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Abstract
In this study, we establish a phase-field two-phase surfactant system using two conservative Allen–Cahn type equations. Two 
nonlocal Lagrange multipliers are used to achieve the mass conservations. Comparing with the Cahn–Hilliard-type binary 
surfactant models which consist of two fourth-order nonlinear partial differential equations, the present model is easier 
because we solve two second-order nonlinear equations. In phase-field surfactant models, the existences of nonlinear terms 
lead to high challenges in energy estimation and numerical computation. To deal with these problems, we present first- and 
second-order time-accurate methods using a new time-dependent auxiliary variable approach. Due to the introduction of 
a new auxiliary variable, all nonlinear terms are explicitly solved. The energy dissipation law can be proved. To achieve 
linear and totally decoupled computation, we describe an efficient splitting algorithm. Various two- and three-dimensional 
computational tests are presented to show that our proposed schemes have desired accuracy, energy dissipation property, 
and work well for surfactant-laden coarsening.

Keywords New Lagrange multiplier approach · Two-phase surfactant system · Conservative Allen–Cahn model · Energy 
dissipation law

1 Introduction

The surfactant is an organic chemical material which consists 
of a hydrophobic tail and a hydrophilic head. This special 
structure of the surfactant leads to the high concentration of 
surfactant on two-phase interface. In our daily life, the soap 
and liquid detergent are common surfactant. In industrial 
fields, the surfactant is usually used to control the interfacial 
dynamics because the existence of surfactant will affect the 
surface tension. To construct mathematical models of two-
phase surfactant system, the volume-of-fluid [1], level-set 
[2, 3], and immersed boundary methods [4, 5] have been 
considered by many researchers. In actual physical problems, 
the topological changes of interface, such as coalescence and 
separation, are very common. To naturally capture the inter-
facial changes, the phase-field method is a good way.

The well-known pioneering research of phase-field sur-
factant model can be traced back to Laradji et al. [6], where 
the authors used two phase-field functions to represent the 
surfactant and two-phase fluids. This famous model belongs 
to a Cahn–Hilliard (CH)-type model which consists of two 
fourth-order nonlinear partial differential equations (PDE), 
a main advantage of CH type phase-field model is the prop-
erty of mass conservation. Because of this property, the 
CH model has been extensively applied in incompressible 
two-phase flow simulations [7–11]. Based on the CH type 
binary surfactant model, Kim [12] performed the simula-
tions using a Crank–Nicolson temporal discretization. Gu 
et al. [13] developed an energy stable time-marching scheme 
using the well-known convex splitting approach [14–16]. 
Recently, the energy quadratization (IEQ) [17, 18] and scalar 
auxiliary variable (SAV) [19–21] methods are two popular 
ways to develop the linear and energy stable time-marching 
schemes. For the applications of IEQ and SAV on phase-
field surfactant problems, please refer to [22–24].

As mentioned above, the numerical computations of 
CH type models may be tedious because the fourth-order 
characteristics. Comparing with the CH type models, the 
Allen–Cahn (AC)-type models are easier because they only 
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contains two-order nonlinear PDEs. However, the AC-type 
models cannot satisfy the mass conservation. To fix this 
shortcoming, the conservative Allen–Cahn (CAC) model 
was proposed [25–27], where a nonlocal Lagrange multiplier 
was introduced to achieve the mass conservation. In recent 
years, the CAC model has been studied in many simulations 
of two-phase systems [28–30].

In this work, we propose a CAC type two-phase surfactant 
model, where two nonlocal Lagrange multipliers are defined 
to satisfy the mass conservation. In the present model, the 
Lagrange multipliers are only related to the nonlinear and 
coupling terms and they can be treated explicitly; thus, the 
numerical implementation will be efficient. Some details can 
be found in Sect. 4. The energy dissipation law is a basic prop-
erty of most phase-field problems. To construct energy dissi-
pation-preserving numerical schemes with respect to original 
variables, we adopt a time-dependent auxiliary variable (new 
Lagrange multiplier). Meanwhile, the stabilization technique 
[31] is used to enhance the stability in computation. The main 
merits of this work are: (i) The CAC-type surfactant model is 
easier than the CH type in numerical computation, (ii) All non-
linear and coupling terms are treated as source terms; thus, the 
schemes are highly efficient, (iii) The energy dissipation law 
and mass conservation of our proposed schemes can be easily 
proved. The present work aims to develop efficient and energy-
dissipation preserving schemes for a CAC type two-phase sur-
factant model using a new Lagrange multiplier approach.

The outline of the rest part is as follows. In Sect. 2, the 
original equations of CAC-type surfactant system are intro-
duced. Using a time-dependent auxiliary variable, we trans-
form the original model into equivalent form in Sect. 2. We 
propose efficient and energy dissipation-preserving temporal 
schemes in Sect. 3. In Sect. 4, various benchmark problems 
are investigated to validate the proposed schemes. The con-
clusions are given in Sect. 5.

2  Original model

Let � be a smooth, bounded, and connected domain in ℝd , 
where d = 2 or 3 represents the spatial dimension. We con-
sider the following CAC-type two-phase surfactant model

where the subscript t represents the partial derivative with 
respect to time t, the positive constants M1 and M2 are the 
mobilities, � is a marker function which is used to distin-
guish two materials, the value of � is close to 1 in one phase 

(1)�t = −M2

(
�E(�,�)

��
− q�

)
,

(2)�t = −M1

(
�E(�,�)

��
− q�

)
,

and −1 in another phase, � represents the local concentration 
of surfactant, which reaches the maximum value �s at the 
interface � = 0 . Here, the total energy E(�,�) is given by

where the nonlinear potentials are F(�) = (�2 − 1)2∕4�2 and 
G(�) = �2(� − �s)

2∕4�2 . The small positive parameters � 
and � are related to the thickness of interface of � and � . In 
this work, we take �s = 1 . In Eqs. (1) and (2), the variational 
derivatives of E(�,�) with respect to � and � are given as

In the definition of total energy, Eq. (3), F(�) and G(�) 
describe the phase separation of � and � , respectively. On 
the contrary, |∇�|2∕2 and |∇�|2∕2 contribute to the phase 
mixing of � and � , respectively. The coupling term ���2∕2 
keeps the same solubility of surfactant in two phases. 
Another coupling term −��|∇�|2 ensures the accumula-
tion of surfactant at the interface.

