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Abstract
Polygon, subdivision, and NURBS are three mainstream modeling techniques widely applied in commercial software pack-

ages. They require heavy manual operations, and involve a lot of design variables leading to big data, high storage costs and 

slow network transmissions. In this paper, we integrate the strengths of boundary-based surface creation and partial differ-

ential equation (PDE)-based geometric modeling to obtain the first analytical C0 continuous 4-sided PDE patches involving 

sculpting force-based shape creation and manipulation and use them to develop an interactive modeling technique for easy 

and quick creation of 3D models with small data from vertex-frames. With this modeling technique, a vertex frame is defined 

by eight vertices, and a C0 continuous 4-sided PDE patch is created from the vertex-frame through an analytical solution to 

a vector-valued second-order PDE subjected to the boundary conditions determined by the eight vertices of a vertex-frame. 

A user-friendly interface is developed from the obtained analytical solution, which enables users to interactively input and 

modify vertex-frame models easily and create 3D models in real time. Different surface modeling tasks are carried out to test 

the developed interactive tool and compare our proposed method with polygon and NURBS modeling and Coons surfaces. 

The results demonstrate the effectiveness of our proposed method and its advantages in reducing design variables, saving 

storage costs, and effective shape creation and manipulation.

Keywords Surface modeling · 4-sided PDE patch · Vertex-frames · Interactive design

1 Introduction

Surface modeling is widely applied in creative and indus-

trial sectors to produce 3D geometric models. Current 

mainstream surface modeling techniques are polygon [1], 

non-uniform rational B-splines (NURBS) [2] and subdivi-

sion [3]. These modeling techniques have been integrated 

into high-end geometric modeling systems such as Maya, 

Houdini and 3D Max. All of the three mainstream modeling 

approaches are purely geometric, which means that no extra 

constraint forces called sculpting forces are used in creation 

and manipulation of surface shapes.

Polygon and subdivision modeling techniques are sur-

face vertex-based. They use planar facets to approximate 

curved surfaces of 3D objects. To represent curved surfaces 

and create detailed 3D models, a large number of planar 

facets defined by vertices (design variables) are required, 

which cause big data, high storage costs, slow network trans-

missions and heavy manual operations to manipulate the 

vertices. NURBS modeling is control point-based. It also 

involves many design variables and requires extra manual 

operations to stitch adjacent NURBS surfaces together with 

required continuities and add control points to interactively 

manipulate NURBS surfaces in small deformation regions. 

Boundary-based surface creation generates surfaces from 

boundary curves or boundary curves and tangents (normal 

derivative functions on boundary curves). The main repre-

sentative methods are bilinear Coons surfaces and bicubic 

Coons surfaces [2]. Unfortunately, both of them have the 
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weak ability in creating and manipulating shapes of surfaces 

because they cannot change the shape in arbitrarily specified 

local regions.

Partial differential equations (PDEs) were introduced into 

geometric modeling about 3 decades ago to develop PDE-

based geometric modeling. Before that, they had already 

been applied in engineering and scientific calculations to 

describe the underlying physics. For example, a fourth-order 

PDE can be used to describe the underlying physics of bend-

ing deformations of a thin elastic plate subjected to lateral 

loads, and a wave equation, which is a second-order PDE, 

can be used to describe the underlying physics of transverse 

vibrations of a tensed string [4]. Due to this nature, PDE-

based geometric modeling is physics based, has the potential 

to create more realistic appearances of 3D models and 3D 

deformations, and addresses the weaknesses of purely geo-

metric modeling.

PDE-based modeling uses the solution to a vector-valued 

PDE subjected to user’s specified boundary conditions to 

create a PDE patch. Like the term on the right-hand side of 

a fourth-order PDE describing bending deformations of a 

thin elastic plate, which is a lateral force acting on the plate, 

the term on the right-hand side of an arbitrary vector-valued 

PDE used for geometric modeling acts as a sculpting force. 

It and the coefficients of all the terms on the left-hand side of 

a vector-valued PDE called shape control parameters greatly 

affect the shape of a PDE patch and provide flexible and 

powerful shape manipulation handles.

Since PDE surface patches are defined by the solution to a 

PDE subjected to exact satisfaction of boundary conditions, 

adjacent PDE patches automatically achieve required conti-

nuities on shared boundaries defined in boundary conditions. 

Compared with polygon, NURBS and Coons surface mod-

eling techniques, PDE-based modeling only requires bound-

ary information and few coefficients in a vector-valued PDE 

to define complicated 3D models leading to fewer design 

variables, naturally achieves specified continuities without 

any manual operations to stitch two PDE patches together, 

and uses a sculpting force to create various shapes in any 

deformation regions more easily and flexibly.

However, due to the difficulty in analytically solving 

PDEs, existing tools of manipulating sculpting forces are 

mainly developed from an analytical solution to a vector-

valued PDE for simple 2-sided PDE patches [5] or from a 

numerical solution for complicated 3D models [6]. Various 

numerical methods such as the finite-element method [7–9], 

finite-difference method [10, 11], and direct discretization 

of polygonal models using a discrete Laplace operator [12, 

13] have been proposed to solve PDEs for hybrid subdivision 

surface design [14], surface reconstruction [13], estimation 

of surface normal [12], smoothing arbitrary triangle meshes 

[15], surface modeling [7], direct shape manipulation [6], 

and engineering optimization applications [16, 17].

When using PDE-based modeling to create new 3D 

models from scratch, 3D models are decomposed into some 

2-, 3-, and 4-sided PDE patches. For creating 3D models 

from PDE patches, numerical solutions of PDEs have three 

weaknesses. (1) The analytical functions of the bound-

ary constraints for a 3- or 4-sided surface patch cannot be 

exactly satisfied since numerical methods obtain the solu-

tions at discrete points. (2) Numerical methods such as the 

finite-element and finite-difference methods involve heavy 

computations, and may not be ideal in interactive geometric 

modeling or real-time shape manipulations. (3) Numerical 

methods are needed to obtain coordinate values at many dis-

crete nodes or vertices. Each node or vertex is a vector-val-

ued design variable consisting of 3 components. Therefore, 

numerical methods will lead to many design variables and 

high storage costs, and it is essential to develop analytical 

solutions for PDE patches and interactive user interface from 

analytical PDE patches for releasing the potential of PDE-

based geometric modeling.

