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Abstract
Multi-objective optimization of complex engineering systems is a challenging problem. The design goals can exhibit dynamic 
and nonlinear behaviour with respect to the system’s parameters. Additionally, modern engineering is driven by simulation-
based design which can be computationally expensive due to the complexity of the system under study. Bayesian optimization 
(BO) is a popular technique to tackle this kind of problem. In multi-objective BO, a data-driven surrogate model is created 
for each design objective. However, not all of the objectives may be expensive to compute. We develop an approach that 
can deal with a mix of expensive and cheap-to-evaluate objective functions. As a result, the proposed technique offers lower 
complexity than standard multi-objective BO methods and performs significantly better when the cheap objective function is 
difficult to approximate. In particular, we extend the popular hypervolume-based Expected Improvement (EI) and Probability 
of Improvement (POI) in bi-objective settings. The proposed methods are validated on multiple benchmark functions and 
two real-world engineering design optimization problems, showing that it performs better than its non-cheap counterparts. 
Furthermore, it performs competitively or better compared to other optimization methods.

Keywords  Multi-objective optimization · Bayesian optimization · Hypervolume · Gaussian process

1  Introduction

In real-world problems, the optimization goals mostly con-
sist of multiple conflicting objectives. Thus, optimizing all 
the objectives simultaneously leads to multiple solutions that 
are mathematically equal. The solution for such a problem 
can be presented in the form of a Pareto set.

One of the techniques to attain the Pareto set is using 
weighted sum of the objectives [1–3], which can be opti-
mized by standard single objective optimization algorithms. 
However, there are many ways to define the weighted sum 
function and to determine the proper coefficients, relying 
on experts opinion is fundamental [4]. Another alternative 
is using approaches based on Multi-objective Evolutionary 

Algorithms (MOEAs) [5–7], but the number of required 
function evaluations often is very high. This represents a 
clear limitation when optimizing engineering systems, 
whose performance are typically analyzed via computation-
ally expensive and time-consuming simulations.

In this framework, surrogate-based optimization is a 
popular approach [8]: the idea is to approximate the desired 
design objective using a data-driven surrogate model. Sev-
eral models are commonly used, including but not limited 
to Gaussian processes [9–11], Neural networks [12, 13], 
Polynomial chaos expansion [14, 15], and Tree-structured 
Parzen estimator [16] . Such model is built based on a lim-
ited number of (expensive) simulations and is cheap-to-eval-
uate. Examples include optimization of electronic circuits 
performance [17–19], the shape of airplane components 
[20–22], and the strength of adhesive joints [23].

A popular technique for surrogate-based optimization is 
Bayesian Optimization (BO) based on a Gaussian Process 
(GP) as surrogate model. The technique [24] proposes fast and 
efficient hypervolume-based BO for multi-objective problems. 
However, the technique [24] implicitly assumes that all of the 
objectives can be evaluated with the same computational cost.
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This condition does not always hold in multi-objective 
optimization problems. Typically, some objectives are cheap 
to compute. For example, the footprint of electrical devices 
[25] and time of gluing in the adhesive bonding case [26]. 
Many multi-objective BO techniques [27–29] do not take 
into account the objectives with very cheap computational 
cost. In practice, cheap objectives are often modeled with 
the same surrogate model cost as the expensive ones. This 
can be an unnecessary burden to the optimization process.

In this work, we extend the standard hypervolume-based 
acquisition functions to deal with cheap-to-evaluate func-
tions. More specifically, we focus on the bi-objective case, 
which can be easily extended later on. Instead of modeling 
the cheap function with a GP, we directly integrate it in 
the hypervolume-based acquisition functions. We derive 
the formula analytically resulting in two hypervolume-
based acquisition functions: Cheap Hypervolume Expected 
Improvement (CHVEI) and Cheap Hypervolume Probability 
of Improvement (CHVPOI).

For evaluating its performance, we consider four analyti-
cal benchmark functions [30], and two realistic design prob-
lems in microwave engineering. We show that the proposed 
method performs better than state-of-the-art approaches. 
Since the cheap objective is computed directly, the inac-
curacies introduced by modeling are eliminated.