Two Lagrange multipliers q� and q� are used to ensure the 
mass conservations of � and � , respectively. The definitions 
are given to be

where |�| is the total volume of domain. Using the integra-
tion by parts and appropriate boundary conditions (periodic 
or zero Neumann), we note that the last term on the right-
hand side of the expression of q� will be zero. For the pur-
pose of mass conservation, this term is unnecessary. In the 
Sect. 4, we will explicitly treat all nonlinear and coupling 
terms. The definition of 2�∇ ⋅ (�∇�) in the expression of 
q� not only affects the results but also simplifies the estima-
tions of discrete energy dissipation laws. Let us define the L2
-inner product of two functional as (f , g) = ∫

�
(f ⋅ g) d� and 

the L2-norm of f is ‖f‖2 = (f , f ) . To close Eqs. (1) and (2), we 
consider the periodic or homogeneous Neumann boundary 
conditions, i.e., ∇� ⋅ � = ∇� ⋅ � = 0 on the boundary �� , 
where � is the outward unit normal vector to �� . By taking 
the inner product of Eqs. (1) and (2) with � and using the 
integration by parts, we have

(3)
E(�,�) = ∫

�

[
1

2
|∇�|2 + F(�) +

1

2
|∇�|2 + G(�)

−��|∇�|2 + �

2
��2

]
d�,

�E(�,�)

��
= − �� + G�(�) − �|∇�|2 + �

2
�2,

�E(�,�)

��
= − �� + F�(�) + 2�∇ ⋅ (�∇�) + ���.

q� =
1

|�| ∫
�

[
G�(�) +

�

2
�2 − �|∇�|2

]
d�,

q� =
1

|�| ∫
�

[
F�(�) + ��� + 2�∇ ⋅ (�∇�)

]
d�,
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which indicates that the system satisfies the property of mass 
conservation. Furthermore, Eqs. (1) and (2) dissipate the 
energy functional, Eq. (3). To show this, we multiply Eq. (1) 
by −�t and take the integral operation, we get

Then we multiply Eq. (2) by −�t and take the integral opera-
tion, we get

By combining Eqs. (6) and (7), we get the following energy 
dissipation law

3  Equivalent model

The basic idea of time-dependent auxiliary variable-type 
method is to transfer the original equations to be the equiv-
alent equations by introducing a scalar variable which is 
the function of time t. Based on the transformed forms, 
one can construct first- and second-order time-accurate 
linear methods and the energy estimation is easy to per-
form. Some details can be founded in the next section. 

(4)∫
�

�t d� =
d

dt ∫
�

� d� = 0,

(5)∫
�

�t d� =
d

dt ∫
�

� d� = 0,

(6)
−

1

M2

‖�t‖2 =
d

dt ∫
�

�
1

2
�∇��2 + G(�)

�
d�

+
�

2
(�2,�t) − �(�∇��2,�t) − q� (�t, �).

(7)

−
1

M1

‖�t‖2 =
d

dt ∫
�

�
1

2
�∇��2 + F(�)

�
d�

− �
d

dt ∫
�

��∇��2 d� + �(�∇��2,�t)

+
�

2

d

dt ∫
�

��2 d�

−
�

2
(�2,�t) − q�(�t, �).

(8)

d

d t �
�

�
1

2
�∇��2 + F(�) +

1

2
�∇��2 + G(�)

�
d�

− �
d

d t �
�

��∇��2 d� + �

2

d

d t �
�

��2 d�

= −
1

M1

‖�
t
‖2 − 1

M2

‖�
t
‖2 ≤ 0.

Herein, we consider a time-dependent auxiliary variable U 
which satisfies U = 1 in time-continuous case. We define 
W(�,�) = F(�) + G(�) +

�

2
��2 − ��|∇�|2 , then Eqs. (1) 

and (2) can be recast to be

where the periodic or homogeneous Neumann boundary 
conditions, i.e., ∇� ⋅ �|�� = ∇� ⋅ �|�� = 0 are used. And

Here, U is a time-dependent auxiliary variable which takes 
the constant value 1 all along. Therefore, Eqs. (9) and (10) 
are indeed equivalent to the original equations, Eqs. (1) and 
(2). Because we introduce an extra variable U, Eq. (11) is 
used to construct the evolutional equation of U. Moreover, 
Eq. (11) is an ordinary differential equation (ODE) of U, 
thus we do not need to add extra boundary conditions. It 
it obvious that the equivalent equations, Eqs. (9) and (10) 
still satisfy the mass conservations. To show the energy dis-
sipation law, we first multiply Eq. (9) by −�t and take the 
integral operation, we get

By multiplying Eq. (10) by −�t and taking the integral oper-
ation, we get

By multiplying −1 on Eq. (11) and combining with Eqs. (12) 
and (13), we have the desired energy law

(9)�t = −M2

[
−�� + UH2 − Uq�

]
,

(10)�t = −M1

[
−�� + UH1 − Uq�

]
,

(11)

d (W(�,�), �)

d t
= U ∫

�

[
F�(�)�t + G�(�)�t +

�

2
�2�t + ����t

−�|∇�|2�t + 2�∇ ⋅ (�∇�)�t

]
d�,

H1 =F�(�) + ��� + 2�∇ ⋅ (�∇�),

H2 =G�(�) +
�

2
�2 − �|∇�|2.

(12)

−
1

M2

‖�t‖2 =
d

d t ∫
�

1

2
�∇��2 d� + (UH2,�t) − Uq� (�t, �).

(13)

−
1

M1

‖�t‖2 =
d

d t ∫
�

1

2
�∇��2 d� + (UH1,�t) − Uq�(�t, �).