Since analytical solutions of 3- and 4-sided PDE patches 

are very difficult to obtain, the existing research studies 

on analytical PDE surfaces focus on 2-sided PDE patches, 

i.e., creating a PDE patch from boundary conditions on 

two opposite boundaries. Various accurate and approxi-

mate analytical solutions of 2-sided PDE patches have been 

developed [5, 18–26]. Using analytical 2-sided PDE patches 

only is not applicable to all 3D modeling tasks. For exam-

ple, 2-sided PDE patches are incapable in creating branched 

models. Here, a branched model is a 3D model with branch-

ing structures that are connected to but not part of the central 

body of the model, such as the trunk of a tree with branches 

and a human body with limbs. To release the potential of 

PDE-based geometric modeling, analytical 3- and 4-sided 

patches with different continuity requirements and powerful 

shape manipulation functions should be developed. Due to 

the limit of space, in this paper, we will propose the first ana-

lytical C0 continuous 4-sided PDE patches, investigate how 

to integrate shape control parameters and sculpting forces 

into the analytical C0 continuous 4-sided PDE patches, 

and develop an interactive interface to facilitate 3D model 

creation and manipulation from the analytical C0 continu-

ous 4-sided PDE patches. The development of analytical 

Cn continuous 3- and 4-sided PDE patches and demonstra-

tion of sculpting forces in creating the deformations in the 

regions bounded by complicated boundary curves will be 

our following work.

The contributions of this paper are: (1) obtaining the first 

analytical C0 continuous 4-sided PDE patches to create com-

plicated 3D models and release the potential of PDE-based 

geometric modeling, (2) integrating shape control param-

eters and sculpting forces into analytical C0 continuous 

4-sided PDE patches to achieve flexible and powerful shape 

creation and deformations, (3) proposing vertex-frames 
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consisting of eight boundary vertices to represent boundary 

conditions for PDE patches, reduce design variables and data 

size of PDE-based geometric modeling, and facilitate the 

development of the analytical C0 continuous 4-sided PDE 

patches, (4) investigating a vertex frame-based modeling 

technique to quickly create 3D models with positional con-

tinuity by filling vertex-frames with the analytical 4-sided 

PDE patches, and (5) developing a user-friendly interface, 

which enables users to interactively input and modify vertex-

frames, create 3D surface models, and manipulate shapes of 

the created 3D models.

The remaining parts of this paper are organized as fol-

lows. The related works on purely geometric modeling 

approaches and PDE-based modeling methods are briefly 

reviewed in Sect. 2. Analytical C0 continuous 4-sided PDE 

patches are investigated in Sect. 3. The results and compari-

sons with polygon, NURBS, and Coons surfaces are given 

in Sect. 4. Interactive design of 3D modeling is developed in 

Sect. 5. Finally, conclusions and future work are discussed 

in Sect. 6.

2  Related work

The work presented in this paper is related to purely geo-

metric modeling techniques and PDE-based geometric 

modeling. In this section, we first briefly introduce polygon 

modeling, subdivision, and patch-based modeling in relation 

to the proposed method, and then review existing work on 

PDE-based geometric modeling.

2.1   Purely geometric modeling techniques

Purely geometric modeling techniques include polygon, 

subdivision, and patch surfaces such as NURBS and Coons 

surfaces. Among them, polygon, subdivision, and NURBS 

have become industrial standard being integrated in many 

commercial software packages.

Polygon modeling [1] can produce detailed or branched 

models, assign uv texture coordinates, and create hard edges 

more readily than NURBS modeling. However, polygons 

are incapable of accurately representing curved surfaces. 

Therefore, a large number of polygons must be generated to 

approximate curved surfaces in a visually appealing man-

ner, leading to heavy manual operations, a large number of 

design variables, high storage costs, and slow network trans-

missions. Subdivision modeling [3, 27] starts the modeling 

with a coarse polygonal model, subdivides its polygonal 

faces into smaller faces through approximating or interpo-

lating schemes, and generates a denser polygon mesh of the 

model. Subdivision makes the modeling of complex geom-

etry easier and rendering more efficient, but has the same 

weaknesses as polygon modeling.

The typical patch surfaces are NURBS surfaces [2]. Patch 

surface-based modeling starts from a single NURBS patch 

and obtains the whole model by manually stitching many 

patches together [28] to deal with the continuity problem 

between different patches, leading to heavy manual opera-

tions. In addition, this modeling method is control point-

based. Although it has fewer design variables than polygon 

modeling and subdivision, many control points are still 

required to create complicated 3D models. Unlike NURBS 

surfaces, which are control point-based, Coons surfaces 

are boundary-based. A bilinear Coons surface [29] is con-

structed from four boundary curves, and a bicubic Coons 

surface [30] is constructed from four boundary curves and 

four normal derivative functions on the four boundary 

curves. Coons surfaces are easy to use, and involve fewer 

design variables than NURBS surfaces since they only 

involve boundary information. However, bilinear Coons sur-

faces are not adjustable if boundary curves are not changed. 

Although the shapes of bicubic Coons surfaces can be 

manipulated by changing the normal derivative functions 

on boundary curves, such shape manipulations are not flex-

ible and powerful.

Polygon, NURBS and subdivision involve heavy manual 

operations and large data. Coons surfaces have small data 

but are weak in shape manipulation. The PDE-based mod-

eling method will develop analytical 4-sided PDE patches 

and vertex frame-based 3D model creation to reduce large 

data and heavy manual operations, and introduce shape con-

trol parameters and sculpting forces to obtain flexible and 

powerful shape manipulations.

2.2  PDE-based geometric modeling

PDEs were introduced in geometric modeling by Bloor 

and Wilson about three decades ago [22]. After that, PDE-

based geometric modeling attracts a lot of research atten-

tion. Various numerical, accurate analytical and approximate 

analytical solutions have been developed to promote their 

applications. Since the biggest problem for PDE-based geo-

metric modeling is how to solve PDEs, we briefly review 

existing numerical methods, accurate analytical methods, 

and approximate analytical methods used to solve PDEs for 

geometric modeling applications.

2.2.1  Numerical methods

Numerical methods are the most effective in solving PDEs 

for geometric modeling applications. Popular numerical 

methods are the finite element method, finite difference 

method, and direct discretization of polygonal models using 

a discrete Laplace-Beltrami operator. Since there are many 

publications on numerical PDE-based geometric modeling, 
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it is impossible to review all of them. In what follows, only 

some of them are reviewed.

A B-spline finite element method was proposed in [8] 

and used to approximate PDE surfaces. A bivariant B-spline 

finite element method was developed in [7] and applied to 

tackle dynamic PDE surface modeling. By considering 

Laplacian and Laplacian gradient energies leading to bihar-

monic and triharmonic equations, respectively, and view-

ing the discretization of biharmonic and triharmonic equa-

tions as a transformation of a mixed element discretization, 

a mixed finite element method was investigated in [9] to 

solve the biharmonic and triharmonic equations and address 

variational surface modeling. Through presenting a novel 

technique to evaluate the finite element basis functions and 

coupling the finite element method with a hybrid loop and 

Catmull-Clark subdivision algorithm, a numerical simula-

tion method was examined in [14] for hybrid subdivision 

surface design using geometric PDEs.