This paper is organized as follows: Sect. 2 introduces 
the GP probabilistic model and BO. Section 3 presents the 
hypervolume-based bi-objective BO. Our extension to the 
hypervolume-based acquisition function is described in 
Sect. 4. Then, Sect. 5 presents relevant experimental results 
on benchmark functions and realistic design problems. 
Finally, conclusions are drawn in Sect. 6.

2 � Bayesian optimization

2.1 � Optimization procedure

In global optimization, the goal is to find an optimizer x∗ 
of an unknown objective function f (x) , which can be math-
ematically described as:

where X ∈ ℝ
d is the design space. The unknown objective 

function f (x) typically does not have gradient information 
and is very expensive to evaluate, for example in terms of 
time or economic cost. Thus, a data-efficient algorithm to 
find x∗ is desired.

BO is a global optimization method that aims to minimize 
the number of function evaluations needed to estimate the 
global optimum of a function. It relies on two elements: a 
model of the objective function and a sequential sampling 
strategy. The idea is to iteratively refine the model until the 

(1)x⋆ = argmax
x∈X

f (x)

solution to the optimization problem can be found. The sam-
pling strategy relies on the model to estimate which data 
point should be acquired next. In order to do so, the sam-
pling strategy relies on a function called acquisition func-
tion. The acquisition function balances the trade-off between 
exploration and exploitation, based on the surrogate model. 
Usually, the acquisition function has an analytical form that 
can be computed easily [10].

Before running the BO routine, we first need to gener-
ate initial points to train the model. In this paper, the Latin 
Hypercube Design (LHD) [31] is used. Then, the acquisition 
function is optimized based on the trained model. After a 
new point is selected, it is evaluated on the true objective 
function and the result is used to update the surrogate model. 
These steps are repeated until a suitable stopping criterion is 
met. The flowchart of BO is shown in Fig. 1.

2.2 � Gaussian processes

The most common choice for the surrogate model for BO is a 
GP. It is analytically tractable and provides a predictive dis-
tribution given new input data. In a more formal definition, 
GP defines a prior over functions f (x) ∼ GP(m(x), k(x, x′)).

GP is fully specified by its mean function m(x) and 
positive semi-definite covariance function k(x, x′) . Fol-
lowing previous work [24], we assume a zero mean func-
tion and train the GP on a set of data by maximizing 

Fig. 1   General flowchart of Bayesian optimization. The two key 
components are the surrogate model and the acquisition function. 
The query point from the previous iteration is added to the surrogate 
model. Thus, the samples in the dataset are increased sequentially
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the likelihood using the L-BFGS algorithm. The predic-
tive distribution with a zero mean function of new data 
X⋆ = [x⋆1,… , x⋆N] can be calculated using:

where Dn is the observed data, 𝜇
(
X⋆

)
 is the predictive mean, 

and 𝜎2
(
X⋆

)
 is the predictive variance, and Kxx = k(xi, xj) , 

K⋆x = k(x⋆i, xj) , K⋆⋆ = k(x⋆i, x⋆j) . For the covariance func-
tion, the Matérn 5/2 kernel [32] is used and defined as:

This kernel is chosen as it does not put strong smoothness 
assumptions on the target function compared to the other 
kernels [33]. Thus, it is more suitable for real-world cases 
such as the engineering design problems.

3 � Multi‑objective Bayesian optimization

3.1 � Pareto optimality

In real life optimization problem, typically there are 
multiple conflicting objectives. This leads to solutions 
that cannot be improved in any of the objectives without 
sacrificing at least one of other objectives. These solu-
tions are called Pareto optimal solutions, represented as 
a Pareto set [34].

For minimization problems with m objectives, the 
notation xb ≻ xa means that xb dominates xa if, and only 
if fj

(
xb
) ≤ fj

(
xa
)
,∀j ∈ {1, ..,m} and ∃j ∈ {1, ..,m} such that 

fj
(
xb

)
< fj

(
xa

)
 . In other words, xb is not worse than xa 

in all objectives and better in at least one objective. The 
Pareto set can then be defined by:

where m is the number of the objectives. Mathematically, 
the points inside the resulting Pareto set are equal. Also we 
denotes the Pareto front, the Pareto optimal solutions in out-
put space as P . In practice, after the optimal Pareto set is 
obtained, the decision makers can choose which point to use 
based on their preference.