(14)

d

dt
(W(�,�), �) +

d

dt �
�

�
1

2
�∇��2 + 1

2
�∇��2

�
d�

= −
1

M1

‖�
t
‖2 − 1

M2

‖�
t
‖2 ≤ 0.
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Here, we notice W(�,�) represents all nonlinear terms in 
original energy functional, the above relation is indeed 
equivalent to the original energy dissipation law. Using the 
equivalent equations, we will propose energy dissipation-
preserving first- and second-order time-accurate methods 
in the next section.

4  Time‑marching schemes

We define f n be the approximation of f (�, t) at t = n�t , where 
�t is the time step.

4.1  First‑order time‑accurate scheme (1st‑S)

Using the implicit Euler approximation, the first-order time-
accurate method is

where the last terms in Eqs. (15) and (16) play the role of 
stabilization, S� and S� are positive constants and

(15)

�n+1 − �n

�t

= −M2

[
−��n+1 + Un+1Hn

2
− Un+1qn

�
+

S�

�2
(�n+1 − �n)

]
,

(16)

�n+1 − �n

�t

= −M1

[
−��n+1 + Un+1Hn

1
− Un+1qn

�
+

S�

�2
(�n+1 − �n)

]
,

(17)

(W(�n+1,�n+1) −W(�n,�n), �)

�t
= Un+1 ∫

�

[
F�(�n)

�n+1 − �n

�t

+G�(�n)
�n+1 − �n

�t
+

�

2
(�n)2

�n+1 − �n

�t
+ ��n�n�

n+1 − �n

�t

−�|∇�n|2�
n+1 − �n

�t
+ 2�∇ ⋅ (�n∇�n)

�n+1 − �n

�t

]
d�,

Hn
1
=F�(�n) + ��n�n + 2�∇ ⋅ (�n�n),

Hn
2
=G�(�n) +

�

2
(�n)2 − �|∇�n|2,

qn
�

=
1

|�| ∫
�

[
G�(�n) +

�

2
(�n)2 − �|∇�n|2

]
d�,

qn
�
=

1

|�| ∫
�

[
F�(�n) + ��n�n + 2�∇ ⋅ (�n�n)

]
d�.

Here, the periodic or zero Neumann boundary conditions, 
i.e., ∇�n+1

⋅ �|�� = ∇�n+1
⋅ �|�� = 0 are considered. To 

show the mass conservations of the proposed method, Eqs. 
(15)–(17), we first rewrite Eq. (15) to be

By taking the inner product of the above equation with � and 
using the divergence theorem, we have

which indicates (�n+1 − �n, �) = 0 because 
(

1

𝛿t
+

M2S𝜓

𝜂2

)
> 0.

Using the same way, we can obtain (�n+1 − �n, �) = 0 
from Eq. (16). Thus, we claim the proposed first-order time-
accurate scheme satisfies the mass conservations. To show 
the energy dissipation law in a time-discretized version, we 
multiply Eq. (15) by −(�n+1 − �n) and take the integral 
operation, we have

By multiplying Eq. (16) by −(�n+1 − �n) and taking the inte-
gral operation, we have

By multiplying −1 on Eq. (17) and combining Eqs. (18) and 
(19), we obtain the following time-discretized energy dis-
sipation law

(
1

�t
+

M2S�

�2

)
(�n+1 − �n) = M2��

n+1 −M2U
n+1(Hn

2
− qn

�
).

(
1

�t
+

M2S�

�2

)
(�n+1 − �n, �)

= M2 ∫
��

� ⋅ ∇�n+1 d� −M2U
n+1(Hn

2
− qn

�
, �) = 0,

(18)

−
1

�tM2

‖�n+1 − �n‖2 = 1

2
(‖∇�n+1‖2 − ‖∇�n‖2

+ ‖∇�n+1 − ∇�n‖2)
+ (Un+1Hn

2
,�n+1 − �n)

− Un+1qn
�
(�n+1 − �n

, �)

+
S�

�2
‖�n+1 − �n‖2.

(19)

−
1

�tM1

‖�n+1 − �n‖2 = 1

2
(‖∇�n+1‖2 − ‖∇�n‖2

+ ‖∇�n+1 − ∇�n‖2)
+ (Un+1Hn

1
,�n+1 − �n)

− Un+1qn
�
(�n+1 − �n

, �)

+
S�

�2
‖�n+1 − �n‖2.
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4.2  Efficient algorithm for 1st‑S

As we can observe, Eqs. (15)–(17) are weakly coupled 
due to the existence of Un+1 . To decouple the computa-
tion, we describe the following efficient algorithm. First, let 
�n+1 = �n+1

1
+ Un+1�n+1

2
 and �n+1 = �n+1

1
+ Un+1�n+1

2
 , then 

Eqs. (15)–(17) are recast to be

Because �n+1
1

 and �n+1
2

 are independent, we can split Eq. 
(21) into

(20)

(W(�n+1
,�n+1) −W(�n

,�n), �)

+
1

2
(‖∇�n+1‖2 − ‖∇�n‖2) + 1

2
(‖∇�n+1‖2 − ‖∇�n‖2)

= −

�
1

�tM1

+
S�

�2

�
‖�n+1 − �n‖2

−
1

2
‖∇�n+1 − ∇�n‖2 −

�
1

�tM2

+
S�

�2

�
‖�n+1 − �n‖2

−
1

2
‖∇�n+1 − ∇�n‖2 ≤ 0.