By solving an Euler–Lagrange equation with the finite 

difference method, the smoothing properties were achieved 

by reducing the amplitude of various high-frequency Fou-

rier harmonics in surfaces [31]. Using the finite difference 

method to discretize a general sixth-order geometric PDE, 

the problems of surface processing and modeling including 

creation of high order continuous surfaces are efficiently 

solved in [10]. Employing the finite-difference discretiza-

tion and variational interpolating approach with the local-

ized iterative solver, an implicit fourth-order PDE and an 

implicit second-order PDE were numerically integrated in 

[11] to achieve shape design of solid models.

Using the umbrella operator to linearly approximate the 

Laplacian operator at each vertex of polygon models and 

numerically integrating a diffusion equation involving the 

Laplacian and the second Laplacian, rough features from 

irregularly data are rapidly removed to portray a smooth 

surface [32]. To smooth arbitrary triangle meshes while 

satisfying G1 boundary conditions, a new algorithm was 

presented in [15] to numerically solve a PDE with the dis-

crete Laplace–Beltrami operator and 1-neighborhood based 

discretization of the mean curvature normal at a vertex. The 

discrete Laplace–Beltrami operator was also used to estimate 

surface normal in [12] and perform surface reconstruction 

in [13].

2.2.2  Accurate analytical methods

Accurate analytical methods exactly satisfy both PDEs and 

boundary conditions. It is very difficult or even impossible 

to obtain accurate analytical solutions of PDEs when bound-

ary conditions are complicated. Therefore, the existing work 

only developed accurate analytical solutions for 2-sided PDE 

patches subjected to some simple boundary conditions. 

Treating blending design as a boundary value problem and 

considering some simple boundary functions, the accurate 

analytical solutions for x and y components were obtained 

from a second-order PDE and the accurate analytical solu-

tion for z component was obtained from a fourth-order PDE 

to create parametric surfaces [33]. For primary surfaces rep-

resented with a combination of hyperbolic sine and cosine 

functions, some accurate analytical solutions were presented 

to blend the primary surfaces together in [22]. By mapping a 

unit cube in (u, v, w) parameter space to a hexahedral solid in 

physical space, the accurate analytical solutions to a second-

order PDE with three parametric variables were obtained in 

[34] to investigate the functionality in solids. The accurate 

closed form solutions for the boundary conditions repre-

sented with triangular functions are investigated in [5] for 

vase design.

2.2.3  Approximate analytical methods

Approximate analytical solutions cannot exactly satisfy 

both PDEs and boundary conditions. Existing approximate 

analytical solutions exactly satisfy boundary conditions, 

but only minimize the error of PDEs. Fourier series-based 

approximate analytical solution was proposed in [18] to gen-

erate free-form surfaces for the design of hull of yacht-like 

boat, propeller blade, phone handset, and ship hull. The Fou-

rier series-based approximate analytical solution was used to 

solve a fourth-order PDE for the interactive surface design 

in [20] and parametric design of aircraft geometry in [21]. It 

was also extended to obtain an approximate analytical solu-

tion to a sixth-order PDE for surface modeling in [25]. An 

approximate analytical solution using a sculpting force origi-

nating from elastic bending of thin plates was developed to 

solve a fourth-order PDE for physics-based deformations in 

[35]. A weighted residual method was presented to approxi-

mately solve a time-dependent fourth-order PDE for creation 

of deformable moving surfaces in [24], a time-independent 

fourth-order PDE in [23] for C1 continuous surface blending, 

and a time-independent sixth-order PDE for surface mod-

eling in [19] and C2 continuous surface blending in [26].

Numerical methods are the most effective in solving vari-

ous PDEs but with discrete representations, big data, and 

high computational costs. Accurate analytical solutions are 

only applicable to some simple surface modeling tasks. And 

existing approximate analytical solutions can deal with more 

complicated surface modeling than accurate analytical solu-

tions, but most studies focus on 2-sided PDE patches. How 

to develop explicit representations of analytical 4-sided PDE 

patches has not been well investigated.
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3  Continuous and sculpting force-driven 
4-sided PDE patches

In this section, we develop the first analytical 4-sided PDE 

patches, which not only maintain C0 continuity on curved 

boundaries but also involve shape control parameters and 

sculpting forces to achieve flexible and powerful shape 

manipulations. In what follows, we first introduce the math-

ematical model of the 4-sided PDE patches that consists 

of a vector-valued second-order nonhomogeneous PDE 

and C0 continuous boundary conditions in Subsection 3.1. 

Since the general solution of a vector-valued second-order 

nonhomogeneous PDE consists of a general solution of the 

corresponding homogeneous PDE and a particular solution 

satisfying the nonhomogeneous PDE, we will investigate the 

general solution of the corresponding homogeneous PDE in 

Subsection 3.2, and the particular solution in Subsection 3.3.

3.1  PDE-based mathematical model

A vector-valued second-order PDE is easier to solve analyti-

cally than higher order PDEs. It provides enough degrees of 

freedom to satisfy the conditions of C0 continuity between 

adjacent patches. For the 4-sided PDE patches to have flex-

ible and powerful shape manipulation functions, we also 

introduce a vector-valued sculpting force function to the 

right-hand side of the PDE. Based on these considerations, 

the PDE used to develop analytical 4-sided PDE surfaces 

takes the form of

where S(u, v) = [x(u, v) y(u, v) z(u, v)]T represents a 4-sided 

PDE surface patch, a
𝟏
 and a

𝟐
 are vector-valued shape con-

trol parameters, u and v are the parametric variables defined 

by 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 , and F(u, v) = [fx(u, v) fy(u, v) 

fz(u, v)]T are vector-valued sculpting forces.

A 4-sided patch S(u, v) has four boundaries. If the bound-

ary curves on the four boundaries are: 𝜶(u),𝜷(u) , 𝜸(v) , and 

𝜹(v) , respectively, the 4-sided patch S(u, v) at its four bound-

aries u = 0 , u = 1 , v = 0 , and v = 1 should have the same 

curve functions as the four boundary curves, which leads to 

the following boundary conditions:

The mathematical model of our proposed 4-sided patches is 

defined by the vector-valued second-order PDE (1) and the 

C0 continuous boundary conditions (2). The remaining work 

is how to derive the analytical solution of the mathematical 

model.

(1)a
𝟏

𝜕
2S(u, v)

𝜕u2
+ a

𝟐

𝜕
2S(u, v)

𝜕v2
= F(u, v),

(2)
S(u, 0) = 𝜶(u), S(u, 1) = 𝜷(u) ∀u ∈ [0, 1]

S(0, v) = 𝜸(v), S(1, v) = 𝜹(v) ∀v ∈ [0, 1].

