)

P3(w) =2(A12 + 2A66)
�w

�x

�w

�y

�2w

�x�y
−

w

R

(
A12

�2w

�x2
+ A11

�2w

�y2

)
+ 2(B66 − B12)

�2w

�x2
�2w

�y2
+

2(B12 − B66)

(
�2w

�x�y

)2

−
A12

2R

(
�w

�x

)2

−
A11

2R

(
�w

�y

)2

+
3A11

2

[
�2w

�x2

(
�w

�x

)2

+
�2w

�y2

(
�w

�y

)2
]
+

(
A12

2
+ A66

)[
�2w

�y2

(
�w

�x

)2

+
�2w

�x2

(
�w

�y

)2
]
,

(33)
Q3(u,w) =

(
�u

�x

�2w

�x2
+

�2u

�x2
�w

�x

)
+ A12

�u

�x

�2w

�y2
+ A66

�w

�x

�2u

�y2
+ (A12 + A66)

�w

�y

�2u

�x�y
+

2A66

�u

�y

�2w

�x�y
,

(34)
R3(v,w) =

(
A12 −

B12

R

)
�v

�y

�2w

�x2
+ 2

(
A66 −

B66

R

)
�v

�x

�2w

�x2
+

(
A11 −

B11

R

)(
�v

�y

�2w

�y2
+

�w

�y

�2v

�y2

)
+

(
A66 −

B66

R

)
�w

�y

�2v

�x2
+

(
A12 + A66 −

B12 + B66

R

)
�w

�x

�2v

�x�y
.

(35)

u = U(t) cos
m�x

L
sin

ny

R
,

v = V(t) sin
m�x

L
cos

ny

R
,

w = W(t) sin
m�x

L
sin

ny

R
,

shown with m and n, respectively. If Eq. (35) is inserted 
into Eqs. (26)–(28), one can reach:

where

(36)l11U(t) + l12V(t) + l13W(t) + n1W
2(t) = I0

d2U(t)

dt2
,

(37)l21U(t) + l22V(t) + l23W(t) + n2W
2(t) = I0

d2V(t)

dt2
,

(38)

l31U(t) + l32V(t) + l33W(t) + n3W
2(t) + n4W

3(t) + n5U(t)W(t)

+n6V(t)W(t) +
16q

�2mn
= I0

d2W(t)

dt2
+ 2�I0

dW(t)

dt
,

Table 1  Mechanical properties 
of the polymeric matrix and 
GFs [47]

E0

PM
2.1 GPa

�0
PM

0.34
�0
PM

1150 kg/m3

EF 71 GPa
GF 30 GPa
�F 0.22
�F 2450 kg/m3
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In the nonlinear vibration problems with small oscillation 
amplitudes, it is logical to assume the in-plane inertia to be 
ignorable compared with the out-of-plane one [87]. Hence, 
Eqs. (36)–(38) can be re-written in the following form:

(39)

l11 = −A11

�2m2

L2
− A66

n2

R2
,

l12 = l21 =

(
−A12 − A66 +

B12 + B66

R

)
�mn

LR
,

l13 = l31 = −A12

�m

LR
+ B11

�3m3

L3
+ (B12 + 2B66)

�mn2

LR2
,

l22 =

(
−A66 +

2B66

R
−

D66

R2

)
�2m2

L2
+

(
−A11 +

2B11

R
−

D11

R2

)
�2m2n

L2R
,

l33 = 2B12

�2m2

L2R
+ 2B11

n2

R3
− D11

�4m4

L4
− D11

n4

R4
− 2(D12 + 2D66)

�2m2n

L2R2
−

A11

R2
+

ph�2m2

L2
,

n1 = −32A11

�m2

9L3n
+ 16(−A11 − A66)

n

9�LR2
,

n2 =

(
−A66 + A12 +

B66 − B12

R

)
16m

9L2R
+

(
−A11 +

B11

R

)
32n2

9�2R3m
,

n3 = 16A12

m

3L2Rn
+ 16A11

n

3�2R3m
+ 32(B66 − B12)

mn

3L2R2
,

n4 = −9A11

�4m4

32L4
− (A12 + 2A66)

�2m2n2

16L2R2
− 9A11

n4

32LR2
,

n5 = 32A11

�m2

9L3n
+ 32(A12 − A66)

n

9�LR2
,

n6 =

(
A12 − A66 +

B66 − B12

R

)
32m

9L2R
+

(
A11 −

B11

R

)
32n2

9�2R3m
.