(21)

�n+1
1

+ Un+1�n+1
2

− �n

�t

= −M2

[
−�(�n+1

1
+ Un+1�n+1

2
) + Un+1Hn

2
− Un+1qn

�

+
S�

�2
(�n+1

1
+ Un+1�n+1

2
− �n)

]
,

(22)

�n+1
1

+ Un+1�n+1
2

− �n

�t

= −M1

[
−�(�n+1

1
+ Un+1�n+1

2
) + Un+1Hn

1
− Un+1qn

�

+
S�

�2
(�n+1

1
+ Un+1�n+1

2
− �n)

]
,

(23)

(W(�n+1

1
+ U

n+1�n+1

2
,�n+1

1
+ U

n+1�n+1

2
) −W(�n,�n), �)

= U
n+1 ∫

�

[
F
�(�n)(�n+1

1
+ U

n+1�n+1

2
− �n) + G

�(�n)(�n+1

1
+ U

n+1�n+1

2
− �n)

+
�

2
(�n)2(�n+1

1
+ U

n+1�n+1

2
− �n) + ��n�n(�n+1

1
+ U

n+1�n+1

2
− �n)

−�|∇�n|2(�n+1

1
+ U

n+1�n+1

2
− �n)

+2�∇ ⋅ (�n∇�n)(�n+1

1
+ U

n+1�n+1

2
− �n)

]
d�,

Similarly, we can split Eq. (22) into

Here, the periodic or zero Neumann boundary conditions, i.e., 
∇�n+1

1
⋅ �|�� = ∇�n+1

2
⋅ �|�� = ∇�n+1

1
⋅ �|�� = ∇�n+1

2
⋅ �|�� = 0 

are considered. It can be observed that the computations of 
�n+1
1

 and �n+1
2

 , �n+1
1

 and �n+1
2

 are fully decoupled. In each 
time iteration, we solve four linear elliptic equations with 
constant coefficients in a step-by-step manner, thus the com-
putation is highly efficient. With the computed �n+1

1
 , �n+1

2
 , 

�n+1
1

 , and �n+1
2

 , we can update Un+1 from Eq. (23). Because 
Eq. (23) is a nonlinearly algebraic equation with respect to 
Un+1 , the Newton’s iteration with a proper initial assumption 
Un+1 = 1 usually works well.

4.3  Second‑order time‑accurate method (2nd‑S)

Using the BDF2 approximation, we can develop the follow-
ing second-order time-accurate method

(24)
�n+1
1

− �n

�t
= M2��

n+1
1

−
M2S�

�2
(�n+1

1
− �n),

(25)
�n+1
2

�t
= M2��

n+1
2

−M2

(
Hn

2
− qn

�
+

S�

�2
�n+1
2

)
.

(26)
�n+1
1

− �n

�t
= M1��

n+1
1

−
M1S�

�2
(�n+1

1
− �n),

(27)
�n+1
2

�t
= M1��

n+1
2

−M1

(
Hn

1
− qn

�
+

S�

�2
�n+1
2

)
.

(28)

3�n+1 − 4�n + �n−1

2�t

= −M2

[
−��n+1 + Un+1H∗

2
− Un+1q∗

�
+

S�

�2
(�n+1 − �∗)

]
,
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where �∗ = 2�n − �n−1 and �∗ = 2�n − �n−1 are the 
extrapolations from the previous information. The peri-
odic or homogeneous Neumann boundary conditions, i.e., 
∇�n+1

⋅ �|�� = ∇�n+1
⋅ �|�� = 0 are used. We claim that the 

above method satisfies the mass conservations with the pre-
conditions �1 = �0 and �1 = �0 which have been obtained 
from the first-order scheme. To show this, we first consider 
the case n = 1 and rewrite Eq. (28) to be

By taking the inner product of the above equation with � and 
using the divergence theorem, we have

which indicates (�2 − �1, �) = 0 because 
(

3

2𝛿t
+

M2S𝜓

𝜂2

)
> 0 . 

By the recurrence relation, we have (�n+1 − �n, �) = 0 . In a 
similar way, we can obtain (�n+1 − �n, �) = 0 from Eq. (29). 
Thus, we have proved that the second-order time-accurate 
method still satisfies the mass conservations. Next, we will 

(29)

3�n+1 − 4�n + �n−1

2�t

= −M

[
−��n+1 + Un+1H∗

1
− Un+1q∗

�
+

S�

�2
(�n+1 − �∗)

]
,

(30)

(3W(�n+1,�n+1) − 4W(�n,�n) +W(�n−1,�n−1), �)

2�t

= U
n+1 ∫

�

[
F
�(�∗)

3�n+1 − 4�n + �n−1

2�t

+ G
�(�∗)

3�n+1 − 4�n + �n−1

2�t

+
�

2
�∗ 3�

n+1 − 4�n + �n−1

2�t

+ ��∗�∗ 3�
n+1 − 4�n + �n−1

2�t

−�|∇�∗|2 3�
n+1 − 4�n + �n−1

2�t

+2�∇ ⋅ (�∗∇�∗)
3�n+1 − 4�n + �n−1

2�t

]
d�,

(
3

2�t
+

M2S�

�2

)
(�2 − �1) = M2��

2 −M2U
2(H∗

2
− q∗

�
).

(
3

2�t
+

M2S�

�2

)
(�2 − �1, �)

= M2 ∫
��

� ⋅ ∇�2 d� −M2U
2(H∗

2
− q∗

�
, �) = 0,

prove that Eqs. (28)–(30) dissipate the following time-dis-
cretized energy

By multiplying Eq. (28) by −(3�n+1 − 4�n + �n−1) and tak-
ing the integral operation, we have

By multiplying Eq. (29) by −(3�n+1 − 4�n + �n−1) and tak-
ing the integral operation, we have

By multiplying −1 on Eq. (30) and combining Eqs. (32) 
and (33) together, we obtain the following time-discretized 
energy law

(31)

Ẽ(𝜙n+1
,𝜙n

,𝜓n+1
,𝜓n)

=
1

2
(3W(𝜙n+1

,𝜓n+1) −W(𝜙n
,𝜓n), �)

+
1

4
(‖∇𝜙n+1‖2 + ‖2∇𝜙n+1 − ∇𝜙n‖2)

+
1

4
(‖∇𝜓n+1‖2 + ‖2∇𝜓n+1 − ∇𝜓n‖2)

+
S𝜙

2𝜖2
‖𝜙n+1 − 𝜙n‖2 +

S𝜓

2𝜂2
‖𝜓n+1 − 𝜓n‖2,

(32)