3.2  General solution of second-order homogeneous 
PDE

When deriving the general solution Sh(u, v) of the homo-

geneous PDE of Eq. (1), the right-hand side term is zero. 

We obtain

The surface function of the 4-sided patches should exactly 

satisfy the positional continuous boundary conditions (2), 

have some degrees of freedom to minimize the error of the 

PDE (3), and introduce shape control parameters to manipu-

late the shape of 4-sided patches. Taking these into account, 

the vector-valued surface function of the 4-sided patches is 

taken to be

where C(i) ( i = 0, 1, ..., 9 ) are the vector-valued unknown con-

stants to be explicitly determined below.

We introduce vertex-frames to define four boundary 

curves for reducing design variables. As shown in Fig. 1a, a 

vertex-frame consists of eight vertices: four corner vertices 

P(1) , P(3) , P(5) , P(7) , and four middle vertices P(2) , P(4) , P(6) , 

P(8) , and each of the four boundary curves is defined by three 

vertices of a vertex-frame. According to Eq. (2), the four 

corner vertices and the four middle vertices are related to 

the four boundary curves through P(1) = 𝜶(0) , P(2) = 𝜶(0.5) , 

P(3) = 𝜶(1) ,  P(4) = 𝜹(0.5) ,  P(5) = 𝜹(1) ,  P(6) = 𝜷(0.5) , 

P(7) = 𝜷(0) , and P(8) = 𝜸(0.5) . If a PDE patch Sh(u, v) shown 

in Fig. 1b is generated from the vertex-frame, its four cor-

ner vertices and four middle vertices are V (1) = Sh(0, 0) , 

V (2) = Sh(0.5, 0)  ,  V (3) = Sh(1, 0)  ,  V (4) = Sh(1, 0.5)  , 

V (5) = Sh(1, 1) ,  V (6) = Sh(0.5, 1) ,  V (7) = Sh(0, 1) ,  and 

V (8) = Sh(0, 0.5) . Since the eight curve vertices and the 

eight surface vertices indicate the same vertices, we have 

V (k) = P(k) (k = 1, 2, ..., 8).

For the sake of conciseness, the subscript “h” in the patch 

function Sh(u, v) is omitted in the remaining part of this 

(3)a
𝟏

𝜕
2Sh(u, v)

𝜕u2
+ a

𝟐

𝜕
2Sh(u, v)

𝜕v2
= 0.

(4)
Sh(u, v) = C(0) + C(1)u + C(2)u2 + C(3)u3 + C(4)v+

C(5)v2 + C(6)v3 + C(7)uv + C(8)u2v + C(9)uv2,

Fig. 1  The vertex-frame (a) and the generated PDE patch (b)
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subsection and the next subsection when more than one sub-

script is involved. That is to say, we use Si,j to stand for Shi,j.

To use 4-sided PDE patches to create complicated 3D 

models, three different groups of 4-sided PDE patches are 

identified in Fig. 2. The first group contains only a single 

patch Si,j , which is created first. The second group has four 

patches Si−1,j , Si,j+1 , Si+1,j , and Si,j−1 . Each of the four patches 

shares an edge highlighted in red with the patch Si,j . The 

third group also has four patches Si−1,j−1 , Si−1,j+1 , Si+1,j+1 , 

and Si+1,j−1 . Each of them shares two edges highlighted in 

blue with its two adjacent patches. Generating these patches 

must follow the specified rule and direction. In the following 

subsection, we first introduce the patch generation rule, and 

then discuss the patch direction.

3.2.1  Patch generation rule

Since the patch function Sh(u, v) is not the accurate solution 

of the PDE (3), substituting Sh(u, v) into PDE (3) will cause 

an error function Eh(u, v) . If we uniformly allocate M × N 

points in the region {0 ≤ u ≤ 1;0 ≤ v ≤ 1} , the M × N points 

can be represented by ( um,vn ) {1 ≤ m ≤ M;1 ≤ n ≤ N} where 

um =
m−1

M−1
 and vn =

n−1

N−1
 . The error of the PDE (3) at the point 

(um, vn) is denoted by Eh(um, vn) . We sum the squared errors 

at all these points, and obtain

where

Using the least squares method to minimize the squared 

error sum J with respect to the two unknown constants C(3) 

and C(6) leads to the following equations

In what follows, we use the conditions of the eight boundary 

vertices V (k) = P(k) (k = 1, 2, ..., 8) and Eq. (7) to determine 

all the unknown constants involved in the patch function (4) 

for each of the three groups of 4-sided patches as shown in 

Fig. 3.

(5)J =

M∑
m=1

N∑
n=1

Eh(um, vn)
2

(6)Eh(um, vn) = a
𝟏

𝜕
2Sh(u, v)

𝜕u2
+ a

𝟐

𝜕
2Sh(u, v)

𝜕v2

||||(u,v)=(um,vn)

.

(7)

𝜕J

𝜕C(3)
=

M∑
m=1

N∑
n=1

Eh(um, vn)
𝜕Eh(um, vn)

𝜕C(3)
= 0

𝜕J

𝜕C(6)
=

M∑
m=1

N∑
n=1

Eh(um, vn)
𝜕Eh(um, vn)

𝜕C(6)
= 0.

Fig. 2  PDE surface patches 

with vertex-frames
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3.2.2  Patch direction

The uv-coordinate systems for the PDE patches in differ-

ent groups shown in Fig. 2 have the same u and v direc-

tions. Such a direction uniformity is suitable for creating 

regular and smooth 3D models. However, for a 3D model 

with a branching structure, the u and v directions of the uv-

coordinate system for the branching structure are usually 

different from the u and v directions of the uv-coordinate 

system for the main body of the 3D model. For example, for 

the basket shown in Fig. 4 below, the u and v directions of 

the uv-coordinate system for the handle are opposite to the 

u and v directions of the uv-coordinate system for the main 

body. Such direction inconformity may lead to the following 

two situations in the direction parallel to the edge shared by 

two adjacent PDE patches: (1) the parametric variable of one 

patch is different from the parametric variable of the adja-

cent patch, (2) two adjacent patches share a same parametric 

variable but the direction of the parametric variable for one 

patch is opposite to the direction of the parametric variable 

for the adjacent patch. If we still use the same u and v direc-

tions shown in Fig. 2 to generate PDE patches for these two 

situations, position discontinuities on the edge occur. To 

avoid position discontinuities, it is necessary to adjust one 

parametric variable or the direction of one parametric vari-

able for one of two adjacent patches in the direction parallel 

to the shared edge so that two adjacent PDE patches share 

the same parametric variable and the same direction in the 

direction parallel to their shared edge.