(2)𝜇
(
X⋆

)
= �

(
f⋆ ∣ X⋆,Dn

)
= K⋆xK

−1
xx
y

(3)𝜎2
(
X⋆

)
= Var

(
f⋆ ∣ X⋆,Dn

)
= K⋆⋆ − K⋆xK

−1
xx
KT
⋆x

(4)

k
�
x, x�

�
= �

�
1 +

√
5r +

5

3
r2
�
exp(−

√
5r),

r =

�
�
�
�
�
�

d�

m=1

�
xm − x�

m

�2

l2
m

�
�
�
�
�
�2

(5)P =
{
x ∈ ℝ

d ∣ ∄x′ ∈ ℝ
d ∶ x′ ≻ x

}

3.2 � Multi‑objective hypervolume‑based acquisition 
function

In multi-objective optimization problems, instead of cal-
culating the improvement towards a single maximum, we 
want to get the improvement over the Pareto set P . For the 
hypervolume-based acquisition function, this improvement 
can be calculated using the hypervolume indicator H(P) . 
This indicator denotes the volume of the dominated region, 
bounded by a reference point r which needs to be dominated 
by all points in P [35]. The contribution of new points y to P 
can be estimated by using the exclusive hypervolume (also 
called hypervolume contribution) Hexc as:

Using Hexc , we can define the improvement function for the 
hypervolume-based multi-objective case as:

Next, we will build the acquisition function for multi-objec-
tive settings upon this improvement function. In order to 
make the formula simpler, given the predictive distribution 
defined in Eqs. (2) and (3), the probability density func-
tion �j and cumulative density function �j are compactly 
defined as:

Then, the hypervolume-based multi-objective POI (HVPOI) 
[24] is defined as follows:

where �(x) is a GP prediction at x and A is the non-domi-
nated region, see Fig. 2. m is the number of objectives, y is 
the objective vector inside region A.

Furthermore, we can define the hypervolume-based EI 
(HVEI) [24] as:

Note that these acquisition functions are intractable. To miti-
gate this problem, Couckuyt et al. [24] suggests calculating 
the hypervolume from the set of disjoint cells built from the 
lower and upper bound of the Pareto front. This approach 
is more computationally efficient compared to the uniform 
grid search [36].

(6)Hexc(y,P) = H(P ∪ {y}) −H(P)

(7)I(y,P) =

{
Hexc(y,P) if y is not dominated by P

0 otherwise

(8)�j

[
yj
]
∶= �j

[
yj; �j(x), �j(x)

]

(9)�j

[
yj
]
∶= �j

[
yj; �j(x), �j(x)

]

(10)HVPOI[I] = I(�(x),P)∫y∈A

m∏

j=1

�j

[
yj
]
dyj

(11)HVEI[I] = ∫y∈A

I(y,P)

m∏

j=1

�j

[
yj
]
dyj
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However, these multi-objective acquisition functions 
implicitly assume that the models of all objectives must be 
computed, regardless of the computational cost of evaluating 
each objective. A problem might arise using this assump-
tion: If we have a cheap but complex objective function, 
the GP might introduce inaccuracies as well as a waste of 
computational resources.

4 � Cheap‑expensive hypervolume‑based 
acquisition function

Without loss of generality, let us consider problems where 
two objective functions can be defined, where one is expen-
sive f1 and the other is cheap f2 . Our extended approach 
models f1 into a GP and uses it to predict new data x∗ and 
estimate the corresponding mean �1 and variance �2

1
 in the 

acquisition function calculation. Next, y ∶= (y1, y2) is used 
to compute the improvement function I(y,P) , where y1 and 
y2 are potential observation and observation of f1 and f2 , 
respectively. Here, P = {(p1

1
, p1

2
), (p2

1
, p2

2
),… , (pM

1
, pM

2
)} , 

where pm
1
 denotes the expensive dimension sorted in ascend-

ing order. Then it follows that pm
2
 , the cheap dimension, is 

sorted in descending order. Next, the Cheap Hypervolume 
EI (CHVEI) is defined as follows:

(12)CHVEI(x) = ∫(y)∈A

I(y,P)�(y1)dy1

Using P we define horizontal and vertical cells as shown 
in Fig. 2. Based on these cells, we can derive the closed form 
of the CHVEI as follows:

where m is the cell of interest, k is the cell improvement 
relative to m, l is lower bound, u is upper bound and 
z+ = max(z, 0) . Then, we can calculate the closed form solu-
tion of CHVEI. For cells of interest ( m = k ), the integrals 
on Eq. 13 are the definition of the single-objective EI [37] 
defined as:

while the integral for cells on the right of the cells of interest 
( lk
1
≥ um

1
 ) are calculated by:

and 0 for cells in the left ( uk
1
< lm

1
).

It is important to mention that the cheap objective is directly 
incorporated in the acquisition function, thus avoiding the 
inaccuracies due to modeling the cheap objective with a surro-
gate model. This is favorable especially when the cheap objec-
tive function has a complex dynamic behaviour in the design 
space. Additionally, it leads to a reduced computational com-
plexity of the overall algorithm. The proposed BO approach 
based on CHVEI is summarized in Algorithm 1. 

Algorithm 1: Cheap Hypervolume Expected Improvement
Input: Predefined evaluation budget tmax ∈ Z;
Output: Xnd, Y nd;
Generate k initial points Xk = [x1, . . . , xk];
Evaluate it on expensive function Y k

1 = [f1(x1), . . . , f1(xk)];
Set t = 0;
while t < tmax do

Update GP with Xt, Y t
1 ;

Evaluate Xt on cheap function Y t
2 = [f2(x1), . . . , f2(xt)];

Y t ←− Concat(Y t
1 , Y

t
2 ) ;

Get the non dominated set Xnd, Y nd among Xt, Y t;
t ←− t+ 1;
P ←− Y nd;
xt = argmaxx⊂X CHVEI(x);
y1t = f1(xt);

Xt = X(t−1) ◦ xt;Y t
1 = Y

(t−1)
1 ◦ y1t

end
return Xnd, Y nd among Xt, Y t

A similar approach can be used to define the cheap version 
of bi-objective POI as follows:

(13)

CHVEI(x) =
∑

m

∑

k

(
uk
2
− y2

)+
∫

um
1

lm
1

(
uk
1
−max

(
lk
1
, lm
1

))
�(y1)dy1

(14)
(
uk
1
− �1(x)

)(
�[um

1
] −�[lm

1
]
)
+ �2

1
(x)

(
�[um

1
] − �[lm

1
]
)

(15)
(
uk
1
− lk

1

)(
�
[
um
1

]
−�

[
lm
1

])

(16)
CHVPOI(x) =

M−1∑

m=1

(pm
2
− y2)

+(pm
1
− y1)

+(�1

[
p
(m+1)

1

]

−�1

[
pm
1

]
)

Fig. 2   Illustration of the non-dominated region and the way the cheap 
objective function evaluation y

2
 is incorporated into the hypervolume-

based acquisition function. Pi are the points in the Pareto set. The 
blue dotted curve illustrates the prediction of the expensive objective 
y
1
 . The orange dot is the reference point, used as the bound to calcu-

late the hypervolume
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Now, a BO routine based on CHVPOI can be defined as for 
the CHVEI: the only difference with the approach described 
in Algorithm 1 is that Eq. (16) is used instead of CHVEI(x).

5 � Result and discussion

The proposed BO approach is implemented using the 
GPFlowOpt library [38] in python. For the initial data, 21 
points are arranged using a Latin-Hypercube Design [31]. 
The acquisition function is optimized using the best solu-
tion of Monte Carlo sampling, further fine-tuned by a gra-
dient-based optimizer. We consider four variants of the well 
known DTLZ benchmark functions [30] and two real-life 
electrical device design optimization problems to validate 
the proposed method.