(40)l11U(t) + l12V(t) + l13W(t) + n1W
2(t) = 0,

(41)l21U(t) + l22V(t) + l23W(t) + n2W
2(t) = 0,

If U(t) and V(t) are extracted from simultaneous solution 
of Eqs. (40) and (41) in terms of W(t) and W2(t) and there-
after substituted in Eq. (42), the following duffing equation 
will be achieved:

in which

(42)

l31U(t) + l32V(t) + l33W(t) + n3W
2(t) + n4W

3(t) + n5U(t)W(t)

+n6V(t)W(t) +
16q

�2mn
= I0

d2W(t)

dt2
+ 2�I0

dW(t)

dt
.

(43)
I0
d2W(t)

dt2
+ 2�I0

dW(t)

dt
+ a1W(t) − a2W

2(t) + a3W
3(t) =

16q

�2mn
,

(44)

a1 = −l33 −
l31(l12l23 − l22l13) + l32(l21l13 − l11l23)

l11l22 − l2
12

,

a2 = n3 +
l31(l12n2 − l22n1) + l32(l12n1 − l11n2) + n5(l12l23 − l22l13) + n6(l12l13 − l11l23)

l11l22 − l2
12

,

a3 = −n4 −
n5(l12n2 − l22n1) + n6(l12n1 − l11n2)

l11l22 − l2
12

.
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3.1  Linear frequency

It is possible to use Eqs. (36)–(38) to obtain linear natural 
frequency of the shell by ignoring nonlinear terms and the 
effect of the applied distributed load. The linear frequen-
cies can be determined by solving the following eigenvalue 
system as [77]:

Once the above identity is solved, the natural frequencies 
of the system will be attained. Among all of the triple fre-
quencies, the smallest one will be the the fundamental fre-
quency which is identical to �mn =

√
a1
/
I0 that could be 

found earlier from Eq. (43).

3.2  Nonlinear forced vibration response

In this sub-section, it will be shown how to find the fre-
quency–response relation of the present problem. In this 
work, a harmonic form will be considered for the distributed 
load applied on the edge of the shell. It is worth regarding 
that the harmonic excitation is presumed to be of the hard 
type. In other words, the load q is assumed to be q = Q sinΩt 
so that Ω denotes the excitation frequency. Once this type of 
dynamic stimulation is inserted into Eq. (43), the following 
expression can be achieved:

(45)

|||||||

l11 + I0�
2 l12 l13

l21 l22 + I0�
2 l23

l31 l32 l33 + I0�
2

|||||||
= 0.

in which

To solve the problem, the method of harmonic balance 
will be utilized in this study. According to this method, the 
oscillation amplitude can be considered to be in a sinusoidal 
form as W = A sinΩt . If this definition is substituted in Eq. 
(46), the identity will be enhanced as [77]:

Once the product of the above identity in sinΩt is inte-
grated with respect to time over a quarter of the oscillation 

period ( 
�∕2Ω∫
0

� sinΩtdt = 0 ), one can achieve:

By defining �2 = Ω2
/
�2
mn
, Eq. (49) can be re-written as:

The above relation is the frequency–response equation 
corresponding to the present system.

3.3  Nonlinear transient response

In this part of the solution, it will be tried to solve the prob-
lem in the time domain to reach the transient response of the 
MSH nanocomposite shell. To this purpose, Eq. (43) will be 
utilized. Once the fourth-order Runge–Kutta is applied to the 
mentioned relation and it is considered that the coefficients 
of the equation are functions of time due to the viscoelastic 
properties of the polymer, the time-varying expression for 
calculation of the dynamic deflection will be gathered.

(46)d2W

dt2
+ 2�

dW

dt
+ �2

mn
(W − HW2 + KW3) = F sinΩt,

(47)F =
16q

�2mn
, �mn =

√
a1
/
I0, H =

a2

a1
, K =

a3

a1
.

(48)

� ≡A(�2
mn

− Ω2) sinΩt + 2�AΩ cosΩt − �2
mn
HA2 sin2 Ωt

+ K�2
mn
A3 sin3 Ωt − F sinΩt = 0.

(49)Ω2 −
4�

�
Ω = �2

mn

(
1 −

8

3�
HA +

3K

4
A2

)
−

F

A
.

(50)�2 −
4�

��mn

� = 1 −
8

3�
HA +

3K

4
A2 −

F

A�2
mn

.

