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Abstract
Based on the existed idea of adaptive radial-based important sampling (ARBIS) method, a new method solving time-
dependent reliability problems is proposed in this paper. This method is more widely used than the existed method combining 
importance sampling (IS) with time-dependent adaptive Kriging surrogate (AK) model, which is not only suitable for time-
dependent reliability problems with single design point, but also for multiple design points, high nonlinearity, and multiple 
failure modes, especially for small failure probability problems. This method combines ARBIS with time-dependent AK 
model. First, at each sample point, the AK model of the performance function with regard to time t is established in the 
inner layer, and its minimum value is calculated as the performance function value of the outer layer to established time-
independent AK model. Then, the optimal radius of the β-sphere is obtained with an efficient adaptive scheme. Excluding 
a β-sphere from the sample pool, there is no need to calculate the performance function value of the samples inside the 
β-sphere, which greatly improves the estimation efficiency of structural reliability analysis. Finally, three numerical examples 
are given to show the estimation efficiency, accuracy, and robustness of this method.

Keywords  Time-dependent reliability · Small failure probability · Monte Carlo simulation · Kriging surrogate model · 
Adaptive radial-based important sampling (ARBIS)

Abbreviations
ARBIS	� Adaptive radial-based important 

sampling
PDF	� Probability density function
MCS	� Monte Carlo simulation
IS	� Important sampling
AK	� Adaptive Kriging surrogate
AK-MCS	� Active learning method combining Krig-

ing model and MCS

AK-IS	� The reliability method combining AK 
and IS

AK-ARBIS	� Improved AK-MCS based on the adap-
tive radial-based importance sampling for 
small failure probability

ALK-Pfst	� Active learning method based on the 
Kriging model for the profust reliability 
analysis

MAIS	� Multimodal adaptive important sampling
MPP	� Most probable point
LSS	� Limit state surface
TCR​	� Truncated candidate region
EMO-MMO	� Evolutionary multimodal optimiza-

tion algorithm and multi-objective 
optimization

ALK-EMO-IS	� Active learning method combining Krig-
ing model and evolutionary multimodal 
optimization algorithm and important 
sampling

EOLE	� Expansion optimal linear estimation 
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1  Introduction

In traditional reliability theory, time-dependent uncertain-
ties such as load changing with time and strength degrada-
tion are often not considered. However, in many practical 
engineering problems, due to the influence of external 
environment, material properties, load size, structural 
strength, and other parameters are gradually changing 
with time. Therefore, the structural reliability is no longer 
a constant value under the static mechanical model, but 
shows time-dependent characteristic [1, 2].

The research on time-dependent reliability is a current 
research hotspot, and many classical analysis methods 
have been established. In general, time-dependent reliabil-
ity analysis methods can be divided into three main meth-
ods: first crossing rate method [3], extreme value method 
[4–6], and surrogate model method [7–9]. Based on the 
surrogate models such as response surface method, artifi-
cial neural network, and support vector machine, Kriging 
surrogate model, an approximate model of the original 
time-dependent performance function is constructed; the 
number of calling commercial software to perform the 
numerical simulation is greatly reduced. Thus, the surro-
gate models have attracted more attentions in time-depend-
ent reliability analysis of engineering practice.

Among all these surrogate models, AK model can not 
only provide the predicted value of performance function 
at the sample points, but also estimate the prediction vari-
ance. Thus, time-dependent reliability based on AK model 
has attracted great interest of researchers, and formed two 
kinds of classical analysis framework, including double-
loop AK model method [10, 11] and single-loop AK model 
method [12]. Although the AK-MCS method reduces the 
number of calling original performance function, the 
calculation cost is still too large to meet the engineering 
requirements, especially for some small failure probability 
(less than 10–5), multiple design points, high nonlinearity, 
and multiple failure modes problems [13].

To improve the estimation efficiency of AK model in 
reliability analysis, some methods combining AK model 
with advanced sampling methods are proposed. As the 
scale of advanced sample pool is smaller than MCS sam-
ple pool, the estimation efficiency of reliability analysis 
under small failure probability can be greatly improved. 
Echard et al. [14] proposed that AK model and IS generat-
ing the candidate sample pools are combined. Compared 
with AK-MCS method, AK-IS is more efficient, but it is 
not suitable for the problem of multiple design points. 
Dubourg et al. [15] proposed a method combining AK 
model with the metamodel-based IS, but the estimation 
of failure probability required an additional model to esti-
mate the correction factor. Cadini et al. [16] proposed an 

improved AK-based IS method for multiple failure regions 
of low probability. However, the construction of the IS 
density function introduced not only extra computation, 
but also the corresponding approximation error. Huang 
et al. [13] proposed the method combining AK model 
with subset simulation (AK-SS). However, AK model and 
subset simulation were not coupled but independent and 
the essence of this method is also AK-MCS. Based on 
the AK-MCS, Yang [17] proposed the ALK-Pfst method 
which used a modified ERF as learning function and a 
new stopping criterion. Although improves the efficiency 
and robustness of Kriging model, it needs to search the 
efficient sampling methods for problem with small fail-
ure probabilities, because the AK model should make 
predictions at a larger population of candidate samples. 
Yang [18] proposed a method combining AK model with 
MAIS to address the system reliability analysis problem 
with small failure probability. It introduced EMO-MMO 
method to obtain all the potential MPPs on the surrogate 
LSS and the training points are only chosen from the 
IS located in the TCR. However, it is used to solve the 
system reliability problem which is complicated to time-
dependent reliability problem with single system. To solve 
the single system reliability problem with small failure 
probability and multiple failure regions, Yang [19] pro-
posed a novel method ALK-EMO-IS. According to several 
iterations, the surrogate LSS converges to the true LSS, 
and quasi MPPs converges to all the local and global true 
MPPs by EMO-MMO. IS method is used to improve the 
efficiency of sampling by the quasi MPPs in every itera-
tion. However, repeated importance sampling will lead to 
unnecessary repeated sample pool. Other methods such 
as the hybrid algorithm for reliability analysis combin-
ing Kriging and subset simulation importance sampling 
[20] and AK-ARBIS method [21] can combine AK model 
with sampling method based on variance reduction. To 
solve the time-dependent reliability problem based on AK 
model under small failure probability, Ling [22] combined 
AK model with IS. Although it improved the estimation 
efficiency, it was only applicable to a single design point. 
Seeking all the design points at every instant and select-
ing the best point of them all as the final design point, 
the process was very complex. It could hardly solve the 
problem of highly nonlinear and multiple design points. 
Shi [23] proposed a time-dependent reliability analysis 
method based on single-loop AK model connecting with 
adaptive sampling method. Unfortunately, the optimal 
hypersphere radius of the adaptive sampling method was 
reduced according to a certain proportion, not based on the 
radial. At the same, the candidate sample pool of single-
loop AK model is much larger than that of double-loop AK 
model, so its estimation efficiency is not very high. The 
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combination of ARBIS and AK model for reliability analy-
sis was proposed by Yun [21], but they were only used in 
time-independent reliability problems. Meanwhile, their 
method adding training points to candidate sample pool 
was different from that of traditional AK method. Their 
initial AK model was updated by the training samples of 
sample pool outside initial optimal hypersphere radius. 
However, the probability density of these training samples 
was so small that increased some useless training samples. 
As a result, the number of calling performance function 
is greatly increased.