In all experiments, the CHVEI and CHVPOI acquisition 
functions are compared with the standard HVEI and HVPOI, 
as well as random sampling. Additionally, we also compare 
against the MOEA algorithms SMS-EMOA [39] and NSGA-
II [40]. We used hypervolume indicator metrics to assess 
the quality of the Pareto set per iteration, where the compu-
tational budget is fixed to 100 function evaluations for all 
methods except the MOEA, that uses a budget of 250 func-
tion evaluations instead. This choice guarantees a fair com-
parison, since MOEA needs more evaluations compared to 
approaches based on BO. Finally, when optimizing electrical 
devices we inspect the quality of the Pareto set by checking 
the design layout and its corresponding responses visually.

5.1 � DTLZ benchmark functions

We consider four variants of the DTLZ functions: DTLZ1, 
DTLZ2, DTLZ5, and DTLZ7, as indicated in Table  1. 
DTLZ2 and DTLZ5 have a smooth set of Pareto solution, 
while DTLZ1 and DTLZ7 have a disjoint Pareto set.

The final hypervolume indicator is shown in Table 2. 
Overall results show that CHVPOI always performs better 
than the other methods, even compared to the MOEAs with 
250 function evaluations budget.

Figure  3 shows the hypervolume indicator evolu-
tion with respect to the function evaluations number: 
the CHVEI and CHVPOI achieve a better hypervolume 

indicator in less iterations compared with their standard 
counterpart HVEI and HVPOI, respectively. Additionally, 
CHVEI and CHVPOI offer the best performance compared 
with all other methods for DTLZ1 and DTLZ7, while 
standard HVPOI is better than CHVEI in iteration 100 
for the functions DTLZ2 and DTLZ5, that have a smooth 
Pareto solution. This is because EI based methods are less 
exploitative compared to the POI based methods.

Furthermore, we randomly sample 1 million points for 
all the benchmark functions to approximate the true Pareto 
set of the functions. Next, we calculate the distance of the 
sampled-based Pareto set and the Pareto set obtained via 
BO-based approaches and MOEAs. This metric is used 
to measure the convergence of the results with respect to 
approximate ”true” Pareto set: the lower the value, the 
more accurate the approximation. It is defined as:

Table 1   We configure the DTLZ benchmark functions for 5 dimen-
sional inputs, 2 outputs, and a fixed reference point r 

Function Input dimension Reference point r

DTLZ1 5 (350, 350)
DTLZ2 5 (2.5, 2.5)
DTLZ5 5 (2.5, 2.5)
DTLZ7 5 (20, 20)

Table 2   Hypervolume with 95% confidence interval of the DTLZ 
benchmark experiments

Best results for each problem are highlighted in bold

Test Problem Budget Method Hypervolume

DTLZ1 100 Random 1.1854e5 ± 4.8133e2
100 HVPOI 1.1972e5 ± 4.1228e2
100 HVEI 1.1921e5 ± 5.4444e2
100 CHVPOI 1.2239e5 ± 4.1724e1
100 CHVEI 1.2208e5 ± 1.1495e2
250 SMSEMOA 1.2155e5 ± 6.9861e1
250 NSGA2b 1.2152e5 ± 4.6356e1

DTLZ2 100 Random 5.2191e0 ± 0.0192e0
100 HVPOI 5.4211 ± 0.0025
100 HVEI 5.3278 ± 0.0094
100 CHVPOI 5.4472 ± 0.0014
100 CHVEI 5.3912 ± 0.0057
250 SMSEMOA 5.3702 ± 0.0126
250 NSGA2b 5.3652 ± 0.0226

DTLZ5 100 Random 5.2178 ± 0.0214
100 HVPOI 5.4188 ± 0.0010
100 HVEI 5.3207 ± 0.0172
100 CHVPOI 5.4478 ± 0.0007
100 CHVEI 5.3725 ± 0.0240
250 SMSEMOA 5.3698 ± 0.0140
250 NSGA2b 5.3831 ± 0.0135

DTLZ7 100 Random 2.8146e2 ± 6.7193
100 HVPOI 3.2672e2 ± 3.3173
100 HVEI 3.1370e2 ± 8.0552
100 CHVPOI 3.5191e2 ± 0.1175
100 CHVEI 3.3798e2 ± 7.2954
250 SMSEMOA 3.5087e2 ± 2.3901
250 NSGA2b 3.4867e2 ± 4.8165
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P̂ is a vector of Pareto front obtained by the algorithm, P is 
an approximation of true Pareto front obtained, for instance, 
by random sampling.