Table 2  Material properties of 
SWCNTs [51] ECNT 640(1 − 0.0005 ΔT) GPa

dCNT 1.4 × 10−9m

tCNT 0.34 × 10−9m

�CNT 1350 Kg/m3

lCNT 25 × 10−6m

�CNT 0.33

Table 3  Comparison of the nondimensional linear natural frequencies 
of metal foam shells

n Ref. [88] Ref. [89] Present

1 1.2429 1.2466 1.2466
2 1.2387 1.2425 1.2425
3 1.2325 1.2366 1.2367
4 1.2256 1.2300 1.2302
5 1.2195 – 1.2246
6 1.2159 – 1.2216
7 1.2165 – 1.2228
8 1.2228 – 1.2298

Table 4  Comparison of dimensionless frequencies 
�̃� = Ω(h∕𝜋)

√
2(1 + 𝜈)𝜌∕E of an isotropic cylindrical shell

(m,n) Ref. [90] Ref. [91] Ref. [92] Ref. [93] Present

(1,1) 0.03692 0.03748 0.03739 0.03712 0.03760
(1,2) 0.03612 0.03671 0.03666 0.03648 0.03700
(1,3) 0.03566 0.03635 0.03634 0.03620 0.03680
(1,4) 0.03632 0.03720 0.03723 0.03700 0.03770
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4  Results and discussion

Present part deals with numerical case studies revealing the 
most important findings of this study. In the following cases, 

the radius-to-thickness ratio of the shell is assumed to be 
R∕h = 500 , to satisfy the assumption of thin-walled being 
of the structure. The entire thickness is fixed h = 1 mm , 
whereas the length of the shell is assumed to be two times its 
radius ( L∕R = 2 ). It is noteworthy that the stretching compo-
nent and relaxation time are fixed on �v = 1 and �v = 120 s , 
respectively. Although the aforesaid inputs are considered 
in the following numerical cases, one can tailor the stretch-
ing component in the range of 0 < 𝛽v < 1 if it is supposed to 
monitor the viscoelastic behaviors of MSH nanocomposite 
shells in different damping rates. In addition, the material 
properties of the polymer and GF can be found in Table 1, 
whereas those of the CNTs are shown in Table 2.

4.1  Validation study

For the goal of being sure of the accuracy of the presented 
modeling, dynamic responses of cylindrical shells obtained 
from the present method are compared with those available 
in the literature. To this purpose, linear frequencies of metal 
foam shells reported in Refs. [88] and [89] are re-gener-
ated here. The results of this comparison can be found by 
referring to Table 3. Based on this comparison, the present 
method is able to approximate the vibrational characteris-
tics of shell-type elements with a high precision. As another 
attempt toward validity check, the dimensionless frequencies 
of isotropic shells were calculated and are shown in Table 4. 

Fig. 2  Frequency–response curve of MSH nanocomposite shells subjected to various compressive loadings while (a) straight and (b) wavy 
nanofillers are utilized for the goal of reinforcement (mr = 0.05, mf = 0.2)

Fig. 3  Frequency–response curve of MSH nanocomposite shells for 
different values of waviness coefficient (mr = 0.05, mf = 0.2, p = 0)
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According to this table, our data are in an excellent agree-
ment with those reported in Refs. [90–93].

4.2  Frequency–response curves

In this section of numerical results, frequency–response 
curves of the oscillating MSH nanocomposite structure will 
be depicted in the framework of Figs. 2–6. Based on Fig. 2, 
it can be simply perceived that the utilization of wavy CNTs 
leads to having a wider range for the frequency ratio in con-
stant values of the system’s deflection. This trend means 
that the system behaves in a more flexible manner whenever 
curved nanofillers are employed as reinforcing gadgets. This 
figure also denotes that compressive pre-loading results in a 
reduction in the frequency ratio of the MSH nanocomposite 
shell, which can be referred to as a mechanical constraint.

To be familiar with the effect of waviness coefficient on 
the frequency–response curve of the nanocomposite shell, 
Fig. 3 is presented while there exists no compressive pre-
loading. Based on this illustration, it can be confirmed that 
if big values are assigned to the waviness coefficient, a 
wider range of frequency ratio will be achieved. This trend 
is physically due to the fact that in such cases, the reinforc-
ing nanofillers will be closer to their ideal straight shape. 
In other words, the amplitude of the existing wave in the 
CNTs’ chord will be smaller, while the waviness coefficient 
increases. So, it is recommended to choose waviness coef-
ficients between 0.3 and 0.4, while it is aimed to have a 
safe approximation from the system’s behavior according 
to the experiments [45]. This finding can be observed in 
Tables 5 and 6, too. In these tables, the impact of the wavi-
ness coefficient on the linear natural frequency of the MSH 
nanocomposite shell is presented. According to Table 5, 
higher natural frequencies correspond to bigger waviness 
coefficients. Besides, Table 6 reveals that adding the time 
leads to a reduction in the frequency of the system because 
of the fact that in longer times, the stiffness of the polymeric 
matrix will be attenuated continuously.