In total, the inconformity of parametric variables and 

directions of two adjacent patches in the direction parallel to 

Fig. 3  Determination of the unknown constants in Eq. (4) for the three groups of 4-sided patches where Eqs. (A.1), (A.4), (A.6), (A.8), (A.10), 

and (A.12)-(A.15) are given in Appendix A

Fig. 4  An example of differ-

ent patch directions (marked 

by dashed lines) of the basket 

model
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the shared edge has six cases, which are shown in Fig. 5a–f. 

In the figure, the PDE patches with odd number ( S1 , S3 , S5 , 

S7 , S9 and S11 ) are known and the PDE patches with even 

number ( S2 , S4 , S6 , S8 , S10 and S12 ) are unknown, which 

need to be generated. The six cases can be divided into three 

groups. The first group is shown in Fig. 5a and d. In this 

group, both the parametric variables in the direction parallel 

to the shared edge and their directions for the two adjacent 

patches are different. Since the position continuity on the 

shared edge requires S2(u, 0) = S1(1, v) for the patches 1 and 

2 with v = 0 corresponding to u = 1 and S8(0, v) = S7(u, 1) 

for the patches 7 and 8 with u = 0 corresponding to v = 1 , 

we change the parametric variable for the top patches in the 

direction parallel to the shared edge to the other one and 

replace the changed parametric variable with 1 minus the 

changed parametric variable in the position continuity condi-

tion, i. e., S2(u, 0) = S1(1, 1 − u) and S8(0, v) = S7(1 − v, 1) . 

The second group is shown in Fig. 5b and e. In this group, 

the parametric variables in the direction parallel to the 

shared edge are different but their directions for the two 

adjacent patches are the same. Since the position continuity 

on the shared edge requires S4(u, 0) = S3(0, v) for the patches 

3 and 4 and S10(0, v) = S9(u, 0) for the patches 9 and 10, we 

change the parametric variable for the top patches in the 

direction parallel to the shared edge to the other one in the 

position continuity condition, i. e., S4(u, 0) = S3(0, u) and 

S10(0, v) = S9(v, 0) . The third group is shown in Fig. 5c and 

f. In this group, the parametric variables in the direction 

parallel to the shared edge are the same but their directions 

for the two adjacent patches are opposite. Since the position 

continuity on the shared edge requires S6(u, 0) = S5(u, 0) for 

the patches 5 and 6 and S12(0, v) = S11(0, v) for the patches 

11 and 12, we replace the parametric variable with 1 minus 

the parametric variable for the top patches in the posi-

tion continuity condition, i. e., S6(u, 0) = S5(1 − u, 0) , and 

S12(0, v) = S11(0, 1 − v).

3.3  Particular solution of second-order 
nonhomogeneous PDE

As discussed previously, the right-hand side term of PDE (1) 

act as a sculpting force to easily and effectively create differ-

ent shapes of a PDE surface. The solution corresponding to 

the right-hand side term of PDE (1) is a particular solution. 

In this subsection, we investigate the particular solution of 

PDE (1).

When deriving the general solution Sh(u, v) of the vector-

valued second-order homogeneous PDE (3), the positional 

continuous boundary conditions (2) have been exactly satis-

fied. Therefore, when deriving the particular solution Sp(u, v) 

of the vector-valued second-order nonhomogeneous PDE 

(1), the boundary conditions (2) should not be changed. It 

means the particular solution must satisfy the following 

zeroed boundary conditions

The vector-valued sculpting force function can take different 

forms. Since the particular solution depending on the vec-

tor-valued sculpting force function must satisfy the require-

ments of both PDE (1) and boundary conditions (8), the 

construction of the vector-valued sculpting force function 

must take these requirements into account. There are differ-

ent functions that can satisfy these requirements. Here, we 

take the following function as the vector-valued sculpting 

force function

where f 0 = [f0x f0y f0z]
T is a vector-valued coefficient whose 

direction and size can be changed to apply different sculpting 

forces to a PDE surface.

According to the vector-valued sculpting force function 

(9), the vector-valued particular solution can be taken to be

(8)
Sp(u, 0) = 0, Sp(u, 1) = 0 ∀u ∈ [0, 1]

Sp(0, v) = 0, Sp(1, v) = 0 ∀v ∈ [0, 1].

(9)F(u, v) = f 0sin(𝜋u)sin(𝜋v),

Fig. 5  Six forms of direction inconformity of two adjacent patches
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Clearly, the above particular solution (10) exactly satisfies 

the zeroed boundary conditions (8). The remaining problem 

is to satisfy the PDE (1). Using Sp(u, v) in (10) to replace 

S(u, v) in (1) and introducing (9) into (1), we obtain

Substituting Eq. (11) into Eq. (10), the particular solution 

of the vector-valued second-order nonhomogeneous PDE 

(1) is obtained as

Putting the obtained general solution of the vector-valued 

second-order homogeneous PDE (3) and the particular 

solution (12) of the vector-valued second-order nonhomo-

geneous PDE (1) together, we obtain the following general 

solution of the vector-valued second-order nonhomogeneous 

PDE (1)

w h e r e  P̄
(k)

m̄,n̄
 (  k = 0, 1, 2, ..., 9  ;  m̄ = i − 1, i, i + 1 ; 

n̄ = j − 1, j, j + 1 ) are the analytical formulae obtained in 

Subsection 3.2.1 and given in Appendix A.

The above general solution defines an analytical C0 con-

tinuous 4-sided PDE patch. It can be used to create various 

shapes of a single patch and generate complicated 3D mod-

els to be demonstrated in the following two sections.

(10)Sp(u, v) = sp0sin(𝜋u)sin(𝜋v).

(11)sp0 = −
f 0

𝜋2(a1 + a2)
.

(12)Sp(u, v) = −
f 0

𝜋2(a1 + a2)
sin(𝜋u)sin(𝜋v).

(13)

S(u, v) = Sh(u, v) + Sp(u, v) = P̄
(0)

m̄,n̄
+ P̄

(1)

m̄,n̄
u + P̄

(2)

m̄,n̄
u2

+P̄
(3)

m̄,n̄
u3 + P̄

(4)

m̄,n̄
v + P̄

(5)

m̄,n̄
v2 + P̄

(6)

m̄,n̄
v3 + P̄

(7)

m̄,n̄
uv

+P̄
(8)

m̄,n̄
u2v + P̄

(9)

m̄,n̄
uv2 −

f 0

𝜋2(a1 + a2)
sin(𝜋u)sin(𝜋v),

4  Results and comparisons

We validated our approach using a set of test models that 

includes both man-made (the dress, mug and hat) and 

organic (the human face and ear) models as shown in Fig. 6. 

These vertex-frame models are generated by extracting fea-

ture curves from free 3D objects in TURBOSQUID (http://

www.turbosquid.com). The shape of a PDE patch-based 

surface model generated from a vertex-frame model is con-

trolled by three kinds of parameters: the position coordi-

nate of eight vertices P(k) ( k = 1, 2, ..., 8 ) used to define the 

boundary of a PDE patch, the two shape control parameters 

a1 and a2 and sculpting force used to control surface shapes.