The convergence measure in Table 3 shows that CHVPOI 
is better in most cases except on DTLZ7. As we see in 
Fig. 3d, the hypervolume indicator does not improve much 
after iteration 10, indicating that the method is finding 
the extrema faster, which results in a less uniform Pareto 
set. This is prevalent in hypervolume-based improvement 
functions: since hypervolume is a product, it samples less 
in regions where at least one objective has a very small 
improvement.

(17)CM(P, P̂) =
1

n

n∑

j

min
i

||Pi − P̂j||2
5.2 � Microstrip low‑pass filter

Our first engineering problem is the design of a two-port 
low-pass stepped impedance microstrip filter device [41]. 
The simulator for the device is implemented in the MAT-
LAB RF Toolbox (Mathworks Inc., Natick, MA, USA). The 
corresponding layout is presented in Fig. 4.

The filter is a cascade of 6 microstrip lines, each specified 
by width and length, where by design w1 = w3 = w5 and 
w2 = w4 = w6 . The cross-section view of each microstrip 
is depicted in Fig. 5.

Our target design is a filter with a 3 dB cut-off frequency 
at 2.55 GHz. To achieve this, we define the design goals as 
follows:

(18)||S21|| ≥ −3 dB for 0GHz ≤ freq ≤ 2.55GHz

(19)||S21|| ≤ −3 dB for 2.55GHz ≤ freq

(a) DTLZ1 (b) DTLZ2

(c) DTLZ5 (d) DTLZ7

Fig. 3   Evolution of hypervolume indicator for the DTLZ benchmark functions. (a) and (d) are less smooth functions, DTLZ1 and DTLZ7 
respectively. While (b) DTLZ2 and (c) DTLZ5 are smoother functions
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where ||S21|| is the magnitude of the element S21 of the scat-
tering matrix, and freq is the frequency. Visually, the target 
response is illustrated in Fig. 6. We also want to optimize 
the cost to produce the device, by minimizing the footprint 
of the filter. Hence, the target design and the area of the filter 
are used as our expensive and cheap objective, respectively.

In the optimization problem formulation, the chosen 
design parameters are the length and the width of the first, 
third and fifth microstrips, indicated as l1 , l3 , l5 , w1 , w3 , w5 , 
(see Fig. 4). Note that, these microstrips have the same width 
by design [41]: the width of all three microstrips is one sin-
gle design parameter indicated as w1,3,5 . The other geomet-
rical and electrical characteristics of the filter are chosen 
according to Table 4.

To achieve our optimization goals, we formulate our 
objectives as follows:

In the first objective defined in Eq. (20), we want a response 
that assumes values as high as possible until fpass , and as low 
as possible for frequencies above fstop . This ensures that our 
device has a low-pass filter behavior, as shown in Fig. 6. The 
second cheap objective expressed in Eq. (21) represents the 
log of sum of the three microstrips’s area, this means that the 
goal is to minimize the footprint of the filter. The log term 
is to ensure numerical stability of the second objective. We 
solve this problem with our proposed methods. The hyper-
volume per iteration of all methods is shown in Fig. 7.

Comparison of the hypervolume indicator of all meth-
ods for a predefined computational budget is presented in 
Table 5. CHVPOI performs better compared to the other 
benchmark methods, while CHVEI performs worse in terms 
of hypervolume indicator compared to HVEI. To check this 
unexpected behavior, we evaluate the quality of the pareto 
set by using the same convergence measure adopted for the 
DTLZ functions. In particular, the Pareto set is approxi-
mated via 50000 evaluations on random points in the design 
space and the distance metric defined in Eq. (17) is com-
puted for CHVEI and HVEI. The result show that CHVEI 
gives a better convergence measure (0.0127 ± 0.0009) than 
the HVEI (0.0468 ± 0.0027). This means that the CHVEI 
yields a Pareto front that is spread more evenly along the 

(20)f1 = − min
freq∈[1,fpass]

S21(freq) + max
freq∈[fstop,5]

S21(freq)

(21)f2 = log

(
3∑

n=1

w1,3,5 l2n−1

)

Table 3   The convergence measure with 95% confidence interval of 
the DTLZ benchmark experiments