In Figs. 4 and 5, the main concentration is on the inves-
tigation of the influences of GFs’ and CNTs’ mass fraction 
on the frequency–response curves of MSH nanocomposite 
shells, respectively. According to Fig. 4, it can be realized 

that addition of the GFs’ mass fraction makes the frequency 
ratio wider, which might seem a little strange at the first 
glance. However, this effect is logical from physics view-
point. In fact, a greater content of the macro-scale GFs cor-
responds with a reduction in the value of the nanofillers in 
the composition of the MSH nanomaterial. Hence, it is accu-
rate to observe such a trend. In reverse, Fig. 5 indicates the 
positive role of the CNTs’ mass fraction on the frequency 
ratio of the vibrating nanocomposite structure. Based on this 
illustration, it can be figured out that the frequency ratio will 
be narrow if higher values are assigned to the mass fraction 
of the CNTs, thanks to the stiffness enhancement made in 
the nanomaterial.

As the final case study in this section, the combined 
effects of waviness phenomenon and excitation amplitude 
on the frequency–response curve of MSH nanocompos-
ite shells are provided in Fig. 6. This diagram states that 
the deviation of the frequency–response curve from free 
oscillation case ( F = 0 ) will be increased as the excita-
tion amplitude is added. Also, it is clear that the tendency 
of the frequency–response curve of the system to the left 
side will be increased in the case of employing wavy CNTs 
for the purpose of manufacturing the hybrid nanomaterial. 
From our knowledge about nonlinear systems, it is obvious 
that this trend is a softening one that originated due to the 
destroying effect of the wavy shape of the nanofillers on the 
reinforcement mechanism in the nanocomposites. Hence, 
the resonance path of the fluctuating nanocomposite shell 
can be dramatically affected by the waviness phenomenon 
according to this diagram.

4.3  Transient response monitoring

Within this part of this manuscript, Figs. 7–10 will be stud-
ied whose major concern is to analyze the transient response 
of the vibrating system. In the first example, i.e., Fig. 7, the 
long-term behavior of the system is monitored. According 
to this figure, it is obvious that the mean value of the deflec-
tion amplitude will be decreased as time exceeds. The reason 
for this trend is the decreasing influence of time on the total 
stiffness of the polymeric matrix because of the viscoelastic 
nature of the polymers. Also, this diagram shows another 

Table 5  Effect of waviness 
coefficient Cw on natural 
frequencies  (s−1) of MSH 
nanocomposite shell (p = 0, 
t = 0)

Cw �1 (m = 1, n = 3) �2 (m = 1, n = 1) �3 (m = 3, n = 3) �4 (m = 3, n = 1)

0.20 847.38471 2656.9814 2658.3559 4817.1375
0.25 872.81522 2741.811 2743.1866 4905.4467
0.30 897.06752 2822.9047 2824.2833 4989.5068
0.35 920.28085 2900.6887 2902.0717 5069.919
0.40 942.57068 2975.5178 2976.9063 5147.163
0.45 964.03382 3047.6909 3049.0859 5221.6271
1.00 1162.6309 3719.5453 3721.0429 5920.5589



567Engineering with Computers (2023) 39:557–574 

1 3

phenomenon. Indeed, it can be seen that over time, the vari-
ation of the deflection amplitude will be reduced because of 
the fact that the oscillator reaches its steady condition.