4.1  Comparison of accuracy and data size

We compare our proposed method with polygon and 

NURBS modeling techniques. Since the 3D objects used in 

our tests come from real models, these real models can be 

regarded as the ground truth in our comparisons. Figure 7 

shows the five ground truth models (the first column) rebuilt 

by polygon (the second column), NURBS (the third column) 

and our proposed 4-sided PDE patches (the fourth column), 

respectively. To compare the storage requirements of the 

three modeling techniques, the corresponding three rebuilt 

models should have the same or very close accuracy against 

the ground truth model. We use the root mean square (RMS) 

error with respect to the bounding box diagonal, which is 

evaluated with Metro tool [36] to measure the accuracy of 

the created models. The RMS error is evaluated between 

the sample points of the rebuilt models and the ground truth 

model. Our experiment indicates that the number of sam-

ple points same as the vertex number of the rebuilt polygon 

model gives very accurate results. The comparison needs 

to satisfy the following criteria. (1) RMS errors between 

Fig. 6  Test results of examples. Each example includes its vertex-frame model (left) and PDE patch-base surface model (right)
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the three models and the ground truth model are taken 

to be the same or very close. (2) The data of the polygon 

model are the coordinate values of vertices, the data of the 

NURBS model are the coordinate values of control points 

and weights, and the data of our PDE model are coordinate 

values of boundary vertices, the two shape control param-

eters, and the vector-valued coefficient of the sculpting force 

defined in Eq. (9). (3) The values of all data used in the 

comparison are rounded to six significant digits.

Table 1 lists the statistical data of the three modeling 

techniques for the five surface models, including the num-

ber of vertices or control points, RMS errors and storage 

amounts. According to Table 1, for the surface model of 

the dress, mug, ear, hat and human face, our proposed mod-

eling of 4-sided PDE patches saves the storage space of 

81.3%, 79.5%, 85.2%, 78.3% and 85.9% over the polygon 

modeling, and 58.0%, 56.6%, 57.6%, 58.1%, and 58.4% 

over the NURBS modeling. Therefore, our proposed 

method has a much smaller requirement for storage space. 

Moreover, the results indicate our proposed method only 

need a small amount of vertices to generate surface mod-

els with almost same RMS errors compared to polygon 

and NURBS techniques. It means our proposed method is 

more efficient and easier for users to do manual operations 

and real-time interactive design. This will be discussed in 

detail in Section 5.

Fig. 7  Comparisons with poly-

gon and NURBS modeling
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4.2  Comparison of the local deformation

Since the sculpting force of PDE-based modeling is power-

ful in creating different deformations, we compare shape 

manipulation of our proposed method with NURBS and 

Coons modeling techniques to demonstrate the capacity and 

effectiveness of our proposed method.

Figure 8 shows the comparison of the interior deforma-

tion between PDE and NURBS patches. We generate a sim-

ple PDE patch (a) and a NURBS patch (c) with the same 

surface shape. The PDE patch can easily produce a small 

convex shape (b) within arbitrary inner local regions by 

interactively manipulating a sculpting force, but the NURBS 

patch with the given control points cannot create such a 

small convex shape through interactively moving its control 

points, as shown in (d). To obtain the similar shape to that 

shown in (b), the most common approach is to interpolate 

the NURBS patch in the deformation region by adding new 

control points, as shown in (e). However, the interpolation 

needs extra manual operations and will greatly increase the 

data size of the NURBS patch.

PDE-based and Coons modeling techniques are both 

boundary-based surface creation methods. Since bilinear 

Coons surfaces have no shape manipulation capacity, and 

bicubic Coons surfaces can manipulate surface shapes by 

changing boundary tangents, we compare our proposed 

method with bicubic Coons surfaces in manipulating sur-

face shapes. The sculpting force in our proposed method can 

deform: (1) the whole PDE patch (Fig. 9b), (2) inner local 

regions of a single PDE patch (Fig. 9c and d) by control-

ling the range of parametric variables u and v in Sp(u, v) , 

and (3) arbitrary regions across multiple PDE patches 

(Fig. 10). In contrast, boundary tangents of a bicubic Coons 

patch can only deform the whole region rather than arbi-

trary inner local regions of the patch. Figure 9 shows the 

comparison between PDE patches (a–d) and bicubic Coons 

patches (e–h) with the four same boundaries 𝜶(u) , 𝜷(u) , 𝜸(v) 

Table 1  Statistical data of 

polygon (PO), NURBS (NU) 

and our proposed method for 

the five surface models

Vertices or control points RMS error (%) Storage (KB)

PO NU Ours PO NU Ours PO NU Ours

Dress 2996 1020 362 0.1 0.1 0.1 76.0 33.8 14.2

Mug 1275 460 168 0.2 0.2 0.2 32.2 15.2 6.6

Ear 1862 498 174 0.4 0.4 0.4 47.2 16.5 7.0

Hat 2256 900 312 0.1 0.1 0.1 58.5 30.3 12.7

Face 3701 963 336 0.1 0.1 0.1 94.8 32.2 13.4

Fig. 8  Comparison of the interior deformation between PDE and 

NURBS patches. a An original PDE patch. b The PDE patch a with 

a local deformation created by manipulating a sculpting force. c An 

original NURBS patch with the same shape as a. d The deformation 

of the NURBS patch c by moving control points. e The deformation 

of the NURBS patch c after the interpolation

Fig. 9  The comparison between PDE surface patches a–d and bicu-

bic Coons surface patches e–h. a f 0 = [0 0 0] . b f 0 = [20 1 1] ; 

c f 0 = [3 1 2] and the deformation region 0.25 ≤ u ≤ 0.75 , 

0.25 ≤ v ≤ 0.75 . d f 0 = [2 0 0] and deformation region 

0.2 ≤ u ≤ 0.45 , 0.2 ≤ v ≤ 0.45 and 0.6 ≤ u ≤ 0.9 , 0.55 ≤ v ≤ 0.8 . 

e w1 = w2 = w3 = w4 = [0 0 0] . f w1 = w3 = [100 0 0] , 

w2 = w4 = [−100 0 0] . g w1 = w2 = w3 = [0 0 0] , w4 = [−100 0 0] . h 

w1 = [−20 0 − 20] , w2 = [−20 0 0] , w3 = w4 = [0 0 0]
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and 𝜹(v) . We apply w1𝜶(u) , w2𝜷(u) , w3𝜸(v) and w4𝜹(v) to 

describe the boundary tangents of bicubic Coons patches 

where wi = [wix, wiy, wiz]
T ( i = 1, 2, 3, 4 ). The results show 

that our proposed method is more flexible and powerful in 

shape manipulations and local deformations.