The distance between the true Pareto front and the Pareto set as gen-
erated by the algorithm. Best results for each problem are highlighted 
in bold

Test Problem Method Convergence Measure

DTLZ1 Random 21.3342 ± 1.4618
HVPOI 19.1453 ± 1.3509 
HVEI 20.9401 ± 1.5363
CHVPOI 13.2936 ± 1.1313
CHVEI 16.9271 ± 1.0657
SMSEMOA 18.7077 ± 0.9536
NSGA2b 18.8002 ± 0.6227

DTLZ2 Random 0.1163 ± 0.0085
HVPOI 0.0227 ± 0.0011
HVEI 0.1150 ± 0.0104
CHVPOI 0.0203 ± 0.0008
CHVEI 0.0811 ± 0.0058
SMSEMOA 0.0698 ± 0.0183
NSGA2b 0.0607 ± 0.0138

DTLZ5 Random 0.1195 ± 0.0108
HVPOI 0.0252 ± 0.0011
HVEI 0.1264 ± 0.0175
CHVPOI 0.0202 ± 0.0005
CHVEI 0.0915 ± 0.0146
SMSEMOA 0.0617 ± 0.0084
NSGA2b 0.0551 ± 0.0098

DTLZ7 Random 1.7510 ± 0.1888
HVPOI 0.6931 ±  0.0396
HVEI 0.9274 ± 0.1595
CHVPOI 1.2566 ± 0.0321
CHVEI 1.3335 ±  0.0045
SMSEMOA 1.8680 ± 0.0127
NSGA2b 1.8729 ± 0.0297

Fig. 4   Top-view of microstrip 
low-pass filter. We use 1 widths 
w
1
= w

3
= w

5
 and 3 differ-

ent lengths l
1
 , l

3
 , l

5
 as design 

parameters
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approximated true front than the HVEI. The full conver-
gence measure results are described in Table 5.

5.3 � Tapped‑line filter

The second engineering example is a tapped-line filter [42, 
43], implemented in the Advanced Design System simula-
tor (Keysight EEsof EDA). The full layout of this device is 
shown in Fig. 8.

The design requirements for this filter are described in 
Eq. (22) and (23), as:

(22)
|
|S21

|
| ≥ −3 dB for 4.75GHz ≤ freq ≤ 5.25GHz

||S21
|| ≤ −20 dB for 3.0GHz ≤ freq ≤ 4.0 GHz

Fig. 5   The cross-section view of each microstrip. For 
wn = w

1
= w

3
= w

5
 , the values changes within the optimization itera-

tions, while for wn = w
2
= w

4
= w

6
 the values are fixed at 0.428 mm

Fig. 6   Example of the desired response for the microstrip low-pass 
filter

Table 4   Microstrip low-pass filter design parameters

Parameter Description Range/value

w
1,3,5

Width of microstrip 1, 3, and 5 [5.6, 16.9] mm
w
2,4,6

Width of microstrip 2, 4, and 6 0.428 mm
l
1

Length of microstrip 1 [1.05, 3.05] mm
l
2

Length of microstrip 2 6.63 mm
l
3

Length of microstrip 3 [6.69, 8.69] mm
l
4

Length of microstrip 4 9.04 mm
l
5

Length of microstrip 5 [4.63, 6.63] mm
l
6

Length of microstrip 6 2.41 mm
� Relative permittivity 4.2
h Thickness 1.58 mm

Fig. 7   Hypervolume indicator evolution for low-pass filter case. The 
hypervolume is calculated using (1, 0) as the reference point

Table 5   Hypervolume and convergence measure with 95% confidence 
interval of the low-pass filter example experiments

The bold text indicates the best performance of the low-pass filter 
example. The higher the hypervolume the better the performance, and 
the lower the convergence measure the better the performance

Method Budget Hypervolume Convergence measure

Random 100 13.7372 ± 0.0629 0.0341 ± 0.0023
HVPOI 100 13.9156 ± 0.0203 0.0105 ± 0.0011
HVEI 100 14.0585 ±  0.0173 0.0468 ± 0.0027
CHVPOI 100 14.1413 ± 0.0203 0.0095 ± 0.0003
CHVEI 100 14.0279 ± 0.0381 0.0127 ± 0.0009
SMSEMOA 250 14.0988 ± 0.0257 0.0561 ± 0.0014
NSGA2b 250 14.0889 ± 0.0188 0.0550 ± 0.0013