Motivated by the existed methods mentioned above, we 
attempt to apply the ARBIS method to solve the estimation 
accuracy and efficiency in the time-dependent reliability 
analysis. In our method, the optimal radius of the sphere is 
searched by an iterative method. In every step of iterative 
process, the AK model is updated adaptively in a candidate 
sample pool composed of the samples between two adja-
cent hypersphere radii. The efficient time-dependent reli-
ability analysis process is realized by searching the optimal 
hypersphere radius adaptively. To improve the estimation 
efficiency and accuracy of the reliability index, this method 
greatly reduces the number of calling the performance func-
tion under small failure probability, and generates as much 
as samples near the LSS.

The research of this paper is arranged as follows. In 
Sect. 2, the time-dependent reliability analysis principle 
and double-loop AK model are introduced, which is regard 
as a comparative verification for time-dependent reliability 
analysis method proposed in this paper. In Sect. 3, the basic 
principle of the time-dependent reliability analysis method 
based on ARBIS and double-loop AK model are discussed 
in detail. Three examples are given to verify the effective-
ness of the proposed method in Sect. 4.

2 � Existing time‑dependent reliability 
analysis method based on double‑loop AK 
model

2.1 � Definition of time‑dependent reliability

Generally, the time-dependent performance function can be 
expressed as Z(t) = g(�,�(t), t) , where � = {X1,X2,…Xn}

T 
is the n-dimensional random vector and does not change 
with time; � = {Y1(t), Y2(t),…Ym(t)}

T  is the m-dimen-
sional random process vector, which represents time-
dependent load, temperature, and other variables related 
to time; t is a time variable with the time interval [t0, ts] . 
Z(t) = g(�,�(t), t) > 0 means that the structure is reliable, 
while Z(t) = g(�,�(t), t) ≤ 0 , the structure is failed. Then, 
the reliability probability R(t0, t1) and failure probability 

Pf(t0, t1) in the time interval [t0, ts] can be, respectively, 
defined as follows:

To simplify the calculation of stochastic process Y(t), it can 
be approximately transformed into a combination of random 
variables and time variables through the EOLE [24, 25]. Dur-
ing this research, the combination of random variables and 
time variables are only considered, so the expression of per-
formance function expression is Z(t) = g(�, t).

Assume Y(t) is a stationary Gaussian random process, we 
briefly introduce the expansion process of EOLE model as 
follows.

The time interval [t0, ts] is equally divided into N subin-
tervals with N + 1 discrete time points ti = t0 + i

ts−t0

N
(i = 0,… ,N) , which is expanded according to the EOLE 
model

where �k and �k(k = 1, 2… , r) are the first r larger 
eigenvalues of the covariance matrix of the random pro-
cess Y(t) and their corresponding eigenvectors, respec-
tively.�Y (t) = {�Y (t, t0), �Y (t, t1),… , �Y (t, tN)}

T is the corre-
lation coefficient vector. �k(k = 1, 2,… , r) is the independent 
standard normal random variable. For convenience, the 
independent standard normal vector corresponding to Y(t) 
expansion is denoted as � = {�1, �2,… , �r}

T.

2.2 � Time‑dependent reliability analysis based 
on double‑loop AK model

The time-dependent AK model has double loop. In the inner 
loop, the minimum value of performance function about time t 
can be obtained. While in the outer loop, the time-independent 
AK model can be used to solve the failure probability. The 
principle of reliability analysis of time-dependent AK model 
is shown in Fig. 1.

Take a realization value x* from input variable � ∈ Rn , 
Z(t) = g(x∗, t) is the function with respect to the time t, 
equally; the time-dependent failure domain in time interval 
[t0, ts] can be expressed as

Then, time-dependent failure probability Pf(t0, ts) in [t0, ts] 
is given by

(1)R(t0, t1) = P{S} = P{Z(t) > 0, ∀t ∈ [t0, ts]},

(2)Pf(t0, t1) = P{F} = P{Z(t) ≤ 0, ∃t ∈ [t0, ts]}.

(3)�(t) ≈ �Y + �2
Y

r�
k=1

�k√
�k

�T
k
�Y(t),

(4)F = { min
t∈[t0,ts]

g(x ∗, t) ≤ 0}.

(5)Pf(t0, ts) = P{F} = P{ min
t∈[t0,ts]

g(x ∗, t) ≤ 0}.
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According to this equation, time-dependent reliability 
problem can be transformed into time-independent reliabil-
ity problem. The specific flow chart is presented as follows:

It can be seen from Fig. 2, at each sample x∗ , the mini-
mum value of the performance function Z(t) = g(x∗, t) in 
time interval [t0, ts] is solved by inner loop AK model, and 
this minimum value mint∈[t0,ts]g(x∗,t) is taken as the sample 
point of performance function in outer loop. Then, the 
time-independent AK model is established in the outer 
loop. Thus, the traditional methods of time-independent 
reliability analysis can be used to solve time-dependent 
reliability problem. In this paper, this classical double-
loop AK method is employed to verify effectiveness and 
correctness of the method proposed in Sect. 3.

3 � The proposed time‑dependent reliability 
analysis method

Since the proposed method in this paper is based on the 
traditional time-independent ARBIS method, to explain 
the difference between the proposed method and the 
ARBIS method, the basic principle and computational 
process of the ARBIS method is discussed first.