−
1

2�tM2

‖3�n+1 − 4�n + �n−1‖2

=
1

2
(‖∇�n+1‖2 − ‖∇�n‖2

+ ‖2∇�n+1 − ∇�n‖2 − ‖2∇�n − ∇�n−1‖2

+ ‖∇�n+1 − 2∇�n + ∇�n−1‖2)
+ (Un+1H∗

2
, 3�n+1 − 4�n + �n−1)

− Un+1q∗
�
(3�n+1 − 3�n − (�n − �n−1), �)

+
S�

�2
(‖�n+1 − �n‖2

− ‖�n − �n−1‖2 + 2‖�n+1 − 2�n + �n−1‖2),

(33)

−
1

2�tM1

‖3�n+1 − 4�n + �n−1‖2

=
1

2
(‖∇�n+1‖2 − ‖∇�n‖2

+ ‖2∇�n+1 − ∇�n‖2 − ‖2∇�n − ∇�n−1‖2

+ ‖∇�n+1 − 2∇�n + ∇�n−1‖2)
+ (Un+1H∗

1
, 3�n+1 − 4�n + �n−1)

− Un+1q∗
�
(3�n+1 − 3�n − (�n − �n−1), �)

+
S�

�2
(‖�n+1 − �n‖2

− ‖�n − �n−1‖2 + 2‖�n+1 − 2�n + �n−1‖2),
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which is a second-order approximation of original energy 
law. For example, we observe

(34)

1

2
(3W(�n+1,�n+1) −W(�n,�n), �)

−
1

2
(3W(�n,�n) −W(�n−1,�n−1), �)

+
1

4
(‖∇�n+1‖2 + ‖2∇�n+1 − ∇�n‖2 − ‖∇�n‖2 − ‖2∇�n − ∇�n−1‖2)

+
1

4
(‖∇�n+1‖2 + ‖2∇�n+1 − ∇�n‖2 − ‖∇�n‖2 − ‖2∇�n − ∇�n−1‖2) +

S�

2�2
(‖�n+1 − �n‖2 − ‖�n − �n−1‖2)

+
S�

2�2
(‖�n+1 − �n‖2 − ‖�n − �n−1‖2)

= −
1

4�tM1

‖3�n+1 − 4�n + �n−1‖2 − 1

4�tM2

‖3�n+1 − 4�n + �n−1‖2

−
1

4
‖∇�n+1 − 2∇�n + ∇�n−1‖2 − 1

4
‖∇�n+1 − 2∇�n + ∇�n−1‖2

−
S�

�2
‖�n+1 − 2�n + �n−1‖2 −

S�

�2
‖�n+1 − 2�n + �n−1‖2 ≤ 0,

(35)

(3W(�n+1,�n+1) − 4W(�n,�n) +W(�n−1,�n−1), �)

2�t

≅
d

d t
(W(�(⋅, tn+1),�(⋅, tn+1)), �) + O(�t2),

(36)

�
‖∇�n+1‖2 + ‖2∇�n+1 − ∇�n+1‖2

2�t

�

−

�
‖∇�n‖2 + ‖2∇�n − ∇�n−1‖2

2�t

�

≅

�
‖∇�n+2‖2 − ‖∇�n‖2

2�t

�
+ O(�t2)

≅
d

d t
‖∇�(⋅, tn+1)‖2 + O(�t2),

(37)

�
‖∇�n+1‖2 + ‖2∇�n+1 − ∇�n+1‖2

2�t

�

−

�
‖∇�n‖2 + ‖2∇�n − ∇�n−1‖2

2�t

�

≅

�
‖∇�n+2‖2 − ‖∇�n‖2

2�t

�

+ O(�t2) ≅
d

d t
‖∇�(⋅, tn+1)‖2 + O(�t2),

(38)
�
‖�n+1 − �n‖2 − ‖�n − �n−1‖2

�t

�
≅ O(�t2),

Remark 4.1 In Sect.4.1, we presented the first-order time-
accurate scheme and estimated its energy dissipation law 
with respect to the following discrete energy

It should be noted that the above discrete energy is a first-
order approximation of original and time-continuous energy 
E(�,�) . In Sect. 4.4, we presented the second-order time-
accurate scheme and proved the discrete energy dissipation 
law with respect to a discrete energy (Eq. (31)). We note 
that Eq. (31) is a pseudo energy because it contains vari-
ables at different time levels. This issue always exits for the 
BDF2-based temporally second-order scheme of phase-field 
models, please refer to [14, 17, 20, 21, 32–34] for more 
details. However, Eq. (31) is still a second-order approxima-
tion of original and time-continuous energy E(�,�) . For a 
desired numerical method, we aim to obtain discrete results 
which are appropriate approximations of continuous prob-
lems. Because Eqs. (40) and (31) are both approximations 
of E(�,�) with different orders, thus inequalities (20) and 
(34) can be identified as appropriate discrete energy dis-
sipation laws.

4.4  Efficient algorithm for 2nd‑S

We define �n+1
= �n+1

1
+ U

n+1�n+1

2
 and �n+1

= �n+1

1
+ U

n+1�n+1

2
 , 

then Eqs. (28)–(30) can be recast to be

(39)
�
‖�n+1 − �n‖2 − ‖�n − �n−1‖2

�t

�
≅ O(�t2).

(40)E(�n,�n) = W(�n,�n) +
1

2
‖∇�n‖2 + 1

2
‖∇�n‖2.
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Since �n+1
1

 and �n+1
2

 are independent, we can split Eq. (41) 
to be

Similarly, we can split Eq. (42) to be

Here, the periodic or homogeneous Neumann boundary con-
ditions, i.e., ∇�n+1

1
⋅ �|�� = ∇�n+1

2
⋅ �|�� = ∇�n+1

1
⋅ �|�� = ∇�n+1

2

⋅�|�� = 0 are considered. In each time iteration, only four 
linear elliptic equations with constant coefficients need to be 
solved. With the computed �n+1

1
 , �n+1

2
 , �n+1

1
 , and �n+1

2
 , we 

can update Un+1 by solving Eq. (43) with Newton’s iteration.