5  Interactive design

5.1  Shape control parameter and sculpting force

The shape of the PDE patch generated from a given vertex-

frame can be effectively controlled by two shape control 

parameter a1 , a2 and a sculpting force f 0 . We develop a tool 

shown in Fig. 11 for interactively choosing their suitable 

values. After inputting a vertex-frame, different shapes of a 

PDE patch can be generated by moving the slider of differ-

ent components of a1 , a2 and f 0 . The default range of each 

slider is [0, 1] , and there is an input box next to each slider 

for inputting a magnification coefficient. The values of a1 , a2 

and f 0 are displayed in real time under the sliders.

The function of shape control parameters a1 and 𝐚2 is to 

weight the first and second terms on the left-hand side of 

the PDE (1) and create a smoothing effect to the differential 

operator in u and v direcions [25]. The two parameters can 

be used to directly change the shape of PDE patches. As 

shown in Fig. 12, we change the shape control parameters 

𝐚
left
1

 and 𝐚left
2

 of the patch at the left joint of the basket strap 

and 𝐚
right

1
 and 𝐚

right

2
 of the patch at the right joint to demon-

strate the effect of the two shape control parameters. It can 

be seen from the figure that by changing the two shape con-

trol parameters, we can obtain various shapes of the basket 

strap without moving the vertex positions of vertex-frames.

5.2  Interactive tool

Besides the shape control parameters and sculpting forces, 

which can be used in surface manipulations, the shape of a 

PDE surface patch can also be changed by the positions of 

eight vertices of its vertex-frame. When users are dissatisfied 

with some shapes of an output surface model, it is time-

consuming to remake a new version of the corresponding 

vertex-frames and create new shapes to replace the unsat-

isfactory shapes. In contrast, modifying the corresponding 

vertices of vertex-frames to obtain their desired shapes is 

easier and will greatly improve the modeling efficiency. To 

Fig. 10  The shape deformation in a region encircled by boundary curves (white) across multiple PDE patches. a f 0 = [0 0 0] . b 

f 0 = [−1 − 1 1] . c f 0 = [−5 1 0] . d f 0 = [−8 − 2 2]

Fig. 11  The tool for interactively manipulating a1 , a2 and f 0
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expand the practicability of our proposed method, the user 

should be able to modify the vertex-frame model and gen-

erate the desired surface model in real time. Therefore, we 

design an interactive interface with which users can move 

every vertex of an input vertex-frame model and check the 

quality of an output surface model. The interface of our 

interactive tool is shown in Fig. 13, which includes three 

transformation functions, i. e., rotation, moving and scaling, 

for both the vertex-frame model and surface model.

The interactive tool is developed in the Cartesian space. 

The user can manipulate the models using the three transfor-

mation functions, i. e., Rotate, Zoom and Pan. After input-

ting a vertex-frame model by clicking the Load button, the 

vertex-frame model is presented in left position. The user 

can move a vertex by clicking and dragging it with mouse, 

and releasing the mouse button at desired position (Fig. 14). 

When the modification ends, the user can click the Create 

button to generate a surface model in real time and Save 

button to save the surface model.

We invited three volunteers to design different surface 

models using our interactive tool. All of them have expe-

rience in 3D modeling tasks. The test objects are the five 

vertex-frame models shown in Fig. 6. We explained how to 

use the interactive tool in a ten-minute training session and 

then asked them to design and recreate new surface models 

based on the five existing vertex-frame models. Figure 15 

shows the results created by the three volunteers. They gen-

erated some interesting surface models by modifying only 

a few vertices of the corresponding vertex-frame models. 

The feedback from the volunteers was very positive. All of 

them believed that our proposed method is easier to create 

and manipulate desired surface models than polygon and 

NURBS modeling techniques.

Fig. 12  Design parameter modification of a basket. a aleft

1
= aleft

2

= a
right

1
= 𝐚

right

2
= [1 1 1]T . b aleft

1
= a

right

1
= 150 × [1 1 1]T aleft

2
= , 

a
right

2
= [1 1 1]T . c aleft

1
= a

right

1
= −100 × [1 1 1]T , aleft

2
= a

right

2
= [1 1 1]T . 

d aleft
1

= a
right

1
= [1 150 1]T , aleft

2
= a

right

2
= [1 1 1]T

Fig. 13  Interactive tool of PDE patch-based surface modeling. (Load: 

input a vertex-frame model; Rotate: rotate models in the 3D space; 

Zoom: zoom in or out models; Pan: move models in current views; 

Create: create and display a surface model from the inputted vertex-

frame model; Save: save the data of the surface model.)
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6  Conclusions and future work

We have developed the first analytical C0 continuous 4-sided 

PDE patches to tackle the weaknesses of big data and heavy 

manual operations of polygon and NURBS modeling, and 

integrate shape control parameters and sculpting forces into 

boundary-based PDE patches to avoid weak ability of Coons 

surfaces in shape manipulations. We have also developed 

a novel PDE patch-based surface modeling technique to 

quickly create 3D models from vertex-frames, and imple-

mented the modeling technique into an interactive software 

tool to input and modify vertex-frame models and create and 

manipulate surface models in real time. The experiments 

made by testing several vertex-frame models validate the 

capacity and effectiveness of our proposed method and 

demonstrate that our proposed method can create complex 

surface models with a small number of patches and fewer 

manual operations. Moreover, we have compared our pro-

posed method with polygon and NURBS techniques in creat-

ing different surface models with respect to the ground-truth 

model. The results indicate that our proposed method greatly 

reduces the data size of 3D models and saves storage space. 

We have also compared our proposed method with Coons 

surfaces in manipulating surface shapes and demonstrated 

that our proposed method is more flexible and powerful.

Our proposed method has some limitations. First, 4-sided 

PDE surface patches are not flexible enough to represent 

complex shapes of some 3D models such as branching struc-

tures. For such structures, 4-sided patches combined with 

3-sided patches are easier and more powerful to create their 

surface models and reduce the number of patches. Second, 

the method developed in this paper can only achieve position 

continuity between adjacent PDE patches. 3- and 4-sided 

PDE patches with tangent continuity, curvature continuity, 

and even higher order Cn continuity have not been investi-

gated in this paper. Third, how to use sculpting forces to 

Fig. 14  Editing of a vertex. a The vertex-frame model. b The surface 

model

Fig. 15  Results created by the three volunteers
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create local deformations in the regions bounded by compli-

cated boundary curves has not been demonstrated. Fourth, 

the patch generation rule and patch direction discussed in 

Subsections 3.2.1 and 3.2.2 must be followed when creating 

3D models from the analytical C0 continuous 4-sided PDE 

patches. In our following work, we will develop Cn continu-

ous 3- and 4- sided PDE patches without the constraints of 

the patch generation rule and patch direction and investigate 

how to use sculpting forces to create different deformations 

in the regions bounded by various complicated boundary 

curves to demonstrate the advantages of PDE-based geomet-

ric modeling over polygon and NURBS modeling in shape 

creation and manipulation.