3.1 � The basic principle of ARBIS method

Suppose that in an independent standard normal space, 
� = {X1,X2,⋯Xn}

T  is an n-dimensional independent 
standard normal variable; g(x) is the performance func-
tion. The optimal radius � is the shortest distance from 
the origin to the LSS, which equals to the distance to the 
MPP, that is

where 
∑n

i=1
x2
i
 is a sample from the Chi-square distribu-

tion �2(n) with n degrees of freedom. In n-dimensional 
independent standard normal space, if the equation 
X2
1
+ X2

2
+⋯ + X2

n
= �2 defines n-dimensional � - sphere 

in Rn, let ��x��2=∑n

i=1
x2
i
 , then �-sphere divides the space Rn 

into two parts: ||x||2<𝛽2 and ||x||2>𝛽2 , as shown in Fig. 3.
ARBIS was first proposed by Grooteman [26], which is 

an improvement of RBIS [27]. The basic idea of reliability 
analysis based on ARBIS is shown as follows. The opti-
mal radius � is adaptively searched based on the radial. The 
samples inside the �-sphere must be located in the security 
region. Thus, it avoids calculating the function values of 
those samples which can improve the estimation efficiency.

The advantage of this method is to adaptively calculate 
the optimal radius � . Without determining the unknown 
MPP first, this adaptive scheme is robust and efficient, and 
guarantees an optimal radius �.

3.2 � Solution of reliability index ˇ under ARBIS 
method

Reliability index � mentioned above is defined in the 
n-dimensional independent standard normal space. Using 
ARBIS method for reliability analysis, the original input 
variables need to be converted to the independent stand-
ard normal space. The detailed iterative process is shown 
in Fig. 4.

In this method, the performance function is denoted as 
G(x) in independent standard normal space, and the initial 
sample pool Sx of independent standard normal space is 

(6)

⎧⎪⎨⎪⎩

�2 = min

�
n�
i=1

x2
i

�

g(x1, x2,… xn) = 0,

(a) AK model of performance function in 
outer layer

(b) The minimum value of performance 
function at different time in inner layer

Fig. 1   Schematic diagram of reliability analysis principle of double-loop AK model
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randomly generated by MCS method. In the initial itera-
tion, the initial radius �0 of the sphere is determined by the 
formula

where number p0 is the maximum failure probability for the 
first time, and p0 = 10−6 is generally taken in small failure 
probability problem. The performance function value of 

(7)�0 =

√
�−2
n
(1 − p0),

the samples outside the initial β0-sphere is calculated. Fail-
ure point is found out of the initial β-sphere, and the point 
calling approximate MPP on LSS is determined according 
to line search in this direction. The distance from this the 
approximate MPP to origin is recorded as 𝛽opt , which is the 
closest point being searched to MPP for the first time. At 
the same time, this approximate MPP is used to determine 
the new radius �1 of sphere, the value of �1 can be obtained 
by Eq. (8)

Fig. 2   Flowchart of double-loop AK model
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In the next iteration, a new failure point is found in the 
region between �1 and 𝛽opt to generate a new line search; 
the next approximate MPP is generated similarly. This pro-
cess is repeated until there are no more samples between 
𝛽opt and �i obtained by Eq. (8), or the distance between 
them is less than a convergence criterion ( |||𝛽opt − 𝛽i

|||< 0.01 ); 
then, the iteration ends.

The ARBIS method is robust, no matter how the initial 
value of β is taken; it always tends to the MPP. Through 
the line search in the descending direction of the perfor-
mance function gradient, the estimation efficiency can 
be greatly improved. The sample with lower value than 
the initial point can be quickly found, instead of iterating 

(8)

⎧⎪⎨⎪⎩

p1 = 1 − 𝜒2
n
(𝛽2

opt
)

𝛽1 =

�
𝜒−2
n

�
1 −

p1

pstep

�
, pstep = 0.8.

repeatedly through line search until the final MPP or opti-
mal radius β of sphere is found.

The adaptive searching process of approximate MPP is 
shown in Fig. 5, which is one-dimensional searching pro-
cess. It can be seen from the Fig. 5 that the value of the per-
formance function at origin is known in a certain line search-
ing process. Through the value at origin and the known 
failure point 1, a suitable linear function is determined to 
estimate the point of the first limit state surface (the value of 
point 2 in Fig. 5), and then, the convergence is judged. If the 
accuracy does not meet the requirements, repeat this process 
until the approximate MPP point is found. Higher calcula-
tion accuracy is not necessary, because Eq. (8) ensures that 
the MPP is always outside the sphere, and the number of 
iteration does not exceed 5 to avoid wasting a lot of analysis 
time.

3.3 � Time‑dependent reliability analysis method 
based on ARBIS method

The method proposed in this paper combines ARBIS method 
with AK model to transform time-dependent problem into 
time-independent problem. It is actually a double-loop AK 
model, which solves the minimum of each sample point 
about time t in the inner loop, and then constructs the AK 
model in each sample in the outer loop to solve the time-
dependent reliability analysis problem.

3.3.1 � Definition of β‑hypersphere under time‑dependent

In the time-dependent reliability analysis, if time interval 
[t0,ts] is divided into n equal time points (namely t1, t2, t3,… tn, 
where t1 = t0, tn = ts ), then the LSS is different at different 
time. Each time point has a corresponding failure domain, 
which is recorded as Fi = {G(x, ti) ≤ 0}(i = 1, 2… , n) . Here, 
the failure domain is the union of the failure domains com-
posed of the performance functions at every time ti (i = 1, 
2…n) ( F = F1 ∪ F2 ∪⋯ ∪ Fn ). The limit state surface can 
also be regarded as the set of the limit state surface (LSSs) 
at all time points. Therefore, the selection of β-hypersphere 

Fig. 3   Schematic diagram of β-sphere in two dimensions

Fig. 4   Schematic diagram of β-sphere in bivariate dimensions

Fig. 5   The process of adaptive searching MPP
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radius should consider the LSSs at all time points. Then, 
the optimal radius β of the sphere is the shortest distance 
from the coordinate origin to all LSSs at all time points, as 
shown in Fig. 6.