Remark 4.2 In the proposed methods, two stabilization 
parameters S� and S� were introduced to perform the 

(41)

3(�n+1
1

+ Un+1�n+1
2

) − 4�n + �n−1

2�t

= −M2

[
−�(�n+1

1
+ Un+1�n+1

2
)

+Un+1H∗

2
− Un+1q∗

�
+

S�

�2
(�n+1

1
+ Un+1�n+1

2
− �∗)

]
,

(42)

3(�n+1
1

+ Un+1�n+1
2

) − 4�n + �n−1

2�t

= −M1

[
−�(�n+1

1
+ Un+1�n+1

2
)

+Un+1H∗

1
− Un+1q∗

�
+

S�

�2
(�n+1

1
+ Un+1�n+1

2
− �∗)

]
,

(43)

(3W(�n+1

1
+ U

n+1�n+1

2
,�n+1

1
+ U

n+1�n+1

2
) − 4W(�n,�n) +W(�n−1,�n−1), �)

= U
n+1 ∫

�

[
F
�(�∗)(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1)

+G�(�∗)(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1)

+
�

2
�∗(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1) + ��∗�∗(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1)

−�|∇�∗|2(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1)

+2�∇ ⋅ (�∗∇�∗)(3(�n+1

1
+ U

n+1�n+1

2
) − 4�n + �n−1)

]
d�,

(44)

3�n+1
1

− 4�n + �n−1

2�t
= M2��

n+1
1

−
M2S�

�2
(�n+1

1
− �∗),

(45)
3�n+1

2

2�t
= M2��

n+1
2

−M2

(
H∗

2
− q∗

�
+

S�

�2
�n+1
2

)
.

(46)

3�n+1
1

− 4�n + �n−1

2�t
= M1��

n+1
1

−
M1S�

�2
(�n+1

1
− �∗),

(47)
3�n+1

2

2�t
= M1��

n+1
2

−M1

(
H∗

1
− q∗

�
+

S�

�2
�n+1
2

)
.

stabilization. We admit that the discrete version of energy 
dissipation law (energy stability) can be proved with 
S� = S� = 0 . However, the energy stability is just a physical 
property and can not guarantee the stability of numerical 
solution. In linear methods, the explicit treatments of non-
linear terms will increase the stiffness of schemes when we 
use large time steps. The incorrect calculations of � and � 
also lead to the nondissipative behaviour of discrete energy. 
To a certain extent, the implicit parts containing in the sta-
bilization terms reduce the bad effect caused by the explicit 
nonlinear terms. Because the nonlinear terms contain (⋅)∕�2 
and (⋅)∕�2 , we need to choose S�∕�2 and S�∕�2 to control 
these parts. In Sect. 5, the numerical results indicate that 
S� = S� = 2 plays an essential role to preserve the energy 

dissipation property even if a relatively large time step is 
used. Furthermore, extensive recent works [21, 35–37] also 
displayed the necessity of stabilization terms on the linear 
auxiliary variable-type approaches. Although S�∕�2 and 
S�∕�

2 are not negligible, the whole terms S�
�2
(�n+1 − �∗) and 

S�

�2
(�n+1 − �∗) only bring up extra splitting errors which are 

of the order S��t2�tt(⋅) and S��t2�tt(⋅) that are comparable 
with the errors introduced by the extrapolations of the 
explicit nonlinear terms [35, 37]. Moreover, Eqs. (17) and 
(30) are only used to compute the time-dependent auxiliary 
variable U, they are not evolutional equations of W(�,�) . 
With the computed �n+1 , �n+1 , �n , and �n , we directly obtain 
W(�n+1,�n+1) and W(�n,�n) from their definition in time-
continuous version. Therefore, the discrete energy function-
als ( Eqs. (40) and (31) ) consist of original variables (i.e., � 
and � ) and they are both appropriate approximations of 
continuous energy E(�,�) . In Sect. 5, we plot the evolutions 
of discrete pseudo energy (Eq. (31)) and discrete version of 
original energy with S� = S� = 2 . The results indicate that 
the pseudo and original energy curves are almost 
consistent.

Remark 4.3 In the 1st-S and 2nd-S, we observe that only 
four linear elliptic type equations need to be computed in 
one time iteration, thus any fast and accurate numerical 
methods can be used. Moreover, the unique solvability 
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of linear elliptic type equations can be easily obtained 
using Lax–Milgram theorem, please refer to [31] for 
some details. For the nonlinear algebraic equation with 
respect to Un+1 , we can use Newton’s iteration with 1 
as initial assumption. Note that the exact solution of U 
is 1, thus the Newton’s iteration generally converges to 
desired result. As reported in [34], the convergence and 
error estimations of numerical schemes based on a new 
Lagrange multiplier approach are still open questions and 
we will further consider them in a separate work. In the 
present study, we only focus on the implementation of 
efficient and energy dissipation-preserving time-marching 
schemes. The numerical examples in Sect. 5 will indicate 
that the proposed schemes work well for the CAC type 
binary surfactant system.

Remark 4.4 In this section, we proposed temporally 
first- and second-order accurate schemes for the CAC 
surfactant model. Comparing with the discrete pseudo 
energy dissipation law based on the second-order accu-
rate scheme, the solutions of first-order accurate scheme 
dissipate the discrete version of original energy (i.e., 
the discrete energy only contains the variables at the 
same time level). However, the second-order accurate 
scheme usually leads to better computational accuracy 

and convergence. The numerical tests shown in Sect. 5 
indicate this.