On the other hand, variation of the transient response 
of the system in a limited time interval can be observed Ta
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Fig. 4  Frequency–response curve of MSH nanocomposite shells rein-
forced with ideal (straight) CNTs for different values of GFs’ mass 
fraction (mr = 0.05, Cw = 1, p = 0)

Fig. 5  Frequency–response curve of MSH nanocomposite shells 
reinforced with non-ideal (wavy) CNTs for different values of CNTs’ 
mass fraction (mf = 0.2, Cw = 0.35, p = 0)
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in Fig. 8 whenever ideal and non-ideal CNTs are utilized 
in the composition of the hybrid nanomaterial. Based on 
this diagram, it is clear that the MSH nanocomposite shell 
experiences a beating-type oscillation. The small and big 
amplitudes of the system’s beat are sensitive to the type of 
the reinforcing nanofillers. It is clear that if wavy CNTs are 
hired, the beating amplitude will be enlarged because of the 
negative impact of the waviness phenomenon on the stiffness 
of the three-phase nanomaterial. Also, the wavy shape of 

the nanofillers induces a delay in the beating of the system, 
so that the number of beating cycles decreases in a constant 
time period if non-straight nanofillers are implemented in 
the manufacturing procedure.

Moreover, the effects of mass fraction of the macro- and 
nano-size reinforcing gadgets, namely GFs and CNTs, on 
the transient response of the MSH nanocomposite shells are 
shown in Figs. 9 and 10, respectively. According to these 
diagrams, it can be simply conceived that the addition of 

Fig. 6  Frequency–response curve of MSH nanocomposite shells for different values of loading amplitude F while (a) straight and (b) wavy 
CNTs are utilized for the goal of reinforcement (mr = 0.05, mf = 0.2)

Fig. 7  Transient response of MSH nanocomposite subjected to a harmonic excitation once wavy CNTs are utilized for the goal of reinforcement 
(Cw = 0.35, mr = 0.05, mf = 0.2, F = 1500, Ω = 600)
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Fig. 8  Qualitative effect of the waviness phenomenon on the transient response of MSH nanocomposite shells (mr = 0.1, mf = 0.2)

Fig. 9  Transient response of MSH nanocomposite shells reinforced via wavy CNTs for different values of GFs’ mass fraction (mr = 0.05, 
Cw = 0.35)
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the GFs’ mass fraction intensifies the beating amplitude, 
whereas this parameter will be decreased if a greater con-
tent of the CNTs are hired in the fabrication procedure. The 
major reason of the first trend is that by adding the portion 
of the GFs in the hybrid nanomaterial, the content of the 
CNTs will be reduced because of the constant volume of 
the continua. Hence, it is natural to see such a softening 
behavior from physics point of view. Also, the observations 
of Fig. 10 can be physically justified by pointing out that 
addition of the content of the nanofillers stiffens the MSH 
nanocomposite.

5  Conclusion

This manuscript was majorly written to account for the 
coupled influences of the polymer’s viscoelastic behavior 
and non-ideal shape of the CNTs on the nonlinear dynamic 
responses of thin-walled shells made from MSH nanocom-
posites. Herein, the most crucial highlights of this work will 
be reviewed in brief as below:

• It was shown that the dynamic amplitude of the system’s 
beating diminished with increment of time. This trend 
physically appeared due to the viscoelastic features of 
the polymer.

• It was demonstrated that the nonlinear behavior of the 
shell is softer than the ideal theoretical estimations. This 
difference originates from the destructive impact of the 
waviness phenomenon on the mechanism of reinforce-
ment in the hybrid nanomaterial.

• A limited rise in the mass fraction of the nanofillers is 
able to lessen the dynamic amplitude of deflection. The 
physical reason of this trend is enhancement of stiffness 
in MSH nanocomposites.

• Addition of the GFs’ mass fraction resulted in a reduction 
in the equivalent stiffness of the MSH nanocomposite 
shell because it enforced the nanofillers’ content to be 
decreased.

• It was illustrated that the existence of an axial compres-
sive pre-load can lead to a wider range of nonlinear-to-
linear frequency ratio in MSH nanocomposite shells 
through softening the structure.

• According to the utilized methodology, nonlinear 
dynamic characteristics of MSH nanocomposite shells 
are easy to reach without being involved in complex alge-
braic operations available in the method of multiple time 
scales.

• Finally, the presented micromechanical modeling makes 
it possible to estimate the mechanical properties of MSH 
nanocomposites, so that the guessed values are close to 
experimental data. Interestingly, this achievement is 
obtained with a very low-cost computational framework.

Fig. 10  Transient response of MSH nanocomposite shells reinforced via wavy CNTs for different values of CNTs’ mass fraction (mf = 0.2, 
Cw = 0.35)
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In addition to the above-mentioned positive aspects of 
this study, it is also crucial to point out the limitations of 
the present work. The effect of entanglement of CNTs in 
clusters on the Young’s modulus is not covered in this work. 
Furthermore, the presented results are generated based on 
the assumption of the essence of ideal bonding between the 
nanofillers and matrix.
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