3.3.2 � Solution method of failure probability based 
on time‑dependent ARBIS

In independent standard normal space composed of per-
formance functions at all time points, the sample space is 
divided into ||x||2 < 𝛽2 and ||x||2 > 𝛽2 by β-sphere. The fail-
ure probability is expressed as

Because sample points inside ||x ||2 < 𝛽2 are absolutely 
safe, we have the equation P{min

t∈[t0,ts]
g(x, t) ≤ 0| || x ||2 < 𝛽2}

= 0.
Therefore, Eq. (10) is written as

Therefore, the above equations can be obtained 
simultaneously

(9)

Pf = P{min
t∈[t0,ts]

g(x, t) ≤ 0|x ∈ Rn}

= P{min
t∈[t0,ts]

g(x, t) ≤ 0|||x||2 < 𝛽2}P{||x||2 < 𝛽2}

+ P{min
t∈[t0,ts]

g(x, t) ≤ 0|||x||2 ≥ 𝛽2}P{||x||2 ≥ 𝛽2}.

(10)

P{|| x ||2 ≥ �2} = P

{
n∑
i=1

x2
i
≥ �2

}
= 1 − F�2(n)(�

2).

(11)

Pf = [1 − F�2(n)(�
2)] ⋅ P{min

t∈[t0,ts]
g(x, t) ≤ 0| ||x||2 ≥ �2}.

The key to solve this probability is to find 
P{min

t∈[t0,ts]
g(x, t) ≤ 0| ||x||2 ≥ �2} . Meanwhile, the truncation 

probability density corresponding to the samples of 
||x||2 ≥ �2 is f tr

x
(x) , and then, the above equation can be 

expanded into

Thus

Generate M samples {x1, x2,… xM}
T of input variable X 

according to the f tr
x
(x) , and the estimated value of failure 

probability P̂f is

To ensure the estimation accuracy, sufficient samples are 
needed to perform simulation. For example, the performance 
function whose failure probability is from 10–5 to 10–8 
needs 5 × 107 to 5 × 1010 samples to perform the MCS simu-
lation. Therefore, for the time-dependent reliability problem 
of small failure probability (less than 10–5), although the 
AK-MCS method reduces the number of calling original 
performance function, the calculation cost is still too large 
to meet the engineering requirements. Meanwhile, it is still 
a challenging problem that how to improve the estimation 
efficiency of complex performance function and find the 
extremum in time interval.

3.3.3 � Analysis procedure of the proposed time‑dependent 
reliability method

The proposed method is based on ARBIS method and com-
bined with double-loop AK model to transform the time-
dependent reliability problem into a time-independent prob-
lem. The specific flowchart is shown in Fig. 7.

Step 1 The original variable is converted into stand-
ard normal space, and the converted performance func-
tion is marked as g(x) . Meanwhile, the sample pool 
S
x =

{
x1, x2 … xNx

}
 with sample size Nx is generated.

(12)

�
min
t∈[t0,ts ]

g(x,t)≤0
fx(x)dx = [1 − F�2(n)(�

2)] ⋅ �
g(x)≤0

f tr
x
(x)dx

= �
min
t∈[t0,ts ]

g(x,t)≤0
[1 − F�2(n)(�

2)] ⋅ f tr
x
(x)dx.

(13)f tr
x
(x) =

⎧
⎪⎨⎪⎩

1

1 − F𝜒2(n)(𝛽
2)
fx(x) �� x ��2 ≥ 𝛽2

0 ��x��2 < 𝛽2.

(14)P̂f = [1 − F𝜒2(n)(𝛽
2)] ⋅

1

M

M∑
j=1

IF( min
t∈[t0,ts]

g(xi, t)).

Fig. 6   Schematic diagram of β-sphere of time-dependent perfor-
mance function
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Step  2  Se t  in i t i a l  number  o f  i t e ra t ions 
i�  = 1,�1=

√
F−1
x2(n)

(1 − p1) , p1=10
−6 , �0 = +∞ . where 

F−1
x2(n)

(⋅) is the inverse function of Chi-square distribution 
function (For small failure probability problem, p1=10−6 is 
generally selected).

Step 3 N0 initial samples from sample pool Sx are ran-
domly selected, and at a given value of x*, the performance 
function g(x∗, t) is obtained with respect to t. In the inner 
loop, the AK model of performance function g(x∗, t) with 
respect to t is established, and then, its minimum Ge(x∗) =

mint∈[t0,ts] gk(x ∗, t) is obtained. Because of x∗ = xT
k
 , the initial 

training set is formed as T = 
{
(xT

k
,Gek(x

T
k
)), k = 1, 2…N0

}
 

and AK model Gek(x) is established.
Step 4 The set of samples satisfying 𝛽i𝛽 < ‖x‖ < 𝛽i𝛽−1 in 

the sample pool Sx is marked as Sinside.
Step 5 Samples inside Sinside are used by outer loop 

AK model Gek(x) to judge the termination condition 
C(K,MCS) > CR , where the constant CR ranges from 0.99 to 
0.9999. If it holds, turn to Step 7; if not, turn to Step 6.

Especially, C(K,MCS) is the parameter to judge the con-
vergence condition constructing outer loop AK model 

Fig.7   Flowchart of the proposed method
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Gek(x) . Prc(x) is the probability that the validity of Ge(x) 
is judged by Gek(x). The specific expression is as follows:

Step 6 Combined with xu = argmaxx∈Sinside CA(x) , the 
update samples (xu,Ge(x

u)) and the updated candidate train-
ing sample set T = T ∪

{
(xu,Ge(x

u))
}
 are obtained to update 

the AK model Gek(x) . Then, turn to Step 4.
The expression of learning function CA(x) is shown as 

follows:

Step 7 In the i� th iteration, the updated AK model is used 
to count the value of failure samples and their indicator func-
tion is IF(x

i�
s )(s = 1, 2,…Ni�

) in Sinside, then estimate the 
failure probability by 

∑Ni�

s=1
IF(x

(i� )

s ) . Besides, calculate |||�i� − �i�−1
||| ≤ �(� = 0.01 ). If it is satisfied, turn to Step 9; if 

not, turn to Step 8.
Step 8 Let i� = i� + 1 . A new radius �i� of the sphere is 

found by the i� th step of the ARBIS method. In all failure 
samples in Sinside , the sample with the highest probability 
density is found. In the direction of the line between this 
point and origin, a new radius �i� of sphere is found by the 
linear search method. The previous �i� is assigned to �i�−1 , 
and turn to step 4.