5  Numerical validations

In this section, we perform various 2D and 3D computa-
tional examples to validate the proposed time-marching 
schemes. The finite difference method is adopted to discre-
tize the space and efficient linear multigrid algorithm [38] 
is used to speed up the convergence. The computational 
domain for 2D and 3D problems are � = (0, 2�) × (0, 2�) 
and � = (0, 2�) × (0, 2�) × (0,�) , respectively. Without 
specific needs, we use the spatial mesh size 128 × 128 and 
128 × 128 × 64 for 2D and 3D tests, respectively. The fol-
lowing parameters are considered

5.1  Accuracy tests

To validate the proposed first-order scheme (1st-S) and sec-
ond-order scheme (2nd-S) have the corresponding temporal 
accuracy, we consider the following initial conditions

Because the analytical solution is hard to find in general, 
we define the numerical reference solutions using a finer 
time step 𝛿t̃ = 2.4096e-5. The increasingly coarser time 
steps 𝛿t = 5𝛿t̃, 10𝛿t̃, 20𝛿t̃, 40𝛿t̃, 80𝛿t̃ , and 160𝛿t̃ are used 
to perform the simulations until t = 0.1234 . Tables 1 and 2 
illustrate the L2-errors and convergence rates with respect 
to 1st-S and 2nd-S, respectively. As we can observed, the 
proposed schemes indeed have the desired first- and second-
order temporal accuracy.

5.2  Energy dissipation law and mass conservations

To validate the proposed schemes satisfy the properties 
of energy dissipation and mass conservations, we con-
sider the evolution of two droplets with different sizes. 

M1 =M2 = 0.01, � = 0.001, � = 0.001,

� =0.05, � = 0.01, S� = S� = 2.

(48)

�(x, y, 0) = tanh

�
0.4� −

√
(x − 0.6�)2 + (y − �)2

√
2�

�

+ tanh

�
0.15� −

√
(x − 1.15�)2 + (y − 1.2�)2

√
2�

�
+ 1,

(49)�(x, y, 0) = 0.2.

Table 1  1st-S: L2-errors and convergence rates of � and � with vari-
ous time steps

�t � Rate � Rate

160𝛿t̃ 0.0014 – 5.1666e−5 –
80𝛿t̃ 6.8664e−4 1.0278 3.1722e−5 0.7037
40𝛿t̃ 3.4247e−4 1.0036 1.7753e−5 0.8374
20𝛿t̃ 1.6771e−4 1.0300 9.2683e−6 0.9377
10𝛿t̃ 7.9646e−5 1.0743 4.5533e−6 1.0254
5𝛿t̃ 3.5444e−5 1.1681 2.0620e−6 1.1429

Table 2  2nd-S: L2-errors and convergence rates of � and � with vari-
ous time steps

�t � Rate � Rate

160𝛿t̃ 6.8711e−5 – 2.5126e−6 –
80𝛿t̃ 1.7329e−5 1.9874 6.6188e−7 1.9245
40𝛿t̃ 4.3494e−6 1.9943 1.7332e−7 1.9331
20𝛿t̃ 1.0877e−6 1.9995 4.4586e−8 1.9588
10𝛿t̃ 2.7018e−7 2.0093 1.125e−8 1.9859
5𝛿t̃ 6.5533e−8 2.0436 2.7537e−9 2.0313
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The initial conditions in Sect. 5.1 are considered. The 
increasingly coarser time steps �t = 0.01, 0.05, 0.1, 0.2 
and 0.4 are used. All simulations are performed until 
t = 100 . The snapshots obtained by a smaller time step 
�t = 0.01 are shown in Fig. 1, two initially separated drop-
lets merge together to form a bigger one. In this process, 
the shrinking of interfacial length will dissipate the total 
energy. Figure 2a and b displays the temporal evolutions 
of normalized energy with respect to the 1st-S and 2nd-S, 
respectively. Although both schemes dissipate the total 
energy at each time step, the 2nd-S speeds up the conver-
gence of energy curve. In Fig. 3a and b, we also plot the 
evolutions of total mass of � and � , where the definitions 
of total mass are as follow

where h = 2�∕128 is the grid size, Nx and Ny are the num-
bers of mesh grids along x- and y-directions, respectively. It 
can be observed that both schemes satisfy the mass conser-
vations. In Fig. 4, we plot the temporal evolutions of auxil-
iary variable U with respect to different time steps. As we 
can see, U converges to desired result 1 with the refinement 
of time step. The results indicate that a smaller time step is 
necessary to obtain an accurate solution.

Vn
�
= h2

Nx∑

i=1

Ny∑

j=1

(
1 + �n

ij

2

)
,

Vn
�

= h2
Nx∑

i=1

Ny∑

j=1

�n
ij
,

(a)

φ ψ

(b)

φ ψ

(c)

φ ψ

(d)

φ ψ

Fig. 1  The snapshots of � and � at t = 0, 3, 15 , and 100 from (a)–(d)
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Fig. 2  Evolutions of normalized energy obtained by a 1st-S and b 2nd-S
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Fig. 3  Evolutions of total mass obtained by a 1st-S and b 2nd-S

Fig. 4  Temporal evolutions 
of auxiliary variable U with 
respect to different time steps
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Fig. 5  Evolutions of energy curves. Here, a shows the normalized energy with respect to S� = S� = 0 and different time steps; b plots the dis-
crete original and pseudo energy with S� = S� = 2
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We note that the discrete energy dissipation law (energy 
stability) still holds for the case of S� = S� = 0 (i.e., the 
stabilization terms are absent). However, the energy stabil-
ity does not guarantee the stability of numerical solutions. 
When we use a relatively large time step, the stabiliza-
tion terms play important roles to suppress the effect of 

explicit nonlinear terms. In Fig. 5a, we plot the evolutions 
of normalized energy with respect to S� = S� = 0 and dif-
ferent time steps. We observe that the energy curve does 
not follow the dissipative property when �t = 0.2 is used. 
By comparing the results shown in Figs. 5a and 2b, we 
find that the energy curves are non-increasing when we use 

Fig. 6  The snapshots of � 
and � with � = � = 0.001 and 
�̄� = 0.2 . The subfigures a–f are 
at t = 4, 10, 20, 30, 60, 100
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Fig. 7  The snapshots of � and � 
with � = � = 0.3 and �̄� = 0.8 . 
The subfigures a–f are at 
t = 4, 10, 20, 30, 60, 100
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S� = S� = 2 . Moreover, Fig. 5b displays the evolutions of 
discrete version of original energy (Eq. (40)) and pseudo 
energy (Eq. (31)) with S� = S� = 2 . As we can see, the 
energy curves are approximately consistent.