Fig. 8   Top-view of Tapped-line Filter. The two conductors (in gray) 
are placed on a dielectric substrate [19, 20]
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where ||S21|| is the magnitude of the element S21 of the scat-
tering matrix, and freq is the frequency. The requirements in 
Eqs. (22) and (23) lead to the to response depicted in Fig. 9: 
the desired filter response is lower than −20 dB in the low 
and high frequency parts (called stopbands) and higher than 
−3 dB in the mid part (passband of the filter).

The design requirements shown above are used as the 
first optimization goal. For the second cheap objective, the 
footprint of the device is used. We formulate these objec-
tives as follows:

where fs1 = 4GHz , fp1 = 4.75GHz , fp2 = 2.25GHz and 
fs2 = 6GHz . Equation (24) ensures that the filter’s response 
follows the design requirements. To balance the value, we 
put a higher weight for the response in the passband. Equa-
tion (25) represents the footprint of the device.

The variables for the optimization are the displacement L1 
(mm) and the spacing g (mm) between the two conductors. 
Additionally, the dielectric constant � (mil), and height h 

(23)and 6.0GHz ≤ freq ≤ 7.0GHz

(24)f1 = max
freq∈[3,fs1]

S21(freq) − min
freq∈[fp1,fp2]

S21(freq) × 10

(25)
+ max

freq∈[fs2,7]
S21(freq)

f2 = (L1 + 10) × (4 × 2 + g)

(mm) of the substrate are also considered as design param-
eters. The corresponding design space is shown in Table 6.

Using these settings, we run the optimization with our 
proposed methods and other benchmark methods. The 
results in Fig. 10 show that CHVEI and CHVPOI get a 
higher hypervolume indicator faster than the other meth-
ods. Additionally, in Table 7 we can see that our meth-
ods have higher hypervolume indicator compared to the 
MOEAs: SMSEMOA and NSGA2b, even with a lower 
function evaluation budget.

6 � Conclusion

We proposed the Cheap Hypervolume Expected Improve-
ment (CHVEI) and Cheap Hypervolume Probability 
of Improvement (CHVPOI) which can directly exploit 
cheap-to-evaluate objective functions. The direct evalu-
ation can speed up the optimization process and removes 
possible inaccuracies introduced by surrogate modeling. 
To evaluate the performance of the proposed method, 
we apply our algorithm to multiple benchmark functions 

Fig. 9   The target response of the tapped-line filter. The red horizontal 
lines indicate the values −3 dB and −20 dB in Eqs. (22) and (23)

Table 6   Tapped line filter design parameters

Parameter Description Range/value

L
1

Displacement between two geometries [4, 10] mm
g Space between two geometries [0.02, 0.1] mm
� Dielectric constant [8, 11] mil
h Height of the device [0.2, 0.4] mm

Fig. 10   Evolution of hypervolume for tapped-line filter case. (20, 20) 
is used as the reference point to calculate the hypervolume

Table 7   Hypervolume with 95% confidence interval of the tapped-
line filter example experiments

The bold text represents the best performance for the example

Method Budget Hypervolume

Random 100 8.8870e4 ± 2.3087e2
HVPOI 100 8.9102e4 ± 2.3402e2
HVEI 100 8.8898e4 ± 2.6408e2
CHVPOI 100 9.0369e4 ± 2.0433e2
CHVEI 100 9.0184e4 ± 3.4530e2
SMSEMOA 250 8.9854e4 ± 2.8950e2
NSGA2b 250 8.9928e4 ± 3.1912e2
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and two engineering design problems. We evaluate the 
performance of the CHVEI and CHVPOI by measuring 
the hypervolume indicator and convergence measure at 
each iteration. It is shown that in the engineering design 
problems our proposed methods outperform the stand-
ard hypervolume-based methods, random sampling, and 
Genetic algorithm-based methods. In future works we will 
extend the algorithm for n > 2 objectives, and consider the 
case of noisy objective functions.
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