S t e p  9  C a l c u l a t i n g  fa i l u r e  p r o b a b i l i t y 
P̂f = [1 − F𝜒2(n)(𝛽

2
opt
)] ⋅

1
∑i𝛽

t=1
Nt

∑i𝛽

t=1

∑Ni𝛽

s=1
IF(x

(t)
s
)   , 

Var[P̂f] ≈
P̂f

(
∑i𝛽

t=1
Nt)−1

{[1 − F𝜒2(n)(𝛽
2
opt
)] − P̂f}   ,  a n d 

Cov[P̂f] =

√
Var(P̂f)∕E(P̂f).

In the actual calculation, 1 − F�2(n)(�
2
opt
) ≈

M

N
 , where M is 

the number of samples outside the �opt - sphere , and N is the 
total number of samples.

Through the above steps, for the proposed method, the 
samples in the optimal β-sphere are absolutely safe, which 
avoids estimating the failure probability. On the contrary, 

(15)C(K,MCS) = E[Pr
c

] =
1

Nx

N
x∑

i=1

Pr
c

(x
i
),

(16)Pr
c
(x) = Φ

(
|GeK(x)|
�GeK (x)

)
.

(17)CA(x) = (1 − Pr
c
(x)) × fX(x) × �GeK

(x).

only the samples outside the optimal β-sphere are regards 
as the candidate sample pool to update the AK model and 
estimate the failure probability. Therefore, the accuracy and 
efficiency of updating AK model are greatly improved. At 
the same time, especially for the small failure probability 
problem, the proposed method improves the efficiency of 
estimating the failure probability by reducing the capacity 
of the candidate sample pool. And this method is applicable 
to the problem with multiple MPPs.

4 � Case study

In this section, three cases are analyzed. The first one is a 
two-dimensional numerical example, and its failure prob-
ability is about 10–5. A four-bar function generator mech-
anism containing four variables. The third one is a wing 
structure; the performance function includes the variables 
of six dimensions and has a high degree of nonlinearity. The 
studies are carried out using the computer with a Inter (R) 
Core (TM) i7-8700 CPU processor, 8G RAM at 3.20 GHz 
and 3.19 GHz.

Five methods are used to provide the effectiveness of the 
proposed method:

•	 MCS: Monte Carlo Simulation method.
•	 Rice: the outcrossing rate method based on Rice’s for-

mula.
•	 Double-loop AK: Double-loop adaptive Kriging surro-

gate model method.
•	 SILK: Single-loop adaptive Kriging surrogate model 

method.
•	 Prosed method: the method proposed in this paper.

4.1 � Case 1: numerical example

The time-dependent performance function is characterized 
by Eq. (18)

where the input variables x1 and x2 are independent normal 
variables, x1 ∼ N(3.5, 0.32) and x2∼ N(3.5, 0.32) . The time 
interval is [0,5].

(18)G(x, t) = x2
1
x2 − 5x1t + 50 sin

(
t

5

)
(x2 + 1) − 18,

Table 1   Results of failure 
probability for Case 1

Method Pf Cov (%) Ncall Ncand Runtime (s) Error (%)

MCS 6.027 × 10–5 3.45 1.5 × 107 1.5 × 107 1173.85 –
Rice 5.431 × 10–5 – 1548 – 51.84 9.89
Double-loop ALK 6.461 × 10–5 3.21 40 1.5 × 107 59.402 7.2
SILK 6.053 × 10–5 3.32 17 1.5 × 107 1.92 × 105 0.38
Proposed method 6.020 × 10–5 3.32 40 1.5 × 107 37.016 0.116
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The comparison is shown in Table 1, Ncall represents the 
number of calling the time-dependent performance func-
tion, and Ncand denotes the number of candidate samples 
and Runtime means the average runtime for estimating the 
time-dependent failure probability. Error stands for the rela-
tive error rate (%) compared with MCS method. Notations 
are suitable for all the following examples.

In this table, MCS method is listed for reference. The 
calculation results of the five methods are compared and 
analyzed. By comparing the results of the five methods, it 
can be seen that the error of the proposed method is the 
smallest of all the methods. In terms of computing time, 
the proposed method is more efficient than double-loop AK 
method. The number of calling performance function is ana-
lyzed, which shows that the proposed method is far less than 
that of MCS method. Although the calling number of the 
performance function of the proposed method is more than 
SILK, it is more efficient. Therefore, the proposed method is 
more suitable for time-dependent reliability analysis of com-
plex engineering structures with small failure probability.

To illustrate the process of searching for the optimal 
radius βopt of the sphere adaptively, the sample size of set 
Sinside and the corresponding radius βi of the sphere in each 
iteration are listed in Table 2. It can be seen from this table 
that a total of three iterations have been carried out. The total 
number of samples in Sinside accounts for only 0.0556% of 
the initial sample pool. That is, 99.444% samples in the sam-
ple pool are unused in the estimation of failure probability, 
which is efficient for small failure probability.

The process of searching for the optimal radius βopt of 
the sphere is shown in Fig. 8. The training points added by 
updating AK model and all the approximate MPP are shown 
in Fig. 9.

4.2 � Case 2: a four‑bar function generator 
mechanism

This example is a function generator mechanism, as shown 
in Fig. 10. Where � = [R1,R2,R3,R4] , the random variables 
R1, R2, R3, R4 are the normal distribution with mean value 
53, 122, 66.5, and 100 respectively, and their standard devia-
tion is all 0.1.

The relationship between the angles in the movement of 
four-bar function generator mechanism is as follows:

where � is input variable, and � and � are output variables. 
Therefore, we get these equations

w h e r e  D = −2R1R3 sin � , E = 2R3(R4 − R1 cos �)

,F = R2
2
− R2

1
− R2

3
− R2

4
+ 2R1R4 cos �.

Consequently, the performance function is given by

where failure threshold c is set as 0.8, � under consideration 
is [95.5◦, 155.5◦] and the probability of failure Pf is com-
puted by

The results are presented in Table 3.
From Table 3, we can find that the estimation efficiency 

of the proposed method is more efficient, and its running 
time is far less than any other methods. Although the number 
of calling performance function is higher than SILK method, 
its running time is less. The iterative process of searching 
for the optimal radius βopt of the sphere is shown in Fig. 4.