5.3  Effect of surfactant

In a surfactant-laden two-phase system, the interfacial dynam-
ics will be influenced by the existence of surfactant. If the 
effect of surfactant is weak, the dominance of interfacial 
intension will drive the interface to coalesce. On the contrary, 
the dominant effect of surfactant will makes the interface be 
separated since the tension is weaken. Here, we consider two 
initially separated droplets

We first perform the simulation with � = � = 0.001 and 
�̄� = 0.2 until t = 100 . The results in Fig. 6 show that two 
droplet merge with each other to form a bigger droplet. 
Then, we increase the effect of surfactant using � = � = 0.3 
and �̄� = 0.8 . From the results in Fig. 7, we can observe that 

(50)

�(x, y, 0) = tanh

�
0.4� −

√
(x − 0.6�)2 + (y − 0.83�)2

√
2�

�

+ tanh

�
0.4� −

√
(x − 1.4�)2 + (y − 1.17�)2

√
2�

�
+ 1,

(51)𝜓(x, y, 0) = �̄� .
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Fig. 8  Energy curves of two surfactant-laden droplets with respect to a � = � = 0.001 , �̄� = 0.2 and b � = � = 0.3 , �̄� = 0.8
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Fig. 9  Total mass with respect to a � = � = 0.001 , �̄� = 0.2 and b � = � = 0.3 , �̄� = 0.8
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two droplets keep separated all along. The energy curves 
and total mass for two cases are plotted in Figs. 8 and 9, 
respectively. Although the interfacial evolutions are differ-
ent, both cases dissipate the total energy and satisfy the mass 
conservations.

5.4  Surfactant‑laden coarsening dynamics

The coarsening dynamics is an important benchmark prob-
lem for the CH or AC type models. The initial concentra-
tion of � plays an obvious role in pattern formation. Please 
refer to previous works for this phenomenon [12, 22, 29]. In 
this subsection, we investigate the surfactant-laden coars-
ening dynamics in 2D space by using the following initial 
conditions

where rand (x, y) is the random number between −1 to 1. 
Here, we take �̄� = 0 and 0.3 to perform the simulations until 
t = 300 . The snapshots with respect to �̄� = 0 and 0.3 are 

(52)𝜙(x, y, 0) = �̄� + 0.001 rand (x, y),

(53)�(x, y, 0) = 0.2 + 0.001 rand (x, y),

plotted in Figs. 10 and 11, respectively. As we can observed, 
the structures of pattern are obviously affected by the initial 
concentrations of � . Due to the effect of nonlinear coupling 
between � and � , the surfactant always accumulates at the 
interface. The normalized energy curves shown in Fig. 12 
indicate the energy becomes flat if the evolution goes to 
steady state.

Next, we consider the coarsening phenomenon in 3D space 
using the following initial conditions

The simulations are performed until t = 50 . The results with 
respect to �̄� = 0 and 0.3 are shown in Figs. 13 and 14. Fig-
ure 15 displays the snapshots of interfaces of � (green) and 
� (yellow). The normalized energy curves plotted in Fig. 16 
show that the total energy is non-increasing in time.

(54)𝜙(x, y, z, 0) = �̄� + 0.01 rand (x, y, z),

(55)�(x, y, z, 0) = 0.2 + 0.01 rand (x, y, z).

Fig. 10  The snapshots 
of � and � with �̄� = 0 . 
The subfigures a–h are at 
t = 4, 10, 20, 40, 70, 96, 140, 300
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6  Conclusion

We proposed a easier two-phase surfactant model which 
consists of two CAC type evolutional equations and 
developed its efficient numerical methods. By introduc-
ing a time-dependent auxiliary variable, we transformed 
the original equations into equivalent forms. Using the 
equivalent forms, we proposed first- and second-order 
time-accurate methods and explicitly treated all nonlin-
ear terms. A practical splitting algorithm was adopted to 
decouple the auxiliary variable and phase-field variables. 
Thus, the proposed time-marching schemes were highly 
efficient because we only need to computed four linear 
elliptic type equations. The numerical tests indicated that 
the proposed schemes indeed had first- and second-order 
temporal accuracy and satisfied the energy dissipation law 
and mass conservations at numerical level. We also inves-
tigated the effect of surfactant on interfacial evolution and 
the effect of initial concentration on phase separation. In a 

Fig. 11  The snapshots 
of � and � with �̄� = 0.3 . 
The subfigures a–h are at 
t = 4, 10, 20, 40, 70, 96, 140, 300
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Fig. 12  Normalized energy curves in 2D space with respect to �̄� = 0 
and 0.3
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upcoming work, we will extend the proposed method to a 
hydrodynamics coupled CAC type surfactant system, i.e., 
the surfactant model is solved using the present method. 

As for the Navier–Stokes equation, an time-dependent 
auxiliary variable can be introduced to treat the nonlinear 
advection term. To close the system, the extra governing 

Fig. 13  The snapshots of coars-
ening dynamics in 3D space 
with �̄� = 0 . The subfigures 
from the top to bottom are at 
t = 4, 8, 15 , and 50
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equation can be easily defined by taking the time derivative 
to the kinetic energy. The implementation is similar with 
the procedure proposed in the present work. Moreover, 

the proposed time-discretized scheme can be applied to 
simulate binary surfactant system on curved surfaces [39] 
using the surface finite element method [40, 41].

Fig. 14  The snapshots of coars-
ening dynamics in 3D space 
with �̄� = 0.3 . The subfigures 
from the top to bottom are at 
t = 4, 8, 15 , and 50
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Fig. 15  The snapshots of 
interfaces of � (green) and 
� (yellow). The subfigures 
from the top to bottom are at 
t = 4, 8, 15 , and 50
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