Appendix A: Analytical formulae of P̄(k)

m̄,n̄
 

( m̄ = i − 1 , i, i + 1 ; n̄ = j − 1 , j, j + 1)

For Si,j patch, P̄
(k)

i,j
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly deter-

mined by the following analytical formulae:

where

and Fm,n

i,j
 is determined by

For Si,j+1 patch, P̄
(k)

i,j+1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly deter-

mined by the following analytical formulae:

where
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=
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2
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For Si+1,j patch, P̄
(k)

i+1,j
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly deter-

mined by the following analytical formulae:

where

For Si,j−1 patch, P̄
(k)

i,j−1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly deter-

mined by the following analytical formulae:

((A.5))
F

m,n

i,j+1
=2a1(−4P

(2)

i,j+1
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(3)

i,j+1
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(0)

i,j+1
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(8)

i,j+1
)

+ 2a2(P̄
(5)

i,j+1
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(6)
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(9)

i,j+1
)

((A.6))
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=4P
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F
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(2)

i+1,j
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(3)

i+1,j
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(8)
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)

+ 2a2(umP̄
(9)
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(0)
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((A.8))
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1
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2
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P̄
(5)

i,j−1
= − 4P
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(2)

i,j−1
+ 5P

(1)

i,j−1
− 4P

(8)

i,j−1

− P
(7)

i,j−1
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(5)

i,j
−

5

2
P̄
(6)

i,j
− P̄

(4)

i,j

P̄
(8)

i,j−1
= − 4P
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i,j−1
+ 4P
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i,j−1
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(1)
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(7)

i,j−1
+ 2P̄

(5)

i,j
+ 2P̄

(6)

i,j
+ 2P̄

(4)

i,j

P̄
(9)

i,j−1
= 4P

(8)

i,j−1
− 2P

(7)

i,j−1
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(1)
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i,j
+

3

2
P̄
(6)

i,j

where

For Si−1,j patch, P̄
(k)

i−1,j
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly deter-

mined by the following analytical formulae:

where

((A.9))
F

m,n

i,j−1
=2a1(2P

(1)

i,j−1
− 4P

(2)

i,j−1
+ 2P̄

(0)

i,j
+ vnP̄

(8)

i,j−1
)

+ 2a2(P̄
(5)

i,j−1
− 3vnP̄

(6)

i,j−1
+ umP̄

(9)

i,j−1
)

((A.10))
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(2)
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(3)
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1
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i−1,j
= − 4P
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(3)
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3

2
P̄
(3)
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= P̄

(3)
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P̄
(4)

i−1,j
= 4P

(8)
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(1)

i−1,j
+

1

2
P̄
(6)

i−1,j
− P̄

(0)

i,j

P̄
(5)

i−1,j
= − 4P

(8)

i−1,j
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(1)
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−

3

2
P̄
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(0)

i,j

P̄
(6)

i−1,j
=

∑M

m=1

∑N

n=1
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i−1,j∑M
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∑N

n=1
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2
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P̄
(7)
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(8)
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(1)
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(2)

i−1,j
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(3)

i−1,j
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(2)

i,j
−

5

2
P̄
(3)

i,j
− P̄

(1)

i,j

P̄
(8)

i−1,j
= − 2P

(1)

i−1,j
+ 4P

(2)

i−1,j
− 2P

(3)

i−1,j
+ P̄

(2)

i,j
+

3

2
P̄
(3)

i,j

P̄
(9)

i−1,j
= − 4P

(4)

i−1,j
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(8)
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(1)
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(3)
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(2)
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(3)
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(1)
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((A.11))
F

m,n

i−1,j
=2a1(P̄

(2)

i−1,j
+ 3umP̄

(3)

i−1,j
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(8)
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(1)
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i,j
)
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For Si+1,j+1 patch, P̄
(k)

i+1,j+1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly 

determined by the following analytical formulae:

For Si−1,j−1 patch, P̄
(k)

i−1,j−1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly 

determined by the following analytical formulae:

For Si−1,j+1 patch, P̄
(k)

i−1,j+1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly 

determined by the following analytical formulae:

((A.12))
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(8)

i,j+1
, P̄

(3)

i+1,j+1
= P̄
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((A.13))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P̄
(0)

i−1,j−1
= P

(1)

i−1,j−1
, P̄

(1)

i−1,j−1
= 4P

(2)

i−1,j−1
− 3P

(1)

i−1,j−1
+

1

2
P̄
(3)

i,j−1
− P̄

(0)

i−1,j

P̄
(2)

i−1,j−1
= − 4P

(2)

i−1,j−1
+ 2P

(1)

i−1,j−1
−

3

2
P̄
(3)

i,j−1
+ 2P̄

(0)

i−1,j

P̄
(3)

i−1,j−1
= P̄

(3)

i,j−1
, P̄

(4)

i−1,j−1
= 4P

(8)

i−1,j−1
− 3P

(1)

i−1,j−1
+

1

2
P̄
(6)

i−1,j
− P̄

(0)

i,j−1

P̄
(5)

i−1,j−1
= − 4P

(8)

i−1,j−1
+ 2P

(1)

i−1,j−1
−

3

2
P̄
(6)

i−1,j
+ 2P̄

(0)

i,j−1
, P̄

(6)

i−1,j−1
= P̄

(6)

i−1,j

P̄
(7)

i−1,j−1
= 5P

(1)

i−1,j−1
− 4P

(2)

i−1,j−1
− 4P

(8)

i−1,j−1
+ 2P̄

(0)

i−1,j

+ P̄
(4)

i−1,j
−

1

2
P̄
(6)

i−1,j
+ P̄

(0)

i,j−1
− P̄

(2)

i,j−1
−

3

2
P̄
(3)

i,j−1

P̄
(8)

i−1,j−1
= − 2P

(1)

i−1,j−1
+ 4P

(2)

i−1,j−1
− 2P̄

(0)

i−1,j
+ P̄

(2)

i,j−1
+

3

2
P̄
(3)

i,j−1

P̄
(9)

i−1,j−1
= − 2P

(1)

i−1,j−1
+ 4P

(8)

i−1,j−1
− 2P̄

(0)

i,j−1
+ P̄

(5)

i−1,j
+

3

2
P̄
(6)

i−1,j

((A.14))
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For Si+1,j−1 patch, P̄
(k)

i+1,j−1
 ( k = 0, 1, 2, 3, ..., 9 ) are explicitly 

determined by the following analytical formulae:
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