According to Table 4, in the process of searching for the 
optimal radius βopt of the sphere, nine times of iterations is 
conducted. The total number of the samples used to updat-
ing the AK model accounts for only 9.28% of the initial 
sample pool. This example also shows that the proposed 
method greatly reduces the calculation of the sample pool 
under small failure probability. Thus, it is more efficient than 
any other method listed in Table 3.

4.3 � Case 3: an aircraft wing structure

This example introduces an engineering application about 
the wing which is chosen as typical long-range transport 
aircraft wing in the Boeing 767 class [28]. The geometric 
details are obtained from Ref. [29]. A simple sketch of a 
reference wing geometric is given in Fig. 11

Figure 11a shows the cross-sectional view of the refer-
ence wing, where T, h, and c are the thickness, the depth, 
and the chord of the wing, respectively. Figure 11b is the top 

(19)

{
R1 cos � + R2 cos � − R3 cos� − R4 = 0

R1 sin � + R2 sin � − R3 sin� = 0,

(20)

⎧
⎪⎨⎪⎩
�(�, �) = 2 arctan

D ±
√
D2 + E2 − F2

E + F

�d(�) = 76◦ + 60◦ sin(0.75(� − 95.5◦)),

(21)G(�, �) = c − �(�, �) + �d(�),

(22)
Pf = Pr{G(�, 𝜃) < 0,∃𝜃 ∈ [95.5◦, 155.5◦]}

= Pr{ min
𝜃∈[95.5◦,155.5◦]

G(�, 𝜃) < 0)}.

Table 2   Record of the adaptive process

Number of iterations Sample size of 
set Sinside

Radius β of the sphere

1 163 β1 = 4.7985
2 7871 β2 = 3.8825
3 300 β3 = 3.8724
Total number 8334 (0.0556%) (Ncand 1.5 × 107)
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(a) Initial candidate sampling pool (b) Samples outside initial β1-sphere

(c) Samples between β1-sphere and β2-sphere (d) Samples between β2-sphere and β3-sphere.

Fig. 8   Adaptive sampling process

Fig. 9   The process of adaptively searching for MPP and adding train-
ing samples

Fig. 10   A four-bar function generator mechanism
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view where b is the span and b = 40(m). Figure 11c shows 
the loading on the wing.

In this example, the location in the x-axis can be viewed 
as t parameter and t ∈ [0,20]. The input vector is denoted as 
X = {Pr, �f, cr, c0∕cr, h∕c,T}

T and the corresponding distribu-
tion parameters are shown in Table 5.

The time-dependent performance function of the reference 
wing is represented by Eq. (21)

where the chord length c, wing depth h, moment of iner-
tia IZ , and the bending moment M can be, respectively, 
expressed as

The results of the time-dependent failure probability esti-
mated by referenced methods and the proposed method are 
shown in Table 6. Obviously, in the case of the same error, 

(23)G(�, t)=�f −
M(�, t)(h(�, t)∕2)

IZ(�, t)
,

(24)c(�, t)=cr

[(
c0

cr

)
+

(
1 −

c0

cr

)
t

b∕2

]
,

(25)h(�, t) = cr

(
h

c

)[(c0

cr

)
+

(
1 −

c0

cr

)
t

b∕2

]
,

(26)IZ(�, t)=
1

2
c(�, t)Th2(�, t),

(27)

M(�, t) = 4Prcrb[(
c0

cr

)
t
4

12b2
+

(
1 − 2

c0

cr

)
t
5

20b3
+

(
c0

cr

− 1

)
t
6

30b4

]
.

Table 3   Results of failure 
probability for Case 2

Method Pf Cov (%) Ncall Ncand Runtime (s) Error (%)

MCS 2.355 × 10–3 3.25 4 × 105 4 × 105 41.12 –
Rice 2.3 × 10–3 – 330 – – 5.5
Double-loop Kriging 2.298 × 10–3 3.29 468 4 × 105 109.83 2.34
SILK 2.453 × 10–3 3.19 39 4 × 105 – 9.8
Proposed method 2.355 × 10–3 3.25 338 4 × 105 4.51 0

Table 4   Record of the adaptive process

Number of iterations Sample size of 
set Sinside

Radius β of the sphere

1 6219 β1 = 3.5
2 7520 β2 = 3.2231
3 2807 β3 = 3.1547
4 515 β4 = 3.1435
5 7681 β5 = 3.9957
6 8663 β6 = 3.8688
7 232 β7 = 3.8656
8 770 β8 = 2.8556
9 2726 β9 = 2.8211
Total number 37,133 (9.28%) (Ncand = 4 × 105)

Fig.11   Reference wing: a cross-
sectional view; b top view c 
loading on the wing [22]
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the proposed method is more efficient than other methods 
and the number of calling performance function is the least. 
Therefore, the proposed method is also suitable for high fail-
ure probability. Table 7 shows the iterative process of the 
proposed method in searching for MPP.

From Table 7, the total number of samples in set Sinside 
accounts for 36.12% of the initial sample pool. Obviously, 
this ratio is much larger than 0.0556% and 3.25% of the pre-
vious two examples. The main reason is that optimal radius 
�opt of the sphere in this example is smaller than those in 
previous example, which leads to more samples used for 
updating the Kriging model outside �opt-sphere. Therefore, 
the calculation is not significantly reduced compared with 
double-loop AK model method, but its estimation efficiency 
is still higher than that of the double-loop AK model and 
MCS method.

5 � Conclusion

Through the analysis of cases above, we conclude that the 
proposed method can improve the estimation efficiency and 
accuracy of time-dependent reliability analysis. It is sum-
marized as follows.

1.	 For the problem of small failure probability, the pro-
posed method is more efficient than double-loop AK 

model and MCS method, and it has higher accuracy than 
double-loop AK model.

2.	 Compared with general AK model connecting with IS 
method, the proposed method does not need to calculate 
the MPP at first, but searching for it step by step adap-
tively, and it is also applicable to the case of multi MPPs 
and highly nonlinear performance function.

3.	 In some cases, the number of calling performance func-
tion of proposed method is more than double-loop AK 
model. The main reason is that, when AK model is 
updated initially, many useless training samples with 
low probability density are added. The solution to this 
problem is still under studying.

4.	 In the future study, three directions will be researched: 
(a) the research of improving the estimation efficiency 
of adaptive searching for the optimal radius βopt of the 
sphere; (b) the influence of different initial radius β0 of 
the sphere on the convergence speed and the number of 
calling performance function; (c) combining the ARBIS 
method with the single-loop time-dependent AK model.
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Table 5   Distributions of inputs for case 3

Input variable Distribution Mean value Variation 
coefficient

Pr (N/m3) Normal 4.53 × 103 0.05
σf (N/m2) Normal 4 × 108 0.05
cr (m) Normal 7.62 0.01
c0/cr Normal 0.4 0.01
h/c Normal 0.12 0.01
T (m) Normal 8.9 × 10–3 0.1

Table 6   Numerical results of 
failure probability for Case 3

Method Pf Cov (%) Ncall Ncand Run time (s) Error (%)

MCS 1.278 × 10–2 2.78 105 105 7.539 –
Double-loop AK 1.275 × 10–2 2.78 133 105 9.265 0.23
SILK 1.28 × 10–2 2.78 31 105 4023 0.16
Proposed method 1.274 × 10–2 2.78 91 105 1.072 0.31

Table 7   Record of adaptive process

Number of iterations Sample size of set 
Sinside

Radius β of 
the sphere

1 1406 4.0000
2 369 3.9248
3 24,397 2.7719
4 10,345 2.5586
5 95 2.5568
Total number 36612 (36.12%) (Ncand = 105)



2048	 Engineering with Computers (2023) 39:2035–2048

1 3

References

	 1.	 Feng KX, Lu ZZ, Ling CY, Yun WY (2019) An innovative esti-
mation of failure probability function based on conditional prob-
ability of parameter interval and augmented failure probability. 
Mech Syst Signal Process 123:606–625. https://​doi.​org/​10.​1016/j.​
ymssp.​2019.​01.​032

	 2.	 Hu Z, Mahadevan S (2015) Time-dependent system reli-
ability analysis using random field discretization. J Mech Des 
137(10):101404. https://​doi.​org/​10.​1115/1.​40313​37

	 3.	 Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 
method: a way to compute time-variant reliability. Reliab Eng 
Syst Saf 84:75–86. https://​doi.​org/​10.​1016/j.​ress.​2003.​10.​005

	 4.	 Li J, Chen JB, Fan WL (2007) The equivalent extreme-value 
event and evaluation of the structural system reliability. Struct 
Saf 29:112–131. https://​doi.​org/​10.​1016/j.​strus​afe.​2006.​03.​002

	 5.	 Du XP (2014) Time-dependent mechanism reliability analysis 
with envelope functions and first-order approximation. J Mech 
Des 136(8):081010. https://​doi.​org/​10.​1115/1.​40276​36

	 6.	 Shi Y, Lu ZZ, Cheng KF, Zhou YC (2017) Temporal and spa-
tial multi-parameter dynamic reliability and global reliability 
sensitivity analysis based on the extreme value moments. Struct 
Multidiscip Optim 56(1):117–129. https://​doi.​org/​10.​1007/​
s00158-​017-​1651-2

	 7.	 Li HS, Wang T, Yuan JY, Zhang H (2019) A sampling-based 
method for high-dimensional time-variant reliability analysis. 
Mech Syst Signal Process 126:505–520. https://​doi.​org/​10.​1016/j.​
ymssp.​2019.​02.​050

	 8.	 Wang JT, Wang CJ, Zhao JP (2017) Frequency response function-
based model updating using Kriging model. Mech Syst Signal 
Process 87:218–228. https://​doi.​org/​10.​1016/j.​ymssp.​2016.​10.​023

	 9.	 Zhai X, Fei CW, Choy YS, Wang JJ (2017) A stochastic model 
updating strategy-based improved response surface model and 
advanced Monte Carlo simulation. Mech Syst Signal Process 
82:323–338. https://​doi.​org/​10.​1016/j.​ymssp.​2016.​05.​026

	10.	 Zhen H, Xiaoping D (2015) Mixed efficient global optimi-
zation for time-dependent reliability analysis. J Mech Des 
137(5):051401. https://​doi.​org/​10.​1115/1.​40295​20

	11.	 Wang ZQ, Wang PF (2015) A double-loop adaptive sampling 
approach for sensitivity-free dynamic reliability analysis. Reliab 
Eng Syst Saf 142:346–356. https://​doi.​org/​10.​1016/j.​ress.​2015.​
05.​007

	12.	 Zhen H, Sankaran M (2016) A single-loop kriging surrogate 
modeling for time-dependent reliability analysis. J Mech Des 
138(6):061406. https://​doi.​org/​10.​1115/1.​40334​28

	13.	 Xu HX, Qiao CJ, Ping ZH (2016) Assessing small failure prob-
abilities by AK–SS: an active learning method combining Kriging 
and Subset Simulation. Struct Saf 59:86–95. https://​doi.​org/​10.​
1016/j.​strus​afe.​2015.​12.​003

	14.	 Echard B, Gayton N, Lemaire M, Relun N (2013) A combined 
Importance Sampling and Kriging reliability method for small 
failure probabilities with time-demanding numerical models. 
Reliab Eng Syst Saf 111:232–240. https://​doi.​org/​10.​1016/j.​ress.​
2012.​10.​008

	15.	 Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based 
importance sampling for structural reliability analysis. Probab Eng 
Mech 33:47–57. https://​doi.​org/​10.​1016/j.​probe​ngmech.​2013.​02.​
002

	16.	 Cadini F, Santos F, Zio E (2014) An improved adaptive kriging-
based importance technique for sampling multiple failure regions 
of low probability. Reliab Eng Syst Saf 131:109–117. https://​doi.​
org/​10.​1016/j.​ress.​2014.​06.​023

	17.	 Yang X, Cheng X, Liu Z, Wang T (2021) A novel active learning 
method for profust reliability analysis based on the Kriging model. 
Eng Comput. https://​doi.​org/​10.​1007/​s00366-​021-​01447-y

	18.	 Yang X, Cheng X, Wang T, Mi C (2020) System reliability analy-
sis with small failure probability based on active learning Krig-
ing model and multimodal adaptive importance sampling. Struct 
Multidiscip Optim. https://​doi.​org/​10.​1007/​s00158-​020-​02515-5

	19.	 Yang X, Cheng X (2020) Active learning method combining Krig-
ing model and multimodal-optimization-based importance sam-
pling for the estimation of small failure probability. Int J Numer 
Methods Eng 121:4843–4864. https://​doi.​org/​10.​1002/​nme.​6495

	20.	 Tong CT, Sun ZL, Zhao QL, Wang QB, Wang S (2015) A hybrid 
algorithm for reliability analysis combining Kriging and subset 
simulation importance sampling. J Mech Sci Technol 29:3183–
3193. https://​doi.​org/​10.​1007/​s12206-​015-​0717-6

	21.	 Yun WY, Lu ZZ, Jiang X, Zhang LG, He PF (2020) AK-ARBIS: 
an improved AK-MCS based on the adaptive radial-based impor-
tance sampling for small failure probability. Struct Saf 82:101891. 
https://​doi.​org/​10.​1016/j.​strus​afe.​2019.​101891

	22.	 Ling CY, Lu ZZ, Zhu XM (2019) Efficient methods by active 
learning Kriging coupled with variance reduction based sampling 
methods for time-dependent failure probability. Reliab Eng Syst 
Saf 188:23–35. https://​doi.​org/​10.​1016/j.​ress.​2019.​03.​004

	23.	 Shi Y, Lu ZZ, He RY (2020) Advanced time-dependent reliability 
analysis based on adaptive sampling region with Kriging model. 
Proc Inst Mech Eng Part O J Risk Reliab 234(4):588–600. https://​
doi.​org/​10.​1177/​17480​06X20​901981

	24.	 Goller B, Pradlwarter HJ, Schuëller GI (2013) Reliability assess-
ment in structural dynamics. J Sound Vib 332(10):2488–2499. 
https://​doi.​org/​10.​1016/j.​jsv.​2012.​11.​021

	25.	 Li CC, Kiureghian AD (1993) Optimal discretization of random 
fields. J Eng Mech 119(6):1136–1154. https://​doi.​org/​10.​1061/​
(ASCE)​0733-​9399(1993)​119:​6(1136)

	26.	 Grooteman F (2007) Adaptive radial-based importance sampling 
method for structural reliability. Struct Saf 30(6):533–542. https://​
doi.​org/​10.​1016/j.​strus​afe.​2007.​10.​002

	27.	 Harbitz A (1986) An efficient sampling method for probability of 
failure calculation. Harbitz Alf 3(2):109–115. https://​doi.​org/​10.​
1016/​0167-​4730(86)​90012-3

	28.	 Venter G, Sobieski J (2004) Multidisciplinary optimization of 
a transport aircraft wing using particle swarm optimization. 
Struct Multidiscip Optim 26:121–131. https://​doi.​org/​10.​1007/​
s00158-​003-​0318-3

	29.	 Acar E, Haftka RT (2005) Reliability based aircraft structural 
design optimization with uncertainty about probability distribu-
tions. In: 6th world congresses of structural and multidisciplinary 
optimization

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ymssp.2019.01.032
https://doi.org/10.1016/j.ymssp.2019.01.032
https://doi.org/10.1115/1.4031337
https://doi.org/10.1016/j.ress.2003.10.005
https://doi.org/10.1016/j.strusafe.2006.03.002
https://doi.org/10.1115/1.4027636
https://doi.org/10.1007/s00158-017-1651-2
https://doi.org/10.1007/s00158-017-1651-2
https://doi.org/10.1016/j.ymssp.2019.02.050
https://doi.org/10.1016/j.ymssp.2019.02.050
https://doi.org/10.1016/j.ymssp.2016.10.023
https://doi.org/10.1016/j.ymssp.2016.05.026
https://doi.org/10.1115/1.4029520
https://doi.org/10.1016/j.ress.2015.05.007
https://doi.org/10.1016/j.ress.2015.05.007
https://doi.org/10.1115/1.4033428
https://doi.org/10.1016/j.strusafe.2015.12.003
https://doi.org/10.1016/j.strusafe.2015.12.003
https://doi.org/10.1016/j.ress.2012.10.008
https://doi.org/10.1016/j.ress.2012.10.008
https://doi.org/10.1016/j.probengmech.2013.02.002
https://doi.org/10.1016/j.probengmech.2013.02.002
https://doi.org/10.1016/j.ress.2014.06.023
https://doi.org/10.1016/j.ress.2014.06.023
https://doi.org/10.1007/s00366-021-01447-y
https://doi.org/10.1007/s00158-020-02515-5
https://doi.org/10.1002/nme.6495
https://doi.org/10.1007/s12206-015-0717-6
https://doi.org/10.1016/j.strusafe.2019.101891
https://doi.org/10.1016/j.ress.2019.03.004
https://doi.org/10.1177/1748006X20901981
https://doi.org/10.1177/1748006X20901981
https://doi.org/10.1016/j.jsv.2012.11.021
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
https://doi.org/10.1016/j.strusafe.2007.10.002
https://doi.org/10.1016/j.strusafe.2007.10.002
https://doi.org/10.1016/0167-4730(86)90012-3
https://doi.org/10.1016/0167-4730(86)90012-3
https://doi.org/10.1007/s00158-003-0318-3
https://doi.org/10.1007/s00158-003-0318-3

	Time-dependent reliability analysis method based on ARBIS and Kriging surrogate model
	Abstract
	1 Introduction
	2 Existing time-dependent reliability analysis method based on double-loop AK model
	2.1 Definition of time-dependent reliability
	2.2 Time-dependent reliability analysis based on double-loop AK model

	3 The proposed time-dependent reliability analysis method
	3.1 The basic principle of ARBIS method
	3.2 Solution of reliability index  under ARBIS method
	3.3 Time-dependent reliability analysis method based on ARBIS method
	3.3.1 Definition of β-hypersphere under time-dependent
	3.3.2 Solution method of failure probability based on time-dependent ARBIS
	3.3.3 Analysis procedure of the proposed time-dependent reliability method


	4 Case study
	4.1 Case 1: numerical example
	4.2 Case 2: a four-bar function generator mechanism
	4.3 Case 3: an aircraft wing structure

	5 Conclusion
	Acknowledgements 
	References




